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Abstract

Large language models (LLMs) are widely ap-
plied in various natural language processing
tasks such as question answering and machine
translation. However, due to the lack of labeled
data and the difficulty of manual annotation
for biochemical properties, the performance
for molecule generation tasks is still limited,
especially for tasks involving multi-properties
constraints. In this work, we present a two-
step framework PEIT (Property Enhanced
Instruction Tuning) to improve LLMs for
molecular-related tasks. In the first step, we use
textual descriptions, SMILES, and biochem-
ical properties as multimodal inputs to pre-
train a model called PEIT-GEN, by aligning
multi-modal representations to synthesize in-
struction data. In the second step, we fine-tune
existing open-source LLMs with the synthe-
sized data, the resulting PEIT-LLM can han-
dle molecule captioning, text-based molecule
generation, molecular property prediction, and
our newly proposed multi-constraint molecule
generation tasks. Experimental results show
that our pre-trained PEIT-GEN outperforms
MolTS5, BioT5, MolCA and Text+Chem-T5 in
molecule captioning, demonstrating modalities
align well between textual descriptions, struc-
tures, and biochemical properties. Furthermore,
PEIT-LLM shows promising improvements in
multi-task molecule generation, demonstrating
the effectiveness of the PEIT framework for
various molecular tasks.

1 Introduction

Large language models (LLMs) such as GPT-
4 (OpenAl, 2023), PaLM (Chowdhery et al., 2023)
and LLaMa (Touvron et al., 2023; Dubey et al.,
2024) have revolutionized the landscape of arti-
ficial intelligence and natural language process-
ing, allowing machines to understand and gen-
erate human language with remarkable fluency
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Figure 1: (a) An example of our proposed multi-
constraint molecule generation task. (b) The response
by ChatGPT. (c) The result generated by MolT5. (d)
The response generated by the LLaMA3.1 model after
applying our proposed property-enhanced instruction
tuning, with the results validated by RDKit.
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and coherence. Based on encoded world knowl-
edge (Petroni et al., 2019) and powerful instruct-
following (Zhang et al., 2023) capabilities of
LLMs, recent work has successfully used LLM
for molecular-related tasks, achieving promising
results (Fang et al., 2023; Zhang et al., 2024a).
Despite their success, as illustrated in Figure 1
(a) and (b), LLMs still struggle with generating
molecules under strict property constraints. Even
specialized molecular translation models, such as
MolT5 (Edwards et al., 2022), fail in these tasks
(see Figure 1 (c)). While these models effectively
capture relationships between molecular text and
structure, they lack sufficient understanding of
molecular properties, limiting their ability to in-
corporate property constraints in prompts. This
shortcoming restricts their practical utility in appli-



cations like drug discovery (Zhavoronkov, 2018;
Elton et al., 2019).

The challenges in addressing such tasks mainly
lie in three aspects: (1) Existing studies have re-
vealed the limitations of LLMs in understanding
molecular representations (Grisoni, 2023), making
it difficult to handle tasks requiring precise molec-
ular property comprehension; (2) While there are
some known SMILES-property pairing data, it of-
ten remains limited to predicting a single property
and lacks datasets that cover a wide range of prop-
erties (Wu et al., 2018). Moreover, most of these
datasets do not include precisely described textual
data, making it challenging to identify accurate tri-
modal data pairs (Krenn et al., 2020); (3) To our
knowledge, there are no suitable datasets or evalu-
ation methods exist for multi-constraint molecule
generation using LLMs, which challenges the stan-
dardization and assessment of such tasks (Jin et al.,
2018; Elton et al., 2019).

To address these challenges, we propose a frame-
work called PEIT (Property Enhanced Instruction
Tuning) to generate multi-modal molecular instruc-
tion datasets in bulk, aiming to enhance the capa-
bilities of LLMs in multi-task molecule generation.
Using the PEIT framework, our pre-trained model
can handle both general tasks (e.g., molecule cap-
tioning (Edwards et al., 2022)) and property-related
tasks such as property prediction (Chang and Ye,
2024). This makes it suitable for constructing data
to evaluate multi-constraint molecule generation
capabilities and for serving as instruction tuning
data to improve existing open-source LLMs.

The overall structure of the proposed PEIT
framework is shown in the left of Figure 2. Specif-
ically, it consists of two components: (1) We pre-
train a model called PEIT-GEN through multi-
modal representation alignment, which integrates
text-based (molecular descriptions), structure-
based (SMILES), and property-based (property-
value pairs) information to generate diverse un-
structured text, sequence, and property data; (2)
By using the synthesized instruction data, we fine-
tune open-source LLMs and develop PEIT-LLM,
which can be applied to various molecule genera-
tion tasks mentioned above, including our proposed
multi-constraint molecule generation.

Experimental results demonstrate that our pre-
trained PEIT-GEN achieves competitive or bet-
ter results in molecule captioning tasks, compar-
ing to a variety of biomolecular models including
MolT5 (Edwards et al., 2022), BioT5 (Pei et al.,

2023), GIT-Mol (Liu et al., 2024), MolXPT (Liu
et al., 2023b), MolCA (Liu et al., 2023c),
and Text+Chem-T5 (Christofidellis et al., 2023).
Additionally, PEIT-LLM based on LLaMa3.1-
8B (Dubey et al., 2024) exhibits superior per-
formance compared to specialized models Mol-
Instructions (Fang et al., 2023) and general-purpose
LLMs including LLLaMa3 (Dubey et al., 2024) and
Qwen2.5 (Yang et al., 2024) in molecular property
prediction and our newly proposed multi-constraint
molecule generation tasks.

2 Related Work

Molecule Generation. Molecule generation tasks
mainly fall into two categories: (1) text-based
molecule generation that uses textual descriptions
to generate molecules that match the given descrip-
tion (Liu et al., 2023b, 2024). MolT5 (Edwards
et al., 2022) was the first proposed to realize trans-
lation between textual description and molecular
SMILES. BioT5 aims to enhance molecular under-
standing by incorporating protein modality. They
also perform molecule captioning, which is equiv-
alent to the inverse task of text-based molecule
generation. (2) property-guided molecule genera-
tion is the inverse process of molecular property
prediction, where molecules are generated based
on specific biochemical property constraints. No-
tably, SPMM (Chang and Ye, 2024) was the first
to establish a connection between 53 biochemical
properties and SMILES sequences, making multi-
constraint molecule generation possible. However,
few existing models can simultaneously perform
text-based or multi-constraint molecule generation
and molecule captioning.

Molecular Property Prediction. Deep learning
models have been developed for molecular prop-
erty prediction each with their own advantages and
limitations. Transformer-based models design at-
tention mechanism to capture contextual contexts
from large-scale SMILES sequences (Ross et al.,
2022). The molecular graph can be directly ob-
tained from SMILES sequences via RDKit (Lan-
drum et al., 2013). Graph-based models develop
diverse graph neural networks to learn differen-
tiable representations (Wang et al., 2022). However,
these methods ignore the potential that incorporat-
ing textual knowledge enables to realize new drug
design objectives (Zeng et al., 2022; Liu et al.,
2023a). Recently, a novel molecular pre-trained
model named SPMM (Chang and Ye, 2024) that
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Figure 2: Left: Overall PEIT framework. We first pre-train the PEIT-GEN and construct instruction data via
template filling. Then we fine-tune the open-source LLMs through instruction tuning, the resulting PEIT-LLM is
used for multi-task molecule generation. Right: The process of PEIT-GEN pre-training, see details in Section 3.2.

extends the application of multimodal pre-training
approaches by aligning molecular structures and
biochemical properties. This paper extends the mul-
timodal pre-training to patterns of text-sequence-
property triplets, which is defined flexibly by LLM-
understandable textual prompts.

Instruction Tuning. Constructing specialized in-
struction datasets is an effective way to enable
LLMs to better perform molecular-related tasks.
For instance, Mol-Instructions (Fang et al., 2023)
provides a large-scale biomolecular dataset tailored
for LLMs, covering a variety of instructions involv-
ing small molecules, proteins, and biomolecular
texts. ChemDFM (Zhao et al., 2025) advances
this paradigm by creating a broader dataset span-
ning molecular structures, reactions, and proper-
ties. Its two-stage training—domain pretraining fol-
lowed by instruction tuning—enhances the model’s
chemical understanding and reasoning capabilities.
More recently, GeLLM3O (Dey et al., 2025) in-
troduced MuMOiInstruct, a high-quality dataset
focused on multi-property molecule optimization,
demonstrating strong generalization across diverse
tasks. Despite these advances, generating reliable
and scalable molecular instruction data remains a
key challenge, particularly for open-source models.

3 Method

3.1 Opverview of PEIT Framework

The overview of PEIT framework is shown in Fig-
ure 2 (left), which consists of PEIT-GEN and PEIT-
LLM. In PEIT-GEN, we generate a large number
of “SMILES-text” and “SMILES-property” pairs to
serve as multi-modal data. Then we design multiple

multi-modal alignment objectives to pre-train PEIT-
GEN. In PEIT-LLM, by using the pre-trained PEIT-
GEN, we can predict a large number of triplets to
generate more diverse SMILES inputs, and then
construct diverse instruction data based on template
filling. By utilizing the synthesized instruction data,
PEIT-LLM enables the supervised fine-tuning of
open-source LLMs including LLaMa (Dubey et al.,
2024) and Qwen (Yang et al., 2024), enhancing the
capabilities for multi-task molecule generation.

3.2 Pre-training of PEIT-GEN

The pre-training stage of PEIT-GEN is shown in
the right of Figure 2. For a given molecule, differ-
ent representations offer unique and complemen-
tary features, which are crucial for comprehensive
molecule understanding. PEIT-GEN aims to in-
tegrate information from three modalities simul-
taneously, including textual information 7 (text),
molecular structure S (SMILES), and biochemi-
cal properties P (property-value). Such ability can
help synthesizing sufficient instruction data for fur-
ther enhancing the ability of LLMs. In particular,
PEIT-GEN consists of three Transformer encoders
Enc!, Enc®, Enc? and two decoders Dec?, Dec?,
and we design different training objectives to align
features from different modalities.

Cross-modal Representation Matching. Follow-
ing SPMM (Chang and Ye, 2024), we leverage pre-
trained models SciBERT (Beltagy et al., 2019) as
trainable Enc! for encoding textual data, BERT (De-
vlin et al., 2019) as Enc® and Enc? for encoding
SMILES and properties. Then we obtain feature
representations across all three modalities, estab-
lishing the foundation for feature alignment.



We propose cross-modal representation match-
ing to align the representations from different per-
spectives by the same molecule. In particular, we
introduce the SMILES-text matching loss £

‘match

and the SMILES-property matching loss £;F ..
which serve as objectives for training the encoders.
In this way, the model can effectively learn cross-
modal relationships and improve performance in
multi-modal tasks by aligning the feature spaces.
The matching loss is calculated as follows:

£st

matc!

b = LB (Ypaen, MLP (Enc®(S) & Enc'(7))), (1)

Liuch = LcE (Ympen» MLP (Enc*(S) & Enc?(P))) , (2)

where yf | and y°P . are labels as O or 1, indi-
cating whether the corresponding SMILES-text or
SMILES-property pairs are matching. Enc(+) in-
dicates the representation of the data (i.e., [CLS]
token of Transformer encoder), & is the concatena-
tion operation, and MLP(-) is the trainable multi-
layer perception. The encoders are optimized by
the cross-entropy loss ¢cg using the given data from
different modalities.

Multi-modal Contrastive Learning. The repre-
sentation matching can be viewed as an explicit 2-
way classification training. We further utilize con-
trastive learning to directly enhancing the represen-
tation by pulling semantically close neighbors to-
gether and pushing apart non-neighbors from data
of different modalities. To calculate the similarity
between the encoded features of different modali-
ties, we extract the encoded features and then com-
pute the instance-level similarities through the in-
ner product:

sim(S, 7) = (MLP*(Enc®(S))) " MLP!(Enc!(T)), (3)

sim(S, P) = (MLP*(Enc®(S)))" MLP?(Enc?(P)), (4)

where MLP*, MLP! and MLP? are multi-layer
perceptions applied to SMILES, text, and property
representations, respectively. Then, for the given
SMILES S, text T, and property P, we compute
the cross-modal batch-level similarities as follows:

o exp(sim(S,7)/7)
Ss2t = Sy exp(sim(S,T3)/7)’ )

o exp(sim(S,P)/7)
8520 = SN op(sim(S,Pr)/7) (6)

where M and N represent the total number of texts
and property in the batch of data pairs, respectively.
T is the temperature controlling the sharpness of
the similarity. The intra-modal similarities sgs2s,
Sp2p, and sy2; can be computed in similar manners.
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Figure 3: The cross-modal causal language modeling.

Based on the cross-modal and intra-modal batch-
level similarities, the contrastive loss is formulated
by calculating the cross-entropy according to one-
hot encoded similarity vectors y, where the value
is 1 for pairs derived from the same molecule or 0
for all other combinations:

1
Ezctmtrastive = §(£CE(y32t7 552t) + ECE(ytZSa 5t2$) (7

+ L (Ys2sy Ss25) + LeE(Ysat, Seat)),

Lk

contrastive

1
= §(£CE(y32p7 5321)) + KCE(yI)Qm 3;023) (8)
+ LeE(Ys2ss Ss25) + LcB(Up2ps Sp2p))-

Cross-modal Causal Language Modeling. To fur-
ther strengthen the model’s capability in molecule
captioning, we employ the causal language model-
ing (CLM) to enhance the model performance on
text generation. Specifically, we design decoders to
generate subsequent property and textual descrip-
tion sequences, under the guidance of SMILES fea-
tures through cross-attention as show in Figure 3.
By introducing the SMILES features in attention
layers for CLM training, the cross-modal CLM loss
&t v and £, are computed as follows:

Lt == X0, Sy log Prob (wf? | Dect(w):0,) , (9)

— N, % log Prob (w§i> | Dec?(w?); e,)) . (10)
where Prob is the conditional probability to pre-

dict the word wj(-i) in the vocabulary, NV is the total

number of samples, n is the index of current words
in each sample, v~v:(1:) is the sequence from begin to
the j-th word in the -th sample, 6; and 6, are the
trainable parameters in two decoders.

Training. The overall training objective for pre-
training PEIT-GEN is to minimize the sum of all

three types of losses across three modalities:

P
L CLM —

__ pst sp st sp
L= ‘Cmatch + [’match + a‘ccomrastive + a‘ccomrastive
st sp
+ BLEM + BLAM

(11)



where we follow SPMM (Chang and Ye, 2024) to
use parameters « and 3 (a:8=1:5) for balancing
loss terms.

3.3 Instruction Tuning for PEIT-LLM

Template Filling. The pre-trained PEIT-GEN
offers unstructured data in the format of “text-
SMILES-properties” (i.e., text-structure-property)
triplets, which are stored in CSV files contain-
ing text, molecular structures, and information on
53 molecular biochemical properties. To obtain
more task-specific data and to adapt to the strong
instruction-following abilities of LLMs, we de-
sign templates for different downstream tasks, as
shown in Figure 7 in Appendix A. For text-based
molecule generation as example, we fix a general
question format and then extract molecular descrip-
tions from unstructured data to fill the pre-defined
template, resulting in a natural question as instruc-
tions. The SMILES from unstructured triplets is
used as the desired response. In this way, we can
generate diverse task-specific instruction data in
bulk for subsequent instruction-tuning.

Multi-constraint Molecule Generation Task.
Molecule generation often requires to be conducted
under multiple constraints rather than a single con-
dition. In this work, we propose a new task to
assess molecule generation through a variety of
descriptors, by comparing the alignment between
the generated molecules and specific criteria to
evaluate the generative performance of LLMs. By
using the large-scale unstructured data generated
by PEIT-GEN, we can effectively synthesize suf-
ficient data for evaluation. Specifically, we follow
SPMM (Chang and Ye, 2024) iven the vast number
of molecular attributes and the complex combi-
nations thereof, analyzing their impact on results
across different molecular counts poses a signifi-
cant computational challenge due to resource limi-
tations. To address this, we selected representative
ADMET (Fu et al., 2024) properties—Balabanl],
MolLogP, ExactMolWt, QED, and TPSA—that
capture molecular topology, electronic characteris-
tics, and steric effects, while exhibiting low mutual
correlation. Based on template filling, the predicted
multi-property values are used to construct data for
multi-constraint molecule generation. We employ
instruction tuning to guide the LLM in generating
molecules, and use RDKit (Landrum et al., 2013) to
calculate the actual property values. RMSE and R?
are then used to compare these values against the
constraints, enabling a systematic evaluation of the

Model MC TBMG MPP MCMG
MolT5 4 v X X
BioT5 v v X X
MolXPT v v X X
Git-Mol 4 v X X
SPMM X X v X
MolCA 4 v X X
Text+Chem-T5 4 v X X
BioMedGPT v X X X
InstructMol-GS v X X X
MolReGPT v v X X
Mol-Instructions v v v (poor) v (poor)
LLaMa, Qwen v (limited) v (poor) v (poor) v (poor)
PEIT-LLM (Ours) / v v v

Table 1: Comparing PEIT-LLM with biomolecular
models and LLMs on molecular-related tasks. MC:
Molecule Captioning. TBMG: Text-Based Molecule
Generation. MPP: Molecular Property Prediction.
MCMG: Multi-Constraint Molecule Generation.

LLM’s performance in multi-constraint molecule
generation tasks.

Supervised Fine-tuning. We select LLaMa3.1-
8B (Dubey et al., 2024) and Qwen2.5-7B (Yang
et al., 2024) as base LLMs. We then perform stan-
dard supervised fine-tuning (SFT; Ouyang et al.,
2024) by using the “instruction-response” pairs. In
practice, we construct totally 1 million instruction
data of four different tasks (i.e., molecule caption-
ing, text-based molecule generation, property pre-
diction, and multi-constraint molecule generation)
from 200k unstructured “text-SMILES-properties”
triplets obtained by PEIT-GEN.

3.4 Comparing PEIT-LLM with Biomolecular
Models and Large Language Models

Table 1 shows a comparison of our PEIT-LLM
with existing pre-trained models and general LLMs
on multiple molecular generation tasks. For most
of the pre-trained models such as MolT5 and
BioTS5, they focus on molecule captioning and text-
based molecule generation, which can not han-
dle property-related tasks. SPMM is a special-
ized model for property prediction. However, it
lacks of generation ability due to the lack of textual
descriptions. Current LLMs such as LLaMa and
Qwen show strong performance on general NLP-
based tasks through conversations or instruction-
following. However, these general LLMs still have
limitations in tasks related to molecule generation
due to a lack of molecular knowledge. In contrast,
through fine-tuning on diverse instruction data with
rich molecular knowledge, PEIT-LLM can perform
multiple molecule generation tasks simultaneously.



Model

Data Size | BLEU-217 BLEU-41 METEOR{T ROUGE-117 ROUGE-21 ROUGE-L 1

MolT5-small (Edwards et al., 2022) 100M 0.513
MolT5-large (Edwards et al., 2022) 100M 0.594
BioT5 (Pei et al., 2023) 33M 0.635
MOolXPT (Liu et al., 2023b) 30M 0.594
MOolCAy/ Galac (Liu et al., 2023¢) 2.3M 0.616
Text+Chem-T5,ygm (Christofidellis et al., 2023) 11.5M 0.625
GIT-Mol (Liu et al., 2024)t 4.8M 0.352
PEIT-GEN (Ours) 0.48M 0.598

0.398 0.492 0.567 0412 0.501
0.508 0.613 0.654 0.508 0.592
0.556 0.656 0.692 0559 0.633
0.505 0.626 0.660 0.511 0.597
0.524 0.639 0.674 0.533 0.615
0.529 0.648 0.682 0.543 0.622
0.263 0.533 0.575 0.485 0.560
0.534 0.676 0.700 0.582 0.653

Table 2: Results on CHEBI-20 dataset for molecule captioning with different pre-trained models. {: Reported from
papers accordingly. The best results in each column are in bold, and the second-best results are underlined.

4 Experiments

4.1 Experimental Setup

Dataset. For pre-training PEIT-GEN, we extract
480k molecular SMILES from the ZINC dataset (Ir-
win et al., 2012) and generate SMILES-text pairs
using MolT5 (Edwards et al., 2022). We also com-
pute 53 biochemical properties per molecule using
RDKit, forming 480k “text-SMILES-properties”
triplets for training.

For pre-training PEIT-LLM, we utilize the 200k
tri-modal data generated by PEIT-GEN and employ
template filling to generate 200k instruction data
for each downstream task. For molecular property
prediction, we select two biochemical properties
with distinct differences for evaluation, generating
200k instruction data for each property. Finally,
we obtain a total of 1000k instruction data across
four tasks for SFT training. Similar to PEIT-GEN,
molecular property prediction tasks on PEIT-LLM
can be validated by RDKit on CHEBI-20 dataset.

To evaluate PEIT-GEN and PEIT-LLM, we fol-
low MolT5 by using CHEBI-20 (Edwards et al.,
2021) and MoleculeNet dataset (Wu et al., 2018),
with the standard splition into training, validation,
and test sets with an 8:1:1 ratio. All property values
are verified via RDKit. See details in Appendix B.
Baseline Models. We compare our model,
PEIT-GEN and PEIT-LLM, against three types
of baselines as follows: Baselines on molecule
caption such as MolT5 (Edwards et al., 2022),
BioT5 (Pei et al., 2023), MolCA (Liu et al., 2023c¢),
Text+Chem-T5 (Christofidellis et al., 2023), GIT-
Mol (Liu et al., 2024). Baselines on moleucu-
lar property prediction such as SPMM (Chang
and Ye, 2024), D-MPNN (Yang et al., 2019),
PretrainGNN (Hu et al., 2019), GROVER (Rong
et al., 2020), ChemRL-GEM (Fang et al., 2022).
Baselines of LLMs such as LLaMa3 (Tou-
vron et al., 2023), Qwen2.5 (Yang et al,
2024), GPT3.5-turbo (OpenAl, 2023) , Mol-
Instructions (Fang et al.,, 2023), InstructMol-

Model BBBP BACE

D-MPNN (Yang et al., 2019) 71.0£0.3  80.9+0.6 90.6+0.6 57.0+0.7
N-GramRF (Liu et al., 2019) 69.7£0.6  77.9+1.5 77.5+4.0 66.8+0.7
N-GramXGB (Liu et al., 2019) 69.1£0.8 79.1x1.3 87.5%£2.7 65.5+0.7
PretrainGNN (Hu et al., 2019) 68.7£1.3 84.5+0.7 72.6x1.5 62.7+0.8
GROVERge (Rongetal,2020)  69.5+0.1 81.0x1.4 76.2+3.7 654+0.1
ChemRL-GEM (Fang et al., 2022)  72.4+0.4 85.6£1.1 90.1x1.3 67.2£0.4
ChemBERTa (Ahmad et al., 2022)" 72.8 79.9 56.3 -
MolFormer (Ross et al., 2022) 73.6£0.8 86.3+0.6 91.2+1.4 65.5+0.2
SPMM (Chang and Ye, 2024)
PEIT-GEN (Ours)

Clintox ~ SIDER

74.120.6 82.9+0.3 90.7+0.5 63.6+0.5
73.6£0.7 81.6£0.5 91.2%0.7 62.7+0.9

Table 3: Results on MoleculeNet dataset for 2-way prop-
erty prediction. 7: The standard deviation and the results
on SIDER are not reported in literature.

GS (Cao et al., 2023), BioMedGPT (Zhang et al.,
2024b), ChemDFM (Zhao et al., 2025), Chat-
GLM (GLM et al., 2024), Galactica (Taylor et al.,
2022), Vicuna (Chiang et al., 2023). Details of
these baselines and evaluation metric are in Ap-
pendix C and D, respectively.

Implementation Details. We pre-train PEIT-GEN
for 20 epochs using a batch size of 16, temper-
ature 7 = 0.07, and momentum 0.995 with the
AdamW optimizer (Loshchilov, 2017). Fine-tuning
is then performed on the CHEBI-20 training set
for 200 epochs with a learning rate of 5e-4. For
supervised fine-tuning of PEIT-LLM, we use the
LLaMa-Factory (Zheng et al., 2024) framework
with LoRA (Hu et al., 2022) for 6 epochs, a batch
size of 3, and learning rate of 5e-5. The total param-
eter count of the three encoders and two decoders
is 533.8M, with an additional 2.2M parameters for
other components. Experiments are conducted on
NVIDIA 4090 GPUs with 24GB memory.

4.2 Comparing PEIT-GEN with Pre-trained
Biomolecular Models

Molecule Captioning. Results on molecule cap-
tioning using CHEBI-20 dataset are shown in
Table 2. Our model demonstrates superior per-
formance in generating high-quality and relevant
molecular caption. PEIT-GEN achieved the best
results in METEOR and ROUGE, and the second-
best performance in BLEU-4. Compared to BioT5
which performs the best in BLEU, our approach



Model #Params BLEU-21 BLEU-47 METEOR 1 ROUGE-1 1 ROUGE-2 1 ROUGE-L 1
LLaMa3 (Touvron et al., 2023) 7B 0.032 0.002 0.117 0.121 0.010 0.065
LLaMa3.1 (Dubey et al., 2024) 8B 0.042 0.004 0.121 0.140 0.019 0.095
Qwen2.5 (Yang et al., 2024) 7B 0.049 0.007 0.188 0.177 0.029 0.112
GPT-3.5-turbo (OpenAl, 2023) N/At 0.103 0.050 0.161 0.261 0.088 0.204
Mol-Instructions (Fang et al., 2023) 8B 0.217 0.143 0.254 0.337 0.196 0.291
BioMedGPT (Zhang et al., 2024b) 10B 0.234 0.141 0.308 0.386 0.206 0.332
InstructMol-GS (Cao et al., 2023) 7B 0.475 0.371 0.509 0.566 0.394 0.502
MolReGPT (Li et al., 2024) N/AT 0.565 0.482 0.585 0.623 0.450 0.543
ChemDFM (Zhao et al., 2025) 13B 0.321 0.265 0.402 0.490 0.374 0.483
PEIT-LLM-Qwen2.5 (Ours) 7B 0.422 0.314 0.468 0.535 0.361 0.477
PEIT-LLM-LLaMa3.1 (Ours) 8B 0.461 0.356 0.502 0.569 0.396 0.505
Model #Params BLEUT Validity T Levenshtein| MACCS FTS1 Morgan FTS1 RDKitFTS 1
LLaMa3 (Touvron et al., 2023) 7B 0.261 0.330 45.788 0.372 0.127 0.213
LLaMa3.1 (Dubey et al., 2024) 8B 0.270 0.368 43.183 0.411 0.138 0.248
Qwen2.5 (Yang et al., 2024) 7B 0.217 0.245 50.550 0.403 0.110 0.276
GPT-3.5-turbo (OpenAl, 2023) N/AT 0.489 0.802 52.130 0.705 0.367 0.462
Mol-Instructions (Fang et al., 2023) 8B 0.345 1.000 41.367 0.412 0.147 0.231
MolReGPT (Li et al., 2024) N/AT 0.790 0.887 24910 0.847 0.624 0.708
PEIT-LLM-Qwen2.5 (Ours) 7B 0.810 0.950 21.133 0.832 0.619 0.735
PEIT-LLM-LLaMa3.1 (Ours) 8B 0.836 0.970 18.030 0.875 0.661 0.776

Table 4: Results on CHEBI-20 dataset for molecule captioning (top) and text-based molecule generation (bottom)
tasks. t: MolReGPT is based on closed-source ChatGPT-3.5 and its parameter size remains unknown.

requires significantly less data. This indicates that
using domain-specific models to generate paired
data for pre-training is more efficient than single-
modality pre-training.

Molecular Property Prediction. We evaluate
the generalization ability of PEIT-GEN on the
MoleculeNet benchmark (Wu et al., 2018) using
four widely adopted tasks. As shown in Table 3,
PEIT-GEN outperforms specialized models such
as MolFormer (Ross et al., 2022) and ChemRL-
GEM (Fang et al., 2022) on the Clintox dataset.
Despite using less pre-training data, it remains com-
petitive on other subsets. To further demonstrate
its predictive strength across 53 molecular prop-
erties, we present a relative difference analysis in
Appendix E, highlighting PEIT-GEN’s strong gen-
eralization in property prediction.

4.3 Comparing PEIT-LLM with LLMs

Molecule Captioning. As shown in the top
of Table 4, the comparison results show that
our model outperforms general-purpose Qwen-2.5
and LLaMa3.1 as well as Mol-Instructions and
BioMedGPT, which were trained using a biochem-
ical information instruction dataset for SFT. PEIT-
LLM achieved the second-best performance on
the ROUGE metric and demonstrated competitive
results compared to InstructMol-GS, which was
trained solely on the CHEBI-20 dataset and has a
similar parameter scale as our base model.

Text-based Molecule Generation. Results on the
CHEBI-20 test set are presented at the bottom
of Table 4. PEIT-LLM outperforms all baselines

MolWt PP MolLogP PP  Five-Property CG
Model

(RMSE) | (RMSE)| (RMSE)| (R%)?1
LLaMa3 (Touvron et al., 2023) 491.542 561.523 79.125  -0.639
LLaMa3.1 (Dubey et al., 2024) 544.517 552521 74.646  -0.652
Qwen2.5 (Yang et al., 2024) 100.161 132.141 75.991 -0.967
Mol-Instructions (Fang et al., 2023) 72.172 1.313 71.991 -0.352
PEIT-LLM-Qwen2.5 (ours) 14.164 0.164 19.750  0.550

PEIT-LLM-LLaMa3.1 (ours) 13.918 0.141 14212 0.613

Table 5: Results on MolWt, MolLogP property predic-
tion (PP), and five-property constraint molecule genera-
tion (CG) with different LLMs.

on numerical metrics, including BLEU, Leven-
shtein Distance, and fingerprint similarities based
on MACCS, Morgan, and RDKit. Although Mol-
Instructions achieves the highest Validity score, the
results demonstrate that PEIT-LLM, after multi-
task instruction fine-tuning, effectively captures
key molecular structures and their corresponding
textual representations. A case study in Table 9
of Appendix F further supports these findings and
indirectly validates the quality of the instruction
data generated by PEIT-GEN.

Molecular Property Prediction. For single-
property prediction, due to the large number of
available properties, we select two representative
examples: ExactMolWt, which typically has large
numerical values (100-1000), and MolLogP, with
smaller values (-5 to 10), as shown in Table 5. The
results show that PEIT-LLM consistently outper-
forms other LLMs in predicting these biochemi-
cal properties, demonstrating strong sensitivity and
adaptability to molecular property scales. This
highlights the effectiveness of multi-task SFT in
enhancing LLMs’ understanding of molecular char-
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Figure 6: The impact of different amount of SFT steps
on generation (left) and prediction (right) tasks.

acteristics and further validates the quality and reli-
ability of our molecular property instruction dataset.
A case study is provided in Table 10 of Appendix F
for further illustration.

Multi-constraint Molecule Generation. Results
for our proposed multi-constraint molecule genera-
tion task is shown in Table 5. PEIT-LLM surpasses
baselines by large margin in both RMSE and R?
metrics. Case study is provided in Table 11 of Ap-
pendix F to further illustrate this point. Note that
this task requires the model to meet the demands
of multiple properties with precise values, placing
high demands on the model’s overall understand-
ing capability. General-purpose LLMs, or those not
specifically trained for this task, lack the required
information storage and fitting abilities. The model
gain strong molecular understanding capabilities
through property enhanced instruction tuning.

4.4 Analyses

Ablation Study. Figure 4 presents an ablation study
of the cross-modal matching loss Laech and cross-
modal contrastive 108s Lcontrastivein the PEIT-GEN

Model BLEUT METEORT ROUGE-21 ROUGE-LT

Galactica-6.7B (Taylor et al., 2022) 0.008 0.065 0.015 0.063
MOolT5-248M (Edwards et al., 2022) 0.001 0.033 0.001 0.034
Vicuna-7B (Chiang et al., 2023) 0.011 0.168 0.055 0.130
Text+Chem T5-223M (Christofidellis et al., 2023) ~ 0.036 0.139 0.075 0.119
ChatGLM-6B (GLM et al., 2024) 0.011 0.105 0.066 0.148
LLaMa3.1-8B (Dubey et al., 2024) 0.014 0.184 0.066 0.148
Qwen2.5-7B (Yang et al., 2024) 0.009 0.169 0.047 0.119
PEIT-LLM-Qwen2.5-7B (Ours) 0.051 0.208 0.121 0.178
PEIT-LLM-LLaMa3.1-8B (Ours) 0.053 0215 0.125 0.184

" Mol-Instructions-$B (Fangetal., 2023) 0143 0254 019 0291

Table 6: Out-of-distribution results on the molecule cap-
tioning task using Mol-Instructions (Fang et al., 2023)
evaluation set. Mol-Instructions denotes a fully baseline
trained with LLaMA3.1-8B using the entire training
instructions, serving as an upper bound for SFT models.

model for the molecule captioning task (£ ,; and
L\ are necessary for generation via decoders,
thus we do not consider them in ablation study).
By removing these training objectives, the perfor-
mance degradation across all metrics. This demon-
strates that both L aich and Leongrastive are helpful in
cross-modal feature alignment, thereby enhancing
the performance of molecule captioning.

Impact of SFT steps. Figure 5 and Figure 6 il-
lustrate the outcomes of PEIT-LLM across various
tasks with different SFT steps. We observe that
the performance consistently improves during the
initial epochs for all tasks, indicating that the in-
structional data is beneficial for each, where the
performance tends to plateau around epochs 5-6.
Out-of-Distribution Evaluation. To further
evaluate the molecular understanding of PEIT-
LLM on unseen data, we tested it on the Mol-
Instructions (Fang et al., 2023) test set, without
using the full instructions for pre-training and fine-
tuning PEIT-LLMs. As shown in Table 6, PEIT-
LLM outperforms all general-purpose LLMs as
well as smaller domain-specific models highlight-
ing the strong generalization ability of PEIT-LLM
across more diverse molecular instruction tasks.

5 Conclusion

We propose PEIT, a framework that enables LLMs
to perceive multi-modal features for multi-task
molecule generation. PEIT aligns molecular struc-
tures, textual descriptions, and biochemical prop-
erties through multi-modal representation learn-
ing. It leverages templates to synthesize di-
verse, task-specific instruction data for LLMs.
We also introduce a challenging multi-constraint
molecule generation task, which requires generat-
ing novel molecules that satisfy multiple property
constraints. Results show that PEIT outperforms
various biomolecular models and LLMs on caption-
ing, generation, and property prediction tasks.



Limitations

While PEIT is capable of achieving comparative or
better performance over existing studies, it still has
some limitations as follows: First, PEIT integrates
the pre-trained PEIT-GEN model as part of the
pipeline, so the performance of PEIT-GEN greatly
affect the overall performance of PEIT-LLM. Sec-
ond, PEIT-GEN uses three types of modality to con-
struct the instruction data. However, some modal-
ities data (e.g., knowledge graph and molecular
images) might be more crucial than sequences for
the molecular-related task. As a result, exploring
the different modalities might lead to a different
result. Lastly, the template utilized for instruction-
tuning in this work still relies on manual design.
Our approach is influenced by previous study that
has been shown to be effective. Nevertheless, it
would be intriguing to explore the development
of automated methods for constructing superior
instruction-tuning templates.
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We show the templates in Figure 7 for synthesizing
instruction data.

B Details of Property Prediction Tasks
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hibit the activity of the BACE1 enzyme. The Clin-
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and is used to predict whether a drug will cause
specific side effects. Specifically, we use scaffold
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C Details of Baselines

We compare our model against a variety of base-
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Tasks Templates

Input: How to describe this
molecule <SMILES>?

Output: <Description>.

Input: Can you give a molecule
SMILES and <Description>?
Output: <SMILES>

Input: Can you predict the specific
value of the molecule <SMILES>?

Molecule Captioning

<SMILES> —>» <Description>

Text-Based Molecule Generation

<Description> —» <SMILES>

lar Property Prediction
+ <SMILES>

—>» <Property Value> Output: <Property Value>

Multi-Constraints Molecule Generation Input: Can you give a Molecule SMILES
which with the value of is
<Propety Value>, the value of

is <Propety Value>, ...?

+ <Propety Value>

+ <Propety Value>
—>» <SMILES>

Output: <SMILES>

Examples of Instruction Data

Input: How to describe this molecule O=C(CSc1ncn[nH]1)Nc1c-(F)cc(F)cc1Br?
Output: the molecule is a member of the class of benzimidazoles that is 1h-
benzimidazole which is substituted by a (2r,4s)-4-{[(4-fluorophenyl)sulfanyl]-2-
oxoethyl group at position 1.

Input: Can you give a molecule SMILES and the molecule is a member of the
class of benzimidazoles that is 1h-benzimidazole which is substituted by a
(2r, 4s)-4-{[(4-fluorophenyl)sulfanyl]-2-oxoethyl group at position 1?
Output: 0=C(CSc1ncn[nH]1)Nc1c(F)cc(F)cc1Br

Input: Can you predict the specific values of the molecule
COc1cccecc1NcIne(N)nc(CSC(=S)N2CCN(c3ccece3)CC2)n1?

Output: 437.64

Input: Can you give a molecule SMILES which with the value of is 2.04,
the value of is 336.08, the value of is 3.51, the value of
is 70.02, the value of is 0.87?

Output: Cc1cc(OCC(=0)Nc2ccc(F)c(F)c2)nc(C(C)C)n1

Figure 7: Examples of template filling with unstructured data according to four different downstream tasks for
obtaining a variety of instruction data for supervised fine-tuning large language models.

MolTS5 (Edwards et al., 2022) is a framework for
pre-training models on unlabeled text and molecu-
lar data. It introduces tasks like molecule caption-
ing and generating molecules from text.

BioT5 (Pei et al., 2023) is a biology-focused pre-
trained language model trained on diverse biolog-
ical data, linking text with molecular and protein
information.

MolXPT (Liu et al., 2023b) is a pre-trained lan-
guage model for molecular science that enriches
both text and molecular SMILES representations
by replacing molecular names in the text with
SMILES notation.

GIT-Mol (Liu et al., 2024) is a multi-modal LLM
designed for molecular science, integrating graph,
image, and text data. It performs well in tasks like
molecule captioning, text-to-molecule generation,
image recognition, and property prediction.
MolCA (Liu et al., 2023c¢) is a model that com-
bines molecular graphs with textual descriptions,
excelling in molecular representation learning,
cross-modal reasoning, and tasks such as property
prediction, generation, and interaction.
Text+Chem-T5 (Christofidellis et al., 2023) is a
multimodal model based on the TS5 architecture,
specifically designed for joint chemistry-text tasks.
By integrating chemical data with natural language
text, it enhances performance in chemical text un-
derstanding, molecular property prediction, and
reaction generation tasks.

Baselines on molecular property prediction:
SPMM (Chang and Ye, 2024) is a multi-modal
molecular pre-trained model that combines molec-
ular structure information and biochemical proper-
ties by aligning two distinct features into a shared
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embedding space.

D-MPNN (Yang et al., 2019) D-MPNN is specifi-
cally designed for processing molecular graph data.
It efficiently captures atomic interactions and chem-
ical bond information through a directed message-
passing mechanism, providing strong support for
molecular property prediction.

N-GramRF (Liu et al., 2019) extracts N-Gram
features from molecular sequences and integrates
them with a Random Forest (Breiman, 2001)
model to capture local structural information of
molecules. It is suitable for molecular property pre-
diction tasks, offering strong robustness and easy
implementation.

N-GramXGB (Liu et al., 2019) also utilizes N-
Gram features but employs the XGBoost (Chen
and Guestrin, 2016) model for prediction. It effi-
ciently handles high-dimensional data and captures
nonlinear relationships, often outperforming Ran-
dom Forest in predictive performance.
PretrainGNN (Hu et al., 2019) performs pre-
training on molecular graph-structured data
through self-supervised learning tasks, thereby
learning universal representations of nodes and
edges within the graph. This significantly enhances
the model’s performance in molecular property pre-
diction tasks.

GROVER (Rong et al., 2020) leverages multiple
self-supervised learning tasks to learn universal
representations of atoms and bonds in molecular
structures, significantly enhancing performance in
downstream tasks such as molecular property pre-
diction and drug discovery.

ChemRL-GEM (Fang et al., 2022) employs Graph
Neural Networks (GNNs) to learn the embedding



representations of molecular graphs and utilizes
reinforcement learning to optimize these represen-
tations, thereby better accomplishing tasks such as
molecular property prediction and molecular gen-
eration.

ChemBERTa (Ahmad et al., 2022) is pre-trained
on a large-scale chemical literature and biomedical
corpora, learning linguistic features specific to the
chemistry and biomedical domains. This enables it
to excel in tasks such as molecular property predic-
tion, drug discovery, and biomedical text mining.
MolFormer (Ross et al., 2022) captures global
atomic interactions within molecules using self-
attention and learns universal molecular represen-
tations through pretraining on large-scale datasets,
demonstrating strong performance in property pre-
diction and molecular generation tasks.

Baselines of LLMs:

LLaMa3 (Touvron et al., 2023) is an open-source
LLM, suitable for various NLP tasks such as sum-
marization, question answering, and translation.
LLaMa3.1 (Dubey et al., 2024) is a series of up-
dated open-source LLM based on LLaMa3, featur-
ing a stronger parameter scale and higher perfor-
mance.

Qwen2.5 (Yang et al., 2024) is an open-source
large model that has been pre-trained on a dataset
containing 18 trillion tokens. It has achieved sig-
nificant improvements in overall capabilities and
excels in a wide range of NLP tasks.

GPT-3.5 Turbo (OpenAl, 2023) is an advanced
large language model developed by OpenAl, opti-
mized for efficient inference and versatile natural
language understanding and generation tasks. Built
upon the transformer architecture, GPT-3.5 Turbo
demonstrates strong performance across a wide
range of NLP benchmarks, including text comple-
tion, summarization, translation, and dialogue sys-
tems. Its design balances high accuracy with re-
duced computational cost, making it suitable for
scalable real-world applications.
Mol-Instructions (Fang et al., 2023) is a natural
language instruction dataset for biomolecules, de-
signed to enhance the capabilities of large-scale pre-
trained models in the biomolecular domain. This
dataset combines biomolecules (such as proteins,
DNA, RNA, etc.) with natural language instruc-
tions, supporting tasks such as molecule generation,
molecule modification, and reaction prediction. We
use the LLaMa3.1-8B model after SFT on this in-
struction dataset.

BioMedGPT (Zhang et al., 2024b) is a multimodal
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pre-trained model for the biomedical field, leverag-
ing self-supervised learning and cross-modal align-
ment to learn universal representations from large-
scale data, excelling in text understanding, medical
image analysis, and molecular property prediction.
InstructMol-GS (Cao et al., 2023) is an
instruction-tuned molecular generation model that
maps natural language to molecular structures, en-
abling targeted molecule design and demonstrating
strong generative capabilities in drug discovery and
materials science.

MolReGPT (Li et al., 2024) is a molecule-text
translation framework based on LLMs. It utilizes a
molecular similarity retrieval mechanism to select
examples, enabling efficient molecule generation
and understanding without fine-tuning.
ChemDFM (Zhao et al., 2025) is a large lan-
guage foundation model for the field of chemistry.
Trained on 34 billion tokens from chemical litera-
ture and 2.7 million instructions, it demonstrates
strong capabilities in understanding and reasoning
about chemical knowledge. It supports tasks such
as molecule recognition, design, property predic-
tion, and reaction analysis, outperforming many
open-source large language models.

ChatGLM (GLM et al., 2024) is an open-source
bilingual large language model optimized for Chi-
nese and English. It supports instruction tuning
and multi-round dialogue, making it adaptable to
domain-specific tasks such as molecular captioning
and property prediction with appropriate prompt-
ing.

Galactica (Taylor et al., 2022) is a large language
model pretrained on scientific texts, including pa-
pers, molecules, and protein sequences. Designed
to assist scientific reasoning and knowledge re-
trieval, it supports molecule-related tasks to a lim-
ited extent through its exposure to structured scien-
tific data during pretraining.

Vicuna (Chiang et al., 2023) is an open-source
language model fine-tuned from LLaMA using
user-shared conversations. It focuses on improving
instruction-following and dialogue capabilities, and
can be adapted to domain-specific tasks through
fine-tuning, despite lacking scientific domain pre-
training.

D Evaluation Metrics

We evaluated the quality of generated text using
BLEU (Papineni et al., 2002), METEOR (Baner-
jee and Lavie, 2005), and ROUGE scores. These



Model Modality DataSize| R?>1 RMSE |
SPMM (Chang and Ye, 2024) S, P 1.5M 0921  0.194
PEIT-GEN (Ours) S, P, T 480K 0910  0.169

Table 7: Comparing performance of our PEIT-GEN to
SPMM on molecular property prediction.
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Figure 8: The relative difference represent the variation
between the PEIT-GEN predicted values and the actual
values for 53 distinct molecular properties.

metrics evaluate the similarity between generated
texts and reference descriptions, effectively quan-
tifying the accuracy and diversity of the generated
descriptions. For the text-based molecule gener-
ation task, we further use molecular fingerprints
(FTS) (Cereto-Massagué et al., 2015) and valid-
ity measures to assess molecular similarity and
validity, including Validity, Levenshtein (Leven-
shtein, 1966), MACCS FTS, Morgan FTS, and RD-
Kit FTS (Landrum et al., 2013). For the task of
molecular property prediction, we chose to use the
commonly used RMSE to measure the difference
between the predicted values and the molecular
property values calculated by RDKit for compari-
son, for the experiments on MoleculeNet, we use
AUC-ROC to evaluate the accuracy for property
prediction tasks. In the case of multi-constraint
molecule generation, in addition to RMSE, we also
employed R? to assess the accuracy of the gener-
ated molecules.

E Molecular Property Prediction

Following SPMM (Chang and Ye, 2024), we fur-
ther compare PEIT-GEN with SPMM on external
dataset. The comparison result on molecular prop-
erty prediction is shown in Table 7. Specifically, we
randomly sample 1,000 molecules from the ZINC
dataset which are not included in the training set.
Compared to SPMM that is specifically designed
for property prediction, PEIT-GEN achieves com-
parable performance while using only one-third of
the data size across three modalities. We found
that PEIT-GEN outperformed SPMM in terms of
RMSE, while SPMM was slightly ahead by 0.11%
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on R? metric. These results demonstrate that PEIT-
GEN can generate high-quality biochemical prop-
erties of molecules, highlighting the critical role of
high-quality multi-modal data in advancing molec-
ular understanding tasks. To further illustrate the
predictive performance of PEIT-GEN on the 53
molecular properties, we calculated the relative dif-
ference of these properties, as shown in Figure 8.

F Case Study

As for qualitative analysis, we show some case
study for different tasks, directly comparing the
response by LLaMa3.1 and our PEIT-LLM.

Table 8 shows the examples for molecule cap-
tioning. From the responses, we can see that
the captions generated by our model are closer
to the ground truth captions, whereas the original
model often provides vague answers. This demon-
strates that our model has a better understanding of
molecules and can generate high-quality responses
to complete molecular annotation tasks.

Table 9 shows the examples for text-based
molecule generation. We can see that, compared
with LLaMa3.1, the molecules generated by our
model are more structurally reasonable and similar
to the ground truth.

Table 10 shows the examples for molecular prop-
erty prediction. LLaMa3.1 performs poorly in pre-
dicting specific molecular property and lacks the
ability to accurately predict molecular property val-
ues. However, after instruction fine-tuning, our
PEIT-LLM demonstrates excellent performance in
predicting molecular property values, providing a
strong foundation for its outstanding performance
in multi-constraint molecule generation tasks.

Table 11 shows the examples for challenging
multi-constraint molecule generation task. It can be
observed that our model generated molecule with
close properties according to multiple constraints.
This indicates that the multi-task instruction data
generated by our pre-trained model can enhance
the capabilities of LLMs for such challenging task.



Input for Molecule Captioning

LLaMa3.1 Output

1. How to describe this molecule
CCceece1ocic=cc(o)ce=c
CC=CCCCC(=0)[0-1?

This is a complex or-
ganic molecule contain-
ing a cyclic ether, an
alkene, an alcohol, a ke-
tone, and an enolate an-
ion.

jor species at pH 7.3.

Our PEIT-LLM Output Ground Truth
The molecule is a prostaglandin  The molecule is an
carboxylic acid anion that is the epoxy(hydroxy)icosatrienoate that

conjugate base of prostaglandin
F2alpha, obtained by deprotona-
tion of the carboxy group; ma-
It is a
conjugate base of a prostaglandin
F2alpha.

is the conjugate base of 11 hydroxy-
(14R,15S)-epoxy-(5Z,8Z,12E)-

icosatrienoic  acid, obtained by
deprotonation of the carboxy group;
major species at pH 7.3. It is a conju-
gate base of an 11 hydroxy-(14R,15S)
-epoxy-(5Z,8Z,12E)-icosatrienoic acid.

2. How to describe this molecule
[Tel?

The molecule [Te] repre-
sents a tellurium atom in
its elemental form.

The molecule is the stable iso-
tope of tellurium with relative
atomic mass 127.904, 7.00 atom
percent natural abundance and
nuclear spin 1/2.

The molecule is the stable isotope of
tellurium with relative atomic mass
124.904425, 71.4 atom percent natural
abundance and nuclear spin 1/2.

3. How to describe this molecule
CN(N=0)C(N)=0?

This molecule is a ni-
trosoguanidine, charac-
terized by a central car-
bon atom double-bonded
to nitrogen and oxygen,
with an additional nitro-
gen atom attached to the
carbon.

The molecule is a nitrosamine
that is urea in which one of the ni-
trogens is substituted by methyl
and nitroso groups. It has a role
as a carcinogenic agent, a muta-
gen, a teratogenic agent and an
alkylating agent.

The molecule is a member of the class
of N-nitrosoureas that is urea in which
one of the nitrogens is substituted by
methyl and nitroso groups. It has a
role as a carcinogenic agent, a mutagen,
a teratogenic agent and an alkylating
agent.

Table 8: Examples of responses by LLaMa3.1 and our PEIT-LLM on molecule captioning.

Input for Text-based Molecule Generation

LLaMa3.1 Output

Our PEIT-LLM Output

Ground Truth

1. Can you give a molecule SMILES and the
molecule is an amino dicarboxylic acid that is
adipic acid in which one of the hydrogens at
position 3 is replaced by an amino group. It is
a beta-aminoacid an amino dicarboxylic acid
and a gamma-amino acid. It derives from an
adipic acid?

Cn1c(=0)c2c(nc(NCC3CCCO3)n2C
C(=0)c2ccccc2)n(C)c1=0

NC (CCCC(=0)0)C(=0)0

C(CC(=0)0)C(CC(=0)0)N

)‘\/\(\“/OH

NH.

2. Can you give a molecule SMILES and the
molecule is a methyl ketone that is decane in
which the methylene hydrogens at position 2
are replaced by an oxo group. It has a role as
a plant metabolite. It derives from a hydride

of a decane?

CN(C)C1=CC=C2[NH11C=3C(C([NH3
+11)=0)=CC(=0)C(=0)C=30C2=C1

Ccceecec(=0)cce

Q

)l\/\/\/\/

Ccceeeecc(=0)c

o

A~

3. Can you give a molecule SMILES and the
molecule is a member of the class of Nnitro-
soureas that is urea in which one of the nitro-
gens is substituted by methyl and nitroso
groups. It has a role as a carcinogenic agent, a
mutagen, a teratogenic agent and an alkylating
agent?

€1=CC(=0)0C2=CC(=C(C=C21)0
[CeH]3[CeeH] ([CeH] ([CeeH]
([C@H](03)C0)0)0)0)0

CCOP (=S) (OCC)OCT=NN(C=N1)

C2=CC=CC=C2

(
Y
Ay

CCOP (=S) (0CC)OCCT=CC (=0)
N(C2=CC=CC=C2)N1

N0

Table 9: Examples of responses by LLaMa3.1 and our PEIT-LLM for text-based molecule generation.

Input LLaMa3.1 Output Our PEIT-LLM Output Ground Truth
i i ?

1. Can you predict the specific MolLogP values of the molecule? 23.42 2.65 2.66

CC1CC(C)CN(S(=0) (=0)c2ccc(C(=0)Nc3nnc(C4CC4)03)cc2)C1

2. Can you predict the specific ExactMolWt values of the molecule?

COcTcecc(NC(=0)Cn2cen(-c3ccc(F)c(F)c3)c(=0)c2=0)cciCl 1377 404.94 404.25
; i ?

3. Can you predict the specific MolLogP values of the molecule? 18.98 2.53 252

Cclcc2c(cc1)C(=0)NC(C)C2

Table 10: Examples of responses by LLaMa3.1 and our PEIT-LLM for molecular property prediction.
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Input for Multi-Constraint Molecule
Generation

LLaMa3.1 Output (Verified Values by
RDKit)

Our PEIT-LLM Output (Verified Values by
RDKit)

1. Can you give a molecule SMILES
which with the value of Balaban] is 1.68,
the value of ExactMolWt is 492.20, the
value of , the value of
TPSA is 138.76, the value of QED is
0.33?

NN=c1sc2ccccc2nl-clcceccl (Bala-
banJ is 2.42, ExactMolWt is 241.06,
, TPSA is 43.30, QED is

CCOc1cc(C=NNC(=0)c2ccncc2)ccc10S(=0)
(=0)c1ccc(NC(C)=0)cc1 (BalabanJ is 1.74,
ExactMolWt is 482.12, , TPSA

0.51) is 136.04, OED is 0.27)

2. Can you give a molecule SMILES
which with the value of Balaban] is 1.33,
the value of ExactMolWt is 467.20, the
value of , the value of
TPSA is 92.42, the value of QED is 0.52?

0=C(CNTCCN(c2ccc(Cl)cc2)CCT1)Nc1cec(FFC(COC(=0)cTccc(S(=0) (=0)N2CCCc3ccc
cc1F (BalabanJ is 1.49, ExactMolWt is cc32)cc1)Nclccc(F)ccl (BalabanJ is 1.39,
365.11, , TPSA is 35.58, ExactMolWt is 468.11, , TPSA
QED is 0.90) is 92.78, OED is 0.55)

3. Can you give a molecule SMILES
which with the value of BalabanJ is 1.98,
the value of ExactMolWt is 303.13, the
value of , the value of
TPSA is 64.11, the value of QED is 0.92?

0=C(NCclcccc(F)c1)Nc1nnc(C2CC(0)C(C@rTcccc(NS(=0) (=0)c2ccc3oc(C)c(C)c3c
02)s1 (BalabanJ is 1.51, ExactMolWt is  2)n1 (BalabanJ is 2.11, ExactMolWt is 306.10,
368.09, , TPSA is 116.60, , TPSA is 67.43, OED is 0.90)
QED is 0.62)

Table 11: Examples of responses by LLLaMa3.1 and our PEIT-LLM for multi-constraint molecule generation, and
the verified property values of the output molecule are shown in the brackets.
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