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Figure 1: We propose Evolutionary Search (EvoSearch), a novel, generalist, and compute-optimal
test-time scaling framework applicable to both image and video generation tasks. EvoSearch signifi-
cantly enhances sample quality through strategic computation allocation during inference, enabling
Stable Diffusion 2.1 to be comparable to GPT4o, and Wan 1.3B to outperform Wan 14B model
and Hunyuan 13B model with 10× fewer parameters.

ABSTRACT

As the marginal cost of scaling computation (data and parameters) during model
pre-training continues to increase substantially, test-time scaling (TTS) has emerged
as a promising direction for improving generative model performance by allocating
additional computation at inference time. While TTS has demonstrated significant
success across multiple language tasks, there remains a notable gap in under-
standing the test-time scaling behaviors of image and video generative models
(diffusion-based or flow-based models). Although recent works have initiated
exploration into inference-time strategies for vision tasks, these approaches face
critical limitations: being constrained to task-specific domains, exhibiting poor
scalability, or falling into reward over-optimization that sacrifices sample diversity.
In this paper, we propose Evolutionary Search (EvoSearch), a novel, generalist,
and efficient TTS method that effectively enhances the scalability of both image
and video generation across diffusion and flow models, without requiring addi-
tional training or model expansion. EvoSearch reformulates test-time scaling for
diffusion and flow models as an evolutionary search problem, leveraging principles
from biological evolution to efficiently explore and refine the denoising trajectory.
By incorporating carefully designed selection and mutation mechanisms tailored
to the stochastic differential equation denoising process, EvoSearch iteratively
generates higher-quality offspring while preserving population diversity. Through
extensive evaluation across both diffusion and flow architectures for image and
video generation tasks, we demonstrate that our method consistently outperforms
existing approaches, achieves higher diversity, and shows strong generalizability to
unseen evaluation metrics.
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1 INTRODUCTION
Generative models have witnessed remarkable progress across various fields, including lan-
guage (Achiam et al., 2023; Jaech et al., 2024; Guo et al., 2025), image (Esser et al., 2024; Labs,
2024), and video generation (Brooks et al., 2024; Kong et al., 2024; Wang et al., 2025), demonstrating
powerful capabilities to capture complex data distributions. The central driver of this success is
their ability to scale up during training by increasing data volumes, computational resources, and
model sizes. This scaling behavior during the training process is commonly described as Scaling
Laws (Hoffmann et al., 2022; Kaplan et al., 2020). Despite these advancements, further scaling at
training time is increasingly reaching its limits due to the rapid depletion of available internet data
and increasing computational costs. Post-training alignment (Tie et al., 2025) has been proven to
be effective in addressing this challenge. For diffusion and flow models, these approaches typically
include parameter tuning via reinforcement learning (Black et al., 2023; Fan et al., 2023) or direct
reward gradient backpropagation (Clark et al., 2024; Prabhudesai et al., 2024). However, they suffer
from reward over-optimization due to their mode-seeking behavior, high computational costs, and
requirement of direct model weight access. Alternative methods (Ahn et al., 2024; Zhou et al., 2024)
propose directly optimizing initial noise, as some lead to better generations than others, but demand
specialized training and struggle with cross-model generalization.

Recent advances in large language models (LLMs) have expanded to test-time scaling (TTS) (Brown
et al., 2024; Wu et al., 2025), showing promising results to complement traditional training-time
scaling law. TTS (Zhang et al., 2025) allocates additional computation budget during inference,
offering a novel paradigm for improving generation quality without additional training. However,
diffusion and flow models present unique challenges for test-time scaling, since they must navigate
the complex, high-dimensional state space along the denoising trajectory, where existing methods
in LLMs struggle to transfer effectively. Current approaches of test-time scaling for diffusion and
flow models include (i) best-of-N sampling (Ma et al., 2025; Liu et al., 2025a), which, despite its
simplicity, suffers from severe search inefficiency in high-dimensional noise spaces; and (ii) particle
sampling (Kim et al., 2025b; Singhal et al., 2025a), which, while enabling search across the entire
denoising trajectory, compromises both exploration capability and generation diversity due to its
reliance on initial candidate pools. These simple heuristic designs lack fundamental adaptability to
the complex generation pathways, leading to sample diversity collapse and inefficient computation.

In this paper, we aim to address the above critical challenges and develop a general and efficient
test-time scaling method that is versatile for both image and video generation across diffusion and
flow models without parameter tuning or gradient backpropagation. To enable test-time scaling of
flow models, we transform their deterministic sampling process (ODE) into a stochastic process
(SDE), thereby broadening the generation space, which paves the way for a unified framework
for inference-time optimization. Through systematic analysis of latent spaces along the denoising
trajectory, including both starting Gaussian noises and intermediate states, we find that neighboring
states in the latent space exhibit similar generation qualities, suggesting that high-quality samples
are not solely isolated. Based on this insight, we propose Evolutionary Search (EvoSearch), a novel
test-time scaling method inspired by biological evolution. EvoSearch reframes test-time scaling of
image and video generation as an evolutionary search problem, incorporating selection and mutation
mechanisms specifically designed for the denoising process in both diffusion and flow models. At each
generation, EvoSearch first selects high-reward parents while preserving population diversity, and
then generates new offspring through our designed denoising-aware mutation mechanisms to explore
new states, enabling iterative improvement in sample quality. The key insight of EvoSearch is to
actively explore high-reward particles through evolutionary mechanisms, overcoming the limitations
of previous search methods that are confined to a fixed candidate space. To optimize computational
efficiency, we dynamically search along the denoising trajectory, progressing from Gaussian noises
to states at larger denoising steps, thereby continuously reducing computational costs as we approach
the terminal states. Through extensive experiments on both text-conditioned image generation and
video generation tasks, we find that EvoSearch achieves substantial improvements in sample quality
and human-preference alignment as test-time compute increases.

We summarize our key contributions as follows: (i) We propose EvoSearch, a novel, generalist, and
efficient TTS framework which enhances generation quality by allocating more compute during
inference, unifying optimization for both diffusion and flow generative models. (ii) Based on our
observations of latent space structure, we design specialized selection and mutation mechanisms
tailored to the denoising process, effectively enhancing exploration while maintaining diversity. (iii)
Extensive experiments show that EvoSearch effectively improves generative model performance by
scaling up inference-time compute, outperforming competitive baselines across both image and video
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generation tasks. Notably, EvoSearch enables SD2.1 (Dhariwal & Nichol, 2021) to be comparable to
GPT4o, and allows the Wan 1.3B model (Wang et al., 2025) to achieve competitive performance with
the 10× larger Wan 14B model. Our project is available at evosearch.github.io.

2 PRELIMINARY

Diffusion Models and ODE-to-SDE Transformation of Flow Models. Both diffusion models
and flow models map the source distribution, often a standard Gaussian distribution, to a true data
distribution p0. A forward diffusion process progressively perturbing data to noise, defined as
xt = αtx0 + σtε, where ε ∈ N (0, I) is the added noise at timestep t ∈ [0, T ], and (αt,σt) denote
the noise schedule. To restore from diffused data, diffusion models naturally utilize an SDE-based
sampler during inference (Song et al., 2020b;a), which introduces stochasticity at each denoising step
as follows: xt−1 =

√
αt−1

(
(xt −

√
1− αtεθ(xt, t))/

√
αt

)
+

√
1− αt−1 − σ2

t εθ(xt, t) + σtεt.

In contrast, flow models learn the velocity ut ∈ Rd, which enables sampling of x0 by solving the
flow ODE (Song et al., 2020b) backward from t = T to t = 0: xt−1 = xt + ut(xt)dt, leading all
xt−1 drawn from xt identical. This restricts the applicability of test-time scaling search methods
like particle sampling and our proposed EvoSearch in flow models (Kim et al., 2025a), since the
sampling process lacks stochasticity beyond initial noise. To address this limitation, we transform
the deterministic Flow-ODE into an equivalent SDE process. Following previous works (Albergo
et al., 2023; Ma et al., 2024; Patel et al., 2024; Kim et al., 2025a; Singh & Fischer, 2024), we
rewrite the ODE sampling process by dxt =

(
ut(xt)− σ2

t

2 ∇ log pt(xt)
)
dt + σtdw, where the

score log pt(xt) can be computed by velocity ut (see Eq. (13) in (Singh & Fischer, 2024)), and dw
injects stochasticity at each sampling step.

Evolutionary Algorithms. Evolutionary algorithms (EAs) (Koza, 1992; Bäck, 1996) are biologically
inspired, gradient-free methods that found effective in optimization (Goldberg, 1989; Grefenstette,
1993; Vikhar, 2016), algorithm search (Co-Reyes et al., 2021; Real et al., 2020), and neural architec-
ture search (Real et al., 2019; Yang et al., 2020; So et al., 2019). The key idea of EAs is mimicking
the process of natural evolution (Ao, 2005), by maintaining a population of solutions that evolve
over generations. EAs involve initializing random solutions, evaluating fitness, selecting parents,
and applying genetic operators (crossover and mutation) to create offspring that constitute the next
generation. Due to the diversity within populations and the mutation operations, EAs excel at global
optimization and solving multimodal problems compared to traditional local search methods.

3 RELATED WORK

Alignment for Diffusion and Flow Models. Aligning pre-trained diffusion and flow generative
models can be achieved by guidance (Dhariwal & Nichol, 2021; Song et al., 2020b) or fine-tuning (Lee
et al., 2023; Fan & Lee, 2023), which aim to enhance sample quality by steering outputs towards
a desired target distribution. Guidance methods (Ho et al., 2022; Song et al., 2023a; Chung et al.,
2023; Bansal et al., 2023; Song et al., 2023b; Guo et al., 2024b) rely on predicting clean samples
from noisy data and differentiable reward functions to calculate guidance. Typical fine-tuning
methods involve supervised fine-tuning (Lee et al., 2023; ?; Fan & Lee, 2023; Wu et al., 2023c), RL
fine-tuning (Black et al., 2023; Fan et al., 2023; Liu et al., 2025b; Miao et al., 2024), DPO-based
policy optimization (Wallace et al., 2024; Yang et al., 2024; Liang et al., 2024; Liu et al., 2024;
Zhang et al., 2024), direct reward backpropagation (Clark et al., 2024; Xu et al., 2023; Prabhudesai
et al., 2024), stochastic optimization (Domingo-Enrich et al., 2024; Yeh et al., 2024), and noise
optimization (Ahn et al., 2024; Zhou et al., 2024; Tang et al., 2024; Guo et al., 2024a; Eyring et al.,
2024). Previous works (Miao et al., 2024) calculate reward signals on fully denoised samples for
ensuring trustworthy feedback. However, these methods require additional dataset curation and
parameter tuning, and can distort alignment or reduce sample diversity due to their mode-seeking
behavior and reward over-optimization. In contrast, our proposed EvoSearch method offers significant
advantages through its universal applicability across any reward function and model architecture
(including flow-based, diffusion-based, image, and video models) without requiring additional
training. Moreover, EvoSearch complements existing fine-tuning methods, as it can be applied to any
fine-tuned model to further enhance reward alignment. While a related work (Domingo-Enrich et al.,
2024) demonstrates that SDE dynamics are critical for fine-tuning diffusion models, our work is
distinctive since we focus on the test-time inference phase instead of the training phase with parameter
updates.

Test-Time Scaling in Vision. Several test-time scaling (TTS) methods have been proposed to extend
the performance boundaries of image and video generative models. These methods fundamentally

3
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operate as search, with reward models providing judgments and algorithms selecting better candidates.
Best-of-N generates N batches of samples and selects the one with the highest reward, which has
been validated effective for both image and video generation (Ma et al., 2025; Liu et al., 2025a).
More advanced search method for diffusion models is particle sampling (Singhal et al., 2025a; Li
et al., 2024; 2025; Singh et al., 2025; Kim et al., 2025b), which resamples particles over the full
denoising trajectory based on their importance weights, demonstrating superior results than naive
BoN. Video-T1 (Liu et al., 2025a) and other recent works (Yang et al., 2025; Xie et al., 2025;
Oshima et al., 2025; Liu et al., 2025a) propose leveraging beam search (Snell et al., 2024) for
scaling video generation. However, in the context of diffusion and flow models, we remark that
beam search represents a specialized case of particle sampling with a predetermined beam size,
as both methodologies iteratively propagate high-reward samples while discarding lower-reward
ones in practice. Furthermore, Video-T1 is constrained to autoregressive video models, limiting its
applicability to more advanced diffusion and flow generative models. All existing search methods
rely heavily on passive filtering, failing to explore new particles actively, while our proposed method,
EvoSearch, leverages the idea of natural selection and evolution, enabling the generation of new,
higher-quality offspring iteratively. EvoSearch is also a generalist framework with superior scalability
and extensive applicability across both diffusion and flow models for image and video generation,
contrary to previous methods that are constrained to specific models or tasks.

4 PROPOSED METHOD

4.1 PROBLEM FORMULATION

In this work, we investigate how to efficiently harness additional test-time compute to enhance the
sample quality of image and video generative models. Given a pre-trained flow-based or diffusion-
based model and a reward function, our objective is to generate samples from the following target
distribution (Uehara et al., 2024a; Li et al., 2024; Wu et al., 2023a; Uehara et al., 2024b):

ptar =
1

Z
ppre0 (x0) exp

(r(x0)

α

)
, (1)

where Z denotes a normalization constant (Rafailov et al., 2023; Uehara et al., 2024a) and ppre0 is
the pre-trained distribution. Notably, directly sampling from the target distribution is infeasible: the
normalization factor Z requires integrating over the entire sample space, making it computationally
intractable for high-dimensional spaces in diffusion and flow models.

4.2 LIMITATIONS OF EXISTING APPROACHES

Test-time approaches to sampling from the target distribution ptar in Eq. equation 1 employ impor-
tance sampling (Owen & and, 2000), which generates k particles xi

0 ∼ ppre0 (x0) and then resamples
the particles based on the scores exp(r(x0)/α). A straightforward implementation of this concept is
best-of-N sampling, which simply generates multiple samples and selects the one with the highest
reward. A more sophisticated approach, called particle sampling (Singhal et al., 2025b; Kim et al.,
2025b), searches across the entire denoising path τ = {xT , · · · ,xk, · · · ,x0}, guiding samples to-
ward trajectories that yield higher rewards. However, both of these methods suffer from fundamental
limitations in their efficiency and exploration capabilities. Best-of-N only resamples at the final
step (t = 0), taking the entire distribution ppre0 (x0) =

∫ ∏
t{p

pre
t (xt−1|xt)}dx1:T as its proposal

distribution. This passive filtering approach is computationally wasteful, as it expends a large amount
of computation generating complete trajectories for samples that ultimately yield low rewards. In
contrast, particle sampling can search and resample at each intermediate step along the denoising
path, using ppret (xt−1|xt) as its proposal distribution at each step t. However, it is still constrained
by the fixed initial candidate pool, struggling to actively explore and generate novel states beyond
those proposed by ppre0 during the search process. This limitation becomes increasingly restrictive as
the search progresses, which leads to restricted performance due to limited exploration and reduced
diversity.

To better understand these inherent limitations more concretely, we visualize the behavior of different
approaches in Fig. 2. As shown, re-training methods, including RL (DDPO (Black et al., 2023)) and
reward backpropagation (Clark et al., 2024), struggle to generalize to the unseen target distribution,
largely due to their heavy reliance on pre-trained models and mode-seeking behavior. While test-time
search methods (best-of-N and particle sampling) achieve higher rewards than re-training methods,
they still fail to capture all modes of the multimodal target distribution, converging to limited regions of
the solution space. These findings highlight the need for a novel test-time scaling framework capable
of effectively balancing between exploitation and exploration while maintaining computational
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Figure 2: Visualization of a test-time alignment experiment. We train a diffusion model with 3-
layer MLP on Gaussian mixtures (pre-trained distribution), with the goal to capture multimodal
unseen target distribution, where reward r(X,Y ) = −|X2 + Y 2 − 4|. EvoSearch achieves superior
performance, capturing all the modes with the highest reward (-0.74).
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Figure 3: Overview of our method. EvoSearch progressively moves forward along the denoising
trajectory to refine and explore new states. At each evolution step defined by T , our proposed
EvoSearch process generates novel, high-quality offspring xchild

T based on the parent population
xparent
t . The population size across each generation is defined by schedule K. EvoSearch contains

evaluation, selection, and mutation operations to ensure the effectiveness of the evolutionary process.
The generation quality consistently improves with the progression of the evolutionary search.

efficiency for scaling up. In the following sections, we introduce how our EvoSearch method
overcomes these fundamental limitations, which achieves the highest reward with comprehensive
mode coverage as shown in Fig. 2.

4.3 EVOLUTIONARY SEARCH

We propose Evolutionary Search (EvoSearch), a novel evolutionary framework that reformulates the
sampling from the target distribution ptar in Eq. 1 at test time as an active evolutionary optimization
problem rather than passive filtering. EvoSearch introduces a unified way for achieving efficient and
effective test-time scaling across both diffusion and flow models for image and video generation
tasks. The overview of our method is provided in Fig. 3. Our algorithm is summarized in Alg 1&2.
EvoSearch introduces a novel perspective that reinterprets the denoising trajectory as an evolutionary
path, where both the initial noise xT and the intermediate state xt can be evolved towards higher-
quality generation, actively expanding the exploration space beyond the constraints of the pre-trained
model’s distribution. Below, we introduce the core components of EvoSearch.

Evolution Schedule. For a typical sampling process in diffusion and flow models, the change
between xt−1 and xt is not substantial. Therefore, performing EvoSearch at every sampling step
would be computationally wasteful. To address this efficiency problem, EvoSearch defines an
evolution schedule T = {T, · · · , tm, · · · , tn} that specifies the timesteps at which EvoSearch should
be conducted. Concretely, EvoSearch first thoroughly optimizes the starting noise xT to identify
high-reward regions in the Gaussian noise space, establishing a strong initialization for the subsequent
denoising process. After a high-quality xT is obtained, EvoSearch progressively applies our proposed
evolutionary operations to intermediate states xti at predetermined timesteps ti ∈ T . This cascading
way enables each subsequent generation beginning directly from the cached intermediate state xti
obtained from the previous generation, instead of repeatedly denoising from xT , eliminating the
redundant denoising computations from xT → xti . In practice, we implement this evolution schedule
using uniform intervals between timesteps, which significantly reduces computational overhead.

Population Initialization. Following the evolution schedule T , we introduce a corresponding popu-
lation size schedule K = {kT , · · · , km, · · · , kn}, where each ki specifies the population size for the
generation at timestep ti. This adaptive approach enables flexible trade-offs between computational
cost and exploration of the state space (Appendix B.1 for further analysis on ablation of K and T ).
The initial generation of EvoSearch begins with kT randomly sampled Gaussian noises {xi

T }
kT
i=1 at

timestep t = T , which serve as the first-generation parents for the subsequent evolutionary process.

5
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Fitness Evaluation. To guide the evolutionary process, EvoSearch evaluates the quality of each
parent using an off-the-shelf reward model at each evolution timestep ti:

R(xti) = Ex0∼p0(x0|xti
) [r(x0)|xti ] , (2)

where the reward model r can correspond to various objectives, including human preference
scores (Xu et al., 2023; Wu et al., 2023b; Hessel et al., 2021) and vision-language models (Liu
et al., 2025a; He et al., 2024). Note that previous methods typically rely on either lookahead estima-
tors (Oshima et al., 2025; Li et al., 2025) or Tweedie’s formula (Efron, 2011; Kim & Ye, 2021) to
predict x0 from noisy data for reward calculation in Eq. equation 2, which can induce significant
prediction inaccuracies and approximation errors. In contrast, we evaluate the reward directly on
fully denoised x0 (e.g., clean image or video), thereby obtaining high-fidelity reward signals. Consid-
ering computing the exact expectation is computationally prohibitive, as it would require generating
multiple full trajectories for every candidate at each intermediate denoising step. Therefore, in our
implementation, we use a single-sample Monte Carlo approximation, estimating the expectation
based on a single sample x0. Although this is an estimate of the true expectation, the evolutionary
population dynamics allow EvoSearch to robustly optimize the objective despite the variance in
individual estimates.

Selection. To propagate high-quality candidates across generations while maintaining population
diversity, EvoSearch employs tournament selection (Goldberg & Deb, 1991) to sample parents from
the population of size ki through cycles. Specifically, each cycle picks a tournament of b < ki
candidates at random and selects the best candidate in the tournament as a parent.

Mutation. Recent works (Zhou et al., 2024; Ahn et al., 2024) have shown that different initial noises
yield varying generation quality. Intuitively, this property extends naturally to intermediate denoising
states. While this phenomenon serves as a basis for making best-of-N and particle sampling useful, it
raises a more fundamental question: do these noises and intermediate states possess other exploitable
patterns or structural regularities that can be leveraged to enhance inference-time generation quality?

To investigate this critical question, we visualize the latent states at different denoising steps using t-
SNE (Van der Maaten & Hinton, 2008). Our findings, as shown in Fig. 4, reveal that neighboring states
in the latent space exhibit similar generation qualities, suggesting that high-quality samples are not
solely isolated. Building upon this discovery, we develop a specialized mutation strategy that leverages
this exploitable structure in the reward landscape of diffusion and flow models. Specifically, we
preserve m elite parents (those with top fitness scores) at each generation to ensure convergence, where
m ≪ ki. For the remaining ki−m parents, we mutate them to explore the neighborhoods around
selected parents to discover higher-quality samples. This approach avoids premature convergence to
a narrow region of the denoising state space, facilitating effective exploration of novel regions while
maintaining population diversity. To align with the characteristics of the underlying SDE sampling
process, we develop different mutation operations for initial noises and intermediate denoising states.
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Figure 4: t-SNE Visualization of latent xt from SD2.1 model at different steps, colored by their
corresponding ImageReward scores. At denoising step 0, xt is Gaussian noise. High-reward states
exhibit significant spatial correlations, as measured by Moran’s I (Moran, 1950).

• Initial noise mutation. For the initial noise xT , which is sampled from a Gaussian distribution, the
corresponding mutation operation is designed to preserve the Gaussian nature of the noise based on

xchild
T =

√
1− β2xparent

T + βεT , εT ∼ N (0, I), (3)

where β controls the added stochasticity to the parents. The first term ensures that the mutated
children preserve the high-reward region density, while the second term encourages exploration.
• Intermediate denoising state mutation. For intermediate states xt, the mutation operation defined
in Eq. 3 is not applicable since xt is no longer Gaussian due to the denoising process. To synthesize
meaningful variations while preserving the intrinsic structure of the latent state xt, we propose an
alternative mutation operator inspired by the reverse-time SDE:

xchild
t−1 = xparent

t−1 + σtεt, εt ∼ N (0, I), (4)
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where σt is the diffusion coefficient defined in reverse-time SDE, controlling the level of injected
stochasticity. This mutation operation effectively generates novel xt−1, enabling exploration of an
expanded state space while preserving the inherent distribution established during the denoising
process. The theoretical validation of the proposed mutation strategies is provided in the Appendix A.2.
In the next generation of EvoSearch, we sample x0 ∼ p0(x0|xchild

t ) based on the new offspring
xchild
t , and repeat the above evolutionary search process, including evaluation, selection, and mutation.

We highlight that EvoSearch provides a unified framework that encompasses both best-of-N and
particle sampling as special cases.

5 EXPERIMENTS

In this section, we evaluate the efficacy of EvoSearch through extensive experiments on large-scale
text-conditioned generation tasks, encompassing both image and video domains.

5.1 EXPERIMENT SETUP

Image Generation. (i) Tasks and Metrics. We adopt DrawBench (Saharia et al., 2022) for
evaluation, which consists of 200 prompts spanning 11 different categories. We utilize multiple
metrics to evaluate generation quality, including ImageReward (Xu et al., 2023), HPSv2 (Wu et al.,
2023b), Aesthetic score (Schuhmann et al., 2022), and ClipScore (Hessel et al., 2021). ImageReward
and ClipScore are employed as guidance rewards during search. Please refer to evaluation details in
Appendix A.3. (ii) Models. We employ two different text-to-image models to evaluate EvoSearch
and baselines, which are Stable Diffusion 2.1 (Rombach et al., 2022) and Flux.1-dev (Labs, 2024),
respectively. SD2.1 is a diffusion-based text-to-image model with 865M parameters, while Flux-dev
is a rectified flow-based model with 12B parameters. For both models, we use 50 denoising steps
with a guidance scale of 5.5, with other hyperparameters remaining as the default.

Video Generation. (i) Tasks and Metrics. We take the recently released VideoReward (Liu
et al., 2025b) as the guidance reward to provide feedback during search. VideoReward, built
on Qwen2-VL-2B (Wang et al., 2024), evaluates generated videos on multiple dimensions: vi-
sual quality, motion quality, and text alignment. To measure the generalization performance
to unseen rewards, we utilize both automatic metrics and human assessment for comprehensive
evaluation. For automatic evaluation, we employ multiple metrics from VBench (Huang et al.,
2024) and VBench2 (Zheng et al., 2025), which encompass 625 distinct prompts distributed
across six fundamental dimensions, including dynamic, semantic, human fidelity, composition,
physics, and aesthetic. For human evaluation, we hire annotators to evaluate videos on 200
prompts sampled from VideoGen-Eval (Zeng et al., 2024). Evaluation details are in Appendix A.3.
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Figure 5: Scaling behavior of EvoSearch and
baselines as inference-time computation in-
creases on DrawBench. Top: SD2.1. Bottom:
Flux.1-dev. (a) and (b) use ImageReward and
ClipScore as guidance rewards, respectively.

(ii) Models. To evaluate the scalability and perfor-
mance of baselines, we utilize two widely adopted
video generative models: HunyuanVideo (Kong et al.,
2024) and Wan (Wang et al., 2025). Given the com-
putational intensity of video generation compared to
image generation, we specifically use the 1.3B pa-
rameter variant of Wan for practical evaluation. Each
video comprises 33 frames, with other hyperparam-
eters following default configurations.

Baselines. As we evaluate the scalability of both dif-
fusion and flow models across image and video gen-
eration tasks, we benchmark EvoSearch against two
widely-used search methods that are applicable to our
experimental settings: (i) Best of N samples multi-
ple random noises at beginning, assign reward values
to them via denoising and evaluation, and choose
the candidate yielding the highest reward. (ii) Par-
ticle Sampling follows the implementation of FK-
Steering (Singhal et al., 2025a), which maintains a
set of candidates along the denoising process, called
particles, and iteratively propagates high-reward samples while discarding lower-reward ones. Im-
plementation details of EvoSearch and baselines are provided in Appendix A.1. To ensure fair
comparison, we employ the same random seeds to generate videos/images for each method.
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Figure 6: VideoRewards on
VBench & VBench2.0 (top)
and VideoGen-Eval (Zeng
et al., 2024) (bottom).

0.5 1.5 2.5 3.5 4.5 6.0
Inference Compute 1e4

0.26

0.28

0.30

0.32

0.34

0.36

Cl
ip

Sc
or

e

GPT4oGPT4oGPT4o
Best of N
Particle Sampling
EvoSearch (Ours)

0.5 1.5 2.5 3.5 4.5 6.0
Inference Compute 1e4

0.2

0.0

0.2

0.4

0.6

Im
ag

eR
ew

ar
d

0.5 1.5 2.5 3.5 4.5 6.0
Inference Compute 1e4

0.24

0.25

0.26

0.27

HP
Sv

2

0.5 1.5 2.5 3.5 4.5 6.0
Inference Compute 1e4

3.70

3.75

3.80

3.85

3.90

3.95

Ae
st

he
tic

0.05 0.25 0.50 0.80 1.00
Inference Compute 1e4

0.27

0.28

0.29

0.30

0.31

0.32

0.33

Cl
ip

Sc
or

e

GPT4oGPT4oGPT4o

0.05 0.25 0.50 0.80 1.00
Inference Compute 1e4

1.05

1.10

1.15

1.20

1.25

Im
ag

eR
ew

ar
d

0.05 0.25 0.50 0.80 1.00
Inference Compute 1e4

0.294

0.296

0.298

0.300

0.302

HP
Sv

2

0.05 0.25 0.50 0.80 1.00
Inference Compute 1e4

5.1

5.2

5.3

5.4

5.5

5.6

Ae
st

he
tic

Figure 7: EvoSearch can generalize to unseen metrics. Top row:
DrawBench results on SD2.1. Bottom row: DrawBench results on
Flux.1-dev.

5.2 RESULTS ANALYSIS

To evaluate EvoSearch’s versatility and practical performance, we include image generation on diffu-
sion model (SD2.1) and flow model (Flux.1-dev), video generation on flow models (HunyuanVideo
and Wan) for comprehensive empirical analysis. In addition to comparing the number of function
evaluations (NFEs), we provide a wall-clock time comparison in the Appendix B.2 to further demon-
strate the computational efficiency of our method, wherein the advantages of EvoSearch become even
more evident.

Question 1. Can EvoSearch consistently yield performance improvement with scaled inference-time
computation?

As shown in Fig. 5, where we evaluate performance using both ImageReward and ClipScore,
EvoSearch exhibits monotonic performance improvements with increasing inference-time com-
putation. Notably, for the Flux.1-dev model (12B parameters), EvoSearch continues to demonstrate
performance gains as NFEs increase, whereas baseline methods plateau after approximately 1e4
NFEs. Qualitative results in Fig. 1 show that both SD2.1 and Flux.1-dev generate images with
progressively improved prompt alignment as inference computation (i.e., NFEs) increases.

Question 2. How does EvoSearch compare to baselines for scaling image and video generation at
inference time?

For image generation tasks, as evidenced in Fig. 5 and Fig. 7, EvoSearch demonstrates consistent
superior performance over all baseline methods across varying computational budgets, for both
diffusion-based SD2.1 and flow-based Flux.1-dev models. The results on other benchmarks like
GenEval (Ghosh et al., 2023) and DPGBench (Hu et al., 2024) are provided in Appendix B.3. For
video generation tasks where VideoReward serves as the guidance reward, EvoSearch continues to
obtain the highest score across different generative models compared to the baselines. Quantitative
results in Fig. 6 (top row) show that for the Wan 1.3B model, EvoSearch outperforms best-of-N and
particle sampling by 32.8% and 14.1%, respectively. When applied to the larger HunyuanVideo
13B model, EvoSearch demonstrates improvements of 23.6% and 20.6% over best-of-N and particle
sampling, respectively. Results on the prompts sample from Videogen-Eval (Zeng et al., 2024),
as illustrated in Fig. 6 (bottom row), further corroborate these findings, with EvoSearch showing
improvements of 22.8% and 18.1% compared to best-of-N and particle sampling, respectively.
Qualitative assessment in Fig. 8 reveals that only EvoSearch successfully generates images with both
background consistency and accurate text prompt alignment. In contrast, particle sampling fails to
comprehend the complex text prompt, while best-of-N produces results of inferior visual quality.
More qualitative results are provided in Appendix B.4. The superior performance of EvoSearch
can be attributed to its active exploration and refinement within the denoising state space, whereas
best-of-N and particle sampling are limited to a local candidate pool.

Question 3. How does EvoSearch generalize to unseen reward functions (metrics)?

As demonstrated in a recent work (Ma et al., 2025), reward hacking (Skalse et al., 2022) can
significantly impair test-time scaling performance, where the model exploits flaws or ambiguities
in the reward function to obtain high rewards. However, our method, EvoSearch, can mitigate
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Table 1: Evaluation results across multiple metrics from both Vbench and VBench2.0.

Methods Dynamic Semantic Fidelity
Human Composition Physics Aesthetic Average

Wan 1.3B 13.18 16.83 82.98 38.08 64.44 64.01 46.59
+Best of N 15.38 ↑ +2.2 13.67 ↓ −3.16 87.58 ↑ +4.6 44.71 ↑ +6.63 56.10 ↓ −8.34 64.84 ↑ +0.83 47.04 ↑ +0.45

+Particle Sampling 13.18 ↑ +0.0 12.67 ↓ −4.16 86.13 ↑ +3.15 39.43 ↑ +1.35 56.41 ↓ −8.03 64.54 ↑ +0.53 45.39 ↓ −1.2
+EvoSearch (Ours) 16.48↑ +3.3 15.51 ↓ −1.32 86.84 ↑ +3.86 51.57 ↑ +13.49 57.5 ↓ −6.9 64.35 ↑ +0.34 48.71 ↑ +2.12

HunyuanVideo 13B 8.79 16.11 90.28 47.89 56.10 66.31 47.58
+Best of N 6.59 ↓ −2.2 12.84 ↓ −3.27 91.31 ↑ +1.03 50.53 ↑ +2.64 47.62 ↓ −8.48 66.28 ↓ −0.03 45.86 ↓ −1.72

+Particle Sampling 6.59 ↓ −2.2 11.00 ↓ −5.11 93.17 ↑ +2.89 36.67 ↓ −11.22 54.29 ↓ −1.81 65.55 ↓ −0.76 44.55 ↓ −3.03
+EvoSearch (Ours) 7.69 ↓ −1.1 14.92 ↓ −1.19 94.63 ↑ +4.35 51.37 ↑ 3.48 61.54 ↑ +5.44 66.75 ↑ +0.44 49.48 ↑ +1.90

Figure 8: A qualitative example showing that EvoSearch generates videos with superior visual quality,
enhanced background consistency, and improved semantic alignment with the input text prompts.

the reward hacking problem to some extent since it maintains higher diversity through the search
process, effectively capturing multimodal modes from target distributions. We evaluate the generation
performance on unseen (out-of-distribution) metrics in Fig. 7, where ClipScore is used as the guidance
reward. EvoSearch still showcases superior scalability and performance across different models and
metrics. For o.o.d. metric Aesthetic, which is not aligned with ClipScore (as demonstrated in Fig. 8
of (Ma et al., 2025)), EvoSearch shows less performance degradation compared to particle sampling.

For video generation tasks, we include 9 different unseen metrics spanning 6 main categories
to evaluate EvoSearch’s generalizability to unseen rewards. From the results shown in Table 1,
we observe that EvoSearch consistently gains more stable performance improvements compared
with baselines. Notably, even for metrics that are not aligned with VideoReward (e.g., Semantic),
EvoSearch maintains robust performance with minimal degradation. For the physics metric on
HunyuanVideo, EvoSearch even achieves distinctive performance improvements while both best-of-
N and particle sampling exhibit significant degradation.
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Figure 9: Human evaluation results.

Figure 10: For the same prompt, EvoSearch gener-
ates more visually diverse images.

Question 4. How does EvoSearch perform under human evaluation?

To validate EvoSearch’s alignment with human preferences, we conduct a comprehensive human
evaluation study employing professional annotators. The assessment focused on four key dimensions:
Visual Quality, Motion Quality, Text Alignment, and Overall Quality. As illustrated in Fig. 9,
EvoSearch achieves higher win rates compared to baseline methods across all evaluation dimensions.

Question 5. Can EvoSearch remains high diversity when maximizing guidance rewards?

Table 2: Results of reward and diversity.

Method Reward Diversity

Best of N 0.16 0.62
Particle Sampling 0.13 0.94
EvoSearch (Ours) 0.18 1.34

EvoSearch demonstrates superior capability in sampling
diverse solutions through its continuous exploration of
novel states during the search process. We randomly select
10 prompts from DrawBench, and generate 10 images per
prompt using EvoSearch and baselines under 100× scaled
inference-time compute. After generation, we evaluate the
quality of the generated images by ImageReward, and evaluate the diversity of these images by the L2

distance between their corresponding hidden features extracted from the CLIP encoder. We observe
in Table 2 that EvoSearch obtains the highest reward while achieving the highest diversity. Qualitative
results in Fig. 10 further support this finding, revealing that EvoSearch generates text-aligned images
with notably greater diversity in backgrounds and poses compared to baseline methods.
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Question 6. Can EvoSearch enable smaller-scale model outperform larger-scale model?

Table 3: EvoSearch scales Wan 1.3B
to have the same inference time as
Wan 14B. Results are evaluated on 625
prompts from VBench and VBench2.0.

Methods VideoReward
Wan 14B -1.24

Wan 1.3B + EvoSearch (ours) -0.15

In image generation tasks, as illustrated in Fig. 5, SD2.1
achieves competitive performance compared to GPT4o
with fewer than 5e3 NFEs (≈ 30 seconds inference time).
Qualitative results presented in Fig. 1 further demonstrate
how EvoSearch enables smaller models to reach GPT4o’s
level through strategic inference-time scaling. For video
generation tasks, we allocate 5× inference computation to
Wan 1.3B, ensuring equivalent inference time with Wan
14B on identical GPUs. Results documented in Table 3 show that the Wan 1.3B model with EvoSearch
achieves competitive performance to its 10× larger counterpart, the Wan 14B model. These findings
highlight the significant potential of test-time scaling as a complement to traditional training-time
scaling laws for visual generative models, opening new avenues for future research.

6 DISCUSSIONS
In this work, we propose Evolutionary Search (EvoSearch), a novel, generalist and efficient test-time
scaling framework for diffusion and flow models across image and video generation tasks. Through
our proposed specialized evolutionary mechanisms, EvoSearch enables the generation of higher-
quality samples iteratively by actively exploring new states along the denoising trajectory. Limitations
and future work are discussed in Appendix C.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide a detailed experimental setup and hyperparameters used
during training and evaluation in Appendix A.1. Moreover, we provide our codebase at https:
//anonymous.4open.science/r/EvoSearch.
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A EXPERIMENTAL DETAILS

A.1 IMPLEMENTATION DETAILS

A.1.1 IMPLEMENTATION DETAILS OF EVOSEARCH

Evolution schedule T . Evolution schedule T can be flexibly defined based on the available amount
of inference-time compute. If the inference-time computation budget is sufficient, we can perform
EvoSearch at more timesteps; otherwise, we can deploy EvoSearch at several timesteps. In our
implementation, we set T to have uniform intervals.

Population size schedule K. Population size schedule is defined as K =
{kstart, kT , · · · , kj , · · · , kn}. K can be flexibly defined based on the available amount of
inference-time compute. We can increase population size as inference-time computation increases.
In our implementation, we assign 2× larger population size at the first generation of EvoSearch,
while keeping the population size at the remaining generations the same. This means that kstart is
twice as large as the other population sizes.

Stable Diffusion 2.1. We set the guidance scale as 5.5, and set the resolution size as 512× 512.
We employ the DDIM scheduler from the diffusers library (von Platen et al., 2022) for inference. We
set the mutation rate β = 0.3, with σt following the default DDIM configurations.

Flux.1-dev. We set the guidance scale as 5.5, and set the resolution size as 512 × 512. We
employ the sde-dpmsolver++ sampler in FlowDPMSolverMultistepScheduler (von Platen et al.,
2022) for inference in SDE process. We set the mutation rate β = 0.3, with σt following the default
sde-dpmsolver configurations.

Wan. Following the official codes (Wang et al., 2025), we set the resolution size as 832× 480, with
a video consists of 33 frames. We set the guidance scale as 5.0. For transforming the ODE denoising
process in Wan to SDE process, we leverage the sde-dpmsolver++ sampler in FlowDPMSolverMulti-
stepScheduler (von Platen et al., 2022) for inference.

Hunyuan. Following the official implementation (Kong et al., 2024), we set the resolution size
as 544× 960 to ensure the generation quality, with a video consisting of 33 frames. The guidance
scale is set at 1.0 as suggested, and the embedded guidance scale is 6.0. For transforming the
ODE denoising process in Wan to SDE process, we leverage the sde-dpmsolver++ sampler in
FlowDPMSolverMultistepScheduler (von Platen et al., 2022) for inference. To save computation for
a large number of experiments conducted in this paper, we set the inference steps to 30.

We refer to the pseudocodes of EvoSearch in Alg. 1 and Alg. 2. At the beginning of EvoSearch, we
denote the size of randomly sampled Gaussian noises as kstart. The implementation of EvoSearch is
provided in the supplementary material, ensuring reproducibility.

Algorithm 1 Overview of EvoSearch

1: Input: Pre-trained model pθ, population size schedule K = {kstart, kT , · · · , kj , · · · , kn}, evo-
lution schedule T = {T, · · · , tj , · · · , tn}

2: Initialize population list P = [ϕ for in T ].
3: Initialize reward listR = [ϕ for in T ]
4: Sample initial Gaussian noises xT with population size kstart
5: Initialize generation g = 0
6: for t = T, T − 1, · · · , 1 do
7: if t in T then
8: xt,P,R = evosearch at denoising states(pθ,xt,P,R, T ,K, g) // Alg 2
9: g ← g + 1

Evolutionary generation process
10: end if
11: xt−1 = denoise(pθ,xt, t)

Standard denoising process
12: end for
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Algorithm 2 EvoSearch at Denoising States

1: Input: Pre-trained model pθ, starting states xt′ , population list P , reward listR, evolution sched-
ule T = {T, · · · , tj , · · · , tn}, population size schedule K = {kT , · · · , kj , · · · , kn}, generation
g, elites size m.

2: Set idx = g
3: Set population size k = K[g + 1]
4: for t = t′, t′ − 1, · · · , 1 do
5: if t in T then
6: P[idx] = cat(P[idx],xt)
7: idx← idx + 1
8: end if
9: xt−1 = denoise(xt, t)

10: end for
11: Calculate rewards r via fully denoised x0 in Eq. equation 2
12: for i = g, · · · , len(R)− 1 do
13: R[i] = cat(R[i], r) // Compute a single reward per x0

14: end for
15: Select elites e = P[g] [topk(R[g],m)]
16: Select k −m parents p from P[g] via tournament selection (Goldberg & Deb, 1991)
17: if g=0 then
18: Mutate parents p =

√
1− β2 × p+ ε× β, ε ∼ N (0, I)

19: else
20: Mutate parents p = p+ σt × ε, ε ∼ N (0, I)

// σt is the diffusion coefficient in the SDE denoising process
21: end if
22: Get children c← cat(e, p)
23: Output: Children c, P ,R

A.1.2 IMPLEMENTATION DETAILS OF BASELINES

Best of N. Best of N generates a batch of N candidate samples (images or videos), from which the
highest-quality sample is selected according to a predefined guidance reward function. In practice,
we use the same guidance reward for EvoSearch and all baselines to ensure fair comparison.

Particle Sampling. Particle-based sampling methods have demonstrated significant effectiveness in
enhancing the generative performance of diffusion models during inference. For our implementation,
we leverage the generalist particle-based sampling framework proposed by (Singhal et al., 2025a),
utilizing their publicly available codebase. Their approach introduces a flexible methodology that
accommodates diverse potential functions, sampling algorithms, and reward models, leading to
improved performance across a broad spectrum of text-to-image generation tasks. We adopt the Max
potential schedule for resampling at intermediate states, which empirically demonstrated superior
performance in the original study. Other hyperparameters, such as the resampling interval, are
carefully tuned to establish a robust baseline performance.

A.2 THEORETICAL ANALYSIS OF INTERMEDIATE STATE MUTATION

Definition 1 (SDE Denoising Process). Let {xt}Tt=0 denote the state sequence in a stochastic
differential equation (SDE) denoising process. The reverse-time transition from xt to xt−1 follows:

xparent
t−1 = xt − ft(xt) + σtε1, ε1 ∼ N (0, I) (5)

where ft : Rd → Rd is a drift function, σt > 0 is the diffusion coefficient at timestep t, and ε1 is
standard Gaussian noise.
Theorem 1 (Validity of Mutation Scheme). The proposed mutation operatorM : Rd → Rd defined
as

M(xparent
t−1 ) = xparent

t−1 + σtε2, ε2 ∼ N (0, I) (6)
satisfies the following properties:

1. Well-definedness:M generates valid state transitions.
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2. SDE consistency: Mutated states adhere to the reverse-time SDE dynamics.

Proof. Let xchild
t−1 =M(xparent

t−1 ). Substituting Definition 1 into the mutation operator:

xchild
t−1 = [xt − ft(xt) + σtε1] + σtε2

= xt − ft(xt) + σt(ε1 + ε2). (7)

Since ε1 ∼ N (0, I) and ε2 ∼ N (0, I) are independent, their sum follows:

ε ≜ ε1 + ε2 ∼ N (0, 2I). (8)

By substitution, we have:
xchild
t−1 = xt − ft(xt) + σtε. (9)

Therefore, the marginal distribution pt(x
child
t−1 ) after mutation remains Gaussian:

pt(x
child
t−1 ) = Ext

[
N

(
xt−1 ; xt − ft(xt), 2σ

2
t I
)]

. (10)

This matches the SDE transition form with a modified diffusion coefficient
√
2σt, which expands the

exploration space without hindering the denoising process, as the diffusion coefficient can be chosen
freely within the stochastic interpolant framework (Ma et al., 2024; Albergo et al., 2023).

A.3 EVALUATION METRICS

Image Evaluation Metrics. (i) ImageReward is a text-to-image human preference reward
model (Xu et al., 2023), which takes an image and its corresponding prompt as inputs and out-
puts a preference score. (ii) CLIPScore is a reference-free evaluation metric derived from the CLIP
model (Hessel et al., 2021), which aligns visual and textual embeddings in a shared latent space.
By computing the cosine similarity between an image embedding and its associated text prompt
embedding, CLIPScore quantifies semantic coherence without requiring ground-truth images. (iii)
HPSv2 is a preference prediction model that reflects human perceptual preferences for text-to-image
generation (Wu et al., 2023b). (iv) Aesthetic quantifies the visual appeal of images, often independent
of text prompts (Schuhmann et al., 2022).

Video Evaluation Metrics. (i) Dynamic evaluates a model’s ability to follow complex prompts
and simulate dynamic changes (i.e., color, size, lightness, and material). This evaluation metric
includes prompts of Dynamic Attribute form VBench2.0. Scores are calculated following the original
codes (Zheng et al., 2025). (ii) Semantic evaluates the model’s ability to follow long prompts,
which involve at least 150 words. This evaluation metric includes the prompts of Complex Plot and
Complex Landscape from VBench2.0. (iii) Human Fidelity evaluates both the structural correctness
and temporal consistency of human figures in generated videos. This evaluation metric includes
the prompts of Human Anatomy, Human Clothes, and Human Identities from VBench2.0. (iv)
Composition evaluates the model’s ability to generate complex, impossible compositions beyond
real-world constraints. This evaluation metric includes the prompts of Composition from VBench
2.0. (v) Physics evaluates whether models follow basic real-world physical principles (e.g., gravity).
This evaluation metric includes the prompts of Mechanics from VBench2.0. (vi) Aesthetic evaluates
the aesthetic values perceived by humans towards each video frame using the LAION aesthetic
predictor (Schuhmann et al., 2022). This evaluation metric includes the prompts of Aesthetic Quality
from VBench.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 ABLATION ON POPULATION SIZE SCHEDULE

To ablate the effect of population size schedules under the same inference-time computation budget,
we set different population size schedules for the Stable Diffusion 2.1 model with approximately
140 × 50 inference-time NFEs. Here, 50 is the length of the denoising steps for each generation.
We report the DrawBench results in Fig. 11. We observe that different population size schedules
perform similarly with little reward difference. The most significant factor is the value of kstart,
which represents the population size of the initial Gaussian noises. A larger value of kstart benefits a
strong initialization for the subsequent search process, while a small value of kstart would affect the
performance a lot.
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Figure 11: Ablation study on the population size schedule K. We denote the population size schedule
K = {kstart, kT , · · · , kj , · · · , kn}, where kstart is the size of the initial sampled Gaussian noises.
We use Stable Diffusion 2.1 to conduct EvoSearch on DrawBench, employing ImageReward as the
guidance reward function during search, and the denoising step is 50. From left to right of the x-axis,
the population size schedule K is configured as: 0) {60, 40, 50}; 1) {70, 30, 50}; 2) {80, 20, 50};
3) {62, 62, 20}; 4){58, 58, 30}; 5) {54, 54, 40}; 6) {46, 46, 60};7) {40, 60, 50}; 8) {30, 70, 50}; 9)
{20, 80, 50}, where we maintain the evolution schedule as {50, 40}.

B.1.1 ABLATION ON EVOLUTION SCHEDULE

We further ablate the effect of the evolution schedule. From the results shown in Fig. 12, we find that
the evolution schedule T exhibits less significant influence compared to the population size schedule
K. Our analysis demonstrates that an evolution schedule with uniform intervals yields superior
performance. Additionally, larger initial population sizes kstart help increase the performance.

0 1 2 3 4 5
Different Schedules

1.420

1.425

1.430

1.435

1.440

1.445

1.450

1.455

Im
ag

eR
ew

ar
d

0 1 2 3 4 5
Different Schedules

0.2815

0.2820

0.2825

0.2830

0.2835

0.2840

Cl
ip

Sc
or

e

0 1 2 3 4 5
Different Schedules

0.2680

0.2685

0.2690

0.2695

0.2700

0.2705

0.2710

HP
Sv

2

0 1 2 3 4 5
Different Schedules

3.70

3.75

3.80

3.85

3.90

3.95

4.00

4.05

Ae
st

he
tic

Figure 12: Ablation study on the evolution schedule T . We use Stable Diffusion 2.1 to conduct
EvoSearch on the DrawBench, employing ImageReward as the guidance reward function during
search. We denote the evolution schedule T = {T, · · · , tm, · · · , tn}. From left to right of the
x-axis, the evolution schedule is 0) {50, 30}; 1) {50, 20}; 2) {50, 10}; 3) {50, 30}; 4) {50, 20}; 5)
{50, 10}. To keep the same test-time scaling computation budget across different evolution schedules,
each population size schedule is adjusted as 0) {60, 50, 50}; 1) {70, 50, 50}; 2) {80, 50, 50}; 3)
{55, 55, 50}; 4) {60, 60, 50}; 5) {75, 75, 50}.
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Figure 13: EvoSearch can generalize to unseen metrics, where ImageReward is set as the guidance
reward function during search. Top row: DrawBench results on SD2.1. Bottom row: DrawBench
results on Flux.1-dev.

B.2 WALL-CLOCK TIME ANALYSIS

We show the wall-clock time required for different methods in Fig. 14. We observe that EvoSearch
achieves superior performance compared with baselines given the same wall-clock time, demonstrat-
ing the efficiency and effectiveness of our proposed method. Both particle sampling and Best-of-N
can rapidly fall into a plateau, while EvoSearch continues to improve the base models’ performance
with increased computation. The efficiency of EvoSearch lies in its progressive evolution frame-
work: (1) EvoSearch only needs a single reward evaluation at the end of each evolution generation,
while particle sampling requires multiple reward computations at intermediate steps per particle. (2)
EvoSearch uniquely caches all intermediate samples at evolution timesteps t ∈ T , creating a rich
pool of parent candidates for subsequent evolution generations. This mechanism avoids repeatedly
denoising from xT across each evolution branch and eliminates redundant denoising computations.
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(a) ImageReward as target guidance. Left: SD2.1;
Right: Flux.1-dev
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Figure 14: We compare EvoSearch with baselines based on wall-clock time per prompt. We record
the time for different methods on the same hardware and GPU card to ensure fairness.

B.3 RESULTS ON GENEVAL AND DPGBENCH

To further showcase the effects of EvoSearch generalizing to different evaluation metrics and bench-
marks, we compare EvoSearch with baselines on GenEval (Ghosh et al., 2023) and DPGBench (Hu
et al., 2024), which include fine-grained assessment across multiple dimensions (e.g., color, count)
and carefully designed prompts. As shown in Table 4, EvoSearch improves SD2.1’s score on GenEval
by 83.6%, finally surpassing GPT4o. The results provided in Table 5 demonstrate that EvoSearch
continues to outperform all the baselines on DPGBench, and we find that Flux.1-dev with EvoSearch
can also surpass GPT4o.
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Table 4: Following the official evaluation pipeline of GenEval (Ghosh et al., 2023), we compare
EvoSearch to baselines with 200× NFEs available at test-time. SD2.1 is used as the base model. We
employ the scores defined in GenEval as the guidance rewards during search.

Methods Geneval Score
SD2.1 0.50
GPT4o 0.84

EvoSearch w/ SD2.1 0.92
Particle Sampling w/ SD2.1 0.86

Best of N w/ SD2.1 0.83

Table 5: We evaluate EvoSearch and the baselines with 10× NFEs allocated at test time on the 1065
prompts provided by DPGBench (Hu et al., 2024), leveraging the pre-defined DPG score as the
guidance reward during search. Flux.1-dev is used as the base model, with 50 denoising steps per
generation.

Methods DPG Score
Flux.1-dev 83.84

GPT4o 85.15

EvoSearch w/ Flux.1-dev 93.51
Particle Sampling w/ Flux.1-dev 89.32

Best of N w/ Flux.1-dev 90.06

B.4 QUALITATIVE RESULTS

We present extensive qualitative results for both image and video generation as follows. The images
of GPT4o are generated by the OpenAI API following the default configuration. To ensure fair
comparison, the prompts given to GPT4o remain the same as those of other models.

B.4.1 RESULTS FOR IMAGE GENERATION

Please refer to Fig. 15, Fig. 16, and Fig. 17 for comparison between EvoSearch and baselines. These
examples clearly demonstrate that EvoSearch significantly enhances image generation performance
while requiring lower computational resources.

B.4.2 RESULTS FOR VIDEO GENERATION

Please refer to Fig. 18, Fig. 19, Fig. 20, and Fig. 21 for comparison between EvoSearch and baselines
in the context of video generation. We find that EvoSearch outperforms all the baselines with higher
efficacy and efficiency. Please refer to Fig. 22, Fig. 23, Fig. 24, Fig. 25, Fig. 26, Fig. 27, and Fig. 28
for comparison between Wan14B and Wan1.3B enhanced with EvoSearch. For more details, please
visit the anonymous website evosearch.github.io. The results demonstrate that by increasing
the test-time computation budget of Wan1.3B to match the inference latency of Wan14B, the smaller
model outperforms its 10× larger counterpart across a diverse range of input prompts.

C DISCUSSIONS

Limitations and Future Work. EvoSearch has demonstrated significant effectiveness in exploring
high-reward regions of novel states, which opens promising directions for future research. The
exploration ability of EvoSearch relies on the strength of the mutation rate β and σt. A higher
mutation rate will effectively expand the search space to find high-quality candidates, while a
low mutation rate can restrict the exploration space, which represents a trade-off. In addition,
we rely on Gaussian noise to mutate the selected parents. While this approach provides robust
exploration across diverse image and video generation tasks, developing more informative mutation
strategies with prior knowledge can further improve the search efficiency. The inherent complexity
of interpreting denoising states makes it an interesting open research question. Our findings also
suggest promising future directions in understanding the shared structure between ”golden” noise
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and ”golden” intermediate denoising states, which may provide valuable insights for future test-time
scaling research.

Broader Impacts. This work proposes a novel test-time scaling method, called EvoSearch, for
image and video generation tasks across both diffusion-based and flow-based models. EvoSearch
draws inspiration from biological evolution (Ao, 2005), which significantly improves both the quality
and diversity of generated samples through enhanced exploration during the search process. Our
proposed method is promising to provide insights for test-time scaling in other areas, like large
language models (LLMs). Therefore, our proposed method can further enhance the research of
test-time scaling and inference-time alignment in the general area of machine learning. No significant
negative broader impacts were identified that warrant specific emphasis in this paper.

D COMPARISON AND DISCUSSION WITH GRADIENT-BASED METHODS

Compared with gradient-based methods like ReNO (Eyring et al., 2024) and D-Flow (Ben-Hamu
et al., 2024), our proposed method, EvoSearch, has the following advantages: (1) Universality:
Not all reward functions are differentiable (e.g., rewards from proprietary APIs, discrete metrics, or
human feedback). A gradient-free approach makes EvoSearch universally applicable. (2) Memory
& Efficiency: Backpropagating gradients through the diffusion process is memory-intensive and
computationally expensive. Training-free methods like test-time scaling are significantly cheaper,
allowing us to explore a wider search space within the same wall-clock time. (3) Avoiding Local
Optima: Gradient ascent on noise latent space is prone to getting stuck in local optima or generating
”adversarial” examples (e.g., high reward score but poor visual quality), which is a well-known
problem in the literature. Our proposed EvoSearch, which is based on a gradient-free evolutionary
algorithm, is better suited for non-convex landscapes as it maintains population diversity explicitly.

We compare EvoSearch against ReNO (Eyring et al., 2024), a representative gradient-based method.
From the results shown in Table 6, we observe that EvoSearch significantly outperforms ReNO given
the same wall-clock time. ReNO suffers from diminishing returns, improving only slightly (0.65
→ 0.68) even when computation is increased by 10×. In contrast, EvoSearch effectively converts
increased compute into quality, reaching a 0.77 score.

Methods Computation / Time GenEval Score
SDXL-Turbo (Base) - 0.54

+ReNO 50 iters / 33s 0.65
+EVOSearch 190 NFEs / 33s 0.71

+ReNO 500 iters / 330s 0.68
+EVOSearch 1000 NFEs / 172s 0.77

Table 6: Both ReNO and EvoSearch employ the combination of the reward models (HPS, ImageRe-
ward, CLIP, PickScore) as the guidance, with SDXL-Turbo as the base model. We compare based on
Wall-Clock Time to ensure a fair assessment of practical utility.

E COMPARISON WITH ROLLOVER BUDGET FORCING (RBF)

To further demonstrate the advantages of EvoSearch, we have added Rollover Budget Forcing
(RBF) (Kim et al., 2025a) for comparison. Following RBF’s official implementation, we employ
Flux as the base model with ImageReward as the guidance. We fix the total number of function
evaluations (NFEs) to 500 and set the number of denoising steps to 10. We evaluate both EvoSearch
and RBF on DrawBench. We provide the results in Table 7. While the numerical margins may appear
modest, we emphasize that on the DrawBench scale, a consistent improvement across 200 prompts on
three different metrics (including both target and unseen metrics) confirms that EvoSearch generates
strictly superior samples.
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Methods ImageReward (target) ClipScore (o.o.d.) HPSv2(o.o.d.)
RBF 1.38 0.281 0.305

EvoSearch 1.41 0.284 0.310

Table 7: EvoSearch outperforms RBF given the same test-time NFEs, including both target reward
and unseen reward.

F THE USE OF LARGE LANGUAGE MODELS (LLMS)

In compliance with ICLR 2026 policies on large language model usage, we disclose that LLMs are
mainly used for writing polish in this work. We utilized LLMs to polish the paper’s writing at the
syntactic and grammatical levels. All LLM-generated content has undergone thorough human review
and verification to ensure accuracy, appropriateness, and compliance with academic standards.

w/o scaling GPT4o

Prompt: A couple of glasses sitting on a table

EvoSearch

×100 ×	200 ×	300 ×	500

Best of N

Particle
Sampling

NFEs

Figure 15: Comparative analysis of test-time scaling methods for Stable Diffusion 2.1. EvoSearch
demonstrates consistent improvements in image quality and text-prompt alignment as NFEs increase,
achieving accurate interpretations of the challenging prompt with high computational efficiency. In
contrast, Best-of-N fails to produce semantically correct results even with increased NFEs, while
Particle Sampling introduces semantic ambiguity at higher NFEs (e.g., confusing wine glasses and
eyeglasses). Notably, EvoSearch further enables SD2.1 to outperform GPT4o.
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w/o scaling GPT4o

Prompt: An elephant is behind a tree. You can see the 
trunk on one side and the back legs on the other

EvoSearch
(Ours)

×100 × 200 × 300 × 500

Best of N

NFEs

Particle
Sampling

Figure 16: Results of test-time scaling for Flux.1-dev. EvoSearch demonstrates significant ex-
ploration ability, enabling the generation of images with diverse styles, while both Best-of-N and
Particle Sampling generate images with reduced diversity.
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w/o scaling GPT4o

Prompt: A laptop on top of a teddy bear

EvoSearch

(Ours)

×100 × 200 × 300 × 500

Best of N

NFEs

Particle

Sampling

Figure 17: Results of test-time scaling for Flux.1-dev. EvoSearch can even achieve accurate spatial
relationship interpretation with only 10× scaled computation budget, while consistently improving
image quality through higher NFEs.

Prompt: A spider with the body of a rabbit, scurrying across the ground with immense speed

Best of N

EvoSearch (Ours)

Best of N

Particle Sampling

Figure 18: Results of test-time scaling for Hunyuan 13B. The denoising step is 30, and we scale up
the test-time computation by 20×. Only EvoSearch generates high-quality video aligned closely
with the text prompt.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

EvoSearch (Ours)

Best of N

Particle Sampling

Prompt: A cat is on the right of a rock, then the cat runs to the left of the rock

Figure 19: Results of test-time scaling for Hunyuan 13B. The denoising step is 30, and we scale
up the test-time computation by 20×. EvoSearch successfully follows the text prompt while both
Best-of-N and Particle Sampling fail.

EvoSearch (Ours)

Best of N

Particle Sampling

Prompt: Several robots coordinate to move a large object across a factory floor. The camera captures the 
synchronized movements of the robots from a bird's-eye view, showing their precise coordination. The shot 
then shifts to ground level, focusing on the smooth, synchronized actions of the robots as they work together

Figure 20: Results of test-time scaling for Hunyuan 13B. The denoising step is 30, and we scale up the
test-time computation by 20×. EvoSearch demonstrates superior text alignment and higher-quality
generation compared to baselines.
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EvoSearch (Ours)

Best of N

Particle Sampling

Prompt: Two cars collide at an intersection.

Figure 21: Results of test-time scaling for Hunyuan 13B. The denoising step is 30, and we scale up
the test-time computation by 20×. The video generated by EvoSearch demonstrates better image
quality and text alignment.

Prompt: An owl with the body of a tiger, prowling the night 
skies with sharp talons.

Wan1.3B + EvoSearch

Wan14B

Figure 22: We scale up the test-time computation of Wan1.3B by 5×, ensuring equivalent inference
times between Wan14B and Wan1.3B+EvoSearch. Qualitative results demonstrate that EvoSearch
enables Wan1.3B to outperform Wan14B, its 10× larger counterpart.
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Prompt: A cheetah doing yoga poses, stretching out its 
limbs with remarkable flexibility and focus

Wan1.3B + EvoSearch

Wan14B

Figure 23: We scale up the test-time computation of Wan1.3B by 5×, ensuring equivalent inference
times between Wan14B and Wan1.3B+EvoSearch. EvoSearch enables smaller models to achieve
not only competitive but superior performance compared to their larger counterparts.

Prompt: A kite and a balloon flying side by side, each 
drifting gracefully in the wind.

Wan1.3B + EvoSearch

Wan14B

Figure 24: We scale up the test-time computation of Wan1.3B by 5×, ensuring equivalent inference
times between Wan14B and Wan1.3B+EvoSearch. EvoSearch demonstrate superior text-alignment
performance.
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Prompt: A person's hair changes from black to blonde.

Wan1.3B + EvoSearch

Wan14B

Figure 25: We scale up the test-time computation of Wan1.3B by 5×, ensuring equivalent inference
times between Wan14B and Wan1.3B+EvoSearch. EvoSearch enhances Wan1.3B’s capability in
dynamic-attribute video generation.

Prompt: The plastic water cup turned into a metal water cup

Wan1.3B + EvoSearch

Wan14B

Figure 26: We scale up the test-time computation of Wan1.3B by 5×, ensuring equivalent inference
times between Wan14B and Wan1.3B+EvoSearch. EvoSearch enhances Wan1.3B’s capability in
handling challenging prompts, outperforming Wan14B given the same inference time.
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Prompt: A wooden toy is placed gently on the surface of a small bowl of water.

Wan1.3B + EvoSearch

Wan14B

Figure 27: We scale up the test-time computation of Wan1.3B by 5×, ensuring equivalent inference
times between Wan14B and Wan1.3B+EvoSearch. The video generated by EvoSearch follows the
text instruction more closely, exhibiting improved logical consistency.

Prompt: A water droplet slides down the edge of a smooth sheet of 
aluminum, maintaining its spherical form

Wan1.3B + EvoSearch

Wan14B

Figure 28: We scale up the test-time computation of Wan1.3B by 5×, ensuring equivalent inference
times between Wan14B and Wan1.3B+EvoSearch. EvoSearchsignificantly improves the generation
quality with superior semantic alignment.
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