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Abstract
Deep neural networks (DNNs) are vulnerable to
adversarial attacks. It is found empirically that
adversarially robust generalization is crucial in es-
tablishing defense algorithms against adversarial
attacks. Therefore, it is interesting to study the the-
oretical guarantee of robust generalization. This
paper focuses on PAC-Bayes analysis (Neyshabur
et al., 2017b). The main challenge lies in ex-
tending the key ingredient, which is a weight
perturbation bound in standard settings, to the
robust settings. Existing attempts heavily rely on
additional strong assumptions, leading to loose
bounds. In this paper, we address this issue and
provide a spectrally-normalized robust generaliza-
tion bound for DNNs. Our bound is at least as
tight as the standard generalization bound, differ-
ing only by a factor of the perturbation strength
ϵ. In comparison to existing robust generalization
bounds, our bound offers two significant advan-
tages: 1) it does not depend on additional assump-
tions, and 2) it is considerably tighter. We present
a framework that enables us to derive more gen-
eral results. Specifically, we extend the main re-
sult to 1) adversarial robustness against general
non-ℓp attacks, and 2) other neural network archi-
tectures, such as ResNet.

1. Introduction
Even though deep neural networks (DNNs) have impres-
sive performance on many machine learning tasks, they are
often highly susceptible to adversarial perturbations imper-
ceptible to the human eye (Goodfellow et al., 2014; Madry
et al., 2017). They have received enormous attention in the
machine learning literature over recent years (Tramèr et al.,
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Figure 1. Demonstration of the main challenge of providing robust
generalization bound. The weight perturbation bound (Neyshabur
et al., 2017b) seems hard to extend to adversarial settings.

2017; Carlini & Wagner, 2017; Gowal et al., 2020; Rebuffi
et al., 2021) and a large number of defense algorithms are
proposed to improve the robustness in practice. However,
it still cannot lead to satisfactory performance. One of the
major challenges comes from adversarially robust general-
ization. For example, Madry et al. (2017) achieved nearly
96% robust training accuracy, but it only gets 47% robust
test accuracy. Therefore, it is of great interest to study the
theoretical guarantee of robust generalization. This paper
focuses on PAC-Bayes analysis (Neyshabur et al., 2017b).

Neyshabur et al. (2017b) utilized a PAC-Bayes framework
to establish a bound for the generalization gap of fully-
connected neural networks. The key step involves bounding
the change in output of the predictors in response to slight
variations in the predictor parameters. In particular, con-
sidering fw(x) as the predictor parameterized by w, the
crucial component for providing the generalization bound
lies in bounding the gap |fw(x)−fw′(x)|, where w and w′

are close. The weight perturbation bound, which addresses
this aspect, is presented in Lemma 2 of (Neyshabur et al.,
2017b). Since the publication of (Neyshabur et al., 2017b),
this Pac-Bayes bound has garnered significant attention and
has been extended to other neural networks and learning
tasks. For instance, it has been applied to graph neural net-
works (Liao et al., 2020) and equivalent networks (Behboodi
et al., 2022).

Extending the PAC-Bayes analysis to adversarial robust-
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ness settings may initially seem straightforward. However,
(Farnia et al., 2018) demonstrated the difficulties of obtain-
ing a robust generalization bound using the Pac-Bayesian
approach. The primary challenge stems from the fact that
weight perturbations in adversarial settings differ from those
in standard settings. When considering two predictors fw(·)
and fw′(·), the adversarial examples against these predic-
tors are distinct, leading to a gap referred to as robust weight
perturbation (defined later in Problem 1). It remains unclear
how to establish a bound for robust weight perturbation.
The combined changes in input and weights can potentially
cause a significant alteration in the function value. The main
challenge is illustrated in Figure 1, the details of which will
be provided in Section 6.2.

As a result, (Farnia et al., 2018) introduced additional as-
sumption to control this gap and provide bounds in adversar-
ial settings. However, the assumption imposed limitations
on the effectiveness of the bounds due to two reasons: 1)
the assumption of sharp gradients throughout the domain is
a strong requirement, and 2) without this assumption, the
bounds become unbounded (=+∞).

In this paper, we address this problem and present the
first PAC-Bayes spectrally-normalized robust generalization
bound without additional assumptions. Our robust gener-
alization bound is as tight as the standard generalization
bound, with an additional factor representing the perturba-
tion intensity ϵ. Furthermore, our bound is strictly smaller
than the previous generalization bounds proposed in adver-
sarial robustness settings. To provide an initial overview of
the main result, we begin by defining the spectral complexity
of a d-layer neural network fw as follows:

Φ(fw) = Πd
i=1 ∥Wi∥22

d∑
i=1

(∥Wi∥2F / ∥Wi∥22), (1)

where Wi is the weights of fw in each of the d layers.

Theorem (Informal). Let m be the number of samples and
the training samples x is bounded by B. ϵ is the attack
intensity. Let fw : X → Rk be a d-layer feedforward
network. Then, with high probability, we have

Robust Generalization ≤ O(
√

(B + ϵ)2Φ(fw)/m).

When ϵ = 0, the bound reduces to the standard general-
ization bound presented by (Neyshabur et al., 2017b). Our
findings suggest that the interaction between adversarial
attacks ϵ and the spectral complexity Φ(fw) likely con-
tributes to the significant disparity between standard and
robust generalization. We conducted experiments to inves-
tigate the theoretical results, and the outcomes align with
the conclusions drawn by (Bartlett et al., 2017): the spectral
complexity scales with the difficulty of the learning task.

Figure 2. Demonstration of the framework: perturbation bound of
robustified function. Under this framework, a standard generaliza-
tion bound directly implies a robust generalization bound.

Technical Contribution. We propose the conjecture that
robust weight perturbation is not easily controllable. For-
tunately, the Pac-Bayes bound can also be obtained using
the perturbation of the margin operator. The key ingredient
for deriving the robust generalization bound is a lemma that
enables us to obtain the perturbation of the robust margin
operator from the perturbation of the margin operator. To
further extend the bound to more general settings, we estab-
lish a framework that allows us to derive a robust generaliza-
tion bound from its corresponding standard generalization
bound. The framework’s demonstration is presented in Fig-
ure 2, and detailed information regarding Figure 2 will be
provided in Section 6.3.

Furthermore, we extend the results to encompass general
settings. Firstly, although ℓp adversarial attacks are widely
used, real-world attacks are not always bounded by the ℓp
norm. Hence, we extend the results to cover general attacks.
Secondly, as the current state-of-the-art robust performance
is achieved with WideResNet (Rebuffi et al., 2021; Croce
et al., 2020), we demonstrate that the results can be extended
to other DNN structures, such as ResNet.

The contribution is listed as follows:

1. We provide the first PAC-Bayes spectrally-normalized
robust generalization bound without any additional
assumption.

2. The derived bound is as tight as the standard generaliza-
tion bound and tighter than the existing robust general-
ization bound. Our result suggests that the interaction
between the attack ϵ and the spectral complexity might
contribute to the huge difference between standard and
robust generalization gap.

3. We provide a general framework for robust generaliza-
tion analysis. We show how to obtain a robust gener-
alization bound from a given standard generalization
bound.
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4. We extend the result to general adversarial attacks and
other neural networks sush as ResNet.

2. Related Work
Adversarial Attack. Adversarial examples were first in-
troduced in (Szegedy et al., 2013). Since then, adversarial
attacks have received enormous attention (Papernot et al.,
2016; Moosavi-Dezfooli et al., 2016; Carlini & Wagner,
2017). Nowadays, attack algorithms have become sophis-
ticated and powerful. For example, Autoattack (Croce
& Hein, 2020) and Adaptive attack (Tramer et al., 2020).
Therefore, we consider theoretical analysis on robust mar-
gin loss (defined later in Eq. (4)) against any norm-based
attacks. Adversarial Robustness against multiple attacks is
studied in the work of (Tramèr & Boneh, 2019; Xiao et al.,
2022c). Real-world attacks are not always norm-bounded
(Kurakin et al., 2016). Therefore, we also consider non-ℓp
attacks (Lin et al., 2020; Xiao et al., 2022d) in Sec. C.

Adversarially Robust Generalization. Adversarial train-
ing is to solve the min-max problem minw

∑
S max∥δ∥≤ϵ

ℓ(fw(x + δ), y), where S is the training set. Even enor-
mous algorithms were proposed to improve the robustness
of DNNs (Madry et al., 2017; Tramèr et al., 2017; Gowal
et al., 2020; Rebuffi et al., 2021), the performance was far
from satisfactory. One major issue is the poor robust gen-
eralization, or robust overfitting (Rice et al., 2020; Xiao
et al., 2022b;e). Therefore, the following work tried to ana-
lyze robust generalization from the perspective of classical
learning theory.

Rademacher Complexity. Rademacher complexity can
provide similar spectral norm generalization bound (Bartlett
et al., 2017) as PAC-Bayesian bound (Theorem 2).
Rademacher complexity in adversarial settings is discussed
in the work of (Khim & Loh, 2018; Yin et al., 2019; Awasthi
et al., 2020; Gao & Wang, 2021; Xiao et al., 2022a). Yin
et al. (2019) tried to extend the results of (Bartlett et al.,
2017) to robust margin loss. However, they found that it was
difficult and added some assumptions on the loss and DNNs.
The work of (Gao & Wang, 2021) considered adversarial
loss against FGSM attacks. They used the same assumptions
as that of (Farnia et al., 2018), resulting in a similar bound
to Theorem 3. The related work of Rademacher complexity
help proves the difficulty of our targeted problem.

3. Preliminaries
3.1. Notations

Consider the classification task that maps the input x ∈ X
to the label y ∈ Rk. The output of the model is a score for
each of the k classes. The class with the maximum score

will be the prediction of the label of x. A sample dataset
S = {(x1, y1), · · · , (xm, ym)} with m training samples is
given.

Fully-Connected Neural Networks. Let fw(x) : X →
Rk be the function computed by a d layer feed-forward
network for the classification task with parameters w =
vec

(
{Wi}di=1

)
, fw(x) = Wd ϕ(Wd−1 ϕ(....ϕ(W1x))),

here ϕ is the ReLU activation function. Following the no-
tation of (Neyshabur et al., 2017b), let f i

w(x) denote the
output of layer i before activation and h be an upper bound
on the number of output units in each layer. We can then
define fully connected feedforward networks recursively:
f1
w(x) = W1x and f i

w(x) = Wiϕ(f
i−1
w (x)). In Section C,

we extend the results to ResNet (He et al., 2016), since the
state-of-the-art robust performance is built on WideResNet
(Rebuffi et al., 2021; Croce et al., 2020).

Weight Norm. Let ∥W∥F , ∥W∥1 and ∥W∥2 denote the
Frobenius norm, the element-wise ℓ1 norm and the spectral
norm of the weights W , respectively.

3.2. Standard Margin Loss and Robust Margin Loss

Standard Margin Loss. For any distribution D and mar-
gin γ > 0, we define the expected margin loss as follows:

Lγ(fw) = P(x,y)∼D

[
fw(x)[y] ≤ γ +max

j ̸=y
fw(x)[j]

]
.

(2)
Let L̂γ(fw) be the empirical estimate of the above expected
margin loss. Since setting γ = 0 corresponds to the classifi-
cation loss, we will use L0(fw) and L̂0(fw) to refer to the
expected loss and the training loss. The loss Lγ defined this
way is bounded between 0 and 1.

Robust Margin Loss. Adversarial examples are usually
crafted by an attack algorithm. Let δadvw (x) be an algo-
rithm output (e.g., adv={FGSM, PGM}) and δ∗w(x) be the
maximizer of the following maximization problem

max
∥δ∥≤ϵ

ℓ(fw(x+ δ), y), (3)

where ℓ is the loss function of the predicted label and true
label. The robust margin loss is defined as follows:

Rγ(fw)

=P(x,y)∼D

[
∃x′ ∈ Bp

x(ϵ), fw(x′)[y] ≤ γ +max
j ̸=y

fw(x′)[j]

]
=P(x,y)∼D

[
fw(x+ δ∗w(x))[y] ≤ γ +max

j ̸=y
fw(x+ δ∗w(x))[j]

]
.

(4)
Let R̂γ(fw) be the empirical estimate of the above expected
robust margin loss. The robust margin loss requires the
whole norm ball around original example x to be labelled
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correctly, which is the goal of norm-based adversarial robust-
ness. By replacing δ∗w(x) by δadvw (x) in the above definition,
let Radv

γ (fw) be the margin loss against attacks adv. The
work of (Farnia et al., 2018) consider three attacks: fast
gradient sign method (FGSM), projected gradient method
(PGM), and wasserstein Risk Minimization (WRM), i.e.,
adv = FGSM, PGM, and WRM. They provided three differ-
ent bounds for these adversarial attacks respectively. How-
ever, methods for generating these adversarial examples
are becoming significantly more sophisticated and power-
ful. For example, Autoattack (Croce & Hein, 2020) is a
collection of four attacks (default settings) to find adver-
sarial examples. Therefore, a bound of robust margin loss
against a single attack provides a limited robustness guaran-
tee to a machine learning model. In fact, Autoattack collects
different attacks to attempt and to provide a close lower
estimation of R0(fw). Therefore, this paper focuses on the
robust margin loss.

4. Robust Generalization Bound
In this section, we will first provide our main result of robust
generalization.

Theorem 1 (Main Result: Robust Generalization Bound).
For any B, d, h, ϵ > 0, let fw : X → Rk be a d-layer
feedforward network with ReLU activations. Then, for any
δ, γ > 0, with probability ≥ 1− δ over a training set of size
m, for any w, we have:

R0(fw)− R̂γ(fw)

≤O

√
(B + ϵ)2d2h ln(dh)Φ(fw) + ln dm

δ

γ2m

 ,

where Φ(fw) = Πd
i=1 ∥Wi∥22

∑d
i=1

∥Wi∥2
F

∥Wi∥2
2

is the spectral
complexity of fw.

Theorem 1 provides the first PAC-Bayesian bound in adver-
sarial robustness settings without introducing new assump-
tions. Fixing other factors, the generalization gap goes to 0
as m → ∞.

Theorem 2 (Standard Generalization Bound (Neyshabur
et al., 2017b)). For any B, d, h > 0, let fw : X → Rk be a
d-layer feedforward network with ReLU activations. Then,
for any δ, γ > 0, with probability ≥ 1− δ over a training
set of size m, for any w, we have:

L0(fw)− L̂γ(fw)

≤O

√
B2d2h ln(dh)Φ(fw) + ln dm

δ

γ2m

 ,

where Φ(fw) = Πd
i=1 ∥Wi∥22

∑d
i=1

∥Wi∥2
F

∥Wi∥2
2

.

Comparison with Existing Standard Generalization
Bounds. Comparing the robust generalization bound in
Theorem 1 with the standard generalization bound in Theo-
rem 2, the only difference is a factor of the attack intensity ϵ,
which is unavoidable in adversarial settings. Therefore, our
main result is at least as tight as the standard generalization
bound in Theorem 2.

Theorem 3 (Robust Generalization Bound (Farnia et al.,
2018)). For any B, d, h > 0, let fw : X → Rk be a d-
layer feedforward network with ReLU activations. Consider
an FGM attack with noise power ϵ according to Euclidean
norm ∥ · ∥2. Assume that ∥∇xℓ(fw(x), y)∥ ≥ κ, ∀x ϵ-close
to X . Then, for any δ, γ > 0, with probability ≥ 1− δ over
a training set of size m, for any w, we have:

Radv
0 (fw)− R̂adv

γ (fw)

≤O

√
(B + ϵ)2d2h ln(dh)Φfgm(fw) + ln dm

δ

γ2m

 ,

Φfgm(fw) =

d∏
i=1

∥Wi∥22 (1 + Cfgm)

d∑
i=1

∥Wi∥2F
∥Wi∥22

, and

Cfgm =
ϵ

κ
(

d∏
i=1

∥Wi∥2)(
d∑

i=1

i∏
j=1

∥Wj∥2).

Remark: For robust generalization bound of PGM or
WRM adversrial attacks, the bounds have a similar form
as in Theorem 3, with different expression of the constant
Cpgm and Cwrm.

Comparison with Existing Robust Generalization
Bounds. Comparing Theorem 1 and Theorem 3, the dif-
ference of the upper bounds is the difference of Φ and Φfgm,
where Φfgm contains an additional term Cfgm. Therefore,
our bound is tighter. Moreover, the robust generalization
gap is much larger than the FGSM generalization gap based
on the observation in practice. We provide a tighter upper
bound for a larger generalization gap.

Additionally, the term Cfgm could be very large. No-
tice that Theorem 3 requires ℓ(fw(x), y) to be sharp w.r.t.
x for all x ∈ X . It may not be true and κ could be
small. Therefore, if we remove the additional assumption
∥∇xℓ(fw(x), y)∥ ≥ κ, we have Cfgm → +∞ as κ → 0
and the upper bound in Theorem 3 goes to infinity.

In summary, our main result is 1) as tight as the standard
generalization bound and 2) much tighter than the existing
robust generalization bound.
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5. Analysis of Adversarially Robust
Generalization

As mentioned in the Introduction, the robust generalization
gap is much larger than the standard generalization gap, as
shown in Table 1. What factors contribute to such a sig-
nificant difference? Our results suggest that the interaction
between adversarial attacks ϵ and the spectral complexity
Φ(fw) might contribute to this disparity.

Based on Theorem 1 and Theorem 2, the difference between
the standard and robust generalization bounds lies in the
presence of adversarial attacks ϵ and the spectral complexity
Φ(fw). The spectral complexity Φ(fw) is implicitly dif-
ferent because the weights w of the standard-trained and
adversarially-trained models are distinct. Firstly, even a
small perturbation ϵ added to the original example has a
significant impact on generalization when it is amplified by
Φ(fw).

Secondly, the spectral complexity Φ(fw) induced by adver-
sarial training is significantly larger. We conducted experi-
ments training MNIST, CIFAR-10, and CIFAR-100 datasets
using VGG-19 networks, following the training parameters
described in (Neyshabur et al., 2017a). The results are pre-
sented in Table 1. It is evident that adversarial training can
induce a larger spectral complexity, resulting in a larger
generalization bound. These experiments align with the
findings presented by (Bartlett et al., 2017), indicating: 1)
spectral complexity scales with the difficulty of the learning
task, and 2) the generalization bound is sensitive to this
complexity.

6. Main Challenge of Robust Generalization
Bound and Proof Sketch

6.1. PAC-Bayesian Framework

The PAC-Bayesian framework (McAllester, 1999) provides
generalization guarantees for randomized predictors drawn
from a learned distribution Q (as opposed to a single pre-
dictor) that depends on the training data set. In particular,
let fw be a predictor parameterized by w. We consider the
distribution Q over predictors of the form fw+u, where u is
a random variable and w is considered to be fixed. Given a
prior distribution P over the set of predictors that is indepen-
dent of the training data, the PAC-Bayes theorem states that
with probability at least 1 − δ, the expected loss of fw+u

can be bounded as follows
Eu[L0(fw+u)]

≤Eu[L̂0(fw+u)] + 2

√
2
(
KL (w + u∥P ) + ln 2m

δ

)
m− 1

.
(5)

To get a bound on the margin loss L0(fw) for a single predic-
tor fw, we need to relate the expected loss, Eu[L0(fw+u)]

over a distribution Q, with the loss L0(fw) for a single
model. The following lemma provides this relation.

Lemma 4 (Neyshabur et al. (2017b)). Let fw(x) : X → Rk

be any predictor (not necessarily a neural network) with
parameters w, and P be any distribution on the parameters
that is independent of the training data. Then, for any
γ, δ > 0, with probability ≥ 1 − δ over the training set
of size m, for any w, and any random perturbation u s.t.
Pu

[
maxx∈X |fw+u(x)− fw(x)|∞ < γ

4

]
≥ 1

2 , we have:

L0(fw) ≤ L̂γ(fw) + 4

√
KL (w + u∥P ) + ln 6m

δ

m− 1
.

As it is discussed in (Neyshabur et al., 2017a), the KL-
divergence is evaluated for a fixed w and u is random.
Lemma 4 is not specific to neural networks and generally
holds for any functions. Providing Lemma 4, it is left to
provide a bound of ∥fw+u(x) − fw(x)∥2 to obtain the fi-
nal generalization bound.1 The perturbation bound is given
in the paper mentioned earlier. This framework can be di-
rectly extended to adversarially robust settings by replacing
∥fw+u(x)− fw(x)∥2 by ∥fw+u(x+ δadvw+u(x))− fw(x+
δadvw (x))∥2 (Farnia et al., 2018). For more details, see Ap-
pendix D.

6.2. Main Challenge

Based on Lemma 4, to provide an upper bound of robust
margin loss is to solve the following problem:

Problem 1. How to provide a bound of

∥fw+u(x+ δadvw+u(x))− fw(x+ δadvw (x))∥2? (6)

We refer to the gap in Eq. (6) as robust weight perturbation.
To the best of our knowledge, it remains unclear how to
establish a bound for robust weight perturbation. In standard
settings, when we perturb the weights from w to w+u, the
input x remains the same. The change in function values
is solely attributable to the change in weights. However,
the situation becomes much more complex in adversarial
settings. If we perturb the weights from w to w + u, the
adversarial attacks also vary from δadvw (x) to δadvw+u(x). The
combined changes in input x and weights w may result in
a substantial change in function values. The challenge of
Problem 1 can be observed in previous studies.

Attempt on Robust Margin Loss. Farnia et al. (2018)
considered three adversaries: adv = {FGSM,PGM,
WRM}. They introduced additional assumptions to bound
Eq. (6). For instance, for FGSM and PGM attacks, they
assumed |∇xℓ(fw(x), y)| ≥ κ for all x ϵ-close to X . This

1It is because ∥fw+u(x) − fw(x)∥∞ ≤ ∥fw+u(x) −
fw(x)∥2.
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Table 1. Comparison of the empirical results of the standard generalization bound and robust generalization in the experiment of training
MNIST, CIFAR-10 and CIFAR-100 on VGG networks.

MNIST CIFAR-10 CIFAR-100
Standard Generalization Gap 1.13% 9.21% 23.61%
Bound in Theorem 2 (Neyshabur et al., 2017b) 1.33× 104 1.34× 109 3.41× 1011

Robust Generalization Gap 9.67% 51.41% 78.82%
Bound in Theorem 3 (Farnia et al., 2018) +∞ +∞ +∞
Bound in Theorem 1 (Ours) 3.23× 104 5.97× 1010 1.66× 1013

parameter κ appears in the bound of Eq. (6) as well as in the
final generalization bound. To the best of our knowledge,
there has been no attempt at δ∗w(x). It is not because such
research is unimportant (as mentioned in Sec. 3), but rather
due to the challenge presented by Problem 1. In this case,
it remains unclear what assumptions can be made to bound
Eq. (6). The related work on Rademacher complexity anal-
ysis demonstrates the difficulty, as researchers have found it
challenging to bound robust margin loss and have instead
resorted to bounding robust loss against soled attack with
additional assumptions. Further discussion on this topic can
be found in Sec. 2.

Our solution to this problem consists of two steps. Step
1: We recognize that a general and reasonable bound for
Eq. (6) without additional assumptions may not exist. To
address this, we establish a novel bound for a similar expres-
sion, namely the weight perturbation of margin operator,
without requiring any additional assumptions. To develop
this bound, we introduce a generalization framework called
"Perturbation Bounds of Robustified Function," which can
be further extended to analyze other neural network struc-
tures. Step 2: We modify Lemma 4 to incorporate the weight
perturbation bound that we have introduced. By combining
these two steps, we are able to address the challenges and
provide a robust generalization bound.

6.3. Perturbation Bounds of Robustified Function

In this section, we consider functions gw(x) parameterized
by the weights of a neural network. We mainly scalar value
functions gw(x) : X → R. For example, gw(x) can be the
ith output of a neural network fw(x)[i], the margin operator
fw(x)[y]−maxj ̸=y fw(x)[j], or the robust margin operator.

Definition 1 (Local Perturbation Bounds). Given x ∈ X ,
we say gw(x) has a (L1, · · · , Ld)-local perturbation bound
w.r.t. w, if

|gw(x)− gw′(x)| ≤
d∑

i=1

Li∥Wi −W ′
i∥, (7)

where Li can be related to w, w′ and x.

Eq. (7) controls the change of the output of functions gw(x)
given a slight perturbation on the weights of DNNs. The

following Lemma is the key Lemma to estimate perturba-
tion bounds of the robustified function, which is defined as
inf∥x−x′∥≤ϵ gw(x′). The reason why we require gw(x) to
be scalar functions is that we can define their corresponding
robustified functions.

Lemma 5 (Key Lemma). if gw(x) has a (A1|x|,
· · · , Ad|x|)-local perturbation bound, i.e.,

|gw(x)− gw′(x)| ≤
d∑

i=1

Ai|x|∥Wi −W ′
i∥,

the robustified function inf∥x−x′∥≤ϵ gw(x′) has a (A1(|x|+
ϵ), · · · , Ad(|x|+ ϵ))-local perturbation bound.

Lemma 5 shows that the local perturbation bound of the
robustified function inf∥x−x′∥≤ϵ gw(x′) can be estimated by
the local perturbation bound of the function gw(x), which
is the key to provide the generalization bound of robust
generalization.

It should be noted that Lemma 5 is unable to provide a
bound for Problem 1. In order to utilize Lemma 5, we
shift our focus to the margin operator, which is a scalar
function. Based on the limit of 6 pages, the discussion of
robust margin operator is deferred to Appendix B. Lemma
6 and 7 provide the properties of robust margin operator to
build the robust generalization bound (Theorem 1).

The provided framework allows us to extend the result to
1) general non-ℓp adversarial attacks and 2) other neural
network structures. It is discussed in Appendix C.

7. Conclusion
In this paper, we introduce the first PAC-Bayesian spectrally-
normalized robust generalization bound. The proof is con-
structed based on the framework of the perturbation bound
of the robustified function. This established framework en-
ables us to extend the generalization bound from standard
settings to robust settings, as well as to generalize the re-
sults to encompass various adversarial attacks and DNN
architectures. The simplicity of this framework makes it a
valuable tool for analyzing robust generalization in machine
learning.
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A. Proof of Theorems
A.1. Proof of Lemma 5

Proof: Let x(w) = arg inf∥x−x′∥≤ϵ gw(x′), x(w′) = arg inf∥x−x′∥≤ϵ gw′(x′), Then,

| inf
∥x−x′∥≤ϵ

gw(x′)− inf
∥x−x′∥≤ϵ

gw′(x′)| ≤ max{|gw(x(w))− gw′(x(w))|, |gw(x(w′))− gw′(x(w′))|}.

It is because gw(x(w))−gw′(x(w′)) ≤ gw(x(w′))−gw′(x(w′)) and gw′(x(w′))−gw(x(w)) ≤ gw′(x(w))−gw(x(w)).
Therefore,

| inf
∥x−x′∥≤ϵ

gw(x′)− inf
∥x−x′∥≤ϵ

gw′(x′)| ≤
d∑

i=1

Ai|x(w)|∥Wi −W ′
i∥ ≤

d∑
i=1

Ai(|x|+ ϵ)∥Wi −W ′
i∥.

It is left to prove that the properties in PAC-Bayes analysis holds for margin operator and robust margin operator. The
following proofs are adopted from the work of (Neyshabur et al., 2017b), where we keep the steps independent of the
(robust) margin operator. We start from completing the proof of Lemma 6 and Lemma 7. Then, we complete the proof of
Theorem 1, our main result.

A.2. Proof of Lemma 6

Proof of Lemma 6.1:

For any i ∈ [k],

|fw+u(x)[i]− fw(x)[i]| ≤ ∥fw+u(x)− fw(x)∥2.

For any i, j ∈ [k],

|M(fw+u(x), i, j)−M(fw(x), i, j)| ≤ 2|fw+u(x)[i]− fw(x)[i]| ≤ 2∥fw+u(x)− fw(x)∥2.

Therefore, it is left to bound ∥fw+u(x)− fw(x)∥. It is provided in (Neyshabur et al., 2017b), we provide the proof here for
reference. Let ∆i =

∣∣f i
w+u(x)− f i

w(x)
∣∣
2
. We will prove using induction that for any i ≥ 0:

∆i ≤
(
1 +

1

d

)i
(

i∏
j=1

∥Wj∥2

)
|x|2

i∑
j=1

∥Uj∥2
∥Wj∥2

.

The above inequality together with
(
1 + 1

d

)d ≤ e proves the lemma statement. The induction base clearly holds since
∆0 = |x− x|2 = 0. For any i ≥ 1, we have the following:

∆i+1 =
∣∣(Wi+1 + Ui+1)ϕi(f

i
w+u(x))−Wi+1ϕi(f

i
w(x))

∣∣
2

=
∣∣(Wi+1 + Ui+1)

(
ϕi(f

i
w+u(x))− ϕi(f

i
w(x))

)
+ Ui+1ϕi(f

i
w(x))

∣∣
2

≤ (∥Wi+1∥2 + ∥Ui+1∥2)
∣∣ϕi(f

i
w+u(x))− ϕi(f

i
w(x))

∣∣
2
+ ∥Ui+1∥2

∣∣ϕi(f
i
w(x))

∣∣
2

≤ (∥Wi+1∥2 + ∥Ui+1∥2)
∣∣f i

w+u(x)− f i
w(x)

∣∣
2
+ ∥Ui+1∥2

∣∣f i
w(x)

∣∣
2

= ∆i (∥Wi+1∥2 + ∥Ui+1∥2) + ∥Ui+1∥2
∣∣f i

w(x)
∣∣
2
,

where the last inequality is by the Lipschitz property of the activation function and using ϕ(0) = 0. The ℓ2 norm of outputs
of layer i is bounded by |x|2 Πi

j=1 ∥Wj∥2 and by the lemma assumption we have ∥Ui+1∥2 ≤ 1
d ∥Wi+1∥2. Therefore, using
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the induction step, we get the following bound:

∆i+1 ≤ ∆i

(
1 +

1

d

)
∥Wi+1∥2 + ∥Ui+1∥2 |x|2

i∏
j=1

∥Wj∥2

≤
(
1 +

1

d

)i+1
(

i+1∏
j=1

∥Wj∥2

)
|x|2

i∑
j=1

∥Uj∥2
∥Wj∥2

+
∥Ui+1∥2
∥Wi+1∥2

|x|2
i+1∏
j=1

∥Wi∥2

≤
(
1 +

1

d

)i+1
(

i+1∏
j=1

∥Wj∥2

)
|x|2

i+1∑
j=1

∥Uj∥2
∥Wj∥2

.

Then we complete the proof of Lemma 6.1. By combining Lemma 6.1 and Lemma 5, we directly obtain Lemma 6.2.

A.3. Proof of Lemma 7

The proof of Lemma 7.1 and 7.2 is similar. We provide the proof of Lemma 7.2 below. The proof of Lemma 7.1 follows the
proof of Lemma 7.2 by replacing the robust margin operator by the margin operator.

Let w′ = w + u. Let Sw be the set of perturbations with the following property:

Sw ⊆
{
w′

∣∣∣∣ max
i,j∈[k],x∈X

|RM(fw′(x), i, j)−RM(fw(x), i, j)| < γ

2

}
.

Let q be the probability density function over the parameters w′. We construct a new distribution Q̃ over predictors fw̃
where w̃ is restricted to Sw with the probability density function:

q̃(w̃) =
1

Z

{
q(w̃) w̃ ∈ Sw

0 otherwise.

Here Z is a normalizing constant and by the lemma assumption Z = P [w′ ∈ Sw] ≥ 1
2 . By the definition of Q̃, we have:

max
i,j∈[k],x∈X

|RM(fw̃(x), i, j)−RM(fw(x), i, j)| < γ

2
.

Since the above bound holds for any x in the domain X , we can get the following a.s.:

R0(fw) ≤ R γ
2
(fw̃)

R̂ γ
2
(fw̃) ≤ R̂γ(fw)

Now using the above inequalities together with the equation (5), with probability 1− δ over the training set we have:

R0(fw) ≤ Ew̃

[
R γ

2
(fw̃)

]
≤ Ew̃

[
R̂ γ

2
(fw̃)

]
+ 2

√
2(KL (w̃∥P ) + ln 2m

δ )

m− 1

≤ R̂γ(fw) + 2

√
2(KL (w̃∥P ) + ln 2m

δ )

m− 1

≤ R̂γ(fw) + 4

√
KL (w′∥P ) + ln 6m

δ

m− 1
,

The last inequality follows from the following calculation.

Let Sc
w denote the complement set of Sw and q̃c denote the density function q restricted to Sc

w and normalized. Then,

KL(q||p) = ZKL(q̃||p) + (1− Z)KL(q̃c||p)−H(Z),

where H(Z) = −Z lnZ − (1− Z) ln(1− Z) ≤ 1 is the binary entropy function. Since KL is always positive, we get,

KL(q̃||p) = 1

Z
[KL(q||p) +H(Z))− (1− Z)KL(q̃c||p)] ≤ 2(KL(q||p) + 1).
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A.4. Proof of Theorem 1

Given the local perturbation bound of the robust margin operator and Lemma 5, the proof of Theorem 1 follows the procedure
of the proof of Theorem 2.

Let β =
(∏d

i=1 ∥Wi∥2
)1/d

and consider a network with the normalized weights W̃i =
β

∥Wi∥2
Wi. Due to the homogeneity

of the ReLU, we have that for feedforward networks with ReLU activations fw̃ = fw, and so the (empirical and expected)
loss (including margin loss) is the same for w and w̃. We can also verify that

(∏d
i=1 ∥Wi∥2

)
=

(∏d
i=1

∥∥∥W̃i

∥∥∥
2

)
and

∥Wi∥F

∥Wi∥2
=

∥W̃i∥
F

∥W̃i∥
2

, and so the excess error in the Theorem statement is also invariant to this transformation. It is therefore

sufficient to prove the Theorem only for the normalized weights w̃, and hence we assume w.l.o.g. that the spectral norm is
equal across layers, i.e. for any layer i, ∥Wi∥2 = β.

Choose the distribution of the prior P to be N (0, σ2I), and consider the random perturbation u ∼ N (0, σ2I), with the
same σ, which we will set later according to β. More precisely, since the prior cannot depend on the learned predictor w
or its norm, we will set σ based on an approximation β̃. For each value of β̃ on a pre-determined grid, we will compute
the PAC-Bayes bound, establishing the generalization guarantee for all w for which |β − β̃| ≤ 1

dβ, and ensuring that each
relevant value of β is covered by some β̃ on the grid. We will then take a union bound over all β̃ on the grid. For now, we
will consider a fixed β̃ and the w for which |β − β̃| ≤ 1

dβ, and hence 1
eβ

d−1 ≤ β̃d−1 ≤ eβd−1.

Since u ∼ N (0, σ2I), we get the following bound for the spectral norm of Ui:

PUi∼N(0,σ2I) [∥Ui∥2 > t] ≤ 2he−t2/2hσ2

.

Taking a union bond over the layers, we get that, with probability ≥ 1
2 , the spectral norm of the perturbation Ui in each layer

is bounded by σ
√
2h ln(4dh). Plugging this spectral norm bound into the Lipschitz of robust margin operator we have that

with probability at least 1
2 ,

max
i,j∈[k],x∈X

|RM(fw′(x), i, j)−RM(fw(x), i, j)| (8)

≤2e(B + ϵ)βd
∑
i

∥Ui∥2
β

=e(B + ϵ)βd−1
∑
i

∥Ui∥2 ≤ e2d(B + ϵ)β̃d−1σ
√

2h ln(4dh) ≤ γ

2
, (9)

where we choose σ = γ

42d(B+ϵ)β̃d−1
√

h ln(4hd)
to get the last inequality. Hence, the perturbation u with the above value of

σ satisfies the assumptions of the Lemma 4.

We now calculate the KL-term in Lemma 4 with the chosen distributions for P and u, for the above value of σ.

KL(w + u||P )

≤|w|2

2σ2
=

422d2(B + ϵ)2β̃2d−2h ln(4hd)

2γ2

d∑
i=1

∥Wi∥2F

≤O

(
(B + ϵ)2d2h ln(dh)

β2d

γ2

d∑
i=1

∥Wi∥2F
β2

)

≤O

(
(B + ϵ)2d2h ln(dh)

Πd
i=1 ∥Wi∥22

γ2

d∑
i=1

∥Wi∥2F
∥Wi∥22

)
.

Hence, for any β̃, with probability ≥ 1− δ and for all w such that, |β − β̃| ≤ 1
dβ, we have:

R0(fw) ≤ R̂γ(fw) +O


√√√√ (B + ϵ)2d2h ln(dh)Πd

i=1 ∥Wi∥22
∑d

i=1

∥Wi∥2F
∥Wi∥22

+ ln m
δ

γ2m

 . (10)
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A.5. Proof of Theorem 8

It is based on a slight modification of the key lemma. if gw(x) has a (A1|x|, · · · , Ad|x|)-local perturbation bound, i.e.,

|gw(x)− gw′(x)| ≤
d∑

i=1

Ai|x|∥Wi −W ′
i∥,

the robustified function infx′∈C(x) gw(x) has a (A1D, · · · , AdD)-local perturbation bound.

Proof: Let

x(w) = arg inf
x′∈C(x)

gw(x),

x(w′) = arg inf
x′∈C(x)

gw′(x),

Then,
| inf
∥x−x′∥≤ϵ

gw(x′)− inf
∥x−x′∥≤ϵ

gw′(x′)| ≤

max{|gw(x(w))− gw′(x(w))|, |gw(x(w′))− gw′(x(w′))|}.

It is because gw(x(w))−gw′(x(w′)) ≤ gw(x(w′))−gw′(x(w′)) and gw′(x(w′))−gw(x(w)) ≤ gw′(x(w))−gw(x(w)).
Therefore,

| inf
∥x−x′∥≤ϵ

gw(x′)− inf
∥x−x′∥≤ϵ

gw′(x′)|

≤
d∑

i=1

Ai|x(w)|∥Wi −W ′
i∥

≤
d∑

i=1

AiD∥Wi −W ′
i∥.

Therefore, combining the local perturbation bound and Lemma 7.2, we complete the proof.

A.6. Proof of Theorem 10

As shown in the proof of Lemma 6, it is left to bound ∥fw+u(x)− fw(x)∥. Let ∆i =
∣∣f i

w+u(x)− f i
w(x)

∣∣
2
. We will prove

using induction that for any i ≥ 0:

∆i ≤
(
1 +

1

d

)i
(

i∏
j=1

(∥Wj∥2 + 1)

)
|x|2

i∑
j=1

∥Uj∥2
(∥Wj∥2 + 1)

.

The above inequality together with
(
1 + 1

d

)d ≤ e proves the lemma statement. The induction base clearly holds since
∆0 = |x− x|2 = 0. For any i ≥ 1, we have the following:

∆i+1 =
∣∣(Wi+1 + Ui+1)ϕi(f

i
w+u(x))−Wi+1ϕi(f

i
w(x)) + (f i

w+u(x)− f i
w(x))

∣∣
2

=
∣∣(Wi+1 + Ui+1)

(
ϕi(f

i
w+u(x))− ϕi(f

i
w(x))

)
+ Ui+1ϕi(f

i
w(x)) + (f i

w+u(x)− f i
w(x))

∣∣
2

≤ (∥Wi+1∥2 + ∥Ui+1∥2)
∣∣ϕi(f

i
w+u(x))− ϕi(f

i
w(x))

∣∣
2
+ ∥Ui+1∥2

∣∣ϕi(f
i
w(x))

∣∣
2
+∆i

≤ (∥Wi+1∥2 + ∥Ui+1∥2)
∣∣f i

w+u(x)− f i
w(x)

∣∣
2
+ ∥Ui+1∥2

∣∣f i
w(x)

∣∣
2
+∆i

= ∆i (∥Wi+1∥2 + ∥Ui+1∥2 + 1) + ∥Ui+1∥2
∣∣f i

w(x)
∣∣
2
,

where the last inequality is by the Lipschitz property of the activation function and using ϕ(0) = 0. The ℓ2 norm of outputs
of layer i is bounded by |x|2 Πi

j=1(∥Wj∥2 + 1) and by the lemma assumption we have ∥Ui+1∥2 ≤ 1
d ∥Wi+1∥2. Therefore,
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using the induction step, we get the following bound:

∆i+1 ≤ ∆i

(
1 +

1

d

)
(∥Wi+1∥2 + 1) + ∥Ui+1∥2 |x|2

i∏
j=1

(∥Wj∥2 + 1)

≤
(
1 +

1

d

)i+1
(

i+1∏
j=1

(∥Wj∥2 + 1)

)
|x|2

i∑
j=1

∥Uj∥2
(∥Wj∥2 + 1)

+
∥Ui+1∥2

(∥Wi+1∥2 + 1)
|x|2

i+1∏
j=1

(∥Wi∥2 + 1)

≤
(
1 +

1

d

)i+1
(

i+1∏
j=1

(∥Wj∥2 + 1)

)
|x|2

i+1∑
j=1

∥Uj∥2
(∥Wj∥2 + 1)

.

Therefore, the margin operator of ResNet is locally (A1|x|, · · · , Ad|x|)-Lipschitz w.r.t. w, where

Ai = 2e

d∏
l=1

(∥Wl∥2 + 1)/(∥Wi∥2 + 1).

For any δ, γ > 0, with probability ≥ 1− δ over a training set of size m, for any w, we have:

L0(ResNet)− L̂γ(ResNet)

≤O

√
B2d2h ln(dh)Φres(fw) + ln dm

δ

γ2m

 ;

By a combination of Lemma 5 and Lemma 7, for any δ, γ > 0, with probability ≥ 1− δ over a training set of size m, for
any w, we have:

R0(ResNet)− R̂γ(ResNet)

≤O

√
(B + ϵ)2d2h ln(dh)Φres(fw) + ln dm

δ

γ2m

 ,

where Φres(fw) = Πd
i=1(∥Wi∥2 + 1)2

∑d
i=1

∥Wi∥2
F

(∥Wi∥2+1)2 .

B. Main challenge and Proof Sketch
B.1. Perturbation Bounds of Margin Operator

It should be noted that Lemma 5 is unable to provide a bound for Problem 1. In order to utilize Lemma 5, we shift our focus
to the margin operator, which is a scalar function.

Margin Operator. Following the notation of (Bartlett et al., 2017), we define the margin operator of the true label y given
x and of a pair of two classes (i, j) as

M(fw(x), y) = fw(x)[y]−max
j ̸=y

fw(x)[j], M(fw(x), i, j) = fw(x)[i]− fw(x)[j].

Robust Margin Operator. Similar, we define the robust margin operator of the true label y and of a pair of two class (i, j)
given x as

RM(fw(x), y) = inf
∥x−x′∥≤ϵ

(fw(x′)[y]−max
j ̸=y

fw(x)[j]), and

RM(fw(x), i, j) = inf
∥x−x′∥≤ϵ

(fw(x)[i]− fw(x)[j]),

respectively. Based on Lemma 5, it is left to provide the form of Ai for the margin operator.

Lemma 6. Let fw be a d-layer neural networks with Relu activation. The following local perturbation bounds hold.
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1. Given x and i, j, the margin operator M(fw(x), i, j) has a (A1|x|, · · · , Ad|x|)-local perturbation bound w.r.t. w, where
Ai = 2e

∏d
l=1 ∥Wl∥2 / ∥Wi∥2 . And

|M(fw+u(x), i, j)−M(fw(x), i, j)| ≤ 2eB

d∏
l=1

∥Wl∥2
d∑

i=1

∥Ui∥2
∥Wi∥2

. (11)

2. Given x and i, j, the robust margin operator RM(fw(x), i, j) is locally (A1(|x|+ϵ), · · · , Ad(|x|+ϵ))-local perturbation
bound w.r.t. w.

|RM(fw+u(x), i, j)−RM(fw(x), i, j)| ≤ 2e(B + ϵ)

d∏
l=1

∥Wl∥2
d∑

i=1

∥Ui∥2
∥Wi∥2

. (12)

The proof of Lemma 6.1 is adopted from Lemma 2 in (Neyshabur et al., 2017b), and the proof of Lemma 6.2 is a combination
of Lemma 5 and Lemma 6.1. It is important to note that Eq. (12) provides a bound for a similar but different form of robust
weight perturbation compared to Eq. (6), indicating that Problem 1 has not been fully resolved. However, we are fortunate
that the subsequent lemma demonstrates that Eq. (12) is sufficient to yield the final robust generalization bound.
Lemma 7. Let fw(x) : X → Rk be any predictor with parameters w, and P be any distribution on the parameters that is
independent of the training data. Then, for any γ, δ > 0, with probability ≥ 1− δ over the training set of size m, for any w,
and any random perturbation u s.t.

1. Pu[maxi,j∈[k],x∈X |M(fw+u(x), i, j)−M(fw(x), i, j)| < γ
2 ] ≥

1
2 , we have:

L0(fw) ≤ L̂γ(fw) + 4

√
KL (w + u∥P ) + ln 6m

δ

m− 1
.

2. Pu[maxi,j∈[k],x∈X |RM(fw+u(x), i, j)−RM(fw(x), i, j)| < γ
2 ] ≥

1
2 , we have:

R0(fw) ≤ R̂γ(fw) + 4

√
KL (w + u∥P ) + ln 6m

δ

m− 1
.

Remark: Lemma 7 shows that we can replace the robust weight perturbation (Eq. (6)) by the weight perturbation of the
robust margin operator. The proof is deferred to the Appendix.

Now that we have established the complete framework of the perturbation bound of robustified function to derive the
robust generalization bound, we are ready to prove Theorem 1. By following the proof of (Neyshabur et al., 2017b), we
can replicate the standard generalization bound by combining Lemma 6.1 and 7.1. Similarly, we can obtain the robust
generalization bound by combining Lemma 6.2 and 7.2. The flowchart illustrating this process is presented in Figure 2.
Additionally, Lemma 5 serves as a crucial link between the robust margin operator and the margin operator, thus establishing
the connection between the robust generalization bound and the standard generalization bound.

C. Extension of the Main Result
The provided framework allows us to extend the result to 1) general non-ℓp adversarial attacks and 2) other neural network
structures.

Extension to Non-ℓp Adversarial Attacks. Even though most of the adversarial robustness studies focused on norm-
bounded attacks, real-world attacks are not restricted in the ℓp-ball. We consider the following general adversarial attack
problem:

max
x′∈C(x)

ℓ(fw(x′), y),

where C(x) can be any reasonable constraint given the original example x. Assume that maxx∈X maxx′∈C(x) |x′| = D. In
words, the norm of the adversarial examples is universally bounded by D.
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Theorem 8 (Robust Generalization Bound for non-ℓp attack.). For any D, d, h, let fw : X → Rk be a d-layer feedforward
network with ReLU activations. Then, for any δ, γ > 0, with probability ≥ 1− δ over a training set of size m, for any w,
we have:

Lnl
0 (fw)− L̂nl

γ (fw) ≤O

√
D2d2h ln(dh)Φ(fw) + ln dm

δ

γ2m

 ,

where Φ(fw) = Πd
i=1 ∥Wi∥22

∑d
i=1

∥Wi∥2
F

∥Wi∥2
2

and nl stands for non-ℓp adversarial attacks.

The proof is based on a slight modification of Lemma 5.

Extension to Other Neural Networks Structure. The framework we have established enables us to extend the PAC-
Bayesian generalization bound from standard settings to robust settings, provided that the standard generalization bound is
also obtained using this framework. Importantly, this extension is independent of the structure of the neural networks.

Example: ResNet. Consider a neural network: f1
w(x) = W1x and f i

w(x) = Wiϕ(f
i−1
w (x)) + f i−1

w (x). ResNet in
practice could be complicated. We use this structure for illustration.

Theorem 9 (Robust Generalization Bound for ResNet). For any D, d, h, let fw : X → Rk be a d-layer ResNet with ReLU
activations. Then, for any δ, γ > 0, with probability ≥ 1− δ over a training set of size m, for any w, we have:

R0(ResNet)− R̂γ(ResNet) ≤ O

√
(B + ϵ)2d2h ln(dh)Φres(fw) + ln dm

δ

γ2m

 ,

where Φres(fw) = Πd
i=1(∥Wi∥2 + 1)2

∑d
i=1

∥Wi∥2
F

(∥Wi∥2+1)2 .

D. PAC-Bayesian Framework for Robust Generalization
PAC-Bayes analysis (McAllester, 1999) is a framework to provide generalization guarantees for randomized predictors
drawn from a learned distribution Q (as opposed to a single predictor) that depends on the training data set. The expected
generalization gap over the posterior distribution Q can be bounded in terms of the Kullback-Leibler Divergence between
the prior distribution P and the posterior distribution Q, KL(P∥Q).

A direct corollary of Eq. (5) is that, the expected robust error of fw+u can be bounded as follows

Eu[R
adv
0 (fw+u)]

≤ Eu[R̂
adv
0 (fw+u)] + 2

√
2
(
KL (w + u∥P ) + ln 2m

δ

)
m− 1

.
(13)

By a slight modification of Lemma 4, the following lemma given in the work of (Farnia et al., 2018) shows how to obtain an
robust generalization bound.

Lemma 10 (Farnia et al. (2018)). Let fw(x) : X → Rk be any predictor (not necessarily a neural network) with
parameters w, and P be any distribution on the parameters that is independent of the training data. Then, for any
γ, δ > 0, with probability ≥ 1 − δ over the training set of size m, for any w, and any random perturbation u s.t.
Pu[maxx∈X

∣∣fw+u(x+ δadvw+u(x))− fw(x+ δadvw (x))
∣∣
∞ < γ

4 ] ≥
1
2 , we have:

Radv
0 (fw) ≤ R̂adv

γ (fw) + 4

√
KL (w + u∥P ) + ln 6m

δ

m− 1
.

E. Other Related work
PAC-Bayes Analysis. We mainly compare our results to the previous PAC-Bayesian spectrally-normalized bounds
(Neyshabur et al., 2017b; Farnia et al., 2018), which we have already carefully discussed in Introduction. We will provide
more details later. Another PAC-Bayes framework of adversarial robustness was proposed by (Viallard et al., 2021). They
considered a special adversarial attack to the loss of the Q-weighted majority vote over the posterior distribution Q.
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VC-Dimension. A classical approach in statistical learning is to use VC dimension to bound the generalization gap. It is
thus natural to apply the VC-dim framework to adversarial settings, as (Cullina et al., 2018; Montasser et al., 2019; Attias
et al., 2021) did. When the perturbation set is finite, the robust generalization gap can be bounded in terms of VC dimension.


