
Simple Recurrence Improves Masked Language Models

Anonymous ACL submission

Abstract

In this work, we explore whether modeling001
recurrence into the Transformer architecture002
can both be beneficial and efficient, by build-003
ing an extremely simple recurrent module into004
the Transformer. We compare our model to005
baselines following the training and evalua-006
tion recipe of BERT. Our results confirm that007
recurrence can indeed improve Transformer008
models by a consistent margin, without requir-009
ing low-level performance optimizations, and010
while keeping the number of parameters con-011
stant. For example, our base model achieves012
an absolute improvement of 2.1 points aver-013
aged across 10 tasks and also demonstrates in-014
creased stability in fine-tuning over a range of015
learning rates.016

1 Introduction017

While the Transformer (Vaswani et al., 2017) re-018

lies solely on attention mechanisms for sequence019

modeling, many recent works have incorporated re-020

currence into the architecture and demonstrated su-021

perior performance in various applications. For ex-022

ample, such modifications were shown to be benefi-023

cial for modeling long-range inputs (Hutchins et al.,024

2022), accelerating language model training (Lei,025

2021) and improving translation and speech recog-026

nition systems (Hao et al., 2019; Pan et al., 2022;027

Chen et al., 2018).028

Even though combining attention and recurrence029

is useful in many cases, very little efforts have gone030

into language model pre-training and fine-tuning.031

In particular, one open question is whether a com-032

bined model can be pre-trained and fine-tuned to033

achieve stronger accuracy compared to its attention-034

only counterparts.035

We study this question in the case of masked lan-036

guage model training, specifically BERT (Devlin037

et al., 2019). Unlike previous work (Huang et al.,038

2020), we are interested in retaining the training039

efficiency of the model when combining attention040

Figure 1: Our model architecture (left) and the origi-
nal Transformer (right) for masked language modeling.
We replace the feed-forward blocks with light-weight
recurrence, which is interleaved with attention blocks.

and recurrence. That is, the amount of parameters 041

and computation should remain comparable to the 042

baseline Transformer model. However, making a 043

recurrent model operating at a similar computation 044

throughput as attention can be challenging, such as 045

requiring CUDA implementations for GPUs (App- 046

leyard et al., 2016; Bradbury et al., 2017). To miti- 047

gate this issue, we propose a simple recurrent imple- 048

mentation which we call SwishRNN. SwishRNN 049

uses minimal operations in the recurrence step in 050

order to accelerate computation, and can run on 051

both TPUs and GPUs using a few lines of code 052

in machine learning libraries such as Tensorflow. 053

We incorporate SwishRNN into BERT by substitut- 054

ing the feed-forward layers and keeping the same 055

number of model parameters. 056

We pre-train our model and BERT baselines 057

using the standard Wikipedia+Book corpus, and 058

compare their fine-tuning performance on 10 tasks 059

selected in the GLUE and SuperGLUE bench- 060

mark. Our results confirm that modeling recurrence 061

jointly with attention is indeed helpful, resulting in 062

an average improvement of 2.1 points for the BERT- 063

base models and 0.6 points for the large models. 064

The combined model also exhibits better stability, 065

achieving more consistent fine-tuning results over 066

a range of learning rates. 067

1



swish

xt

ct-1 - +

×σ

ct

ht

Figure 2: The SwishRNN cell. A red dotted line repre-
sents a linear transformation.

2 Model068

In this section, we first give a quick overview of our069

model architecture and then describe the recurrence070

module SwishRNN in more details.071

2.1 Notation and Background072

The Transformer architecture interleaves a multi-073

headed attention block, Fatt, with feed forward074

block, Fffn, as shown in Figure 1. Between each075

block is a residual connection and layer normaliza-076

tion that we denote as FAdd+Norm. These functions077

are defined in the Appendix for completeness.078

At each layer k, the hidden state of a Trans-079

former is represented by an l×dmatrix Xk, where080

l is the sequence length and d the hidden size1. We081

define the intermediate hidden state X̄k and input082

to the next layer Xk+1 as:083

X̄k := FAdd+Norm

(
Fatt(X

k),Xk
)

084

Xk+1 := FAdd+Norm

(
Fffn(X̄k), X̄k

)
(1)085

2.2 Architecture086

Compared to the original architecture, we simply087

replace every feed-forward block Fffn with a recur-088

rence block as shown in Figure 1.089

SwishRNN Modern accelerator hardwares such090

as TPUs and GPUs are highly optimized for matrix091

multiplications, making feed-forward architectures092

such as attention very efficient. Recurrent networks093

(RNNs) however involves sequential operations094

that cannot run in parallel. In order to achieve a095

training efficiency comparable to the original Trans-096

former, we use minimal sequential operations and097

demonstrate they are sufficient to improve the mod-098

eling power.099

Specifically, SwishRNN uses only two matrix100

multiplications and an element-wise sequential101

pooling operation. Let x̄[i] := X̄[i, :] be the in-102

termediate hidden vector of the i-th position (from103

1For simplicity of notation, the l superscript is only in-
cluded when necessary

Eq. 1). SwishRNN first computes two linear trans- 104

formations of X̄: 105

X̄1 = X̄W1, X̄2 = X̄W2 (2) 106

where W1 and W2 are d× d′ parameter matrices 107

optimized during training, d is the input and output 108

dimension of the model, and d′ is the intermedi- 109

ate dimension for recurrence. The hidden vectors 110

{c[i]}li=1 are calculated as follows 111

c[i] = Swish (c[i-1]− x̄1[i]) + x̄1[i] (3) 112

where Swish() is the element-wise Swish activa- 113

tion function (Ramachandran et al., 2018).2 We 114

use a l× d′ matrix C to represent the concatenated 115

version of {c[i]}li=1, and set c[0] as an all-zero 116

vector for simplicity. Intuitively, step (3) can be 117

interpreted as a pooling operator where the greater 118

value between c[i-1] and x̄1[i] are selected.3 119

The output vectors are obtained using a mul- 120

tiplicative gating similar to other RNNs such as 121

LSTM, followed by a linear layer with weights 122

W3: 123

H = W3 ((C + bc)� σ(X2 + bσ)) + b3 (4) 124

where σ() is a gating activation function. We ex- 125

perimented with sigmoid activation and the GeLU 126

activation (Hendrycks and Gimpel, 2016) used 127

in BERT, and found the latter to achieve lower 128

training loss. Finally, analogous to Eq. 1, we set 129

Xk+1 := FAdd+Norm(H, X̄k). 130

Speeding up recurrence In our experiments, we 131

implement the recurrence step (2) using the scan() 132

function in Tensorflow. Our model using this sim- 133

ple implementation runs 40% slower than the stan- 134

dard Transformer, but is already much faster than 135

other heavier RNNs such as LSTM. For example, a 136

Transformer model combined with LSTM can run 137

multiple times slower (Huang et al., 2020). 138

We further improve the speed by increasing the 139

step size for the RNN. Specifically, c[i] is calcu- 140

lated using c[i−k] and x1[i] with a step size k > 1. 141

Each recurrent step can process k consecutive to- 142

kens at a time and only dl/ke steps are needed. 143

In our experiments, we interleave the step size 144

k ∈ {1, 2, 4} across recurrent layers and found this 145

to perform on par with using a fixed step size of 1. 146

2Swish(x) = sigmoid(α ·x+β) ·x. We initialize α = 1
and β = 0 and optimize both scalar vectors during training.

3To see this, note c[i] = x̄[i] if x̄[i]� c[i-1], and c[i] =
c[i-1] if x̄[i]� c[i-1].

2



BoolQ CoLA MNLI MRPC MultiRC QNLI QQP RTE SST2 STSB Avg

Base model (12 layers, d = 768)
BERT-orig 73.3% 82.0% 84.8% 88.5% 69.5% 91.0% 87.7% 64.0% 93.7% 84.2% 81.9%
BERT-rab 70.1% 73.7% 85.4% 89.8% 70.3% 92.1% 87.5% 66.4% 91.1% 83.8% 81.0%
Ours 77.9% 80.8% 85.9% 90.4% 74.2% 92.5% 88.2% 70.8% 93.8% 85.7% 84.0%

Large model (24 layers, d = 1024)
BERT-orig 84.5% 81.4% 89.0% 93.5% 79.6% 94.2% 88.6% 84.0% 95.3% 87.9% 87.8%
BERT-rab 84.5% 75.0% 88.9% 92.2% 80.9% 94.2% 88.4% 78.8% 93.1% 87.2% 86.3%
Ours 86.1% 84.8% 88.9% 92.9% 81.2% 94.3% 88.7% 85.0% 95.3% 87.2% 88.4%

Previously reported results (Large model)
RoBERTa† - 66.3% 89.0% 90.2% - 93.9% 91.9% 84.5% 95.3% 91.6% -
BERT† - 60.6% 86.6% 88.0% - 92.3% 91.3% 70.4% 93.2% 90.0% -
BERT‡ - 61.2% 86.6% 79.5% - 93.1% 88.4% 68.9% 94.7% 89.6% -

Table 1: Averaged development set results of all models. We perform 3 independent fine-tuning runs for each
model and dataset. For comprehensive study, we also include previously reported results of large BERT models,
although training details may differ in this and previous work. † indicate results from Liu et al. (2019) and ‡ are
results from Wettig et al. (2022) using an efficient training recipe and 40% masking rate. Our baseline models are
strong compared to previously reported results.

BoolQ, Base model

BERT-orig BERT-rab Ours

3E-06 70.8 70.1 74.8

5E-06 73.3 69.7 76.9

1E-05 70.5 69.9 77.9

69.0

73.5

78.0

3E-06 5E-06 1E-05

BERT-orig
BERT-rab
Ours

BoolQ

BERT-orig BERT-rab Ours

3E-06 84.51 84.54 85.90

5E-06 83.39 84.15 86.08

1E-05 69.16 62.20 85.81

BoolQ

60.0

75.0

90.0

3E-06 5E-06 1E-05

Learning rate

MultiRC, Base model

BERT-orig BERT-rab Ours

3E-06 68.28 70.30 73.22

5E-06 68.51 67.48 73.06

1E-05 69.45 69.79 74.22

67.0

71.0

75.0

3E-06 5E-06 1E-05

BERT-orig
BERT-rab
Ours

CoLA

60.0

75.0

90.0

2E-06 3E-06 5E-06

Learning rate

CoLA

BERT-orig BERT-rab Ours

2E-06 81.4 75.0 84.3

3E-06 72.8 72.3 84.8

5E-06 69.1 69.1 82.2

Average on GLUE

80.0

85.0

90.0

2E-06 3E-06 5E-06

BERT-orig
BERT-rab
Ours

Learning rate

Average on GLUE

BERT-orig BERT-rab Ours

2E-06 87.1 86.5 89.2

3E-06 88.0 86.2 89.4

5E-06 84.4 83.4 89.1

MNLI

80.0

85.0

90.0

2E-06 3E-06 5E-06

Learning rate

MNLI

BERT-orig BERT-rab Ours

2E-06 71.2 88.9 88.6

3E-06 89.0 88.8 88.7

5E-06 88.9 88.5 88.8

1

Figure 3: Stability of fine-tuning results given different learning rates. Results are averaged across 3 independent
runs for each setting. Our model is more robust to the range of learning rates tested.

Our model with variable step sizes has a marginal147

20% - 30% slow-down compared to the standard148

Transformer model when training on TPUs.149

Note that SwishRNN can be made signifi-150

cantly faster using optimized implementation such151

as CUDA kernel fusion adopted in QRNN and152

SRU (Bradbury et al., 2017; Lei et al., 2018). We153

leave this for future work as custom kernel fusion154

is not readily available for TPUs.155

3 Experimental Setup156

Datasets Following BERT (Devlin et al., 2019),157

we evaluate all models by pre-training them with158

the masked language model (MLM) objective and159

then fine-tuning them on a wide range of down-160

stream tasks. We use the Wikipedia and Book-161

Corpus (Zhu et al., 2015) for pre-training, and 10162

datasets from the GLUE (Wang et al., 2018) and163

SuperGLUE benchmark (Wang et al., 2019) includ-164

ing the BoolQ, CoLa, MNLI, MRPC, MultiRC,165

QNLI, QQP, RTE, SST2 and STS-B datasets.166

Baselines We compare with two BERT variants. 167

BERT-orig is the original BERT model using the 168

multi-head attention described in Vaswani et al. 169

(2017) and learned absolute positional encoding. 170

The second variant BERT-rab adds the relative at- 171

tention bias to each attention layer, following the 172

T5 model (Raffel et al., 2020). Our model is the 173

same as BERT-rab except we replace every FFN 174

block with SwishRNN. The inner hidden size d′ 175

of SwishRNN blocks is decreased such that the 176

total number of parameters are similar to the BERT 177

baselines. Following Devlin et al. (2019), we exper- 178

iment with two model sizes – a base model setting 179

consists of 12 Transformer layers and a large model 180

setting using 24 layers. The detailed model config- 181

urations are given in Appendix C. 182

Training Our pre-training recipe is similar to re- 183

cent work (Liu et al., 2019; Izsak et al., 2021; Wet- 184

tig et al., 2022). Specifically, we do not use the 185

next sentence prediction objective and simply re- 186

place 15% input tokens with the special [MASK] 187

token. We also use a larger batch size and fewer 188

3



Step size(s) of RNNs CoLA MNLI MRPC QNLI QQP RTE SST2 STSB Time

Base model (12 layers, d = 768)
1 79.4% 85.9% 90.8% 92.1% 88.1% 68.0% 92.7% 86.3% 1.4×
2 75.5% 85.9% 88.6% 92.4% 88.1% 64.9% 92.1% 83.1% 1.2×
{1, 2, 4} 80.8% 85.9% 90.4% 92.5% 88.2% 70.8% 93.8% 85.7% 1.2×

Large model (24 layers, d = 1024)
1 84.7% 89.0% 92.5% 94.5% 88.5% 83.9% 95.6% 87.9% 1.4×
{1, 2, 4} 84.8% 88.9% 92.9% 94.3% 88.7% 85.0% 95.3% 87.2% 1.3×

Table 2: Fine-tuning results on the GLUE datasets using different step sizes for the recurrent module in our model.
We report averaged results and the pre-training time in relative to that of BERT-rab model. Using variable step
sizes trains faster and obtains results on par with using step size 1.

training steps following recent work. Specifically,189

we use a batch size of 1024 for base models and190

4096 for large models. The maximum number of191

pre-training steps is set to 300K.192

To reduce the variance, we run 3 independent193

fine-tuning trials for every model and fine-tuning194

task, and report the averaged results. We also tune195

the learning rate separately for each model and fine-196

tuning task. The training details are provided in197

Appendix C.198

4 Results199

Overall results Table 1 presents the fine-tuning200

results on 10 datasets. Our base model achieves a201

substantial improvement, outperforming the BERT-202

orig and BERT-rab baselines with an average of 2.1203

absolute points. The improvement is also consis-204

tent, as our base model is better on 9 out of the 10205

datasets.206

The improvement on large model setting is207

smaller. Our model obtains an increase of 0.6 point208

and is better on 6 datasets. We hypothesize that the209

increased modeling power due to recurrence can be210

saturating, as making the model much deeper and211

wider can already enhance the modeling capacity.212

The gains are still apparent on more challenging213

datasets such as BoolQ where the input sequences214

are much longer.215

Stability One interesting observation in our ex-216

periments is that combining recurrence and atten-217

tion improves fine-tuning stability. Figure 3 ana-218

lyzes model stability by varying the learning rate.219

We showcase the results on the first 3 datasets220

(namely BoolQ, CoLA and MNLI) as well as the221

averaged results on 8 datasets in GLUE. For both222

BERT model variants, fine-tuning requires more223

careful tuning of the learning rate. In comparison,224

our model performs much more consistently across225

the learning rates tested.226

1.5

1.7

1.9

2.1

2.3

50000 100000 150000 200000 250000

Base models

1.1

1.3

1.5

1.7

1.9

50000 100000 150000 200000 250000

BERT-orig BERT-rab Ours

Large models

Figure 4: MLM pre-training loss of BERT-orig, BERT-
rab and our model architectures.

Step size of RNN Table 2 shows the effect of 227

changing the step size of SwishRNN. Using a step 228

size of 1 is the slowest, since running smaller and 229

more steps adds computational overhead. On the 230

other hand, using a fixed step size of 2 reduces 231

the training cost but hurts the fine-tuning results 232

especially on the CoLA, MRPC, RTE and STS-B 233

datasets. Our best model alternates the step size 234

between 1, 2, and 4 across the recurrent layers, 235

resulting in both faster training and stronger results. 236

Pre-training loss Figure 4 shows the training 237

curves of all models during masked language 238

model training. Our model achieves better loss, 239

indicating increased modeling capacity. 240

5 Conclusion 241

In this work, we proposed incorporating an ex- 242

tremely simple recurrent module, SwishRNN, that 243

when incorporated into BERT achieves consistent 244

improvements without requiring low-level perfor- 245

mance optimizations. Future directions include 246

extending our work to encoder-decoder pretrain- 247

ing (Song et al., 2019) and exploring other domains 248

such as protein modeling (Elnaggar et al., 2020). 249

4



References250

Jeremy Appleyard, Tomas Kocisky, and Phil Blunsom.251
2016. Optimizing performance of recurrent neural252
networks on gpus.253

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hin-254
ton. 2016. Layer normalization.255

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo256
Giampiccolo. 2009. The fifth pascal recognizing tex-257
tual entailment challenge. In TAC.258

James Bradbury, Stephen Merity, Caiming Xiong, and259
Richard Socher. 2017. Quasi-Recurrent Neural Net-260
works. International Conference on Learning Rep-261
resentations (ICLR 2017).262

Tom Brown, Benjamin Mann, Nick Ryder, Melanie263
Subbiah, Jared D Kaplan, Prafulla Dhariwal,264
Arvind Neelakantan, Pranav Shyam, Girish Sastry,265
Amanda Askell, Sandhini Agarwal, Ariel Herbert-266
Voss, Gretchen Krueger, Tom Henighan, Rewon267
Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,268
Clemens Winter, Chris Hesse, Mark Chen, Eric269
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,270
Jack Clark, Christopher Berner, Sam McCandlish,271
Alec Radford, Ilya Sutskever, and Dario Amodei.272
2020. Language models are few-shot learners. In273
Advances in Neural Information Processing Systems,274
pages 1877–1901.275

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-276
Gazpio, and Lucia Specia. 2017. SemEval-2017277
task 1: Semantic textual similarity multilingual and278
crosslingual focused evaluation. In Proceedings of279
the 11th International Workshop on Semantic Evalu-280
ation (SemEval-2017).281

Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin John-282
son, Wolfgang Macherey, George F. Foster, Llion283
Jones, Niki Parmar, Mike Schuster, Zhifeng Chen,284
Yonghui Wu, and Macduff Hughes. 2018. The best285
of both worlds: Combining recent advances in neu-286
ral machine translation. In Proceedings of the 56th287
Annual Meeting of the Association for Computa-288
tional Linguistics (ACL).289

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,290
Maarten Bosma, Gaurav Mishra, Adam Roberts,291
Paul Barham, Hyung Won Chung, Charles Sutton,292
Sebastian Gehrmann, et al. 2022. PaLM: Scaling293
language modeling with pathways. arXiv preprint294
arXiv:2204.02311.295

Christopher Clark, Kenton Lee, Ming-Wei Chang,296
Tom Kwiatkowski, Michael Collins, and Kristina297
Toutanova. 2019. BoolQ: Exploring the surprising298
difficulty of natural yes/no questions. In Proceed-299
ings of the 2019 Conference of the North American300
Chapter of the Association for Computational Lin-301
guistics: Human Language Technologies, Volume 1302
(Long and Short Papers).303

Ido Dagan, Oren Glickman, and Bernardo Magnini.304
2005. The pascal recognising textual entailment305

challenge. In Proceedings of the PASCAL Chal- 306
lenges Workshop on Recognising Textual Entail- 307
ment. 308

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 309
Kristina Toutanova. 2019. BERT: Pre-training of 310
deep bidirectional transformers for language under- 311
standing. In Proceedings of the 2019 Conference 312
of the North American Chapter of the Association 313
for Computational Linguistics: Human Language 314
Technologies. Association for Computational Lin- 315
guistics. 316

William B. Dolan and Chris Brockett. 2005. Automati- 317
cally constructing a corpus of sentential paraphrases. 318
In Proceedings of the Third International Workshop 319
on Paraphrasing (IWP2005). 320

Ahmed Elnaggar, Michael Heinzinger, Christian Dal- 321
lago, Ghalia Rehawi, Yu Wang, Llion Jones, Tom 322
Gibbs, Tamas B. Fehér, Christoph Angerer, Mar- 323
tin Steinegger, Debsindhu Bhowmik, and Burkhard 324
Rost. 2020. Prottrans: Towards cracking the lan- 325
guage of life’s code through self-supervised deep 326
learning and high performance computing. bioRxiv. 327

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, 328
and William B Dolan. 2007. The third pascal recog- 329
nizing textual entailment challenge. In Proceedings 330
of the ACL-PASCAL workshop on textual entailment 331
and paraphrasing. 332

R Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo 333
Giampiccolo, Bernardo Magnini, and Idan Szpektor. 334
2006. The second pascal recognising textual entail- 335
ment challenge. In Proceedings of the Second PAS- 336
CAL Challenges Workshop on Recognising Textual 337
Entailment. 338

Jie Hao, Xing Wang, Baosong Yang, Longyue Wang, 339
Jinfeng Zhang, and Zhaopeng Tu. 2019. Modeling 340
recurrence for transformer. In Proceedings of the 341
2019 Conference of the North American Chapter of 342
the Association for Computational Linguistics: Hu- 343
man Language Technologies. Association for Com- 344
putational Linguistics. 345

Dan Hendrycks and Kevin Gimpel. 2016. Gaussian er- 346
ror linear units (gelus). 347

Zhiheng Huang, Peng Xu, Davis Liang, Ajay Mishra, 348
and Bing Xiang. 2020. Trans-blstm: Transformer 349
with bidirectional lstm for language understanding. 350

DeLesley Hutchins, Imanol Schlag, Yuhuai Wu, Ethan 351
Dyer, and Behnam Neyshabur. 2022. Block- 352
recurrent transformers. 353

Peter Izsak, Moshe Berchansky, and Omer Levy. 2021. 354
How to train BERT with an academic budget. In 355
Proceedings of the 2021 Conference on Empirical 356
Methods in Natural Language Processing. 357

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth, 358
Shyam Upadhyay, and Dan Roth. 2018. Looking be- 359
yond the surface: A challenge set for reading com- 360
prehension over multiple sentences. In Proceedings 361

5

http://arxiv.org/abs/1604.01946
http://arxiv.org/abs/1604.01946
http://arxiv.org/abs/1604.01946
http://arxiv.org/abs/1607.06450
https://tac.nist.gov/publications/2009/additional.papers/RTE5_overview.proceedings.pdf
https://tac.nist.gov/publications/2009/additional.papers/RTE5_overview.proceedings.pdf
https://tac.nist.gov/publications/2009/additional.papers/RTE5_overview.proceedings.pdf
https://arxiv.org/pdf/1611.01576.pdf
https://arxiv.org/pdf/1611.01576.pdf
https://arxiv.org/pdf/1611.01576.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://aclanthology.org/S17-2001
https://aclanthology.org/S17-2001
https://aclanthology.org/S17-2001
https://aclanthology.org/S17-2001
https://aclanthology.org/S17-2001
https://aclanthology.org/P18-1008
https://aclanthology.org/P18-1008
https://aclanthology.org/P18-1008
https://aclanthology.org/P18-1008
https://aclanthology.org/P18-1008
https://arxiv.org/pdf/2204.02311.pdf
https://arxiv.org/pdf/2204.02311.pdf
https://arxiv.org/pdf/2204.02311.pdf
https://aclanthology.org/N19-1300
https://aclanthology.org/N19-1300
https://aclanthology.org/N19-1300
http://www.cs.biu.ac.il/~glikmao/rte05/
http://www.cs.biu.ac.il/~glikmao/rte05/
http://www.cs.biu.ac.il/~glikmao/rte05/
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/I05-5002
https://aclanthology.org/I05-5002
https://aclanthology.org/I05-5002
https://arxiv.org/pdf/2007.06225.pdf
https://arxiv.org/pdf/2007.06225.pdf
https://arxiv.org/pdf/2007.06225.pdf
https://arxiv.org/pdf/2007.06225.pdf
https://arxiv.org/pdf/2007.06225.pdf
https://aclanthology.org/W07-1401.pdf
https://aclanthology.org/W07-1401.pdf
https://aclanthology.org/W07-1401.pdf
http://u.cs.biu.ac.il/~nlp/RTE2/Proceedings/01.pdf
http://u.cs.biu.ac.il/~nlp/RTE2/Proceedings/01.pdf
http://u.cs.biu.ac.il/~nlp/RTE2/Proceedings/01.pdf
https://aclanthology.org/N19-1122
https://aclanthology.org/N19-1122
https://aclanthology.org/N19-1122
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/2003.07000
http://arxiv.org/abs/2003.07000
http://arxiv.org/abs/2003.07000
http://arxiv.org/abs/2203.07852
http://arxiv.org/abs/2203.07852
http://arxiv.org/abs/2203.07852
https://aclanthology.org/2021.emnlp-main.831
https://aclanthology.org/N18-1023
https://aclanthology.org/N18-1023
https://aclanthology.org/N18-1023
https://aclanthology.org/N18-1023
https://aclanthology.org/N18-1023


of the 2018 Conference of the North American Chap-362
ter of the Association for Computational Linguistics:363
Human Language Technologies.364

Tao Lei. 2021. When attention meets fast recurrence:365
Training language models with reduced compute. In366
Proceedings of the 2021 Conference on Empirical367
Methods in Natural Language Processing. Associa-368
tion for Computational Linguistics.369

Tao Lei, Yu Zhang, Sida I. Wang, Hui Dai, and Yoav370
Artzi. 2018. Simple recurrent units for highly paral-371
lelizable recurrence. In Empirical Methods in Natu-372
ral Language Processing (EMNLP).373

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-374
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,375
Luke Zettlemoyer, and Veselin Stoyanov. 2019.376
Roberta: A robustly optimized bert pretraining ap-377
proach.378

Jing Pan, Tao Lei, Kwangyoun Kim, Kyu J. Han, and379
Shinji Watanabe. 2022. Sru++: Pioneering fast re-380
currence with attention for speech recognition. In381
International Conference on Acoustics, Speech and382
Signal Processing (ICASSP).383

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine384
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,385
Wei Li, and Peter J. Liu. 2020. Exploring the limits386
of transfer learning with a unified text-to-text trans-387
former. Journal of Machine Learning Research.388

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and389
Percy Liang. 2016. SQuAD: 100,000+ questions for390
machine comprehension of text. In Proceedings of391
the 2016 Conference on Empirical Methods in Natu-392
ral Language Processing.393

Prajit Ramachandran, Barret Zoph, and Quoc V. Le.394
2018. Searching for activation functions.395

Richard Socher, Alex Perelygin, Jean Wu, Jason396
Chuang, Christopher D. Manning, Andrew Ng, and397
Christopher Potts. 2013. Recursive deep models398
for semantic compositionality over a sentiment tree-399
bank. In Proceedings of the 2013 Conference on Em-400
pirical Methods in Natural Language Processing.401

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-402
Yan Liu. 2019. Mass: Masked sequence to sequence403
pre-training for language generation. In ICML.404

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob405
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz406
Kaiser, and Illia Polosukhin. 2017. Attention is all407
you need. In Advances in Neural Information Pro-408
cessing Systems, volume 30.409

Alex Wang, Yada Pruksachatkun, Nikita Nangia,410
Amanpreet Singh, Julian Michael, Felix Hill, Omer411
Levy, and Samuel Bowman. 2019. Superglue: A412
stickier benchmark for general-purpose language un-413
derstanding systems. In Advances in Neural Infor-414
mation Processing Systems.415

Alex Wang, Amanpreet Singh, Julian Michael, Fe- 416
lix Hill, Omer Levy, and Samuel Bowman. 2018. 417
GLUE: A multi-task benchmark and analysis plat- 418
form for natural language understanding. In Pro- 419
ceedings of the 2018 EMNLP Workshop Black- 420
boxNLP: Analyzing and Interpreting Neural Net- 421
works for NLP. 422

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow- 423
man. 2019. Neural network acceptability judgments. 424
Transactions of the Association for Computational 425
Linguistics, 7. 426

Alexander Wettig, Tianyu Gao, Zexuan Zhong, and 427
Danqi Chen. 2022. Should you mask 15masked lan- 428
guage modeling? 429

Adina Williams, Nikita Nangia, and Samuel Bowman. 430
2018. A broad-coverage challenge corpus for sen- 431
tence understanding through inference. In Proceed- 432
ings of the 2018 Conference of the North American 433
Chapter of the Association for Computational Lin- 434
guistics: Human Language Technologies, Volume 1 435
(Long Papers). 436

Yukun Zhu, Ryan Kiros, Richard S. Zemel, Ruslan 437
Salakhutdinov, Raquel Urtasun, Antonio Torralba, 438
and Sanja Fidler. 2015. Aligning books and movies: 439
Towards story-like visual explanations by watching 440
movies and reading books. In Proceedings of the 441
IEEE International Conference on Computer Vision 442
(ICCV). 443

6

https://aclanthology.org/2021.emnlp-main.602
https://aclanthology.org/2021.emnlp-main.602
https://aclanthology.org/2021.emnlp-main.602
https://arxiv.org/abs/1709.02755
https://arxiv.org/abs/1709.02755
https://arxiv.org/abs/1709.02755
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://arxiv.org/pdf/2110.05571.pdf
https://arxiv.org/pdf/2110.05571.pdf
https://arxiv.org/pdf/2110.05571.pdf
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://nlp.stanford.edu/pubs/rajpurkar2016squad.pdf
https://nlp.stanford.edu/pubs/rajpurkar2016squad.pdf
https://nlp.stanford.edu/pubs/rajpurkar2016squad.pdf
https://openreview.net/forum?id=SkBYYyZRZ
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://arxiv.org/pdf/1905.02450.pdf
https://arxiv.org/pdf/1905.02450.pdf
https://arxiv.org/pdf/1905.02450.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://aclanthology.org/W18-5446
https://aclanthology.org/W18-5446
https://aclanthology.org/W18-5446
https://aclanthology.org/Q19-1040
http://arxiv.org/abs/2202.08005
http://arxiv.org/abs/2202.08005
http://arxiv.org/abs/2202.08005
https://aclanthology.org/N18-1101
https://aclanthology.org/N18-1101
https://aclanthology.org/N18-1101
https://arxiv.org/pdf/1506.06724
https://arxiv.org/pdf/1506.06724
https://arxiv.org/pdf/1506.06724
https://arxiv.org/pdf/1506.06724
https://arxiv.org/pdf/1506.06724


A Limitations444

The model and results presented in this work have445

a few limitations. First, we focus our evaluation446

on BERT which is an encoder-only model. How-447

ever, the proposed architecture can be incorpo-448

rated into encoder-decoder models and decoder-449

only models as well, such as the T5 (Raffel et al.,450

2020), GPT-3 (Brown et al., 2020) and the recent451

PaLM model (Chowdhery et al., 2022). In addition,452

our fine-tuning datasets are primarily classification453

datasets, and contain fewer training examples com-454

pared to other generation tasks such as machine455

translation and summarization. As future work, our456

model architecture can be extended to other types457

of language models and language generation tasks.458

The training of language models using large-459

scale web text is computationally expensive and460

can capture various biases associated with the data.461

We performed speed optimization that improves462

the computational efficiency of our model, as de-463

scribed in Section 2. We believe more research464

on reducing data biases and computational cost of465

large language models are important.466

B Transformer Architecture467

For completeness we review the Fatt, Fffn, and468

FAdd+Norm blocks used in the Transformer archi-469

tecture (Figure 1). We omit all bias terms for sim-470

plicity.471

Attention block (Fatt) Multi-headed attention472

with h heads first calculates query Qm, key Km,473

and value Vm matrices for each head m ∈ {1, ..h}474

by applying linear transformations to the input:475

Qm = XWQ
m , Km = XWK

m , Vm = XW V
m476

Each transformation matrix WQ
m ,WK

m ,W
V
m is of477

dimension d× dh where dh = d/h. Attention vec-478

tors are then computed for each head, concatenated479

and multiplied by a linear transformation WO of480

dimension d× d:481

Zm = softmax

(
QmK

>
m√

dh

)
Vm482

Fatt(X) = Concat([Z1, ...,Zh])WO483

Feed forward block (Fffn) Following BERT, we484

use a GeLU nonlinearity (Hendrycks and Gimpel,485

2016) i.e. Fffn(X) = Wf2(GeLU (Wf1X)).486

Residual connection and layer normalization 487

(FAdd+Norm) . This block applies layer normaliza- 488

tion (Ba et al., 2016) to the addition of the two in- 489

puts: FAdd+Norm(X̃,X) = LayerNorm(X̃ + X). 490

C Training details 491

Pre-training The detailed hyper-parameter con- 492

figuration for BERT training is shown in Table 3. 493

The training recipe is based on previous works such 494

as RoBERTa (Liu et al., 2019) and the 24-hour 495

BERT (Izsak et al., 2021). Specifically, compared 496

to the original BERT training recipe which uses 497

1M training steps and a batch size of 256, the new 498

recipe increases the batch size. The models are 499

trained with much fewer steps and a larger learning 500

rate as a result, which reduces the overall training 501

time. We train base models using 16 TPU v4 chips 502

and large models using 256 chips. For fine-tuning 503

we use only 1 or 2 TPU v4 chips respectively. 504

Fine-tuning We fine tune our pretrained models 505

on 10 tasks including BoolQ (Clark et al., 2019), 506

CoLA (Warstadt et al., 2019), MNLI (Williams 507

et al., 2018), MRPC (Dolan and Brockett, 2005), 508

MultiRC (Khashabi et al., 2018), QNLI (Rajpurkar 509

et al., 2016), QQP4, RTE (Dagan et al., 2005; Haim 510

et al., 2006; Giampiccolo et al., 2007; Bentivogli 511

et al., 2009), SST-2 (Socher et al., 2013) and STS- 512

B (Cer et al., 2017). 513

We use a batch size of 32 for fine-tuning and 514

evaluate the model performance every 1000 steps. 515

We use Adam optimizer without weight decay dur- 516

ing fine-tuning. We use a fixed learning rate tuned 517

among {1e-5, 5e-6, 3e-6, 2e-6} and warm up the 518

learning rate for 1000 steps. The maximum num- 519

ber of training steps of each dataset is presented 520

in Table 4. We set the number proportionally to 521

the size of the dataset and do not tune it in our 522

experiments. 523

4https://quoradata.quora.com/

7

https://quoradata.quora.com/


Base model Large model

Number of layers 12 24
Hidden size 768 1024
Inner hidden size – FFN 3072 4096
Inner hidden size – SwishRNN 2048 2752
Attention heads 12 16
Attention head size 64 64
Dropout 0.1 0.1
Attention dropout 0.1 0.1
Learning rate 0.0003 0.0002
Learning rate warmup steps 20,000 20,000
Learning rate decay Linear Linear
Adam β1 0.9 0.9
Adam β2 0.98 0.98
Weight decay 0.01 0.01
Batch size 1024 4096
Sequence length 512 512
Training steps 300,000 300,000

Table 3: Hyper-parameters for pre-training the base models and large models in our experiments.

BoolQ CoLA MNLI MRPC MultiRC QNLI QQP RTE SST2 STSB

50K 50K 200K 20K 50K 100K 150K 20K 80K 30K

Table 4: Maximum number of fine-tuning step used for each dataset in our experiments.

8


	Introduction
	Model
	Notation and Background
	Architecture

	Experimental Setup
	Results
	Conclusion
	Limitations
	Transformer Architecture
	Training details

