
D4: Improving LLM Pretraining via Document

De-Duplication and Diversification

Kushal Tirumala*

Meta AI Research
Daniel Simig*

Meta AI Research
Armen Aghajanyan

Meta AI Research
Ari S. Morcos

Meta AI Research

Abstract

Over recent years, an increasing amount of compute and data has been poured
into training large language models (LLMs), usually by doing one-pass learning
on as many tokens as possible randomly selected from large-scale web corpora.
While training on ever-larger portions of the internet leads to consistent perfor-
mance improvements, the size of these improvements diminishes with scale, and
there has been little work exploring the effect of data selection on pre-training
and downstream performance beyond simple de-duplication methods such as Min-
Hash. Here, we show that careful data selection (on top of de-duplicated data) via
pre-trained model embeddings can speed up training (20% efficiency gains) and
improves average downstream accuracy on 16 NLP tasks (up to 2%) at the 6.7B
model scale. Furthermore, we show that repeating data intelligently consistently
outperforms baseline training (while repeating random data performs worse than
baseline training). Our results indicate that clever data selection can significantly
improve LLM pre-training, calls into question the common practice of training
for a single epoch on as much data as possible, and demonstrates a path to keep
improving our models past the limits of randomly sampling web data.

1 Introduction

Due to computational limits, initial work on language model pre-training focused on training models
on small, high-quality text datasets such as BookCorpus [61] and Wikipedia [32]. More recently,
however, catalyzed by works like [40], advancements in large language models (LLMs) have been
driven by leveraging large collections of unlabeled, uncurated data derived from snapshots of the
internet (CommonCrawl [41, 16, 39]), trading off small quantities of heavily-curated data for huge
quantities of less-curated data. Because of the dramatic increase in data quantity, these strategies have
resulted in higher performance models and have sparked a new paradigm wherein massive, largely
unfiltered datasets are utilized for training [11, 50, 46].

Despite the essential role that large-scale web data now play in LM pre-training, data curation and
selection for large-scale web data have not been thoroughly explored. This is primarily due to the
universality of compute and data scaling laws [25, 20] which give practitioners a low-risk way to
reliably improve LM performance by merely adding “more” data, not necessarily the “right” data.
Indeed, the data selection method used to model scaling laws (along with the data selection methods
used in most LLM pre-training pipelines) involves simply randomly sampling tokens from web data
dumps that have been put through a combination of simple heuristic filtering (e.g., to eliminate very
short strings) and very near match de-duplication [27].

If we continue relying on scaling laws to improve LLMs, we will quickly hit diminishing returns
due to the power-law nature of scaling laws. We will therefore need exponentially more data to
maintain a consistent marginal improvement, which may prove especially challenging as we are fast

*Equal contribution. Correspondence emails: ktirumala@meta.com, simigd@gmail.com

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets and Benchmarks.

approaching the limits of available human-generated text data [51]. Encouragingly, in the context
of vision, Sorscher et al. [47] demonstrated that we could leverage simple data selection strategies
to overcome costly power-law scaling. They compare numerous data selection methods and find
that clustering data points in a pre-trained embedding space and ranking according to the distance to
the cluster centroid ("SSL Prototypes") significantly improves the data efficiency of vision models.
Recently, Abbas et al. [1] demonstrated that using a pre-trained embedding space to de-duplicate
data ("SemDeDup") improves both efficiency and performance of vision-language models such as
CLIP. However, there has been little exploration of these or related approaches in training LLMs
at scale. Motivated by this, we argue that by combining these approaches and applying them to
LLMs, relatively simple data selection strategies leveraging pre-trained embeddings can significantly
improve LLM training. Specifically, our contributions are as follows:

• We investigate different data selection strategies for standard LLM pre-training setups where
data has already been manually filtered / de-duplicated (e.g., MinHash), and where we do
not know the target distribution for which we optimize performance. We argue that the
performance of SSL Prototypes is affected by duplicate-driven clusters in the embedding
space. In Section 3.4 we propose a new data selection strategy D4 that utilizes SemDeDup
to avoid getting impacted by such clusters.

• In Section 4.1, we show that in the compute-limited regime where we have “infinite” source
data and train models with fixed token budgets, we can achieve better pre-training perplexity
and downstream accuracy than random iid data selection and previously established methods.
Furthermore, we show that our method D4 can achieve around 20% efficiency gains at the
6.7b model scale, and that the magnitude of efficiency gains increases with model scale.

• In the data-limited regime, where we run out of data and must epoch over data, cleverly
choosing what data to repeat can beat training on randomly selected new data, whereas
randomly choosing data to repeat underperforms adding new data (Section 4.2). This calls
into question the standard practice of single epoch LLM training, and suggests that epoching
over intelligently subselected data might be a better approach.

Figure 1: Learning curves for 6.7B OPT model pretraining on 100B tokens, with data selected with D4
(pink line) and randomly (gray line). D4 significantly outperforms baseline training, getting between
18-20% efficiency gains on validation perplexity and 2% increase in average 0-shot downstream
accuracy across 16 NLP tasks. See Section A.2 for full learning curves.

2 Related Work

Data selection in non-text domains: Numerous works have successfully used data selection
techniques in vision models [6, 10, 23, 31, 34, 38, 49], though these have largely been at sub-
ImageNet scale. Some of these works develop pruning metrics that score individual data points
(for example, EL2N from Paul et al. [38]), while some focus on data-efficiency and attempt to
find groups of points that allow models to reach baseline performance with less data points, e.g.,
coresets [9, 35, 44, 60]. Sorscher et al. [47] compares many of the existing individual-score methods
at ImageNet scale, finding that their SSL prototypes metrics and the (prohibitively expensive)

2

memorization metric from Feldman and Zhang [15] generally outperforms other methods. In the
audio domain, Dong et al. [14] computes importance embeddings to find important training samples
for audio scene classification. More recently, Abbas et al. [1] demonstrated very encouraging results
on vision-language models (CLIP models) using SemDeDup — a similar method to SSL prototypes
but focused on semantic deduplication. Our work combines these approaches and applies them to
large-scale LLMs.

Effect of pre-training data on LM performance: Gao et al. [16] trains variants of GPT-2 [40]
models from scratch to compare the "Pile" dataset to CommonCrawl-derived corpora. Radford
et al. [40] demonstrates the positive impact of the quality filters and data de-duplication methods
used to curate MassiveWeb by training 1.4B parameter models from scratch. Hernandez et al. [19]
quantifies the effect of various amounts of artificially created data duplication and provides analysis
on interpreting the changes in the behaviour of the models trained on duplicated data. Concurrently
to our work, Xie et al. [56] propose using importance resampling to align the distribution of web data
to high-quality reference corpora such as Wikipedia. Similarly, Gururangan et al. [17] explores data
selection strategies for adapting LMs to a task-specific corpus. Another line of recent work explores
how data mixture affects pre-training, with Xie et al. [55] demonstrating impressive improvements in
downstream accuracy and perplexity across all datasets for 8B parameter models trained on the Pile.
Similarly, Longpre et al. [30] explores the role of text quality, toxicity, age, and domain distribution
of training data on LLM performance. Outside of data curation, there has been a recent surge of work
exploring the impact of repeating data [5, 37, 57], generally concluding that repeating tokens is worse
than training on new tokens (which we question in Section 4.2).

3 Experimental Setup

Notation : Given a source dataset, Dsource, of documents (crawled web pages) and model architec-
ture, M , we aim to find a strategy S for selecting a subset of these documents that maximizes some
evaluation metric E(M(DS,R)). R indicates the proportion of remaining documents from the source
dataset Dsource after selecting data with strategy S. For this reason, we refer to R throughout this
work as the selection ratio: for example, if R = 0.25 and |Dsource| = 100 million, then we select
25% of documents from a source dataset of size 100M documents to arrive at a a training dataset
with 25M documents. We operate at the granularity of a single document, independently of how the
model trainer would pack these documents into batches later. Throughout the paper, we use random
selection as the baseline for S, as it is the most common method for selecting data for language model
pre-training. In the rest of this section, we describe our choices of source dataset (Dsource), model
(M), evaluation metric (E), and, most importantly, our suggestions for the selection strategy (S).

3.1 Training Dataset (choice for Dsource)

We perform all of our training runs on a version of CommonCrawl pre-processed with a CCNet [54]
pipeline identical to the one used by Touvron et al. [50]. We add an additional step of MinHash-based
de-duplication (see more details in Section A.1). Applying this common step before our experiments
guarantees that any effects observed in our experiments complement the currently prevalent approach
of MinHash-based data de-duplication strategies. Throughout the rest of this work, we refer to this
dataset as CC-dedup.

3.2 Model Training (choices for M and Ttarget)

To evaluate different configurations of data selection strategies, we train OPT [59] models from
scratch on the pruned versions of datasets. We use the standard model architectures and settings
of Zhang et al. [59] and use MetaSeq [59] to train all our models. For 125M models, we train to
Ttarget = 3B tokens. For 1.3B parameter models, we train to target token count of Ttarget = 40B.
For 6.7B parameter models, we train to Ttarget = 100B tokens. We choose these by trimming down
the token budgets suggested by Hoffmann et al. [20] to meet our compute limitations. We provide
full details of our training setup in Section A.1.

3.3 Evaluation Metrics (choices for E)

We keep most of our evaluation consistent with the setup from Zhang et al. [59].

3

Validation Set Perplexity. Our validation sets mainly come from [59], which includes validation
sets derived from subsets of the Pile [16] such as CommonCrawl, DM Mathematics, HackerNews,
OpenSubtitles, OpenWebText2, Project Gutenberg, USPTO, Wikipedia. We also include a validation
set obtained from the PushShift.io Reddit dataset [4] (which we refer to as redditflattened). In
addition, we measure perplexity on a validation set obtained from a train-validation split of our source
dataset CC-dedup, and a validation set from C4 [41].

We notice that the effects of data selection vary significantly on individual validation sets depending
on whether the validation set was derived from a web data corpus or not (see more details and analysis
in Section 4.4.1). Motivated by this, we split validation sets into Web-snapshots (C4, CommonCrawl,
and CC-dedup) and Non-web snapshots, and report average perplexity within these sets.

Downstream Task Accuracy. To evaluate downstream performance of our trained models, we
report average 0-shot accuracy across the 16 NLP tasks from Zhang et al. [59], and use a prompting
methodology consistent with Zhang et al. [59]. These set of 16 NLP tasks include Arc Challenge
and ArcEasy [12], HellaSwag [58], OpenBookQA [33], PIQA [7], StoryCloze [36], Winograd [28],
Winogrande [42], as well as tasks from SuperGLUE [52]. We refer the reader to Zhang et al. [59] for
more information about this evaluation setup.

Instruction Tuning Perplexity. The evaluation mentioned above metrics presents an inherent trade-
off. Though accuracy on downstream tasks is typically viewed as a more concrete representation of
a language model’s real-world value, its variance tends to be higher due to the limited number of
examples in these tasks and the step-wise behavior of accuracy as a metric. In contrast, perplexity, as
a metric, is smoother while still exhibiting a strong correlation with performance [43]. Therefore
as a middle ground between the two evaluation metrics, we propose evaluating the perplexity on a
sample drawn from the instruction-tuning dataset used for fine-tuning OPT-IML [21]. This dataset
spans over 1500 unique NLP tasks and comprises a wide array of prompt-answer pairs and therefore
is representative of the average NLP task. It has been carefully crafted by merging extensive task
collections such as Super-NaturalInstructions [53] and PromptSource [3]. We refer the reader to
Table 2.1 in [21] for a comprehensive breakdown. This approach allows us to balance practical
performance measures and statistical consistency in evaluation. We note that this metric can simply
be considered as perplexity on another validation set, where the validation set is filled with examples
used for instruction-tuning (we are not fine-tuning on this dataset).

3.4 Data Selection Strategies (choices for S)

In our initial exploration of un-curated web data, we embedded a large sample of web documents,
clustered these embeddings, and manually inspected the resulting clusters. We quickly identified
several high density clusters with documents that had little to do with the natural distribution of
human language and were artifacts of the web crawling: for example, advertisements of Nike shoes
that were automatically generated from a single underlying template with minor modifications (see
Section A.9 for details).

Motivated by the intuition that these duplicate-driven clusters need tshould be pruned, as well as the
recent success of pruning methods in vision and vision-language models [1, 47], we focus our efforts
on data selection strategies that manipulate data points based on their position in an embedding space.
We embed each document by feeding it into a 125M OPT model and use the last-layer embedding of
the last token (we experiment with different embedding spaces in Section A.7). Following this, we
experiment with several approaches:

SemDeDup: Abbas et al. [1] proposed de-duplicating in both text and image domains by first using
K-Means to cluster the embedding space, and removing points in each cluster that are within epsilon-
balls of one another. We use this algorithm without any modifications and refer the reader to Abbas
et al. [1] for implementation details of this algorithm.

Prototypicality: Sorscher et al. [47] investigated a large variety of data pruning strategies to improve
the data efficiency of training image classification models, including a newly introduced "SSL
Prototypes" metric that proved to be one of their best methods. This strategy involves first clustering
the embedding space using k-means clustering and discarding data points in increasing order of their
distance to the nearest cluster centroid, such that the most "prototypical" data points are discarded,
enriching the much higher variance outliers. We refer the reader to Sorscher et al. [47] for a more
detailed description of this algorithm.

4

D4: As mentioned previously, we find many instances of duplicate-driven clusters: clusters of
templated text or extremely semantically redundant information that are not removed by MinHash.
These regions of embedding space tend to be very dense and cause k-means to waste valuable
cluster assignments on duplicated text. This biased clustering could also negatively to impact the
effectiveness of SSL Prototypes since many clusters will be entirely driven by duplicates instead of
more topical coherence. This insight lead us to our proposed strategy:

1. Apply SemDeDup with a selection ratio Rdedup on the entire dataset D, producing a smaller
dataset D0

2. Cluster points in D0 with K-Means

3. Apply SSL Prototypes on D0, with a selection ratio Rproto

The above-described strategy has an overall selection ratio of R = Rdedup ⇤Rproto and intends to
diversify the distribution of our data locally and globally. For brevity we refer to this method as D4,
a shorthand for Document De-Duplication and Diversification. Throughout this work, we choose
Rdedup = 0.75 and vary Rproto (we discuss this choice in Section A.1). In Section 4, we compare
the performance of D4 to baseline training and other methods, and in Section 4.4 we analyze D4 and
show that reclustering after semantic de-duplication indeed reduces the impact of duplicate-driven
clusters (see Figure 7).

4 Results

Figure 2: Comparison of data selection methods on validation perplexity. Each point denotes a 1.3B
OPT model trained on 40B tokens. The x-axis denotes the selection ratio R. The y-axis for the top 2
and bottom left graph depicts perplexity; the bottom right graph is average downstream on 16 NLP
tasks from Zhang et al. [59]. The grey line denotes the value for baseline training. Shaded error is
standard error across 3 seeds. Each point on this graph is trained on the same token budget: when
we decrease R, we jointly increase the size of the source dataset (e.g. choosing 1/4 of documents
from a 4x’ed sized source dataset).

5

4.1 Fixed compute regime: can data selection help on fixed token budgets?

In this section, we consider the fixed compute setting, where we curate and train on a fixed token
budget by jointly increasing the size of the source dataset Dsource and decreasing R (the fraction of
the Dsource which is selected), such that the target token budget remains constant. This setting is
analogous to the most common paradigm for LLM training. As Dsource grows and R decreases, we
select from larger and larger initial datasets, resulting in a larger set of high-quality data points to
select from and increasing the overall quality of the selected set. For clarity, we plot performance as a
function of the ratio of the Dsource to Dtarget. For each setting, we evaluate the performance of a
baseline, SemDeDup alone, SSL Prototypes alone, and our proposed method D4.

Validation Perplexity. In Figure 2, we show that a relatively small amount of data selection using any
of the three methods (small R) brings consistent improvements on all validation sets. However, as we
increase R, we observe opposing effects on web snapshot and non-web-snapshots validation sets. We
analyze this discrepancy in-depth in Section 4.4. However, on the Instruct OPT validation set, which
corresponds much more closely to the the high-quality generations we want our LLMs to achieve, we
found that all three methods led to consistent and clear perplexity improvements. Notably, we found
that while all three methods provided benefits, D4 outperformed using both SemDeDup and SSL
Prototypes independently, with the most notable gains exhibited when the source dataset is around 4x
the target dataset size. Given that D4 consistently improves with source dataset size, we estimate this
gap to grow with source dataset size.

Downstream Task Accuracy. In Figure 2, we also report 0-shot downstream accuracy averaged
across a suite of NLP tasks. While the high variance of downstream accuracy makes it challenging to
identify clear trends in the performance of various models, we again observe that 0-shot downstream
accuracy generally increases with source dataset size.

Our findings also hold at larger model scales. We pick our best-performing configuration from 1.3B
OPT experiments (e.g., R = 0.25) and train 6.7B OPT models on 100B tokens. Figure 1 shows the
positive effects of applying D4 with R = 0.25 for a 6.7B model. The model trained on the pruned
data reaches the same perplexity as the baseline model using 20% fewer update steps on average and
achieves a 2% improvement in accuracy on our suite of downstream tasks at the end of the training -
about as much difference as was reported by Zhang et al. [59] between the OPT and GPT-3 family of
models on the same set of tasks (See Figure 3 of Zhang et al. [59]).

4.2 Fixed data regime: what happens when we run out of data?

Figure 3: Comparing new tokens vs. repeated tokens for random data selection and D4 for fixed
selection ratio R = 0.25 for 1.3B OPT pre-training. Each method chooses 25% of documents from
the source dataset Dsource, and epochs over that subset until the target token budget of 40B is reached.
We observe that repeating tokens via D4 outperforms baseline training (random, new tokens).

The results in Section 4.1 indicate that, given a fixed amount of compute for training, selecting data
from larger and larger source datasets is a promising method to improve language model performance.
However, there is a practical limit to how much data can be curated from the web and, therefore, a

6

S Ttotal Tselected Epochs Non-Web Snapshot PPL Instruction + Answers PPL

Random 40B 40B 1 16.27± 0.012 14.19± 0.003
40B 20B 2 16.39± 0.011 (+0.12) 14.37± 0.015 (+0.18)

D4 40B 20B 2 16.10 ± 0.024 (-0.17) 13.85 ± 0.016 (�0.34)
Table 1: For fixed data selection method and source dataset size, we compare the effects of choosing
new tokens or repeating token. All models are 1.3B OPT models trained on 40B tokens. Tselected

denotes the number of tokens selected from the source dataset. The top row denotes baseline training.
Mean and standard error across 3 seeds are shown. Surprisingly, cleverly choosing tokens to repeat

via D4 outperforms randomly selecting new tokens.

natural limit to the size of the source dataset. What happens when we run out of data? Hernandez et al.
[19] found and analyzed disproportionately adverse effects of repeated data points in the training
data. Similarly, concurrently to our work Muennighoff et al. [37] shows that test loss deteriorates
when epoching over a random subset of C4 more than four times. In this section, we investigate how
the use of D4 affects model performance in this limited data, multi-epoch setting.

To test this, we assume a fixed token budget and a fixed data size which matches the token budget.
We evaluate training on all the data as well as for two epochs on subsets of the data selected either
randomly or using D4. We trained 1.3B parameter OPT models on these configurations and report
average perplexity in Table 1. Unsurprisingly, epoching over a randomly selected subset of the
data instead of using all the available data once leads to a slight degradation in model perplexity.
In contrast, repeating data selected by D4 leads to an improvement in perplexity and downstream
accuracy over randomly sampling new tokens. In other words, it is beneficial to select data via D4
and epoch 2 times, instead of doing one-pass learning on all available data. As seen in Figure 3, this
finding generally holds across training as well. We refer to Section A.6 for results across model scale
and data selection ratio.

To the best of our knowledge, this is the first result to demonstrate the benefits of repeating data for
LLMs over randomly sampling new tokens via a principled data selection technique. We argue that
the optimal way of using large-scale web data to pre-train LLMs could be: strategically choose a
significantly smaller but better-distributed subset of the data and epoch over it multiple times.

4.3 Cost of data selection

In Section 4.1, we find that by training a 6.7B parameter model on data selected by D4, we
reach the final perplexity of a baseline model using 20% fewer model updates. In our particu-
lar setup, this translates to saving approximately 4300 GPU hours - we will refer to this as the
naive efficiency gain as it does not account for the the cost of computing the selection metric.

Figure 4: Naive and overall efficiency gain
of data selection via D4 relative to the total
cost of training as a function of model size on
Instruct + Answers perplexity at R = 0.25.

To demonstrate our method’s practicality, we must
ensure the cost of selecting data is significantly less
than this. As described in Section 3.4, selecting data
via D4 involves: first, embedding documents via a
125M OPT model; second, computing K-Means in-
dices + distance to indices. The first step is completed
on a single machine with 96 CPU cores in approxi-
mately one day. Given the two orders of magnitude
difference between the prices of CPU and GPU cores
1, we consider this cost negligible. For the second
step, embedding 400B tokens with a 125M parameter
model takes approximately 888 GPU hours, using the
same A100 GPUs. Subtracting this from the naive
efficiency gain of 4300 GPU hours, we arrive at an
overall efficiency gain of 3412 GPU hours. This is
how much compute D4 saved us in practice when
training our single 6.7B parameter model. In Fig-
ure 4, we redo this calculation for different model sizes and we see that overall efficiency gain

1Source: https://aws.amazon.com/ec2/pricing/on-demand/

7

increases with model size. Based on this, we can conservatively estimate that D4 would have overall
efficiency gains of 20% for LLama-65B [50] and 22% for OPT-175B [59].

4.4 Analysis of D4

4.4.1 Why does data selection hurt performance on web snapshots?

Figure 5: Left: Train-test similarity across validation sets. X-axis denotes the name of the validation
set (refer to Section 3.4 for more information about each validation set), and y-axis denotes the cosine
distance to the nearest neighbor in the training set for the 1.3B OPT 40B baseline (the green triangle
denotes mean, and the yellow bar denotes median). We observe that web-snapshots validation sets
are closest to points in the training set and are disproportionately affected by data selection. Right:
Analysis of C4 validation set. (Top): Histogram of cosine distance to nearest neighbor in train. For
each bin, we show the mean original perplexity (middle) and mean difference in perplexity after data
selection (bottom). "Easy" (low original ppl) points close to the training set are generally the points
most affected by data selection.

While we observe consistent average perplexity improvements, Section A.3 demonstrates that this
perplexity improvement varies greatly across validation sets. More importantly, data selection always
impairs performance on web snapshot validation sets such as CC-dedup, CommonCrawl, and C4.
To investigate why this occurs, we embed each validation set into the same embedding space as
the training set and search for the nearest neighbors to validation points in the training set for our
1.3B baseline model. In the left plot of Figure 5, we show that validation sets drawn from the same
distribution as web-snapshots are substantially closer to training set compared to other validation sets.
The right plot of Figure 5 shows that data selection disproportionately affects web-snapshot validation
sets. In the top-right plot, we see that web validation sets reside in regions of the embedding space
which are sparsified as a result of data selection (e.g. regions of space close to cluster centroids in the
training set), and in the bottom-right plot we see that these points are also the most affected by data
selection, since their perplexity after data selection significantly increases. Moreover, the middle-right
plot shows that these validation points have the lowest perplexity before pruning indicating that these
points are "easy" points, perhaps due to their proximity to the training set.

Given that some of our validation sets are extremely close to the training set, we question whether
they are still strong indicators of generalization. In fact, in Figure 6, we find evidence of a slight
inverse relationship between perplexity on web snapshots and more robust indicators of LM ability,
such as perplexity on instruction-tuned datasets and downstream accuracy. In contrast, we observe
that perplexity on Instruct+Answers is positively correlated with downstream accuracy, suggesting
that validation perplexity on instruction tuned data is a better measure of model quality. For this
reason, we group most of our results in Section 4 into Web Snapshots and Non-web Snapshots
(which consists of Web-Derived + Web-Independent from Figure 5, see Section A.1.4 for a full-list
of validation set names).

8

Figure 6: Correlation between (left): negative Instruct+Answers perplexity and negative web snapshot
perplexity, (middle): Downstream accuracy and negative web snapshot perplexity, (right): Down-
stream accuracy and negative Instruct+Answers perplexity. Each point is one training configuration
(1.3B OPT model, 40B tokens), with the only change being the data selection method and pretraining
seed. Web snapshot perplexity is slightly negatively correlated with stronger indicators of LM ability.

4.4.2 Importance of re-clustering between SemDeDup and SSL Prototypes

As mentioned in Section 3.4, we hypothesize that sparsifying dense regions of space containing
excessive semantic duplicates improves the clustering quality and is, therefore, critical to the perfor-
mance of D4. To isolate the effect of re-clustering on D4, we run experiments with a version of D4
where we remove the re-clustering step (e.g. we keep the original clustering). As shown in Figure 7,
omitting the re-clustering step significantly worsens performance, and we observe in the rightmost
plot of Figure 7 that SemDeDup indeed removes extremely dense clusters surrounding centroids (e.g.
duplicate-driven clusters). We analyze this in more depth in Section A.9.

Figure 7: Investigating the necessity of the re-clustering step in D4. We see that re-clustering improves
perplexity across Web snapshots (left), Non-web snapshots (middle-left), and Instruct + Answers
(middle-right). Right: Empirical CDF of mean distance to centroid, with and without re-clustering.
Re-clustering removes duplicate driven clusters (clusters with low mean distance to centroid).

5 Summary and Limitations

We introduced D4, a method for data curation on LLMs that improves training efficiency by 20%
across multiple model scales, with larger gains at increased model scale. We also demonstrated that,
in contrast to common practice, repeating data via epoching can be beneficial for LLM training, but
only if the data subset is intelligently selected. While we have shown encouraging efficiency gains
and performance improvements via D4, our work has several limitations and many future directions.

Mixing different training distributions: While we chose one data distribution to both select data and
train on, modern LLM setups usually mix different data sources. Our method is likely complimentary
to such pipelines: practitioners may use D4 to diversify and de-duplicate individual data sources and
then mix data sources to provide additional diversity in their training dataset. We leave exploring the
efficacy of D4 on a mix of training distributions as future work, but expect that this will yield further
gains by reducing redundancy across datasets as well as within datasets.

Model scale: Due to compute limitations, the largest models we evaluated were 6.7B parameters
trained on 100B tokens. While, to our knowledge, this is the largest to date application of embedding
based data curation approaches, further investigation at model scales exceeding 100B would be very
interesting, particularly in light of our observation that the efficiency gain grows with model scale.

9

6 Acknowledgements

The authors would like to thank many people who helped bring this work to fruition: Srini Iyer,
Yuchen Zhang, Todor Mihaylov, Jacob Xu Moya Chen, Mansheej Paul, Mitchell Wortsman, Amro
Abbas, Aaditya Singh, Myra Cheng, and Matthew Leavitt. The authors would also like to thank
Surya Ganguli, Mona Diab, and Xian Li for initial brainstorming and are grateful for help with
compute infrastructure given by Henry Estela and Victoria Lin. Lastly, the authors would like to
thank anonymous reviewers for improving the quality and writing of this paper.

References

[1] Amro Abbas, Kushal Tirumala, Daniel Simig, Surya Ganguli, and Ari S. Morcos. Semdedup:
Data-efficient learning at web-scale through semantic deduplication. ArXiv, abs/2303.09540,
2023.

[2] Mikel Artetxe, Shruti Bhosale, Naman Goyal, Todor Mihaylov, Myle Ott, Sam Shleifer, Xi Vic-
toria Lin, Jingfei Du, Srinivasan Iyer, Ramakanth Pasunuru, et al. Efficient large scale language
modeling with mixtures of experts. arXiv preprint arXiv:2112.10684, 2021.

[3] Stephen H. Bach, Victor Sanh, Zheng Xin Yong, Albert Webson, Colin Raffel, Nihal V. Nayak,
Abheesht Sharma, Taewoon Kim, M Saiful Bari, Thibault Févry, Zaid Alyafeai, Manan Dey,
Andrea Santilli, Zhiqing Sun, Srulik Ben-David, Canwen Xu, Gunjan Chhablani, Han Wang,
Jason Alan Fries, Maged S. Al-shaibani, Shanya Sharma, Urmish Thakker, Khalid Almubarak,
Xiangru Tang, Mike Tian-Jian Jiang, and Alexander M. Rush. Promptsource: An integrated
development environment and repository for natural language prompts. ArXiv, abs/2202.01279,
2022.

[4] Jason Baumgartner, Savvas Zannettou, Brian Keegan, Megan Squire, and Jeremy Blackburn.
The pushshift reddit dataset. In Proceedings of the international AAAI conference on web and
social media, volume 14, pages 830–839, 2020.

[5] Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff,
et al. Pythia: A suite for analyzing large language models across training and scaling. arXiv
preprint arXiv:2304.01373, 2023.

[6] Vighnesh Birodkar, Hossein Mobahi, and Samy Bengio. Semantic redundancies in image-
classification datasets: The 10% you don’t need. arXiv preprint arXiv:1901.11409, 2019.

[7] Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about phys-
ical commonsense in natural language. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pages 7432–7439, 2020.

[8] Andrei Z Broder. On the resemblance and containment of documents. In Proceedings. Com-
pression and Complexity of SEQUENCES 1997 (Cat. No. 97TB100171), pages 21–29. IEEE,
1997.

[9] George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and Jun-Yan Zhu.
Dataset distillation by matching training trajectories. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages 4750–4759, 2022.

[10] Kashyap Chitta, José M Álvarez, Elmar Haussmann, and Clément Farabet. Training data subset
search with ensemble active learning. IEEE Transactions on Intelligent Transportation Systems,
23(9):14741–14752, 2021.

[11] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

[12] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. arXiv preprint arXiv:1803.05457, 2018.

[13] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm. int8 (): 8-bit matrix
multiplication for transformers at scale. arXiv preprint arXiv:2208.07339, 2022.

10

[14] Bo Dong, Cristian Lumezanu, Yuncong Chen, Dongjin Song, Takehiko Mizoguchi, Haifeng
Chen, and Latifur Khan. At the speed of sound: Efficient audio scene classification. In Proceed-
ings of the 2020 International Conference on Multimedia Retrieval, ICMR ’20, page 301–305,
New York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450370875. doi:
10.1145/3372278.3390730. URL https://doi.org/10.1145/3372278.3390730.

[15] Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Discovering
the long tail via influence estimation. Advances in Neural Information Processing Systems, 33:
2881–2891, 2020.

[16] Leo Gao, Stella Rose Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster,
Jason Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The
pile: An 800gb dataset of diverse text for language modeling. ArXiv, abs/2101.00027, 2020.

[17] Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A Smith. Don’t stop pretraining: Adapt language models to domains and tasks. arXiv
preprint arXiv:2004.10964, 2020.

[18] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

[19] Danny Hernandez, Tom B. Brown, Tom Conerly, Nova DasSarma, Dawn Drain, Sheer El-
Showk, Nelson Elhage, Zac Hatfield-Dodds, T. J. Henighan, Tristan Hume, Scott Johnston,
Benjamin Mann, Christopher Olah, Catherine Olsson, Dario Amodei, Nicholas Joseph, Jared
Kaplan, and Sam McCandlish. Scaling laws and interpretability of learning from repeated data.
ArXiv, abs/2205.10487, 2022.

[20] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia
Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and L. Sifre.
Training compute-optimal large language models. ArXiv, abs/2203.15556, 2022.

[21] Srinivas Iyer, Xiaojuan Lin, Ramakanth Pasunuru, Todor Mihaylov, Daniel Simig, Ping Yu, Kurt
Shuster, Tianlu Wang, Qing Liu, Punit Singh Koura, Xian Li, Brian O’Horo, Gabriel Pereyra,
Jeff Wang, Christopher Dewan, Asli Celikyilmaz, Luke Zettlemoyer, and Veselin Stoyanov.
Opt-iml: Scaling language model instruction meta learning through the lens of generalization.
ArXiv, abs/2212.12017, 2022.

[22] Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Armand
Joulin, and Edouard Grave. Unsupervised dense information retrieval with contrastive learning.
arXiv preprint arXiv:2112.09118, 2021.

[23] Angela H Jiang, Daniel L-K Wong, Giulio Zhou, David G Andersen, Jeffrey Dean, Gregory R
Ganger, Gauri Joshi, Michael Kaminksy, Michael Kozuch, Zachary C Lipton, et al. Accelerating
deep learning by focusing on the biggest losers. arXiv preprint arXiv:1910.00762, 2019.

[24] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs.
IEEE Transactions on Big Data, 7(3):535–547, 2019.

[25] Jared Kaplan, Sam McCandlish, T. J. Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeff Wu, and Dario Amodei. Scaling laws for neural language models.
ArXiv, abs/2001.08361, 2020.

[26] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[27] Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris
Callison-Burch, and Nicholas Carlini. Deduplicating training data makes language models
better. In Annual Meeting of the Association for Computational Linguistics, 2021.

[28] Hector Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge. In
Thirteenth international conference on the principles of knowledge representation and reasoning,
2012.

[29] Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivas-
tava, Ce Zhang, Yuandong Tian, Christopher Re, et al. Deja vu: Contextual sparsity for efficient
llms at inference time, 2023.

11

[30] S. Longpre, Gregory Yauney, Emily Reif, Katherine Lee, Adam Roberts, Barret Zoph, Denny
Zhou, Jason Wei, Kevin Robinson, David M. Mimno, and Daphne Ippolito. A pretrainer’s guide
to training data: Measuring the effects of data age, domain coverage, quality, & toxicity. ArXiv,
abs/2305.13169, 2023.

[31] Kristof Meding, Luca M Schulze Buschoff, Robert Geirhos, and Felix A Wichmann. Trivial or
impossible–dichotomous data difficulty masks model differences (on imagenet and beyond).
arXiv preprint arXiv:2110.05922, 2021.

[32] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

[33] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

[34] Sören Mindermann, Jan M Brauner, Muhammed T Razzak, Mrinank Sharma, Andreas Kirsch,
Winnie Xu, Benedikt Höltgen, Aidan N Gomez, Adrien Morisot, Sebastian Farquhar, et al. Pri-
oritized training on points that are learnable, worth learning, and not yet learnt. In International
Conference on Machine Learning, pages 15630–15649. PMLR, 2022.

[35] Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient training of
machine learning models. In International Conference on Machine Learning, pages 6950–6960.
PMLR, 2020.

[36] Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv Batra, Lucy
Vanderwende, Pushmeet Kohli, and James Allen. A corpus and evaluation framework for deeper
understanding of commonsense stories. arXiv preprint arXiv:1604.01696, 2016.

[37] Niklas Muennighoff, Alexander M. Rush, Boaz Barak, Teven Le Scao, Aleksandra Piktus,
Nouamane Tazi, Sampo Pyysalo, Thomas Wolf, and Colin Raffel. Scaling data-constrained
language models. 2023.

[38] Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet:
Finding important examples early in training. Advances in Neural Information Processing
Systems, 34:20596–20607, 2021.

[39] Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Alessandro Cappelli,
Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The refinedweb dataset for falcon
llm: Outperforming curated corpora with web data, and web data only.

[40] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

[41] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

[42] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

[43] Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language
models a mirage? arXiv preprint arXiv:2304.15004, 2023.

[44] Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. arXiv preprint arXiv:1708.00489, 2017.

[45] Mohammad Shoeybi, M Patwary, R Puri, P LeGresley, J Casper, B Megatron-LM Catanzaro,
et al. Training multi-billion parameter language models using model parallelism. arXiv preprint
cs.CL/1909.08053, 2019.

[46] Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam Rajbhandari,
Jared Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay Korthikanti, et al. Using
deepspeed and megatron to train megatron-turing nlg 530b, a large-scale generative language
model. arXiv preprint arXiv:2201.11990, 2022.

[47] Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari S. Morcos. Beyond
neural scaling laws: beating power law scaling via data pruning. ArXiv, abs/2206.14486, 2022.

12

[48] Kushal Tirumala, Aram Markosyan, Luke Zettlemoyer, and Armen Aghajanyan. Memorization
without overfitting: Analyzing the training dynamics of large language models. Advances in
Neural Information Processing Systems, 35:38274–38290, 2022.

[49] Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio,
and Geoffrey J Gordon. An empirical study of example forgetting during deep neural network
learning. arXiv preprint arXiv:1812.05159, 2018.

[50] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aur’elien Rodriguez,
Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. ArXiv, abs/2302.13971, 2023.

[51] Pablo Villalobos, Jaime Sevilla, Lennart Heim, Tamay Besiroglu, Marius Hobbhahn, and Anson
Ho. Will we run out of data? an analysis of the limits of scaling datasets in machine learning,
2022.

[52] Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose
language understanding systems. Advances in neural information processing systems, 32, 2019.

[53] Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei,
Anjana Arunkumar, Arjun Ashok, Arut Selvan Dhanasekaran, Atharva Naik, David Stap, Eshaan
Pathak, Giannis Karamanolakis, Haizhi Gary Lai, Ishan Purohit, Ishani Mondal, Jacob Anderson,
Kirby Kuznia, Krima Doshi, Maitreya Patel, Kuntal Kumar Pal, M. Moradshahi, Mihir Parmar,
Mirali Purohit, Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma, Ravsehaj Singh Puri,
Rushang Karia, Shailaja Keyur Sampat, Savan Doshi, Siddharth Deepak Mishra, Sujan Reddy,
Sumanta Patro, Tanay Dixit, Xudong Shen, Chitta Baral, Yejin Choi, Noah A. Smith, Hanna
Hajishirzi, and Daniel Khashabi. Super-naturalinstructions: Generalization via declarative
instructions on 1600+ nlp tasks. In Conference on Empirical Methods in Natural Language
Processing, 2022.

[54] Guillaume Wenzek, Marie-Anne Lachaux, Alexis Conneau, Vishrav Chaudhary, Francisco
Guzm’an, Armand Joulin, and Edouard Grave. Ccnet: Extracting high quality monolingual
datasets from web crawl data. ArXiv, abs/1911.00359, 2019.

[55] Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy Liang,
Quoc V. Le, Tengyu Ma, and Adams Wei Yu. Doremi: Optimizing data mixtures speeds up
language model pretraining. ArXiv, abs/2305.10429, 2023.

[56] Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and Percy Liang. Data selection for language
models via importance resampling. ArXiv, abs/2302.03169, 2023.

[57] Fuzhao Xue, Yao Fu, Wangchunshu Zhou, Zangwei Zheng, and Yang You. To repeat or not to
repeat: Insights from scaling llm under token-crisis. arXiv preprint arXiv:2305.13230, 2023.

[58] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
machine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

[59] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam
Shleifer, Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke
Zettlemoyer. Opt: Open pre-trained transformer language models. ArXiv, abs/2205.01068,
2022.

[60] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient matching.
arXiv preprint arXiv:2006.05929, 2020.

[61] Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by
watching movies and reading books. In Proceedings of the IEEE international conference on
computer vision, pages 19–27, 2015.

13

