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Abstract

Large language models (LLMs) are widely ap-001
plied in various natural language processing002
tasks such as question answering and machine003
translation. However, due to the lack of labeled004
data and the difficulty of manual annotation005
for biochemical properties, the performance006
for molecule generation tasks is still limited,007
especially for tasks involving multi-properties008
constraints. In this work, we present a two-009
step framework PEIT (Property Enhanced010
Instruction Tuning) to improve LLMs for011
molecular-related tasks. In the first step, we use012
textual descriptions, SMILES, and biochem-013
ical properties as multimodal inputs to pre-014
train a model called PEIT-GEN, by aligning015
multi-modal representations to synthesize in-016
struction data. In the second step, we fine-tune017
existing open-source LLMs with the synthe-018
sized data, the resulting PEIT-LLM can han-019
dle molecule captioning, text-based molecule020
generation, molecular property prediction, and021
our newly proposed multi-constraint molecule022
generation tasks. Experimental results show023
that our pre-trained PEIT-GEN outperforms024
MolT5, BioT5, MolCA and Text+Chem-T5 in025
molecule captioning, demonstrating modalities026
align well between textual descriptions, struc-027
tures, and biochemical properties. Furthermore,028
PEIT-LLM shows promising improvements in029
multi-task molecule generation, demonstrating030
the effectiveness of the PEIT framework for031
various molecular tasks.032

1 Introduction033

Large language models (LLMs) such as GPT-034

4 (OpenAI, 2023), PaLM (Chowdhery et al., 2023)035

and LLaMa (Touvron et al., 2023; Dubey et al.,036

2024) have revolutionized the landscape of arti-037

ficial intelligence and natural language process-038

ing, allowing machines to understand and gen-039

erate human language with remarkable fluency040

BalabanJ = 1.983
ExactMolWt = 437.1

MolT5              CC1(C(=O)C(O)C(=O)OC2OC(CC(O)CO)C(O)-C2O)C
C(O)C(C(=O)O)[CH]O1(                         )

        Can you give a Molecule SMILES which with the value
 of BalabanJ is 1.72, the value of ExactMolWt is 274?

（a）Multi-constraint Molecule Generation

（b）Response by ChatGPT

CC(=O)N1CCC2(CC1)NC(=O)N(c1ccccc1)N2(                     )

（d）Response by Our PEIT-LLM and Results by RDkit

BalabanJ = 1.727
ExactMolWt = 274.1

（c）Content Generated by MolT5

        I don't have the ability to generate specific SMILES     
 strings for molecules with precise properties like a Bala
 -banJ index of 1.72 and an exact molecular weight of 274. 
 The properties are typically characteristics of specific che- 
 mical structures and may require computational tools or 
 databases to find a molecule that matches these criteria

Figure 1: (a) An example of our proposed multi-
constraint molecule generation task. (b) The response
by ChatGPT. (c) The result generated by MolT5. (d)
The response generated by the LLaMA3.1 model after
applying our proposed property-enhanced instruction
tuning, with the results validated by RDKit.

and coherence. Based on encoded world knowl- 041

edge (Petroni et al., 2019) and powerful instruct- 042

following (Zhang et al., 2023) capabilities of 043

LLMs, recent work has successfully used LLM 044

for molecular-related tasks, achieving promising 045

results (Fang et al., 2023; Zhang et al., 2024a). 046

Despite their success, as illustrated in Figure 1 047

(a) and (b), LLMs still struggle with generating 048

molecules under strict property constraints. Even 049

specialized molecular translation models, such as 050

MolT5 (Edwards et al., 2022), fail in these tasks 051

(see Figure 1 (c)). While these models effectively 052

capture relationships between molecular text and 053

structure, they lack sufficient understanding of 054

molecular properties, limiting their ability to in- 055

corporate property constraints in prompts. This 056

shortcoming restricts their practical utility in appli- 057
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cations like drug discovery (Zhavoronkov, 2018;058

Elton et al., 2019).059

The challenges in addressing such tasks mainly060

lie in three aspects: (1) Existing studies have re-061

vealed the limitations of LLMs in understanding062

molecular representations (Grisoni, 2023), making063

it difficult to handle tasks requiring precise molec-064

ular property comprehension; (2) While there are065

some known SMILES-property pairing data, it of-066

ten remains limited to predicting a single property067

and lacks datasets that cover a wide range of prop-068

erties (Wu et al., 2018). Moreover, most of these069

datasets do not include precisely described textual070

data, making it challenging to identify accurate tri-071

modal data pairs (Krenn et al., 2020); (3) To our072

knowledge, there are no suitable datasets or evalu-073

ation methods exist for multi-constraint molecule074

generation using LLMs, which challenges the stan-075

dardization and assessment of such tasks (Jin et al.,076

2018; Elton et al., 2019).077

To address these challenges, we propose a frame-078

work called PEIT (Property Enhanced Instruction079

Tuning) to generate multi-modal molecular instruc-080

tion datasets in bulk, aiming to enhance the capa-081

bilities of LLMs in multi-task molecule generation.082

Using the PEIT framework, our pre-trained model083

can handle both general tasks (e.g., molecule cap-084

tioning (Edwards et al., 2022)) and property-related085

tasks such as property prediction (Chang and Ye,086

2024). This makes it suitable for constructing data087

to evaluate multi-constraint molecule generation088

capabilities and for serving as instruction tuning089

data to improve existing open-source LLMs.090

The overall structure of the proposed PEIT091

framework is shown in the left of Figure 2. Specif-092

ically, it consists of two components: (1) We pre-093

train a model called PEIT-GEN through multi-094

modal representation alignment, which integrates095

text-based (molecular descriptions), structure-096

based (SMILES), and property-based (property-097

value pairs) information to generate diverse un-098

structured text, sequence, and property data; (2)099

By using the synthesized instruction data, we fine-100

tune open-source LLMs and develop PEIT-LLM,101

which can be applied to various molecule genera-102

tion tasks mentioned above, including our proposed103

multi-constraint molecule generation.104

Experimental results demonstrate that our pre-105

trained PEIT-GEN achieves competitive or bet-106

ter results in molecule captioning tasks, compar-107

ing to a variety of biomolecular models including108

MolT5 (Edwards et al., 2022), BioT5 (Pei et al.,109

2023), GIT-Mol (Liu et al., 2024), MolXPT (Liu 110

et al., 2023b), MolCA (Liu et al., 2023c), 111

and Text+Chem-T5 (Christofidellis et al., 2023). 112

Additionally, PEIT-LLM based on LLaMa3.1- 113

8B (Dubey et al., 2024) exhibits superior per- 114

formance compared to specialized models Mol- 115

Instructions (Fang et al., 2023) and general-purpose 116

LLMs including LLaMa3 (Dubey et al., 2024) and 117

Qwen2.5 (Yang et al., 2024) in molecular property 118

prediction and our newly proposed multi-constraint 119

molecule generation tasks. 120

2 Related Work 121

Molecule Generation. Molecule generation tasks 122

mainly fall into two categories: (1) text-based 123

molecule generation that uses textual descriptions 124

to generate molecules that match the given descrip- 125

tion (Liu et al., 2023b, 2024). MolT5 (Edwards 126

et al., 2022) was the first proposed to realize trans- 127

lation between textual description and molecular 128

SMILES. BioT5 aims to enhance molecular under- 129

standing by incorporating protein modality. They 130

also perform molecule captioning, which is equiv- 131

alent to the inverse task of text-based molecule 132

generation. (2) property-guided molecule genera- 133

tion is the inverse process of molecular property 134

prediction, where molecules are generated based 135

on specific biochemical property constraints. No- 136

tably, SPMM (Chang and Ye, 2024) was the first 137

to establish a connection between 53 biochemical 138

properties and SMILES sequences, making multi- 139

constraint molecule generation possible. However, 140

few existing models can simultaneously perform 141

text-based or multi-constraint molecule generation 142

and molecule captioning. 143

Molecular Property Prediction. Deep learning 144

models have been developed for molecular prop- 145

erty prediction each with their own advantages and 146

limitations. Transformer-based models design at- 147

tention mechanism to capture contextual contexts 148

from large-scale SMILES sequences (Ross et al., 149

2022). The molecular graph can be directly ob- 150

tained from SMILES sequences via RDKit (Lan- 151

drum et al., 2013). Graph-based models develop 152

diverse graph neural networks to learn differen- 153

tiable representations (Wang et al., 2022). However, 154

these methods ignore the potential that incorporat- 155

ing textual knowledge enables to realize new drug 156

design objectives (Zeng et al., 2022; Liu et al., 157

2023a). Recently, a novel molecular pre-trained 158

model named SPMM (Chang and Ye, 2024) that 159

2



SMILES PEIT-GEN
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Structure-Properties” 

PEIT-LLM
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MolT5/RDKit Alignment

SMILES Synthesized
Instruction Data
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Multi-task Inputs (Molecule Captioning, Property
Prediction, Multi-Constraint Generation)

PEIT-LLM

Overall Framework PEIT-GEN

Figure 2: Left: Overall PEIT framework. We first pre-train the PEIT-GEN and construct instruction data via
template filling. Then we fine-tune the open-source LLMs through instruction tuning, the resulting PEIT-LLM is
used for multi-task molecule generation. Right: The process of PEIT-GEN pre-training, see details in Section 3.2.

extends the application of multimodal pre-training160

approaches by aligning molecular structures and161

biochemical properties. This paper extends the mul-162

timodal pre-training to patterns of text-sequence-163

property triplets, which is defined flexibly by LLM-164

understandable textual prompts.165

Instruction Tuning. Constructing specialized in-166

struction datasets is an effective way to enable167

LLMs to better perform molecular-related tasks.168

For instance, Mol-Instructions (Fang et al., 2023)169

provides a large-scale biomolecular dataset tailored170

for LLMs, covering a variety of instructions involv-171

ing small molecules, proteins, and biomolecular172

texts. ChemDFM (Zhao et al., 2025) advances173

this paradigm by creating a broader dataset span-174

ning molecular structures, reactions, and proper-175

ties. Its two-stage training—domain pretraining fol-176

lowed by instruction tuning—enhances the model’s177

chemical understanding and reasoning capabilities.178

More recently, GeLLM3O (Dey et al., 2025) in-179

troduced MuMOInstruct, a high-quality dataset180

focused on multi-property molecule optimization,181

demonstrating strong generalization across diverse182

tasks. Despite these advances, generating reliable183

and scalable molecular instruction data remains a184

key challenge, particularly for open-source models.185

3 Method186

3.1 Overview of PEIT Framework187

The overview of PEIT framework is shown in Fig-188

ure 2 (left), which consists of PEIT-GEN and PEIT-189

LLM. In PEIT-GEN, we generate a large number190

of “SMILES-text” and “SMILES-property” pairs to191

serve as multi-modal data. Then we design multiple192

multi-modal alignment objectives to pre-train PEIT- 193

GEN. In PEIT-LLM, by using the pre-trained PEIT- 194

GEN, we can predict a large number of triplets to 195

generate more diverse SMILES inputs, and then 196

construct diverse instruction data based on template 197

filling. By utilizing the synthesized instruction data, 198

PEIT-LLM enables the supervised fine-tuning of 199

open-source LLMs including LLaMa (Dubey et al., 200

2024) and Qwen (Yang et al., 2024), enhancing the 201

capabilities for multi-task molecule generation. 202

3.2 Pre-training of PEIT-GEN 203

The pre-training stage of PEIT-GEN is shown in 204

the right of Figure 2. For a given molecule, differ- 205

ent representations offer unique and complemen- 206

tary features, which are crucial for comprehensive 207

molecule understanding. PEIT-GEN aims to in- 208

tegrate information from three modalities simul- 209

taneously, including textual information T (text), 210

molecular structure S (SMILES), and biochemi- 211

cal properties P (property-value). Such ability can 212

help synthesizing sufficient instruction data for fur- 213

ther enhancing the ability of LLMs. In particular, 214

PEIT-GEN consists of three Transformer encoders 215

Enct, Encs, Encp and two decoders Dect, Decp, 216

and we design different training objectives to align 217

features from different modalities. 218

Cross-modal Representation Matching. Follow- 219

ing SPMM (Chang and Ye, 2024), we leverage pre- 220

trained models SciBERT (Beltagy et al., 2019) as 221

trainable Enct for encoding textual data, BERT (De- 222

vlin et al., 2019) as Encs and Encp for encoding 223

SMILES and properties. Then we obtain feature 224

representations across all three modalities, estab- 225

lishing the foundation for feature alignment. 226
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We propose cross-modal representation match-227

ing to align the representations from different per-228

spectives by the same molecule. In particular, we229

introduce the SMILES-text matching loss Lst
match230

and the SMILES-property matching loss Lsp
match,231

which serve as objectives for training the encoders.232

In this way, the model can effectively learn cross-233

modal relationships and improve performance in234

multi-modal tasks by aligning the feature spaces.235

The matching loss is calculated as follows:236

Lst
match = ℓCE

(
ystmatch,MLP(Encs(S)⊕ Enct(T ))

)
, (1)237

238
Lsp

match = ℓCE
(
yspmatch,MLP(Encs(S)⊕ Encp(P))

)
, (2)239

where ystmatch and yspmatch are labels as 0 or 1, indi-240

cating whether the corresponding SMILES-text or241

SMILES-property pairs are matching. Enc(·) in-242

dicates the representation of the data (i.e., [CLS]243

token of Transformer encoder), ⊕ is the concatena-244

tion operation, and MLP(·) is the trainable multi-245

layer perception. The encoders are optimized by246

the cross-entropy loss ℓCE using the given data from247

different modalities.248

Multi-modal Contrastive Learning. The repre-249

sentation matching can be viewed as an explicit 2-250

way classification training. We further utilize con-251

trastive learning to directly enhancing the represen-252

tation by pulling semantically close neighbors to-253

gether and pushing apart non-neighbors from data254

of different modalities. To calculate the similarity255

between the encoded features of different modali-256

ties, we extract the encoded features and then com-257

pute the instance-level similarities through the in-258

ner product:259

sim(S, T ) = (MLPs(Encs(S)))TMLPt(Enct(T )), (3)260
261

sim(S,P) = (MLPs(Encs(S)))TMLPp(Encp(P)), (4)262

where MLPs, MLPt and MLPp are multi-layer263

perceptions applied to SMILES, text, and property264

representations, respectively. Then, for the given265

SMILES S, text T , and property P , we compute266

the cross-modal batch-level similarities as follows:267

ss2t =
exp(sim(S,T )/τ)∑M
i=1 exp(sim(S,Ti)/τ)

, (5)268

269
ss2p =

exp(sim(S,P)/τ)∑N
i=1 exp(sim(S,Pi)/τ)

, (6)270

where M and N represent the total number of texts271

and property in the batch of data pairs, respectively.272

τ is the temperature controlling the sharpness of273

the similarity. The intra-modal similarities ss2s,274

sp2p, and st2t can be computed in similar manners.275
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Figure 3: The cross-modal causal language modeling.

Based on the cross-modal and intra-modal batch- 276

level similarities, the contrastive loss is formulated 277

by calculating the cross-entropy according to one- 278

hot encoded similarity vectors y, where the value 279

is 1 for pairs derived from the same molecule or 0 280

for all other combinations: 281

Lst
contrastive =

1

2
(ℓCE(ys2t, ss2t) + ℓCE(yt2s, st2s)

+ ℓCE(ys2s, ss2s) + ℓCE(yt2t, st2t)),
(7) 282

283

Lsp
contrastive =

1

2
(ℓCE(ys2p, ss2p) + ℓCE(yp2s, sp2s)

+ ℓCE(ys2s, ss2s) + ℓCE(yp2p, sp2p)).
(8) 284

Cross-modal Causal Language Modeling. To fur- 285

ther strengthen the model’s capability in molecule 286

captioning, we employ the causal language model- 287

ing (CLM) to enhance the model performance on 288

text generation. Specifically, we design decoders to 289

generate subsequent property and textual descrip- 290

tion sequences, under the guidance of SMILES fea- 291

tures through cross-attention as show in Figure 3. 292

By introducing the SMILES features in attention 293

layers for CLM training, the cross-modal CLM loss 294

Lst
CLM and Lsp

CLM are computed as follows: 295

Lst
CLM = −

∑N
i=1

∑n
j=1 log Prob

(
w

(i)
j | Dect(w̃

(i)
:j ); θt

)
, (9) 296

297
Lsp

CLM = −
∑N

i=1

∑n
j=1 log Prob

(
w

(i)
j | Decp(w̃

(i)
:j ); θp

)
, (10) 298

where Prob is the conditional probability to pre- 299

dict the word w
(i)
j in the vocabulary, N is the total 300

number of samples, n is the index of current words 301

in each sample, w̃(i)
:j is the sequence from begin to 302

the j-th word in the i-th sample, θt and θp are the 303

trainable parameters in two decoders. 304

Training. The overall training objective for pre- 305

training PEIT-GEN is to minimize the sum of all 306

three types of losses across three modalities: 307

L = Lst
match + Lsp

match + αLst
contrastive + αLsp

contrastive

+ βLst
CLM + βLsp

CLM,
(11) 308
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where we follow SPMM (Chang and Ye, 2024) to309

use parameters α and β (α:β=1:5) for balancing310

loss terms.311

3.3 Instruction Tuning for PEIT-LLM312

Template Filling. The pre-trained PEIT-GEN313

offers unstructured data in the format of “text-314

SMILES-properties” (i.e., text-structure-property)315

triplets, which are stored in CSV files contain-316

ing text, molecular structures, and information on317

53 molecular biochemical properties. To obtain318

more task-specific data and to adapt to the strong319

instruction-following abilities of LLMs, we de-320

sign templates for different downstream tasks, as321

shown in Figure 7 in Appendix A. For text-based322

molecule generation as example, we fix a general323

question format and then extract molecular descrip-324

tions from unstructured data to fill the pre-defined325

template, resulting in a natural question as instruc-326

tions. The SMILES from unstructured triplets is327

used as the desired response. In this way, we can328

generate diverse task-specific instruction data in329

bulk for subsequent instruction-tuning.330

Multi-constraint Molecule Generation Task.331

Molecule generation often requires to be conducted332

under multiple constraints rather than a single con-333

dition. In this work, we propose a new task to334

assess molecule generation through a variety of335

descriptors, by comparing the alignment between336

the generated molecules and specific criteria to337

evaluate the generative performance of LLMs. By338

using the large-scale unstructured data generated339

by PEIT-GEN, we can effectively synthesize suf-340

ficient data for evaluation. Specifically, we follow341

SPMM (Chang and Ye, 2024) iven the vast number342

of molecular attributes and the complex combi-343

nations thereof, analyzing their impact on results344

across different molecular counts poses a signifi-345

cant computational challenge due to resource limi-346

tations. To address this, we selected representative347

ADMET (Fu et al., 2024) properties—BalabanJ,348

MolLogP, ExactMolWt, QED, and TPSA—that349

capture molecular topology, electronic characteris-350

tics, and steric effects, while exhibiting low mutual351

correlation. Based on template filling, the predicted352

multi-property values are used to construct data for353

multi-constraint molecule generation. We employ354

instruction tuning to guide the LLM in generating355

molecules, and use RDKit (Landrum et al., 2013) to356

calculate the actual property values. RMSE and R2357

are then used to compare these values against the358

constraints, enabling a systematic evaluation of the359

Model MC TBMG MPP MCMG

MolT5 ✓ ✓ ✗ ✗

BioT5 ✓ ✓ ✗ ✗

MolXPT ✓ ✓ ✗ ✗

Git-Mol ✓ ✓ ✗ ✗

SPMM ✗ ✗ ✓ ✗

MolCA ✓ ✓ ✗ ✗

Text+Chem-T5 ✓ ✓ ✗ ✗

BioMedGPT ✓ ✗ ✗ ✗

InstructMol-GS ✓ ✗ ✗ ✗

MolReGPT ✓ ✓ ✗ ✗

Mol-Instructions ✓ ✓ ✓ (poor) ✓ (poor)
LLaMa, Qwen ✓ (limited) ✓ (poor) ✓ (poor) ✓ (poor)
PEIT-LLM (Ours) ✓ ✓ ✓ ✓

Table 1: Comparing PEIT-LLM with biomolecular
models and LLMs on molecular-related tasks. MC:
Molecule Captioning. TBMG: Text-Based Molecule
Generation. MPP: Molecular Property Prediction.
MCMG: Multi-Constraint Molecule Generation.

LLM’s performance in multi-constraint molecule 360

generation tasks. 361

Supervised Fine-tuning. We select LLaMa3.1- 362

8B (Dubey et al., 2024) and Qwen2.5-7B (Yang 363

et al., 2024) as base LLMs. We then perform stan- 364

dard supervised fine-tuning (SFT; Ouyang et al., 365

2024) by using the “instruction-response” pairs. In 366

practice, we construct totally 1 million instruction 367

data of four different tasks (i.e., molecule caption- 368

ing, text-based molecule generation, property pre- 369

diction, and multi-constraint molecule generation) 370

from 200k unstructured “text-SMILES-properties” 371

triplets obtained by PEIT-GEN. 372

3.4 Comparing PEIT-LLM with Biomolecular 373

Models and Large Language Models 374

Table 1 shows a comparison of our PEIT-LLM 375

with existing pre-trained models and general LLMs 376

on multiple molecular generation tasks. For most 377

of the pre-trained models such as MolT5 and 378

BioT5, they focus on molecule captioning and text- 379

based molecule generation, which can not han- 380

dle property-related tasks. SPMM is a special- 381

ized model for property prediction. However, it 382

lacks of generation ability due to the lack of textual 383

descriptions. Current LLMs such as LLaMa and 384

Qwen show strong performance on general NLP- 385

based tasks through conversations or instruction- 386

following. However, these general LLMs still have 387

limitations in tasks related to molecule generation 388

due to a lack of molecular knowledge. In contrast, 389

through fine-tuning on diverse instruction data with 390

rich molecular knowledge, PEIT-LLM can perform 391

multiple molecule generation tasks simultaneously. 392
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Model Data Size ↓ BLEU-2 ↑ BLEU-4 ↑ METEOR ↑ ROUGE-1 ↑ ROUGE-2 ↑ ROUGE-L ↑

MolT5-small (Edwards et al., 2022) 100M 0.513 0.398 0.492 0.567 0.412 0.501
MolT5-large (Edwards et al., 2022) 100M 0.594 0.508 0.613 0.654 0.508 0.592
BioT5 (Pei et al., 2023) 33M 0.635 0.556 0.656 0.692 0.559 0.633
MolXPT (Liu et al., 2023b)† 30M 0.594 0.505 0.626 0.660 0.511 0.597
MolCAw/ Galac (Liu et al., 2023c) 2.3M 0.616 0.524 0.639 0.674 0.533 0.615
Text+Chem-T5augm (Christofidellis et al., 2023) 11.5M 0.625 0.529 0.648 0.682 0.543 0.622
GIT-Mol (Liu et al., 2024)† 4.8M 0.352 0.263 0.533 0.575 0.485 0.560
PEIT-GEN (Ours) 0.48M 0.598 0.534 0.676 0.700 0.582 0.653

Table 2: Results on CHEBI-20 dataset for molecule captioning with different pre-trained models. †: Reported from
papers accordingly. The best results in each column are in bold, and the second-best results are underlined.

4 Experiments393

4.1 Experimental Setup394

Dataset. For pre-training PEIT-GEN, we extract395

480k molecular SMILES from the ZINC dataset (Ir-396

win et al., 2012) and generate SMILES-text pairs397

using MolT5 (Edwards et al., 2022). We also com-398

pute 53 biochemical properties per molecule using399

RDKit, forming 480k “text-SMILES-properties”400

triplets for training.401

For pre-training PEIT-LLM, we utilize the 200k402

tri-modal data generated by PEIT-GEN and employ403

template filling to generate 200k instruction data404

for each downstream task. For molecular property405

prediction, we select two biochemical properties406

with distinct differences for evaluation, generating407

200k instruction data for each property. Finally,408

we obtain a total of 1000k instruction data across409

four tasks for SFT training. Similar to PEIT-GEN,410

molecular property prediction tasks on PEIT-LLM411

can be validated by RDKit on CHEBI-20 dataset.412

To evaluate PEIT-GEN and PEIT-LLM, we fol-413

low MolT5 by using CHEBI-20 (Edwards et al.,414

2021) and MoleculeNet dataset (Wu et al., 2018),415

with the standard splition into training, validation,416

and test sets with an 8:1:1 ratio. All property values417

are verified via RDKit. See details in Appendix B.418

Baseline Models. We compare our model,419

PEIT-GEN and PEIT-LLM, against three types420

of baselines as follows: Baselines on molecule421

caption such as MolT5 (Edwards et al., 2022),422

BioT5 (Pei et al., 2023), MolCA (Liu et al., 2023c),423

Text+Chem-T5 (Christofidellis et al., 2023), GIT-424

Mol (Liu et al., 2024). Baselines on moleucu-425

lar property prediction such as SPMM (Chang426

and Ye, 2024), D-MPNN (Yang et al., 2019),427

PretrainGNN (Hu et al., 2019), GROVER (Rong428

et al., 2020), ChemRL-GEM (Fang et al., 2022).429

Baselines of LLMs such as LLaMa3 (Tou-430

vron et al., 2023), Qwen2.5 (Yang et al.,431

2024), GPT3.5-turbo (OpenAI, 2023) , Mol-432

Instructions (Fang et al., 2023), InstructMol-433

Model BBBP BACE Clintox SIDER

D-MPNN (Yang et al., 2019) 71.0±0.3 80.9±0.6 90.6±0.6 57.0±0.7
N-GramRF (Liu et al., 2019) 69.7±0.6 77.9±1.5 77.5±4.0 66.8±0.7
N-GramXGB (Liu et al., 2019) 69.1±0.8 79.1±1.3 87.5±2.7 65.5±0.7
PretrainGNN (Hu et al., 2019) 68.7±1.3 84.5±0.7 72.6±1.5 62.7±0.8
GROVERlarge (Rong et al., 2020) 69.5±0.1 81.0±1.4 76.2±3.7 65.4±0.1
ChemRL-GEM (Fang et al., 2022) 72.4±0.4 85.6±1.1 90.1±1.3 67.2±0.4
ChemBERTa (Ahmad et al., 2022)† 72.8 79.9 56.3 -
MolFormer (Ross et al., 2022) 73.6±0.8 86.3±0.6 91.2±1.4 65.5±0.2
SPMM (Chang and Ye, 2024) 74.1±0.6 82.9±0.3 90.7±0.5 63.6±0.5
PEIT-GEN (Ours) 73.6±0.7 81.6±0.5 91.2±0.7 62.7±0.9

Table 3: Results on MoleculeNet dataset for 2-way prop-
erty prediction. †: The standard deviation and the results
on SIDER are not reported in literature.

GS (Cao et al., 2023), BioMedGPT (Zhang et al., 434

2024b), ChemDFM (Zhao et al., 2025), Chat- 435

GLM (GLM et al., 2024), Galactica (Taylor et al., 436

2022), Vicuna (Chiang et al., 2023). Details of 437

these baselines and evaluation metric are in Ap- 438

pendix C and D, respectively. 439

Implementation Details. We pre-train PEIT-GEN 440

for 20 epochs using a batch size of 16, temper- 441

ature τ = 0.07, and momentum 0.995 with the 442

AdamW optimizer (Loshchilov, 2017). Fine-tuning 443

is then performed on the CHEBI-20 training set 444

for 200 epochs with a learning rate of 5e-4. For 445

supervised fine-tuning of PEIT-LLM, we use the 446

LLaMa-Factory (Zheng et al., 2024) framework 447

with LoRA (Hu et al., 2022) for 6 epochs, a batch 448

size of 3, and learning rate of 5e-5. The total param- 449

eter count of the three encoders and two decoders 450

is 533.8M, with an additional 2.2M parameters for 451

other components. Experiments are conducted on 452

NVIDIA 4090 GPUs with 24GB memory. 453

4.2 Comparing PEIT-GEN with Pre-trained 454

Biomolecular Models 455

Molecule Captioning. Results on molecule cap- 456

tioning using CHEBI-20 dataset are shown in 457

Table 2. Our model demonstrates superior per- 458

formance in generating high-quality and relevant 459

molecular caption. PEIT-GEN achieved the best 460

results in METEOR and ROUGE, and the second- 461

best performance in BLEU-4. Compared to BioT5 462

which performs the best in BLEU, our approach 463
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Model #Params BLEU-2 ↑ BLEU-4 ↑ METEOR ↑ ROUGE-1 ↑ ROUGE-2 ↑ ROUGE-L ↑

LLaMa3 (Touvron et al., 2023) 7B 0.032 0.002 0.117 0.121 0.010 0.065
LLaMa3.1 (Dubey et al., 2024) 8B 0.042 0.004 0.121 0.140 0.019 0.095
Qwen2.5 (Yang et al., 2024) 7B 0.049 0.007 0.188 0.177 0.029 0.112
GPT-3.5-turbo (OpenAI, 2023) N/A† 0.103 0.050 0.161 0.261 0.088 0.204
Mol-Instructions (Fang et al., 2023) 8B 0.217 0.143 0.254 0.337 0.196 0.291
BioMedGPT (Zhang et al., 2024b) 10B 0.234 0.141 0.308 0.386 0.206 0.332
InstructMol-GS (Cao et al., 2023) 7B 0.475 0.371 0.509 0.566 0.394 0.502
MolReGPT (Li et al., 2024) N/A† 0.565 0.482 0.585 0.623 0.450 0.543
ChemDFM (Zhao et al., 2025) 13B 0.321 0.265 0.402 0.490 0.374 0.483
PEIT-LLM-Qwen2.5 (Ours) 7B 0.422 0.314 0.468 0.535 0.361 0.477
PEIT-LLM-LLaMa3.1 (Ours) 8B 0.461 0.356 0.502 0.569 0.396 0.505

Model #Params BLEU ↑ Validity ↑ Levenshtein ↓ MACCS FTS ↑ Morgan FTS ↑ RDKit FTS ↑

LLaMa3 (Touvron et al., 2023) 7B 0.261 0.330 45.788 0.372 0.127 0.213
LLaMa3.1 (Dubey et al., 2024) 8B 0.270 0.368 43.183 0.411 0.138 0.248
Qwen2.5 (Yang et al., 2024) 7B 0.217 0.245 50.550 0.403 0.110 0.276
GPT-3.5-turbo (OpenAI, 2023) N/A† 0.489 0.802 52.130 0.705 0.367 0.462
Mol-Instructions (Fang et al., 2023) 8B 0.345 1.000 41.367 0.412 0.147 0.231
MolReGPT (Li et al., 2024) N/A† 0.790 0.887 24.910 0.847 0.624 0.708
PEIT-LLM-Qwen2.5 (Ours) 7B 0.810 0.950 21.133 0.832 0.619 0.735
PEIT-LLM-LLaMa3.1 (Ours) 8B 0.836 0.970 18.030 0.875 0.661 0.776

Table 4: Results on CHEBI-20 dataset for molecule captioning (top) and text-based molecule generation (bottom)
tasks. †: MolReGPT is based on closed-source ChatGPT-3.5 and its parameter size remains unknown.

requires significantly less data. This indicates that464

using domain-specific models to generate paired465

data for pre-training is more efficient than single-466

modality pre-training.467

Molecular Property Prediction. We evaluate468

the generalization ability of PEIT-GEN on the469

MoleculeNet benchmark (Wu et al., 2018) using470

four widely adopted tasks. As shown in Table 3,471

PEIT-GEN outperforms specialized models such472

as MolFormer (Ross et al., 2022) and ChemRL-473

GEM (Fang et al., 2022) on the Clintox dataset.474

Despite using less pre-training data, it remains com-475

petitive on other subsets. To further demonstrate476

its predictive strength across 53 molecular prop-477

erties, we present a relative difference analysis in478

Appendix E, highlighting PEIT-GEN’s strong gen-479

eralization in property prediction.480

4.3 Comparing PEIT-LLM with LLMs481

Molecule Captioning. As shown in the top482

of Table 4, the comparison results show that483

our model outperforms general-purpose Qwen-2.5484

and LLaMa3.1 as well as Mol-Instructions and485

BioMedGPT, which were trained using a biochem-486

ical information instruction dataset for SFT. PEIT-487

LLM achieved the second-best performance on488

the ROUGE metric and demonstrated competitive489

results compared to InstructMol-GS, which was490

trained solely on the CHEBI-20 dataset and has a491

similar parameter scale as our base model.492

Text-based Molecule Generation. Results on the493

CHEBI-20 test set are presented at the bottom494

of Table 4. PEIT-LLM outperforms all baselines495

Model
MolWt PP MolLogP PP Five-Property CG

(RMSE) ↓ (RMSE) ↓ (RMSE) ↓ (R2) ↑

LLaMa3 (Touvron et al., 2023) 491.542 561.523 79.125 -0.639
LLaMa3.1 (Dubey et al., 2024) 544.517 552.521 74.646 -0.652
Qwen2.5 (Yang et al., 2024) 100.161 132.141 75.991 -0.967
Mol-Instructions (Fang et al., 2023) 72.172 1.313 71.991 -0.352
PEIT-LLM-Qwen2.5 (ours) 14.164 0.164 19.750 0.550
PEIT-LLM-LLaMa3.1 (ours) 13.918 0.141 14.212 0.613

Table 5: Results on MolWt, MolLogP property predic-
tion (PP), and five-property constraint molecule genera-
tion (CG) with different LLMs.

on numerical metrics, including BLEU, Leven- 496

shtein Distance, and fingerprint similarities based 497

on MACCS, Morgan, and RDKit. Although Mol- 498

Instructions achieves the highest Validity score, the 499

results demonstrate that PEIT-LLM, after multi- 500

task instruction fine-tuning, effectively captures 501

key molecular structures and their corresponding 502

textual representations. A case study in Table 9 503

of Appendix F further supports these findings and 504

indirectly validates the quality of the instruction 505

data generated by PEIT-GEN. 506

Molecular Property Prediction. For single- 507

property prediction, due to the large number of 508

available properties, we select two representative 509

examples: ExactMolWt, which typically has large 510

numerical values (100–1000), and MolLogP, with 511

smaller values (–5 to 10), as shown in Table 5. The 512

results show that PEIT-LLM consistently outper- 513

forms other LLMs in predicting these biochemi- 514

cal properties, demonstrating strong sensitivity and 515

adaptability to molecular property scales. This 516

highlights the effectiveness of multi-task SFT in 517

enhancing LLMs’ understanding of molecular char- 518
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Figure 4: Ablation study on PEIT-GEN pre-training
objectives Lsp

match, Lst
match, Lsp

contrastive, and Lst
contrastive.

Figure 5: The impact of different amount of SFT steps
on molecule captioning (left) and generation (right).

Figure 6: The impact of different amount of SFT steps
on generation (left) and prediction (right) tasks.

acteristics and further validates the quality and reli-519

ability of our molecular property instruction dataset.520

A case study is provided in Table 10 of Appendix F521

for further illustration.522

Multi-constraint Molecule Generation. Results523

for our proposed multi-constraint molecule genera-524

tion task is shown in Table 5. PEIT-LLM surpasses525

baselines by large margin in both RMSE and R2526

metrics. Case study is provided in Table 11 of Ap-527

pendix F to further illustrate this point. Note that528

this task requires the model to meet the demands529

of multiple properties with precise values, placing530

high demands on the model’s overall understand-531

ing capability. General-purpose LLMs, or those not532

specifically trained for this task, lack the required533

information storage and fitting abilities. The model534

gain strong molecular understanding capabilities535

through property enhanced instruction tuning.536

4.4 Analyses537

Ablation Study. Figure 4 presents an ablation study538

of the cross-modal matching loss Lmatch and cross-539

modal contrastive loss Lcontrastivein the PEIT-GEN540

Model BLEU↑ METEOR↑ ROUGE-2↑ ROUGE-L↑
Galactica-6.7B (Taylor et al., 2022) 0.008 0.065 0.015 0.063
MolT5-248M (Edwards et al., 2022) 0.001 0.033 0.001 0.034
Vicuna-7B (Chiang et al., 2023) 0.011 0.168 0.055 0.130
Text+Chem T5-223M (Christofidellis et al., 2023) 0.036 0.139 0.075 0.119
ChatGLM-6B (GLM et al., 2024) 0.011 0.105 0.066 0.148
LLaMa3.1-8B (Dubey et al., 2024) 0.014 0.184 0.066 0.148
Qwen2.5-7B (Yang et al., 2024) 0.009 0.169 0.047 0.119
PEIT-LLM-Qwen2.5-7B (Ours) 0.051 0.208 0.121 0.178
PEIT-LLM-LLaMa3.1-8B (Ours) 0.053 0.215 0.125 0.184
Mol-Instructions-8B (Fang et al., 2023) 0.143 0.254 0.196 0.291

Table 6: Out-of-distribution results on the molecule cap-
tioning task using Mol-Instructions (Fang et al., 2023)
evaluation set. Mol-Instructions denotes a fully baseline
trained with LLaMA3.1-8B using the entire training
instructions, serving as an upper bound for SFT models.

model for the molecule captioning task (Lst
CLM and 541

Lsp
CLM are necessary for generation via decoders, 542

thus we do not consider them in ablation study). 543

By removing these training objectives, the perfor- 544

mance degradation across all metrics. This demon- 545

strates that both Lmatch and Lcontrastive are helpful in 546

cross-modal feature alignment, thereby enhancing 547

the performance of molecule captioning. 548

Impact of SFT steps. Figure 5 and Figure 6 il- 549

lustrate the outcomes of PEIT-LLM across various 550

tasks with different SFT steps. We observe that 551

the performance consistently improves during the 552

initial epochs for all tasks, indicating that the in- 553

structional data is beneficial for each, where the 554

performance tends to plateau around epochs 5-6. 555

Out-of-Distribution Evaluation. To further 556

evaluate the molecular understanding of PEIT- 557

LLM on unseen data, we tested it on the Mol- 558

Instructions (Fang et al., 2023) test set, without 559

using the full instructions for pre-training and fine- 560

tuning PEIT-LLMs. As shown in Table 6, PEIT- 561

LLM outperforms all general-purpose LLMs as 562

well as smaller domain-specific models highlight- 563

ing the strong generalization ability of PEIT-LLM 564

across more diverse molecular instruction tasks. 565

5 Conclusion 566

We propose PEIT, a framework that enables LLMs 567

to perceive multi-modal features for multi-task 568

molecule generation. PEIT aligns molecular struc- 569

tures, textual descriptions, and biochemical prop- 570

erties through multi-modal representation learn- 571

ing. It leverages templates to synthesize di- 572

verse, task-specific instruction data for LLMs. 573

We also introduce a challenging multi-constraint 574

molecule generation task, which requires generat- 575

ing novel molecules that satisfy multiple property 576

constraints. Results show that PEIT outperforms 577

various biomolecular models and LLMs on caption- 578

ing, generation, and property prediction tasks. 579

8



Limitations580

While PEIT is capable of achieving comparative or581

better performance over existing studies, it still has582

some limitations as follows: First, PEIT integrates583

the pre-trained PEIT-GEN model as part of the584

pipeline, so the performance of PEIT-GEN greatly585

affect the overall performance of PEIT-LLM. Sec-586

ond, PEIT-GEN uses three types of modality to con-587

struct the instruction data. However, some modal-588

ities data (e.g., knowledge graph and molecular589

images) might be more crucial than sequences for590

the molecular-related task. As a result, exploring591

the different modalities might lead to a different592

result. Lastly, the template utilized for instruction-593

tuning in this work still relies on manual design.594

Our approach is influenced by previous study that595

has been shown to be effective. Nevertheless, it596

would be intriguing to explore the development597

of automated methods for constructing superior598

instruction-tuning templates.599
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A Template Filling 874

We show the templates in Figure 7 for synthesizing 875

instruction data. 876

B Details of Property Prediction Tasks 877

Following SPMM (Chang and Ye, 2024) , we 878

adopt four commonly-used binary property pre- 879

diction tasks to evaluate the performance of PEIT- 880

GEN, including BBBP, BACE, Clintox, and SIDER 881

dataset. The BBBP dataset contains 2,050 molec- 882

ular samples and aims to predict whether these 883

molecules can cross the blood-brain barrier. The 884

BACE dataset includes 1,513 molecular samples 885

and is used to predict whether a molecule can in- 886

hibit the activity of the BACE1 enzyme. The Clin- 887

tox dataset contains 1,478 molecular samples and is 888

primarily used to predict the toxicity of compounds. 889

The SIDER dataset consists of 1,427 drug samples 890

and is used to predict whether a drug will cause 891

specific side effects. Specifically, we use scaffold 892

splitting and each dataset is divided into a training 893

set, validation set, and test set in a ratio of 8:1:1, 894

respectively. 895

C Details of Baselines 896

We compare our model against a variety of base- 897

lines which can be categorized as follows: 898

Baselines on molecule captioning task: 899
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Input：Can you predict the specific <Property
Name> value of the molecule <SMILES>?

Output: <Property Value>

Input：Can you give a Molecule SMILES
which with the value of <Propety Name> is
<Propety Value>, the value of <Property
Name> is <Propety Value>, ...?

Output: <SMILES>

Input：Can you predict the specific ExactMolWt values of the molecule
COc1ccccc1Nc1nc(N)nc(CSC(=S)N2CCN(c3ccccc3)CC2)n1?

Output: 437.64

Input：Can you give a molecule SMILES which with the value of BalabanJ is 2.04,
the value of ExactMolWt is 336.08, the value of MolLogP is 3.51, the value of TPSA
is 70.02, the value of QED is 0.87?

Output: Cc1cc(OCC(=O)Nc2ccc(F)c(F)c2)nc(C(C)C)n1

Molecular Property Prediction

Multi-Constraints Molecule Generation

<Property Name> <SMILES>
<Property Value>

<Propety Name> <Propety Value>

<Propety Name> <Propety Value>

<SMILES>

+

+
+

Templates Examples of Instruction DataTasks

Input：Can you give a molecule
SMILES and  <Description>?

Output: <SMILES>

Input：Can you give a molecule SMILES and the molecule is a member of the
class of benzimidazoles that is 1h-benzimidazole which is substituted by a
(2r, 4s)-4-{[(4-fluorophenyl)sulfanyl]-2-oxoethyl group at position 1?
Output: O=C(CSc1ncn[nH]1)Nc1c(F)cc(F)cc1Br

Text-Based Molecule Generation

<Description> <SMILES>

Input：How to describe this
molecule <SMILES>?

Output: <Description>.

Input：How to describe this molecule O=C(CSc1ncn[nH]1)Nc1c-(F)cc(F)cc1Br？
Output: the molecule is a member of the class of benzimidazoles that is 1h-
benzimidazole which is substituted by a (2r,4s)-4-{[(4-fluorophenyl)sulfanyl]-2-
oxoethyl group at position 1.

Molecule Captioning

<SMILES> <Description>

Figure 7: Examples of template filling with unstructured data according to four different downstream tasks for
obtaining a variety of instruction data for supervised fine-tuning large language models.

MolT5 (Edwards et al., 2022) is a framework for900

pre-training models on unlabeled text and molecu-901

lar data. It introduces tasks like molecule caption-902

ing and generating molecules from text.903

BioT5 (Pei et al., 2023) is a biology-focused pre-904

trained language model trained on diverse biolog-905

ical data, linking text with molecular and protein906

information.907

MolXPT (Liu et al., 2023b) is a pre-trained lan-908

guage model for molecular science that enriches909

both text and molecular SMILES representations910

by replacing molecular names in the text with911

SMILES notation.912

GIT-Mol (Liu et al., 2024) is a multi-modal LLM913

designed for molecular science, integrating graph,914

image, and text data. It performs well in tasks like915

molecule captioning, text-to-molecule generation,916

image recognition, and property prediction.917

MolCA (Liu et al., 2023c) is a model that com-918

bines molecular graphs with textual descriptions,919

excelling in molecular representation learning,920

cross-modal reasoning, and tasks such as property921

prediction, generation, and interaction.922

Text+Chem-T5 (Christofidellis et al., 2023) is a923

multimodal model based on the T5 architecture,924

specifically designed for joint chemistry-text tasks.925

By integrating chemical data with natural language926

text, it enhances performance in chemical text un-927

derstanding, molecular property prediction, and928

reaction generation tasks.929

Baselines on molecular property prediction:930

SPMM (Chang and Ye, 2024) is a multi-modal931

molecular pre-trained model that combines molec-932

ular structure information and biochemical proper-933

ties by aligning two distinct features into a shared934

embedding space. 935

D-MPNN (Yang et al., 2019) D-MPNN is specifi- 936

cally designed for processing molecular graph data. 937

It efficiently captures atomic interactions and chem- 938

ical bond information through a directed message- 939

passing mechanism, providing strong support for 940

molecular property prediction. 941

N-GramRF (Liu et al., 2019) extracts N-Gram 942

features from molecular sequences and integrates 943

them with a Random Forest (Breiman, 2001) 944

model to capture local structural information of 945

molecules. It is suitable for molecular property pre- 946

diction tasks, offering strong robustness and easy 947

implementation. 948

N-GramXGB (Liu et al., 2019) also utilizes N- 949

Gram features but employs the XGBoost (Chen 950

and Guestrin, 2016) model for prediction. It effi- 951

ciently handles high-dimensional data and captures 952

nonlinear relationships, often outperforming Ran- 953

dom Forest in predictive performance. 954

PretrainGNN (Hu et al., 2019) performs pre- 955

training on molecular graph-structured data 956

through self-supervised learning tasks, thereby 957

learning universal representations of nodes and 958

edges within the graph. This significantly enhances 959

the model’s performance in molecular property pre- 960

diction tasks. 961

GROVER (Rong et al., 2020) leverages multiple 962

self-supervised learning tasks to learn universal 963

representations of atoms and bonds in molecular 964

structures, significantly enhancing performance in 965

downstream tasks such as molecular property pre- 966

diction and drug discovery. 967

ChemRL-GEM (Fang et al., 2022) employs Graph 968

Neural Networks (GNNs) to learn the embedding 969
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representations of molecular graphs and utilizes970

reinforcement learning to optimize these represen-971

tations, thereby better accomplishing tasks such as972

molecular property prediction and molecular gen-973

eration.974

ChemBERTa (Ahmad et al., 2022) is pre-trained975

on a large-scale chemical literature and biomedical976

corpora, learning linguistic features specific to the977

chemistry and biomedical domains. This enables it978

to excel in tasks such as molecular property predic-979

tion, drug discovery, and biomedical text mining.980

MolFormer (Ross et al., 2022) captures global981

atomic interactions within molecules using self-982

attention and learns universal molecular represen-983

tations through pretraining on large-scale datasets,984

demonstrating strong performance in property pre-985

diction and molecular generation tasks.986

Baselines of LLMs:987

LLaMa3 (Touvron et al., 2023) is an open-source988

LLM, suitable for various NLP tasks such as sum-989

marization, question answering, and translation.990

LLaMa3.1 (Dubey et al., 2024) is a series of up-991

dated open-source LLM based on LLaMa3, featur-992

ing a stronger parameter scale and higher perfor-993

mance.994

Qwen2.5 (Yang et al., 2024) is an open-source995

large model that has been pre-trained on a dataset996

containing 18 trillion tokens. It has achieved sig-997

nificant improvements in overall capabilities and998

excels in a wide range of NLP tasks.999

GPT-3.5 Turbo (OpenAI, 2023) is an advanced1000

large language model developed by OpenAI, opti-1001

mized for efficient inference and versatile natural1002

language understanding and generation tasks. Built1003

upon the transformer architecture, GPT-3.5 Turbo1004

demonstrates strong performance across a wide1005

range of NLP benchmarks, including text comple-1006

tion, summarization, translation, and dialogue sys-1007

tems. Its design balances high accuracy with re-1008

duced computational cost, making it suitable for1009

scalable real-world applications.1010

Mol-Instructions (Fang et al., 2023) is a natural1011

language instruction dataset for biomolecules, de-1012

signed to enhance the capabilities of large-scale pre-1013

trained models in the biomolecular domain. This1014

dataset combines biomolecules (such as proteins,1015

DNA, RNA, etc.) with natural language instruc-1016

tions, supporting tasks such as molecule generation,1017

molecule modification, and reaction prediction. We1018

use the LLaMa3.1-8B model after SFT on this in-1019

struction dataset.1020

BioMedGPT (Zhang et al., 2024b) is a multimodal1021

pre-trained model for the biomedical field, leverag- 1022

ing self-supervised learning and cross-modal align- 1023

ment to learn universal representations from large- 1024

scale data, excelling in text understanding, medical 1025

image analysis, and molecular property prediction. 1026

InstructMol-GS (Cao et al., 2023) is an 1027

instruction-tuned molecular generation model that 1028

maps natural language to molecular structures, en- 1029

abling targeted molecule design and demonstrating 1030

strong generative capabilities in drug discovery and 1031

materials science. 1032

MolReGPT (Li et al., 2024) is a molecule-text 1033

translation framework based on LLMs. It utilizes a 1034

molecular similarity retrieval mechanism to select 1035

examples, enabling efficient molecule generation 1036

and understanding without fine-tuning. 1037

ChemDFM (Zhao et al., 2025) is a large lan- 1038

guage foundation model for the field of chemistry. 1039

Trained on 34 billion tokens from chemical litera- 1040

ture and 2.7 million instructions, it demonstrates 1041

strong capabilities in understanding and reasoning 1042

about chemical knowledge. It supports tasks such 1043

as molecule recognition, design, property predic- 1044

tion, and reaction analysis, outperforming many 1045

open-source large language models. 1046

ChatGLM (GLM et al., 2024) is an open-source 1047

bilingual large language model optimized for Chi- 1048

nese and English. It supports instruction tuning 1049

and multi-round dialogue, making it adaptable to 1050

domain-specific tasks such as molecular captioning 1051

and property prediction with appropriate prompt- 1052

ing. 1053

Galactica (Taylor et al., 2022) is a large language 1054

model pretrained on scientific texts, including pa- 1055

pers, molecules, and protein sequences. Designed 1056

to assist scientific reasoning and knowledge re- 1057

trieval, it supports molecule-related tasks to a lim- 1058

ited extent through its exposure to structured scien- 1059

tific data during pretraining. 1060

Vicuna (Chiang et al., 2023) is an open-source 1061

language model fine-tuned from LLaMA using 1062

user-shared conversations. It focuses on improving 1063

instruction-following and dialogue capabilities, and 1064

can be adapted to domain-specific tasks through 1065

fine-tuning, despite lacking scientific domain pre- 1066

training. 1067

D Evaluation Metrics 1068

We evaluated the quality of generated text using 1069

BLEU (Papineni et al., 2002), METEOR (Baner- 1070

jee and Lavie, 2005), and ROUGE scores. These 1071
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Model Modality Data Size ↓ R2 ↑ RMSE ↓

SPMM (Chang and Ye, 2024) S, P 1.5M 0.921 0.194
PEIT-GEN (Ours) S, P , T 480K 0.910 0.169

Table 7: Comparing performance of our PEIT-GEN to
SPMM on molecular property prediction.
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Figure 8: The relative difference represent the variation
between the PEIT-GEN predicted values and the actual
values for 53 distinct molecular properties.

metrics evaluate the similarity between generated1072

texts and reference descriptions, effectively quan-1073

tifying the accuracy and diversity of the generated1074

descriptions. For the text-based molecule gener-1075

ation task, we further use molecular fingerprints1076

(FTS) (Cereto-Massagué et al., 2015) and valid-1077

ity measures to assess molecular similarity and1078

validity, including Validity, Levenshtein (Leven-1079

shtein, 1966), MACCS FTS, Morgan FTS, and RD-1080

Kit FTS (Landrum et al., 2013). For the task of1081

molecular property prediction, we chose to use the1082

commonly used RMSE to measure the difference1083

between the predicted values and the molecular1084

property values calculated by RDKit for compari-1085

son, for the experiments on MoleculeNet, we use1086

AUC-ROC to evaluate the accuracy for property1087

prediction tasks. In the case of multi-constraint1088

molecule generation, in addition to RMSE, we also1089

employed R2 to assess the accuracy of the gener-1090

ated molecules.1091

E Molecular Property Prediction1092

Following SPMM (Chang and Ye, 2024), we fur-1093

ther compare PEIT-GEN with SPMM on external1094

dataset. The comparison result on molecular prop-1095

erty prediction is shown in Table 7. Specifically, we1096

randomly sample 1,000 molecules from the ZINC1097

dataset which are not included in the training set.1098

Compared to SPMM that is specifically designed1099

for property prediction, PEIT-GEN achieves com-1100

parable performance while using only one-third of1101

the data size across three modalities. We found1102

that PEIT-GEN outperformed SPMM in terms of1103

RMSE, while SPMM was slightly ahead by 0.11%1104

on R2 metric. These results demonstrate that PEIT- 1105

GEN can generate high-quality biochemical prop- 1106

erties of molecules, highlighting the critical role of 1107

high-quality multi-modal data in advancing molec- 1108

ular understanding tasks. To further illustrate the 1109

predictive performance of PEIT-GEN on the 53 1110

molecular properties, we calculated the relative dif- 1111

ference of these properties, as shown in Figure 8. 1112

F Case Study 1113

As for qualitative analysis, we show some case 1114

study for different tasks, directly comparing the 1115

response by LLaMa3.1 and our PEIT-LLM. 1116

Table 8 shows the examples for molecule cap- 1117

tioning. From the responses, we can see that 1118

the captions generated by our model are closer 1119

to the ground truth captions, whereas the original 1120

model often provides vague answers. This demon- 1121

strates that our model has a better understanding of 1122

molecules and can generate high-quality responses 1123

to complete molecular annotation tasks. 1124

Table 9 shows the examples for text-based 1125

molecule generation. We can see that, compared 1126

with LLaMa3.1, the molecules generated by our 1127

model are more structurally reasonable and similar 1128

to the ground truth. 1129

Table 10 shows the examples for molecular prop- 1130

erty prediction. LLaMa3.1 performs poorly in pre- 1131

dicting specific molecular property and lacks the 1132

ability to accurately predict molecular property val- 1133

ues. However, after instruction fine-tuning, our 1134

PEIT-LLM demonstrates excellent performance in 1135

predicting molecular property values, providing a 1136

strong foundation for its outstanding performance 1137

in multi-constraint molecule generation tasks. 1138

Table 11 shows the examples for challenging 1139

multi-constraint molecule generation task. It can be 1140

observed that our model generated molecule with 1141

close properties according to multiple constraints. 1142

This indicates that the multi-task instruction data 1143

generated by our pre-trained model can enhance 1144

the capabilities of LLMs for such challenging task. 1145
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Input for Molecule Captioning LLaMa3.1 Output Our PEIT-LLM Output Ground Truth
1. How to describe this molecule
CCCCCC1OC1C=CC(O)CC=C
CC=CCCCC(=O)[O-]?

This is a complex or-
ganic molecule contain-
ing a cyclic ether, an
alkene, an alcohol, a ke-
tone, and an enolate an-
ion.

The molecule is a prostaglandin
carboxylic acid anion that is the
conjugate base of prostaglandin
F2alpha, obtained by deprotona-
tion of the carboxy group; ma-
jor species at pH 7.3. It is a
conjugate base of a prostaglandin
F2alpha.

The molecule is an
epoxy(hydroxy)icosatrienoate that
is the conjugate base of 11 hydroxy-
(14R,15S)-epoxy-(5Z,8Z,12E)-
icosatrienoic acid, obtained by
deprotonation of the carboxy group;
major species at pH 7.3. It is a conju-
gate base of an 11 hydroxy-(14R,15S)
-epoxy-(5Z,8Z,12E)-icosatrienoic acid.

2. How to describe this molecule
[Te]?

The molecule [Te] repre-
sents a tellurium atom in
its elemental form.

The molecule is the stable iso-
tope of tellurium with relative
atomic mass 127.904, 7.00 atom
percent natural abundance and
nuclear spin 1/2.

The molecule is the stable isotope of
tellurium with relative atomic mass
124.904425, 71.4 atom percent natural
abundance and nuclear spin 1/2.

3. How to describe this molecule
CN(N=O)C(N)=O?

This molecule is a ni-
trosoguanidine, charac-
terized by a central car-
bon atom double-bonded
to nitrogen and oxygen,
with an additional nitro-
gen atom attached to the
carbon.

The molecule is a nitrosamine
that is urea in which one of the ni-
trogens is substituted by methyl
and nitroso groups. It has a role
as a carcinogenic agent, a muta-
gen, a teratogenic agent and an
alkylating agent.

The molecule is a member of the class
of N-nitrosoureas that is urea in which
one of the nitrogens is substituted by
methyl and nitroso groups. It has a
role as a carcinogenic agent, a mutagen,
a teratogenic agent and an alkylating
agent.

Table 8: Examples of responses by LLaMa3.1 and our PEIT-LLM on molecule captioning.

Input for Text-based Molecule Generation LLaMa3.1 Output Our PEIT-LLM Output Ground Truth
1. Can you give a molecule SMILES and the Cn1c(=O)c2c(nc(NCC3CCCO3)n2C NC(CCCC(=O)O)C(=O)O C(CC(=O)O)C(CC(=O)O)N
molecule is an amino dicarboxylic acid that is C(=O)c2ccccc2)n(C)c1=O
adipic acid in which one of the hydrogens at
position 3 is replaced by an amino group. It is
a beta-aminoacid an amino dicarboxylic acid
and a gamma-amino acid. It derives from an
adipic acid?

2. Can you give a molecule SMILES and the CN(C)C1=CC=C2[NH1]C=3C(C([NH3 CCCCCCCC(=O)CC CCCCCCCCC(=O)C
molecule is a methyl ketone that is decane in +1])=O)=CC(=O)C(=O)C=3OC2=C1
which the methylene hydrogens at position 2
are replaced by an oxo group. It has a role as
a plant metabolite. It derives from a hydride
of a decane?

3. Can you give a molecule SMILES and the C1=CC(=O)OC2=CC(=C(C=C21)O CCOP(=S)(OCC)OC1=NN(C=N1) CCOP(=S)(OCC)OCC1=CC(=O)
molecule is a member of the class of Nnitro- [C@H]3[C@@H]([C@H]([C@@H] C2=CC=CC=C2 N(C2=CC=CC=C2)N1
soureas that is urea in which one of the nitro- ([C@H](O3)CO)O)O)O)O
gens is substituted by methyl and nitroso
groups. It has a role as a carcinogenic agent, a
mutagen, a teratogenic agent and an alkylating
agent?

Table 9: Examples of responses by LLaMa3.1 and our PEIT-LLM for text-based molecule generation.

Input LLaMa3.1 Output Our PEIT-LLM Output Ground Truth

1. Can you predict the specific MolLogP values of the molecule?
CC1CC(C)CN(S(=O)(=O)c2ccc(C(=O)Nc3nnc(C4CC4)o3)cc2)C1

23.42 2.65 2.66

2. Can you predict the specific ExactMolWt values of the molecule?
COc1ccc(NC(=O)Cn2ccn(-c3ccc(F)c(F)c3)c(=O)c2=O)cc1Cl

13.77 404.94 404.25

3. Can you predict the specific MolLogP values of the molecule?
Cc1cc2c(cc1)C(=O)NC(C)C2

18.98 2.53 2.52

Table 10: Examples of responses by LLaMa3.1 and our PEIT-LLM for molecular property prediction.
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Input for Multi-Constraint Molecule
Generation

LLaMa3.1 Output (Verified Values by
RDKit)

Our PEIT-LLM Output (Verified Values by
RDKit)

1. Can you give a molecule SMILES
which with the value of BalabanJ is 1.68,
the value of ExactMolWt is 492.20, the
value of MolLogP is 3.14, the value of
TPSA is 138.76, the value of QED is
0.33?

NN=c1sc2ccccc2n1-c1ccccc1 (Bala-
banJ is 2.42, ExactMolWt is 241.06,
MolLogP is 2.46, TPSA is 43.30, QED is
0.51)

CCOc1cc(C=NNC(=O)c2ccncc2)ccc1OS(=O)
(=O)c1ccc(NC(C)=O)cc1 (BalabanJ is 1.74,
ExactMolWt is 482.12, MolLogP is 2.97, TPSA
is 136.04, QED is 0.27)

2. Can you give a molecule SMILES
which with the value of BalabanJ is 1.33,
the value of ExactMolWt is 467.20, the
value of MolLogP is 3.54, the value of
TPSA is 92.42, the value of QED is 0.52?

O=C(CN1CCN(c2ccc(Cl)cc2)CC1)Nc1ccc(F)
cc1F (BalabanJ is 1.49, ExactMolWt is
365.11, MolLogP is 3.37, TPSA is 35.58,
QED is 0.90)

O=C(COC(=O)c1ccc(S(=O)(=O)N2CCCc3ccc
cc32)cc1)Nc1ccc(F)cc1 (BalabanJ is 1.39,
ExactMolWt is 468.11, MolLogP is 3.76, TPSA
is 92.78, QED is 0.55)

3. Can you give a molecule SMILES
which with the value of BalabanJ is 1.98,
the value of ExactMolWt is 303.13, the
value of MolLogP is 3.06, the value of
TPSA is 64.11, the value of QED is 0.92?

O=C(NCc1cccc(F)c1)Nc1nnc(C2CC(O)C(CO)
O2)s1 (BalabanJ is 1.51, ExactMolWt is
368.09, MolLogP is 1.18, TPSA is 116.60,
QED is 0.62)

Cc1cccc(NS(=O)(=O)c2ccc3oc(C)c(C)c3c
2)n1 (BalabanJ is 2.11, ExactMolWt is 306.10,
MolLogP is 2.88, TPSA is 67.43, QED is 0.90)

Table 11: Examples of responses by LLaMa3.1 and our PEIT-LLM for multi-constraint molecule generation, and
the verified property values of the output molecule are shown in the brackets.
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