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Abstract: To leverage many sources of offline robot data, robots must grapple
with the heterogeneity of such data. In this paper, we focus on one particular as-
pect of this challenge: learning from offline data collected at different control fre-
quencies. Across labs, the discretization of controllers, sampling rates of sensors,
and demands of a task of interest may differ, giving rise to a mixture of frequencies
in an aggregated dataset. We study how well offline reinforcement learning (RL)
algorithms can accommodate data with a mixture of frequencies during training.
We observe that the (-value propagates at different rates for different discretiza-
tions, leading to a number of learning challenges for off-the-shelf offline RL al-
gorithms. We present a simple yet effective solution that enforces consistency in
the rate of ()-value updates to stabilize learning. By scaling the value of N in
N-step returns with the discretization size, we effectively balance -value prop-
agation, leading to more stable convergence. On three simulated robotic control
problems, we empirically find that this simple approach significantly outperforms
naive mixing both in terms of absolute performance and training stability, while

also improving over using only the data from a single control frequency.

Keywords: offline reinforcement learning, robotics

1 Introduction

Given the cost of robotic data collec-
tion, we would like robots to learn
from all possible sources of data.
However, the robot data that is avail-
able may be heterogeneous, which
can present challenges to offline rein-
forcement learning (RL) algorithms.
One particular form of variability that
we focus on in this work is the control
frequency. Data collected indepen-
dently may have different frequencies
due to different sensor sampling rates
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Figure 1: Training offline RL with diverse frequencies is chal-
lenging because the discrete MDP depends on the size of the
timestep in between observations. This discretization affects the
rate of value propagation, with smaller discretizations requiring
more training updates to propagate the values.

or how the data was collected. For example, data collected through teleoperation may have a higher
frequency to accommodate a more reactive and intuitive user interface, while data collected via
online RL may use lower frequencies for more stable learning [1]. In light of the benefits from
learning from large and diverse datasets [2, 3], our goal in this paper is to study whether offline RL
algorithms can effectively learn from data with multiple underlying frequencies, and improve over

learning from a subset of frequencies.

It is known that RL at high frequencies can lead to instability; indeed, prior work has presented so-
lutions to such instability [1]. However, much less attention has been paid to learning from data with
multiple frequencies. Work on time-series analysis has studied how to handle irregularly sampled
data [4, 5], but not in the context of the approximate dynamic programming updates that arise in



value-based reinforcement learning settings. As we will find in Section 4, running offline RL algo-
rithms on data with multiple control frequencies leads to unstable training and diminished perfor-
mance, a problem that, to our knowledge, has not been analyzed or addressed in previous research.

A key insight in this work is that Q)-learning from different data discretizations leads to different rates
of value propagation: value propagates more quickly for coarser time discretizations. Optimizing
with different rates can lead to high variance updates and training instability. Fortunately, we can
use knowledge of the time discretization to normalize the rate of value propagation across different
discretizations: our updates can look ahead to farther ()-values for data with a smaller discretization.
This intuition leads us to a simple adjustment to N-step returns [6, 7] to align the discretizations,
where we adaptively select the value of NV based on the time discretization of the particular trajectory.

The main contribution of this paper is to analyze and provide a solution to the problem of offline re-
inforcement learning from data with multiple time discretizations. We show that naively mixing data
of different discretizations leads to diminished performance, and posit that this issue is caused by
varying rates of value propagation for different discretizations. We provide a simple technique that
addresses this challenge via adaptive N-step returns. On three simulated robotic control problems,
including two manipulation problems on simulated Sawyer and Panda robot arms, we find that our
adaptive IN-step update rule leads to more stable training and significantly improved performance,
compared to naive mixing or only using the subset of data that has a single discretization.

2 Related Work

Supervised learning of irregular time series. Datasets with varying frequencies can arise when-
ever observations are pulled inconsistently from a continuous time system. Some approaches focus
on consuming irregularly sampled data [8, 4, 5] by modeling the latent state of the data-consuming
process as a differential equation. Unlike past work that integrates continuous time models into
control tasks [9, 10], we are focused on the setting where the discretization remains constant within
each trajectory, but varies within batch updates.

Continuous time RL. We focus on control tasks learned with offline RL, so in addition to learning a
policy that can operate at multiple time scales, we also need to learn a value function at multiple time
scales. Past work [11, 12, 13] uses the Hamilton-Jacobi Bellman equation to derive algorithms for
estimating the value function. These formalisms have been used to create algorithms that can handle
settings where the environment evolves concurrently with planning [14] and to learn to budget coarse
and fine-grained time scales during training [15]. In addition to modeling challenges, continuous
time introduces challenges during training as well. Tallec et al. [1] shows that deep ()-learning can
fail in near-continuous time (i.e., fine-grained) settings and uses the formalisms from continuous RL
to make (Q-learning more reliable for small discretizations by using an advantage update.

Offline RL. Offline RL [16, 17, 18, 19] has emerged as a promising direction in robotic learning with
the goal of learning a policy from a static dataset without interacting with the environment [20, 21,
22, 23]. Prior offline RL approaches focus on mitigating the distributional shift between the learned
policy and the data-collecting policy [24] via either explicit or implicit policy regularization [25, 26,
27, 28, 29, 30, 31], penalizing value backup errors [32], uncertainty quantification [26, 33, 34], and
model-based methods [35, 36, 37, 38, 39]. None of these works consider the practical problem of
learning from offline data with different control frequencies, which is the focus of this work.

3 Preliminaries

A discrete-time MDP is a process that approximates an environment that is fundamentally con-
tinuous. For example, a robot may be moving continuously but receiving observations and sending
actions at a fixed sampling rate, 1/, where §t is the time between the observations. A discrete-time
MDP that takes into account ¢ can be derived by discretizing a continuous-time MDP [12, 1].

Given a time-discretization dt, we arrive at the discrete MDP [1] My, = (S, A, T5s¢,7,7), where
T5.(s'|s, a) denotes the transition function over the timestep d¢, S and .A denote the state and action
spaces, r the reward function, and v € (0, 1) the discount factor. The cumulative discounted reward
of this MDP can be written as: Rgy := Y o 79ty (s, ax)0t; and the §t-dependent Q-function can



be written as: QF, = r(s,a)dt + Y Err 1y, [0 ¥ (sk, ar)0t]so = s| . We will use the 6t-
dependent rewards and Q-functions to analyze the case of mixing data with different discretizations,
i.e. with different values of dt, in offline RL.

Offline RL with conservative (-learning. Offline RL tackles the problem of learning con-
trol policies from offline datasets where the main challenge is the distribution shift between
the learned policy and the behavior policy that was used to collect the data. A common of-
fline RL approach that mitigates this issue focuses on an additional pessimism loss that encour-
ages the ()-value update to stay close to the actions that it has seen in the data. One pop-
ular instantiation of this idea is conservative @-learning (CQL) [32], which optimizes the fol-
lowing objective: Q"' = argming [+ (Esup,amp(als)[@Q(S: @)] — Esup ami(als) [Q(s, a)]) +
1Es.a,~p [(Q(s,a) — r(s,a) — vEr(als)[Q(s,a)])] |, where D is the offline dataset of states,
actions, and rewards, p is a wide action distribution close to the uniform distribution, and 7 is the
behavior policy that collects the offline data. We will show how we can use a modified version of
CQL to incorporate data from different discretizations in offline RL.

4 Mixed Discretizations Can Destabilize Offline RL

We study how mixing frequencies naively creates instability during offline RL training. We in-
troduce the problem of learning from a distribution of different frequencies and describe how the
differing rates of value propagation can create instability during training and empirically verify this
intuition on a simple task.

Problem setup. Our objective is to learn a policy or set of policies that maximizes the expected
return over a dataset that contains a mixture of different observation frequencies. Concretely, our
goal is to learn 7*(als, 0t) over a distribution, A, of discretizations: w3,(als) = 7*(a|s,dt) =
arg max, Esioa [Ex 15, [Rot]]- To accomplish this goal, we utilize offline RL and focus our analysis
on the behavior of (Q-values in the presence of mixed discretizations. Specifically, we are interested
in studying the objective Es;.a [Lg], Where L is any loss based on the Bellman equation.

We use CQL as our offline RL algorithm of choice, but our analysis is applicable to other value-based
offline RL methods. We modify the CQL objective described in Sec. 3 to incorporate a distribution
of discretizations, dt as follows:

’gjl =arg innEatNA [a . (ESNDM@N#(MS)[Q&(S? a)l — ESNDJmGNﬁM(ﬂS) [Qst(s, a)])

+ =Es a5 ~Ds, {(Qat(S, a) —r(s,a)dt — ’YétEﬂM(,,,|s) Q% (s, a)])g] }

N =

The Q-targets of different §¢ may receive value updates at different rates because it takes longer
for value to propagate when the state space is divided by more fine-grained steps. We study the
challenges this creates for ()-learning next. We refer to this unmodified objective as Naive Mixing.

Value propagates in algorithmic time, not physical time. A key challenge in mixing data of
different discretizations together is that algorithmic time, k, scales inversely with the size of the
discretization: k = %. This implies that value propagates along the state space at a rate that is pro-
portional to the discretization. This phenomenon is illustrated for a simple gridworld environment
in Figure 2. The agent starts on the right side and receives a reward of 10 for moving forward to
the left. In the top row, the agent can take steps of size 1 and in the bottom row the agent can take
steps of size 2, which simulates policies that operate at different frequencies. At every step of the
algorithm, k, we perform the update rule V,'(s) = max, r(s,a) + V%', (s). Although in this
toy example, we are performing tabular updates, we can see how the nature of the Bellman update
generates a distribution of targets that is difficult for a function approximator, like a neural network,
to match. For example, at step k& = 3, a network would receive the following targets for the first
three states from the start: 0 for 6t = 1 and 5.3 for 6t = 2 for the first and second state, and 0
for 0t = 1 and 6.6 for 6t = 2 for the third state. We posit that the rate at which the targets are
updated for different discretizations and the resulting difference in the target values leads to training
instability and subpar performance. In the next section, we verify this intuition empirically.
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Figure 2: We visualize how value propagates for different d¢ in a simple gridworld. In the top row, the agent
takes actions of length 1 and in the bottom of length 2. For each update step k, the value propagates twice as
much in the second setting, creating regression targets that are difficult to match. For example, at step k = 2,
the (Q-value needs to regress to targets 6.6 and 0 from the same states. Boxes are color-coded by update step.
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Figure 3: We analyze training with mixed discretizations for the pendulum swing up task. (a) Over the course
of training, the average ()-value scales with §t. In result, the @Q-value of more fine-grained discretizations
propagates more slowly than for coarser discretizations. (b) Compared to training individually, the final perfor-
mance of a policy trained for §¢ = 0.02 is corroded by adding more data of different discretizations.

4.1 Analyzing Naive Mixing

We study how offline RL behaves when naively mixing discretizations in a pendulum environment
and posit that differing rates of Q-function updates lead to training instability that hurts performance.

Setup. To test our hypothesis, we use the previously-used simple pendulum environment from
the OpenAl Gym [1]. We modify the pendulum environment by changing the underlying time
discretization of the simulator and collect data with discretizations dt € {0.02,0.01, 0.005} seconds.
We make the reward function for this task sparse by creating a window of angles and velocities
around O where the algorithm receives a constant reward. We first collect data by running Deep
Advantage Updating (DAU) [1] for each discretization individually and then store buffers of 500k
observations per discretization. The data collected is comparable to an expert-replay dataset. We
combine the data coming from the three different discretizations together into a single offline dataset.

Value propagation. We look at the average (Q-value for different discretizations over the course of
training. The average cumulative reward in the dataset for each dt is similar, so we expect the average
@-value of each discretization to be the same. However, because more fine-grained data propagates
the sparse reward at a slower rate than for coarser data as shown in the previous subsection, we see
in Figure 3 (a) that the coarser discretization of §¢ = 0.02 reaches a higher average ()-value more
quickly than a fine-grained discratization of §¢ = 0.01, which in turn reaches a higher )-value more
quickly than the most fine-grained discretization ¢ = 0.005. By the end of training the average Q-
values across different §¢ converge. This confirms the hypothesis that the ()-values grow at different
rates because of the nature of the Bellman update and not because the true value is different.

Optimization challenges. Next, we want to understand if the different rates of the (-value update
for different discretizations cause optimization challenges during offline RL. In Figure 3 (b) we plot
performance over the course of training with and without adding data. Ideally our algorithms would
be aided by the addition of more data, but after introducing data of different frequencies, we see the
average return across training drop.

To summarize, these results suggest that, even within a simple control task, naively mixing data
with different discretizations hinders the performance by slowing value propagation and introducing
optimization challenges. Next, we present a method that aims to avoid these issues.
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Figure 4: We modify value iteration on a simple gridworld environment. In the bottom row, the agent can take
actions that are double the size of the other agents actions. However, because the agent in the top row uses an
N-step update rule with N = 2, the value propagates along the state space at the same rate for each agent.

5 Adaptive N-Step Returns

The goal of our method is to “align” the Bellman update rate for different discretizations so that they
can be updated at a similar pace, creating more consistent value targets. Intuitively, we aim to mimic
the “update stride” of coarser discretizations when training on more fine-grained discretizations to
bring consistency to the ()-value updates.

The core idea behind our approach is to utilize N-step returns as a tool that accelerates the prop-
agation of ()-values. In particular, we calculate (Q-targets with adaptive IN-step returns, where
we scale N by the value of dt. To better understand the idea behind this approach, we re-
visit the same intuition as previously presented in Figure 2, but with the updated N-step modi-
fications in Figure 4. In this case, we use the following value iteration update rule: Vj(s;) =

t‘%:_tlﬂ A (syr, ag) + e Vi—1(s;4 x ). This update rule is equivalent to N-step returns for
value iteration, but instead of a fixed N, we use an N scaled by ét. In Figure 4 we pick N = 2. In
the top row we sum the reward over the next % = % = 1 transitions and in the bottom row we sum
over the next % = % = 2 transitions. While there are still slight differences in the target values due
to the precision allowed by the discretization, the differences in the targets available to a function

approximator are significantly smaller in magnitude than in the previous case presented in Figure 2.

We can easily apply this approach to Q-learning resulting in a simple ()-value update rule that can
be integrated into any offline RL algorithm. At every update step, we calculate the target @ at ot as:

N1

5t t N 5t

target — Z YV r(Seqrs ) +757 Q" (sxan) (1
/=0

In all of our experiments, we select N to be the largest ¢ present in the dataset (i.e., the most
coarse discretization). With this choice of IV, the more fine-grained discretizations exactly match
the update stride of the coarsest discretization under standard offline RL.

Although this update rule could be integrated into any Q-learning algorithm, we use CQL in our
experiments. This requires adapting both the standard Bellman loss as well as the pessimism and
optimism terms. We replace the Bellman operator in Equation 1 with N-step returns scaled by
discretization. The pessimism and optimism terms are applied to the state and action at %, where
the target Q-function is evaluated. This results in the complete objective:

0 0
ﬁcq] = ]Estgt,aNu(als)[Q t(stJr%aatJr%)} - Estgt,aNﬁ'(a\s,&t) [Q t(st+%aat+%)}
. 1 2
L= arg len Eston |0 ‘chl + §E5taat75t+1ND5t {(Qét(st: at) - letrgel(sta at)) ] :|

When % is not an integer, we can sample the number of steps from the nearest digits with a Bernoulli
distribution where p is the fractional part of %

6 Experiments

In Section 4, we used a simple RL problem to demonstrate how naive mixing of data at different
discretizations updates the Q-function at different rates leading to instability in training. In our ex-
periments, we aim to confirm this trend on popular benchmarks and verify that our method proposed
in Section 4 can remedy these challenges. In particular, we seek to answer the following questions:



Env Name | 0t | Naive mixing | Adaptive N-step (ours)

pendulum .02 64.8 + 8.4 91.1+37

.01 57.5 £10.5 815+24

.005 375+35 62.0 £ 6.3

\ Avg \ 533+75 \ 782 +4.2

door-open (max success) 10 100.0 += 0.0 89.5 + 8.1
5 95.0 £3.9 929 +5.7

2 100.0 + 0.0 100.0 + 0.0

1 57+42 875+75

\ Avg \ 752 +2.0 \ 925 +53

kitchen-complete-v0 40 20.2 £5.7 34.6 + 8.7
30 93+44 199 +72

\ Avg \ 147 £5.0 \ 27.3+79

Table 1: We compare the performance of naive mixing against adaptive N-step. Within the sparse reward envi-
ronments of pendulum and kitchen, naive mixing corrodes performance across ¢ and this drop in performance
is recovered by adaptive N-step. For the dense reward door-open task, only the finest-grained discretization is
hindered by mixing and NN-step returns recovers performance on this discretization while maintaining strong
performance on coarser discretizations.

(1) Does adaptive N-step returns fix the performance challenges introduced by mixing different
discretizations? (2) What impact does adaptive IV-step returns have on the learned ()-value during
training? (3) What is the influence of our method on training stability? (4) Does mixing N-step
allow us to leverage more data sources to build a model that works better on all discretizations?

6.1 Experimental Setup

Tasks and datasets. We evaluate our method on three different simulation environments of varying
degrees of difficulty described below.

Pendulum. Similarly to Section 4, we used a modified Open AI Gym [40] pendulum environment.
We modify it by changing the underlying discretization of the simulator and collect data with disc-
tretizations of 0.02, 0.01, 0.005 by training DAU [1] on each discretization independently and storing
the replay buffer, which contains 500k observations. To aid visualizations and ease debugging, we
make the task sparse by creating a window of angles and velocities around 0 where the agent receives
a constant reward of 100, scaled by d¢. We condition the ()-value and policy on the discretization to
train a single RL algorithm on all discretizations.

Meta-World. We modify the Meta-World [41] environments to support different discretizations by
adjusting the frame-skip. We experiment with frame skips of 1,2,5, and 10. We focus on the
door-open because it is a straightforward manipulation task. In this environment, we find that not
conditioning on ¢t to give stronger performance for our method as well as the baselines. To evaluate
performance, we look at the maximum success score, which measures whether or not the environ-
ment was in the goal configuration at any point during the trajectory.

FrankaKitchen. FrankaKitchen [42] is a kitchen environment with a 9-DoF Franka robot that can in-
teract with 5 household objects. We study the long-horizon task sequence of opening the microwave,
moving the kettle, turning on a light, and opening a drawer with a sparse reward. Upon completion
of any of the four tasks, the agent receives a reward of 1. We mix data with frame skips of 30 and
40. The data at 40, which is the default frame skip, comes from the D4RL dataset [43]. Specifically,
we use the expert data called kitchen-complete-v0. To generate data at a frame skip of 30, we
run a trained policy at that frame skip. The quality of this policy is lower, making the data at 30
most similar to a medium-replay dataset.

Implementation and training details. We build on top of the CQL implementation from Geng [44],
and use the following CQL hyperparameters: all of our models use a CQL alpha term of 5, a policy
learning rate of 3e — 5, and a @-function learning rate of 3e — 4. For Pendulum we use a discount

5t
scaled with the size of dt, specifically .99 ™**stea 3t For Meta-World, we found a constant discount
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Figure 5: Adaptive N-step results in more consistent g-values across discretizations and tasks. In
all figures, blue denotes naive mixing and red denotes Adaptive N-step returns.

factor of .99 to work best across the experiments. Each task has a maximum trajectory length of
500 regardless of the discretization size. We implement Q°* as an optionally &¢-conditioned neural
network by adding a normalized ¢ feature to the state.

6.2 Results

Final performance with and without N-step. To answer question (1) (Does dt-scaled N -step
returns fix the performance challenges introduced by mixing different discretizations?), we compare
the normalized performance at the end of training with and without N-step modification in Table 1.
Results are averaged and reported with standard error over runs from 5 seeds with 5 evaluations
from each run. For the sparse reward tasks — pendulum and kitchen — 0t scaled N -step significantly
improves final training performance across discretizations, resulting in an almost double average
return in the case of kitchen, and more than 50% improvement in pendulum. In the dense reward
tasks, i.e. door-open, N-step provides an advantage for more fine-grained discretizations without
compromising the high performance naive mixing already achieves on larger discretizations. These
results confirm that our method improves mixing discretization performance across the benchmark
tasks. Next, we aim to understand its impact on important quantities such as )-values.

Q-values across training. In Section 4, we observed that the ()-value learned with the naive mixing
strategy is updated differently for different discretizations. We aim to confirm this hypothesis on
other, more complex environments as well as analyze whether our adaptive N-step method can
remedy this issue and lead to more consistent (J-value updates. To accomplish this goal, we present
Fig. 5, where we visualize the average ()-value for all discretizations with and without adaptive
N-step method. When we compare the ()-values after using adaptive N-step, we observe that the
-values become more consistent across discretizations. In the top left of Figure 5, we see that the
(Q-values obtained for pendulum are nearly identical for different discretizations across the course
of training, resolving the issue pointed out in Sec. 4. Interestingly, we also note that the ()-values
of naive mixing eventually converge to the same value as N-step, but the performance of the policy
learned with these values is still diminished as previously described in Table 1. This suggests that
the consistency of the updates across training and not just the absolute value of the @-function
are important in learning a good policy. In the top right and bottom left plots in Fig. 5, we see
that, in Meta-World, adaptive N-step returns has two effects. It makes the average @) higher for
all discretizations and minimizes the difference across discretizations similarly to the pendulum
experiment. Within Kitchen, N-step has the same effect of pulling up the ()-values and has the
added effect of minimizing the standard error of the (-value across seeds. With naive mixing, on
the other hand, the Q-values are inconsistent throughout training and, contrary to pendulum, they
end up exploding by the end of training. These experiments indicate a positive, stabilizing impact
of adaptive N-step on the learned Q-values during training, answering question (2).

Performance across training. To answer question (3) (What is the influence of our method on
training stability?), we plot the evaluation performance over the course of training averaged over
all discretizations in each environment. The results for Pendulum, Meta-World Door, and Kitchen
tasks are visualized in Figure 6. For Kitchen and Pendulum, reward corresponds to task success
so we plot the average reward. For the Door task in Meta-World, to better reflect the task, we plot
the maximum success attained in the evaluation trajectory. We observe a significant difference in
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Figure 6: Without adaptive N-step returns, naive mixing can suffer from instability.

performance and training stability in Pendulum and Kitchen when comparing adaptive N-step and
naive mixing. In particular, the Kitchen task indicates that naive mixing experiences substantial
instability in training, where around 200 steps into the training the performance goes down. This
showcase that the performance is unstable even when a reasonable policy can be learned at some
point during training. The performance plot for the Door task shows comparable performance when
all discretizations are averaged together, however, we refer back to Table 1 to show that certain
discretizations (i.e. §; = 1) perform significantly worse than others compared to the adaptive V-
step strategy.

Comparison to individual training. Following our motivation for this work, we investigate ques-
tion (4), whether mixing multiple discretizations with our method outperforms training on a single
discretization. In mixing diverse data sources together we hope to leverage the data from each source
to learn a model that performs better than a set of independently trained models. We perform this
experiment on the kitchen task and present the results in Fig. 6.2. The results clearly indicate that
training individually on a single discretization on Kitchen data underperforms relative to training
with adaptive N-step returns on both discretizations. Interestingly, for the data at 30, which is of
lower quality, mixing discretizations with N-step returns also leads to more stable training than
training individually on a single discretization.

7 Limitations

Although our adaptive N-step method works reliably for
discretizations where the step sizes can be aligned, it is
unclear how well adaptive N could work when the fre-
quencies do not have a small common multiple. In the
kitchen setting, we saw that the frequencies do not need
to be multiples of one another to reap the benefits of adap-
tive IN-step returns, but this strategy could become less 025 — Independent Training
viable as the least common multiple between frequen- ooo{ 4 T Memenseplun
cies grows. Other strategies, such as sampling different O B0 A etene 00
N with probability proportional to the fractional differ-

ence of the two frequencies may need to be adopted. An- Figure 7: Adaptive N-step improves over
other limitation of this work is that the discretization of training on a single discretization, indicating
each trajectory is assumed to be fixed and given. If the thata policy at one discretization can benefit
frequency of observations varies within a trajectory, the from data in another discretization.

value of N may need to be predicted from observations.

Kitchen

Avg Reward
<]
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8 Conclusion

In this work, we studied the problem of mixing data from different discretizations in offline RL
and presented a simple and effective approach for this problem that improved training stability and
final performance across three simulated control tasks. We found that our adaptive N-step returns
method counteracts varying rates of value propagation present when mixing data naively. While
our approach provides a step towards offline RL methods that can consume data coming from di-
verse sources, more future work is needed to address training offline RL agents on other sources of
variation that are commonly present in robotics data.



Acknowledgments

We thank Google for their support and the members of IRIS Lab at Stanford and the anonymous
reviewers for their feedback. Kaylee Burns is supported by an NSF fellowship. Chelsea Finn is a
CIFAR fellow.

References

[1] C. Tallec, L. Blier, and Y. Ollivier. Making deep g-learning methods robust to time discretiza-
tion. In International Conference on Machine Learning, pages 6096—6104. PMLR, 2019.

[2] A.Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. Advances in neural information processing systems, 25, 2012.

[3] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[4] P. Kidger, J. Morrill, J. Foster, and T. Lyons. Neural controlled differential equations for
irregular time series. Advances in Neural Information Processing Systems, 33:6696—-6707,
2020.

[5] A. Gu, T. Dao, S. Ermon, A. Rudra, and C. Ré. Hippo: Recurrent memory with optimal
polynomial projections. Advances in Neural Information Processing Systems, 33:1474—1487,
2020.

[6] C. Watkins. Learning from delayed rewards. 01 1989.

[7] J. Peng and R. Williams. Incremental multi-step g-learning. Machine Learning, 22, 09 1998.
doi:10.1007/BF00114731.

[8] Y. Rubanova, R. T. Chen, and D. K. Duvenaud. Latent ordinary differential equations for
irregularly-sampled time series. Advances in neural information processing systems, 32,2019.

[9] S. Singh, F. M. Ramirez, J. Varley, A. Zeng, and V. Sindhwani. Multiscale sensor fusion and
continuous control with neural cdes. arXiv preprint arXiv:2203.08715, 2022.

[10] S. Bahl, M. Mukadam, A. Gupta, and D. Pathak. Neural dynamic policies for end-to-end
sensorimotor learning. In NeurIPS, 2020.

[11] R. Munos and P. Bourgine. Reinforcement learning for continuous stochastic control problems.
Advances in neural information processing systems, 10, 1997.

[12] K. Doya. Reinforcement learning in continuous time and space. Neural computation, 12(1):
219-245, 2000.

[13] J. Kim and I. Yang. Hamilton-jacobi-bellman equations for g-learning in continuous time. In
Learning for Dynamics and Control, pages 739-748. PMLR, 2020.

[14] T. Xiao, E. Jang, D. Kalashnikov, S. Levine, J. Ibarz, K. Hausman, and A. Herzog. Thinking
while moving: Deep reinforcement learning with concurrent control. International Conference
on Learning Representations, 2020.

[15] T. Ni and E. Jang. Continuous control on time. In ICLR 2022 Workshop on Generaliz-
able Policy Learning in Physical World, 2022. URL https://openreview.net/forum?
1d=BtbG3NT4y-c.

[16] D. Ernst, P. Geurts, and L. Wehenkel. Tree-based batch mode reinforcement learning. Journal
of Machine Learning Research, 6:503-556, 2005.


http://dx.doi.org/10.1007/BF00114731
https://openreview.net/forum?id=BtbG3NT4y-c
https://openreview.net/forum?id=BtbG3NT4y-c

[17] M. Riedmiller. Neural fitted q iteration—first experiences with a data efficient neural rein-
forcement learning method. In European Conference on Machine Learning, pages 317-328.
Springer, 2005.

[18] S. Lange, T. Gabel, and M. A. Riedmiller. Batch reinforcement learning. In Reinforcement
Learning, volume 12. Springer, 2012.

[19] S. Levine, A. Kumar, G. Tucker, and J. Fu. Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

[20] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly,
M. Kalakrishnan, V. Vanhoucke, et al. Scalable deep reinforcement learning for vision-based
robotic manipulation. In Conference on Robot Learning, pages 651-673. PMLR, 2018.

[21] R. Rafailov, T. Yu, A. Rajeswaran, and C. Finn. Offline reinforcement learning from images
with latent space models. Learning for Decision Making and Control (L4DC), 2021.

[22] A. Singh, A. Yu, J. Yang, J. Zhang, A. Kumar, and S. Levine. Cog: Connecting new skills to
past experience with offline reinforcement learning. arXiv preprint arXiv:2010.14500, 2020.

[23] A.Kumar, A. Singh, S. Tian, C. Finn, and S. Levine. A workflow for offline model-free robotic
reinforcement learning. arXiv preprint arXiv:2109.10813, 2021.

[24] S. Fujimoto, D. Meger, and D. Precup. Off-policy deep reinforcement learning without explo-
ration. arXiv preprint arXiv:1812.02900, 2018.

[25] Y. Wu, G. Tucker, and O. Nachum. Behavior regularized offline reinforcement learning. arXiv
preprint arXiv:1911.11361, 2019.

[26] A. Kumar, J. Fu, M. Soh, G. Tucker, and S. Levine. Stabilizing off-policy g-learning via
bootstrapping error reduction. In Advances in Neural Information Processing Systems, pages
11761-11771, 2019.

[27] W. Zhou, S. Bajracharya, and D. Held. Plas: Latent action space for offline reinforcement
learning. arXiv preprint arXiv:2011.07213, 2020.

[28] S.K.S. Ghasemipour, D. Schuurmans, and S. S. Gu. Emaq: Expected-max g-learning operator
for simple yet effective offline and online rl. In International Conference on Machine Learning,
pages 3682-3691. PMLR, 2021.

[29] S. Fujimoto and S. S. Gu. A minimalist approach to offline reinforcement learning. arXiv
preprint arXiv:2106.06860, 2021.

[30] I. Kostrikov, R. Fergus, J. Tompson, and O. Nachum. Offline reinforcement learning with fisher
divergence critic regularization. In International Conference on Machine Learning, pages
5774-5783. PMLR, 2021.

[31] W. Goo and S. Niekum. You only evaluate once: a simple baseline algorithm for offline rl. In
Conference on Robot Learning, pages 1543—1553. PMLR, 2022.

[32] A. Kumar, A. Zhou, G. Tucker, and S. Levine. Conservative g-learning for offline reinforce-
ment learning. Advances in Neural Information Processing Systems, 33:1179-1191, 2020.

[33] R. Agarwal, D. Schuurmans, and M. Norouzi. An optimistic perspective on offline reinforce-
ment learning. In International Conference on Machine Learning, pages 104-114. PMLR,
2020.

[34] Y. Wu, S. Zhai, N. Srivastava, J. Susskind, J. Zhang, R. Salakhutdinov, and H. Goh. Uncertainty
weighted actor-critic for offline reinforcement learning. arXiv preprint arXiv:2105.08140,
2021.

10



[35] T. Yu, G. Thomas, L. Yu, S. Ermon, J. Zou, S. Levine, C. Finn, and T. Ma. Mopo: Model-based
offline policy optimization. arXiv preprint arXiv:2005.13239, 2020.

[36] R. Kidambi, A. Rajeswaran, P. Netrapalli, and T. Joachims. Morel: Model-based offline rein-
forcement learning. arXiv preprint arXiv:2005.05951, 2020.

[37] P. Swazinna, S. Udluft, and T. Runkler. Overcoming model bias for robust offline deep rein-
forcement learning. arXiv preprint arXiv:2008.05533, 2020.

[38] B.-J. Lee, J. Lee, and K.-E. Kim. Representation balancing offline model-based reinforcement
learning. In International Conference on Learning Representations, 2021. URL https://
openreview.net/forum?id=QpNz8r_Ri2Y.

[39] T. Yu, A. Kumar, R. Rafailov, A. Rajeswaran, S. Levine, and C. Finn. Combo: Conservative
offline model-based policy optimization. arXiv preprint arXiv:2102.08363, 2021.

[40] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[41] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A
benchmark and evaluation for multi-task and meta reinforcement learning. In Conference on
Robot Learning, pages 1094-1100. PMLR, 2020.

[42] A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Hausman. Relay policy learning: Solving
long horizon tasks via imitation and reinforcement learning. Conference on Robot Learning
(CoRL), 2019.

[43] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4rl: Datasets for deep data-driven
reinforcement learning, 2020.

[44] X. Geng. Cql. https://github.com/young-geng/cql, 2022.

11


https://openreview.net/forum?id=QpNz8r_Ri2Y
https://openreview.net/forum?id=QpNz8r_Ri2Y
https://github.com/young-geng/cql

	Introduction
	Related Work
	Preliminaries
	Mixed Discretizations Can Destabilize Offline RL
	Analyzing Naïve Mixing

	Adaptive N-Step Returns
	Experiments
	Experimental Setup
	Results

	Limitations
	Conclusion

