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Graph machine learning models often achieve similar overall performance yet be-
have differently at the node level—failing on different subsets of nodes with varying re-
liability. Standard evaluation metrics such as accuracy obscure these fine-grained differ-
ences, making it difficult to diagnose when and where models fail. We introduce NODE-
PRO, a node profiling framework that combines data-centric signals capturing feature
dissimilarity, label uncertainty, and structural ambiguity with model-centric measures of
prediction confidence and consistency to provide fine-grained insights into node-level
behavior and failure modes.

Our Proposed Framework. We introduce NODEPRO, that integrates data-centric and
model-centric profiling scores to characterize node difficulty, uncertainty, and predic-
tion reliability beyond aggregate metrics. The two profiling scores are explained below.
We use the following notations. Given a graph G = {V ,E }, each node v ∈ V has a
feature vector xv ∈ Rd and a label yv ∈ {1, . . . ,C}. The one-hot label is yv ∈ {0,1}C,
and Vc denotes nodes in class c.

Data-Centric Node Profiling. We define three types of scores that quantify the in-
trinsic difficulty of a node based on its input features, neighborhood consistency, and
higher-order structural context. Firstly, we define the Intra-class Feature Dissimilar-
ity (ICFD) which measures how atypical a node’s features are compared to others in
its class by computing the average cosine dissimilarity between a node’s feature vector
xv and those of its class peers V c: S fv = 1− 1

|V c|−1 ∑v′ ∈ V c\ v xv·xv′
|xv||xv′ |

. A higher S fv

indicates that the node has atypical features relative to its class, making it harder to
classify using feature-based models, whereas a lower value implies stronger intra-class
alignment.

Secondly, Neighborhood Class Divergence (NCD) evaluates how consistent a node’s
one-hop neighborhood is with those of other nodes in the same class. Let Pv(c) be the

normalized label distribution in the neighborhood N (v), Pv(c) =
∑u∈N (v) yu,c

∑u∈N (v) ∑
C
c′=1 yu,c′

,

and Qyv(c) the average distribution over neighborhoods of nodes in class c, Qyv(c) =
1

|Vc| ∑v′∈Vc ∑u∈N (v′) yu,c. We compute the divergence as Slv = ∑c∈C

[
log(Pv(c)+ ε)−

log(Qyv(c))
]
(Pv(c)+ ε), where ε = 10−10 ensures numerical stability. A higher Slv

indicates greater neighborhood inconsistency.
Lastly, the Random Walk Class Divergence (RWCD) captures higher-order label

mixing around a node by analyzing the class distribution encountered during random
walks. For node v, let S be the multiset of nodes visited across N walks of length k,
and define the label count vector dw = ∑ j ∈ S y j. The divergence Sh = 1− dw[c]

∑c′∈C dw[c′]
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quantifies how mixed the surrounding neighborhood is, where a higher Sh indicates
more heterogeneous neighborhoods and thus greater classification difficulty.

Model-Centric Node Profiling. Following pior work Seedat et al. 2022, given a model
M(θ), we trained on G with checkpoints E = {e1, . . . ,eE}, let Pc(v,θe) denote the
predicted probability of node v’s true class c at checkpoint e. The mean predicted prob-
ability is P(v) = 1

E ∑e∈E Pc(v,θe). Two complementary uncertainties are computed:

vep(v) =
1
E ∑

e

(
Pc(v,θe)−P(v)

)2
, val(v) =

1
E ∑

e
Pc(v,θe)

(
1−Pc(v,θe)

)
.

Epistemic uncertainty (vep) reflects prediction instability, while aleatoric uncertainty
(val) captures intrinsic label ambiguity. Nodes are categorized as

g(v,G ) =


Easy P(v)≥Cup ∧ val(v)<P50[val ],

Hard P(v)≤Clow ∧ val(v)<P50[val ],

Ambiguous otherwise.

Key Results

Fig. 1: GCN trained on CORA.

CORA CREDIT BITCOINALPHA

GCN 0.749 0.679 0.912
GAT 0.793 0.619 0.846
GRAPHSAGE 0.839 0.630 0.722
MLP 0.752 0.587 0.951

Table 1: Accuracy of difficulty catego-
rization of test nodes.

Model behavior analysis. We apply NODEPRO to compare different models in terms
of their learning behavior. As shown in Figure 1, the node categorized by NODEPRO
shows clearly different training patterns during training. One could then ask on how
do these different node classifications relate to their data centric scores? What are the
properties of nodes over which a model finds hard to learn from? What is the impact of
such hardness on its generalization behavior?

Inductive Profiling of Unseen Nodes. We estimate profile of a new node with NODEPRO
as follows. For a new node vnew with features xnew and edges Enew, we compute its
embedding using the final checkpoint. Its difficulty label (easy/hard/ambiguous) is the
majority category among its K-nearest neighbors in embedding space. The obtained
label is compared against the model centric profile obtained using its true label to obtain
accuracy in categorization as reported in Table 1.
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