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Abstract

Recent neural architecture search (NAS) frame-
works have been successful in finding optimal
architectures for given conditions (e.g., perfor-
mance or latency). However, they search for opti-
mal architectures in terms of their performance on
clean images only, while robustness against vari-
ous types of perturbations or corruptions is crucial
in practice. Although there exist several robust
NAS frameworks that tackle this issue by integrat-
ing adversarial training into one-shot NAS, how-
ever, they are limited in that they only consider
robustness against adversarial attacks and require
significant computational resources to discover
optimal architectures for a single task, which
makes them impractical in real-world scenarios.
To address these challenges, we propose a novel
lightweight robust zero-cost proxy that considers
the consistency across features, parameters, and
gradients of both clean and perturbed images at
the initialization state. Our approach facilitates
an efficient and rapid search for neural architec-
tures capable of learning generalizable features
that exhibit robustness across diverse perturba-
tions. The experimental results demonstrate that
our proxy can rapidly and efficiently search for
neural architectures that are consistently robust
against various perturbations on multiple bench-
mark datasets and diverse search spaces, largely
outperforming existing clean zero-shot NAS and
robust NAS with reduced search cost.
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Figure 1: Final performance of the searched network in DARTS
search space on CIFAR-10 through clean one-shot NAS, robust

NAS, clean zero-shot NAS and our CRoZe.

1. Introduction

Neural architecture search (NAS) techniques have achieved
remarkable success in optimizing neural networks for given
tasks and constraints, yielding networks that outperform
handcrafted neural architectures (Baker et al., 2017; Liu
et al., 2018a; Luo et al., 2018; Pham et al., 2018; Xu et al.,
2020). However, previous NAS approaches have primarily
aimed to search for architectures with optimal performance
and efficiency on clean inputs, while paying less attention
to robustness against adversarial perturbations (Goodfellow
et al., 2015; Madry et al., 2018) or common types of cor-
ruptions (Hendrycks & Dietterich, 2019). This can result
in finding unsafe and vulnerable architectures with erro-
neous and high-confidence predictions on input examples
even with small perturbations (Mok et al., 2021; Jung et al.,
2023), limiting the practical deployment of NAS in real-
world safety-critical applications.

To address the gap between robustness and NAS, previous
robust NAS works (Mok et al., 2021; Guo et al., 2020)
have proposed to search for adversarially robust architec-
tures by integrating adversarial training into NAS. Yet, they
are computationally inefficient as they utilize costly adver-
sarial training on top of the one-shot NAS methods (Liu
et al., 2019; Cai et al., 2019), requiring up to 33⇥ larger
computational cost than clean one-shot NAS (Xu et al.,
2020). Especially, Guo et al. (2020) takes almost 4 GPU
days on NVIDIA 3090 RTX GPU to train the supernet, as
it requires performing adversarial training on subnets with
perturbed examples (Figure 1, RobNet). Furthermore, they
only target a single type of perturbation, i.e., adversarial
perturbation (Goodfellow et al., 2015; Madry et al., 2018),
thus, failing to generalize to diverse perturbations. In order
to deploy NAS to real-world applications that require han-
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dling diverse types of tasks and perturbations, we need a
lightweight NAS method that can yield robust architectures
without going over such costly processes.

To tackle this challenge, we propose a novel and lightweight
Consistency-based Robust Zero-cost proxy (CRoZe) that
can rapidly evaluate the robustness of the neural architec-
tures against diverse semantic-preserving perturbations with-
out requiring any iterative training. While prior clean zero-
shot NAS methods (Abdelfattah et al., 2021; Mellor et al.,
2021) introduced proxies that score the networks with ran-
domly initialized parameters (Lee et al., 2019; Wang et al.,
2020; Liu et al., 2021; Tanaka et al., 2020) without any
training, they only consider which parameters are highly
sensitive to clean inputs for a given task, as determined by
measuring the scale of the gradients based on the objec-
tives and thus yield networks that are vulnerable against
perturbed inputs (Figure 2a).

Specifically, our proxy captures the consistency across the
features, parameters, and gradients of a randomly initial-
ized model for both clean and perturbed inputs, which is
updated with a single gradient step (Figure 2b). This metric
design measures the model’s robustness in multiple aspects,
which is indicative of its generalized robustness to diverse
types of perturbations. This prevents the metric from being
biased toward a specific type of perturbation and ensures
its robustness across diverse semantic-preserving perturba-
tions. Empirically, we find that a neural architecture with
the highest performance for a single type of perturbation
tends to exhibit larger feature variance for other types of per-
turbations (Supplementary Figure 4), while our proxy that
considers the robustness in multiple aspects obtains features
with smaller variance even on diverse types of perturbations.
This suggests that our proxy is able to effectively discover
architectures with enhanced generalized robustness.

We validate our approach through extensive experiments on
diverse search spaces (NAS-Bench 201, DARTS) and mul-
tiple datasets (CIFAR-10, CIFAR-100, ImageNet16-120),
with not only the adversarial perturbations but also with var-
ious types of common corruptions (Hendrycks & Dietterich,
2019), against both clean zero-shot NAS (Abdelfattah et al.,
2021; Mellor et al., 2021) and robust NAS baselines (Mok
et al., 2021; Guo et al., 2020). The experimental results
clearly demonstrate our effectiveness in finding generaliz-
able robust neural architectures. Our contributions can be
summarized as follows:

• We propose a simple yet effective consistency-based
zero-cost proxy for robust NAS against diverse per-
turbations via measuring the consistency of features,
parameters, and gradients between perturbed and clean
samples.

• Our approach can rapidly search for generalizable neu-
ral architectures that do not perform well only on clean

samples but also are highly robust against diverse types
of perturbations on various datasets.

• Our proxy obtains superior Spearman’s ⇢ across bench-
marks compared to clean zero-shot NAS methods and
identifies robust architectures that exceed robust NAS
frameworks by 6.21% with 14.7 times less search cost

within the DARTS search space on CIFAR-10.

2. Related Work

Robustness of DNNs against Perturbations. Despite the
recent advances, deep neural networks (DNNs) are still
vulnerable to small perturbations on the input, e.g., com-
mon corruptions (Hendrycks & Dietterich, 2019), random
noises (Dodge & Karam, 2017), and adversarial perturba-
tions (Biggio et al., 2013; Szegedy et al., 2014), which can
result in incorrect predictions with high confidence. To over-
come such vulnerability against diverse perturbations, many
approaches have been proposed to train the neural network
to be robust against each type of perturbation individually.
To learn a rich visual representation from limited crawled
data, previous works (Hendrycks et al., 2020; Cubuk et al.,
2020) utilized a combination of strong data augmentation
functions to improve robustness to common corruptions and
random Gaussian noises. Furthermore, to overcome adver-
sarial vulnerability, widely used defense mechanisms (Good-
fellow et al., 2015; Madry et al., 2018; Moosavi-Dezfooli
et al., 2016) generate adversarially perturbed images by tak-
ing multiple gradient steps to maximize the training loss
and use them in training to improve the model’s robustness.

Neural Architecture Search. Neural architecture search
(NAS) leverages reinforcement learning (Zoph & Le, 2017;
Baker et al., 2017; Zhong et al., 2018) or evolutionary al-
gorithms (Real et al., 2017; Liu et al., 2018b; Elsken et al.,
2019; Real et al., 2019) to automate the design of optimal
architectures for specific tasks or devices. However, those
are computationally intensive, making them impractical to
be applied in real-world applications. To address this, zero-
shot NAS methods (Abdelfattah et al., 2021; Mellor et al.,
2021) have emerged that significantly reduce search costs
by predicting the performance of architecture at the initial-
ization state only with a single batch of a given dataset.
Despite the improvement in NAS, previous zero-shot NAS
methods, and conventional NAS methods aim only to find
architectures with high accuracy on clean examples, without
considering their robustness against various perturbations.
In particular, SynFlow (Abdelfattah et al., 2021) lacks data
incorporation in its scoring mechanism, potentially failing
to find the network that can handle diverse perturbations.
As a result, models found with previous NAS methods of-
ten lead to incorrect predictions with high confidence (Mok
et al., 2021; Jung et al., 2023) even with small impercep-
tible perturbations applied to the inputs. A new class of
NAS methods (Guo et al., 2020; Mok et al., 2021) that
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Figure 2: Generalizable lightweight proxy for robust NAS against diverse perturbations. While previous NAS methods search neural
architectures primarily on clean samples (Clean NAS) or adversarial perturbations (Robust NAS) with excessive search costs and fail to
generalize across diverse perturbations, our proposed proxy, namely CRoZe, can rapidly search high-performing neural architectures
against diverse perturbations. CRoZe evaluates the network’s robustness in a single step based on the consistency across the features (z
and zr), parameters (✓ and ✓r), and gradients (r✓L and r✓rL) between clean and robust network against clean and perturbed inputs.

considers robustness against adversarial perturbations has
emerged. Yet, they require adversarial training of the su-
pernet, which demands more computational resources than
conventional NAS (Real et al., 2017; Elsken et al., 2019)
due to repeated adversarial gradient steps. Thus, there is
a need for a lightweight NAS approach that can achieve
generalized robustness for safe real-world applications.

3. Methods

Our goal is to efficiently search for robust architectures
that have high performance on various tasks, regardless of
the type of perturbations applied to the input samples. To
achieve this goal, we propose a Consistency-based Robust
Zero-cost proxy (CRoZe) that considers the consistency
of the features, parameters, and gradients between a single
batch of clean and perturbed inputs obtained by taking a
single gradient step. CRoZe enables the rapid evaluation
of the robustness of the neural architectures in the random
states, without any adversarial training (Figure 2).

3.1. Robust Architectures

Formally, our goal is to accurately estimate the final ro-
bustness of a given neural architecture A with given a sin-
gle batch of inputs B = {(x, y)}, without training. Here,
x 2 X is the input sample, and y 2 Y is its corresponding
label for given dataset D = {X,Y }. In the following sec-
tion, the network f✓(·) consists of an encoder e (·) and a
linear layer h⇡(·), which is A that is parameterized with  
and ⇡, respectively. The most straightforward approach to
evaluate the robustness of the network is measuring the ac-
curacy against the perturbed input x0 with unseen semantic-
preserving perturbations, as follows:

Acc. =
1

N

NX

n=1

⇣(argmax
c2Y

P(h⇡ � e (x0) = c) = y), (1)

where ⇣ is the Kronecker delta function, which returns 1 if
the predicted class c is the same as y, and 0 otherwise, x0 is
a perturbed input, such as one with random Gaussian noise,

common types of corruptions (Hendrycks et al., 2020), or
adversarial perturbations (Madry et al., 2018; Goodfellow
et al., 2015) applied to it. Specifically, to have a correct
prediction on the unseen perturbed input x0, the model needs
to extract similar features between x0 and x, assuming that
the model can correctly predict the label for input x as
follows:

k e (x)� e (x
0) k ✏, (2)

where ✏ is sufficiently small bound. Thus, a robust model is
one that can extract consistent features across a wide range
of perturbations. However, precisely assessing the accuracy
of the model against perturbed inputs requires training from
scratch with a full dataset, which incurs a linear increase in
the computational cost with respect to the number of neural
architectures to be evaluated.

3.2. Estimating Robust Network through Perturbation

In this section, we explain details on preliminary protocols
before computing our proxy. Due to the impractical compu-
tation cost to obtain a combinatorial number of fully-trained
models in a given neural architecture search space (i.e., 1019
for DARTS), we propose to utilize two surrogate networks
which together can estimate the robustness of fully-trained
networks within a single gradient step. The two surrogate
networks are a clean network f✓ with the randomly initial-
ized parameter ✓ and a robust network f✓r with the robust
parameter ✓r, which is determined with a parameter pertur-
bations from f✓. Then, the obtained ✓r is used to generate
the single batch of perturbed inputs for our proxy.

Robust Parameter Update via Layer-wise Parameter

Perturbation. We employ a surrogate robust network to
estimate the output of fully-trained networks against per-
turbed inputs. To make the perturbation stronger, we use
a double-perturbation scheme that combines layer-wise pa-
rameter perturbations (Wu et al., 2020) and input pertur-
bations, both of which maximize the training objectives L.
This layer-wise perturbation allows us to learn smoother up-
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dated parameters by min-max optimization, through which
we can obtain the model with the maximal possible gen-
eralization capability (Wu et al., 2020; Foret et al., 2021)
within a single step. Specifically, given a network f is com-
posed of M layers, f✓ = f✓M � · · · � f✓1 , with parameters
✓ = {✓1, . . . , ✓M}, the mth layer-wise parameter perturba-
tion is done as follows:

✓rm  ✓m + � ⇤
r✓mL

�
f✓(x), y

�

kr✓mL
�
f✓(x), y

�
k
⇤ k✓mk, (3)

where � is the step size for parameter perturbations, k · k is
the norm, and L is the cross-entropy objective. This bounds
the size of the perturbation by the norm of the original
parameter k✓mk.

Perturbed Input. On top of the perturbed parameters
(Eq. 3), we generate perturbed input images by employing
fast gradient sign method (FGSM) (Goodfellow et al., 2015),
which is the worst case adversarial perturbation to the input
x as follows:

� = ✏sign
⇣
rxL

�
f✓r (x), y

�⌘
, (4)

where � is a generated adversarial perturbation that max-
imizes the cross-entropy objective L of given input x
and given label y. Then, we utilize the perturbed inputs
(x0 = x+ �) to estimate the robustness of the fully-trained
model. Although CRoZe is an input perturbation-agnostic
proxy (Table 5), we employ adversarially perturbed inputs
for all the following sections.

3.3. Consistency-based Proxy for Robust NAS

We now elaborate the details on our proxy that evaluate
the robustness of the architecture with the two surrogate
networks: the clean network that is randomly initialized
and uses clean images x as inputs, and the robust network
parameterized with ✓r which uses perturbed images x+ �
as inputs.

Features, Parameters, and Gradients. As we described
in Section 3.1, we first evaluate the representational consis-
tency between clean input (x) and perturbed input (x0) by
forwarding them through the encoder of clean surrogate net-
work f✓(·) and robust surrogate network f✓r (·), as follows:

Zm(f✓(x), f✓r (x
0)) = 1 +

zm · zrm
kzmkkzrmk

, (5)

where zm and zrm are output feature of each network f✓(·)
and f✓r (·), respectively, from each mth layer. Especially,
we measure layer-wise consistency with cosine similarity
function between clean and robust features. The higher fea-
ture consistency infers the higher robustness of the network.

However, the proxy solely considering the feature consis-
tency within a single batch can be heavily reliant on the
selection of the batch. Therefore, to complement the feature

consistency, we propose incorporating the consistency of up-
dated parameters and gradient conflicts from each surrogate
network as additional measures to evaluate the robustness
of the network. To introduce these concepts, let us first
denote the gradient and updated parameter of each surrogate
network. The gradient g from the clean surrogate network
f✓ and robust surrogate network f✓r against clean images x
and perturbed images x0, are obtained as follows:

g = r✓L
�
f✓(x), y), gr = r✓rL

�
f✓r (x

0), y), (6)

where g and gr are the gradients with respect to cross-
entropy objectives L of the clean images x and perturbed
images x0 = x+ �, respectively. Then, we can acquire the
single-step updated clean parameters ✓ and robust parame-
ters ✓r calculated with gradients g and gr and learning rate
�, respectively as follows:

✓1  ✓ � �g, ✓r1  ✓r � �gr. (7)

Since each surrogate network represents the model for each
task, i.e., clean classification and perturbed classification,
the parameters and gradients of each surrogate network cor-
respond to the updated weights and convergence directions
for each task. Thus, the network that has high robustness
will exhibit identical or similar parameter spaces for both
classification tasks. However, as acquiring parameters of a
fully-trained network is impractical, we estimate the con-
verged parameters with the single-step updated parameters
✓1 and ✓r1. Accordingly, since the higher similarity of single-
step updated parameters may promote the model to converge
to an identical or similar parameter space for both tasks, we
evaluate the parameter similarity as one of our proxy terms
as follows:

Pm(✓1, ✓
r
1) = 1 +

✓1,m · ✓r1,m
k✓1,mkk✓r1,mk

. (8)

Furthermore, each gradient of the surrogate networks repre-
sents the converged direction of given objectives for each
task, which is cross-entropy loss of clean input and per-
turbed input (Eq. 6). Thus, we employ the gradients similar-
ity as an evaluation of the difficulties of optimizing architec-
ture for both tasks. Therefore, when the gradient directions
are highly aligned between the two tasks, the learning tra-
jectory for both tasks becomes more predictable, facilitating
the optimization of both tasks easily. In contrast, orthogonal
gradient directions lead to greater unpredictability, hinder-
ing optimization and potentially resulting in suboptimality
for both clean or perturbed classification tasks. Therefore, to
evaluate the stability of optimizing both tasks, we measure
the absolute value of gradient similarity as follows:

Gm(g, gr) =

�����
gm · grm
kgmkkgrmk

�����. (9)

Consistency-based Robust Zero-Cost Proxy: CRoZe.

In sum, to evaluate the robustness of the given architec-
ture, we propose a scoring mechanism that evaluates the
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similarities of features, parameters, and gradients between
the clean network f✓ and the robust network f✓r that are
obtained with a single gradient update. Therefore, the ro-
bustness score for a given neural architecture is computed
as follows:

CRoZe(x, x0; f✓, f✓r ) =
MX

m=1

Zm ⇥ Pm ⇥ Gm. (10)

That is, we score the network f✓ with a higher CRoZe score
as more robust to perturbations. In the next section, we
show that this measure is highly correlated with the actual
robustness of a fully-trained model (Table 1a).

4. Experiments

We now experimentally validate our proxy designed to iden-
tify robust architectures that perform well on both clean and
perturbed inputs, on multiple benchmarks. We especially
demonstrate the effectiveness of CRoZe in terms of Spear-
man’s ⇢ (Section 4.2) and computational efficiency with
the final performance of the chosen architecture using our
proxy (Section 4.3). Further additional analysis regarding
our proxy is described in Supplementary B.2.

4.1. Experimental Setting

Datasets. For the NAS-Bench-201 (Dong & Yang, 2019;
Jung et al., 2023) search space, we validate our proxy across
different tasks (CIFAR-10, CIFAR-100, and ImageNet16-
120) and perturbations (FGSM (Goodfellow et al., 2015),
PGD (Madry et al., 2018), and 15 types of common corrup-
tions (Hendrycks & Dietterich, 2019)). To measure Spear-
man’s ⇢ between final accuracies and our proxy values, we
use both clean NAS-Bench-201 (Dong & Yang, 2019) and
robust NAS-Bench-201 (Jung et al., 2023), which include
clean accuracies and robust accuracies. Finally, we search
for the optimal architectures with our proxy in DARTS (Liu
et al., 2019) search space and compare the final accuracies.
More experimental details are in Supplementary A.

4.2. Results on NAS-Bench-201

Standard-Trained Neural Architectures. In order to ver-
ify the effectiveness of our proxy in searching for high-
performing neural architectures across various tasks and per-
turbations, we conduct experiments using Spearman’s ⇢ as
a metric to evaluate the preservation of the rank between the
proxy values and final accuracies (Abdelfattah et al., 2021;
Mellor et al., 2021; Dong et al., 2023). For Spearman’s ⇢
between clean accuracies and proxy values, existing clean
zero-shot NAS works (Abdelfattah et al., 2021; Mellor et al.,
2021) performed worse than using the number of parameters
as a proxy (#Params.). In contrast, our proxy shows signifi-
cantly higher correlations with clean accuracies across all
tasks, demonstrating improvements of 10.2% and 9.31%
on CIFAR-10 and CIFAR-100, respectively, compared to
best-performing baselines (Table 1a, 2).

Furthermore, CRoZe shows remarkable Spearman’s ⇢ for
robust accuracies obtained against adversarial perturbations
and corrupted noises across tasks. Notably, our proxy out-
performs the SynFlow (Abdelfattah et al., 2021) by 6.73%
and 9.05% in an average of Spearman’s ⇢ for adversarial
perturbations and common corruptions on CIFAR-10, re-
spectively (Table 1a). Our results on multiple benchmark
tasks with diverse perturbations highlight the ability of our
proxy to effectively search for robust architectures that can
make consistently outperform predictions against various
perturbations. Importantly, our proxy is designed to priori-
tize generalizability, and as a result, it exhibits consistently
enhanced correlation with final accuracies for both clean and
perturbed samples. This result indicates that considering
generalization ability is effective in identifying robust neural
architectures against diverse perturbations but also leads to
improved performance for clean neural architectures.
Adversarially-Trained Neural Architectures. We also
validate the ability of our proxy to precisely predict the
robustness of adversarially-trained networks, specifically
for adversarial perturbations. Adversarial training (Madry
et al., 2018) is a straightforward approach to achieve ro-
bustness in the presence of adversarial perturbations. To as-
sess the Spearman’s ⇢ of robustness in adversarially-trained
networks, we construct a dataset consisting of final robust
accuracies of 500 randomly sampled neural architectures
from NAS-Bench-201 search space that are adversarially-
trained (Madry et al., 2018) from scratch.

Considering the trade-off between the clean and robust
accuracy in adversarial training (Zhang et al., 2019), we
employ the harmonic robustness score (HRS) (Devagup-
tapu et al., 2021) to evaluate the overall performance of the
adversarially-trained models. When comparing the correla-
tions between clean performances and proxy values, existing
clean zero-shot NAS approaches, i.e., SynFlow and Grasp,
demonstrate higher correlations in the FGSM or PGD, but
their correlations with clean performances are poorer than
GradNorm and Fisher, respectively. This result shows that
clean zero-shot NAS methods tend to search for architec-
tures that are more prone to overfitting to either clean or
robust tasks (Table 1b). In contrast, CRoZe consistently
achieves higher Spearman’s ⇢ for both clean and robust
tasks, ultimately enabling the search for architecture with
high HRS due to consideration of alignment in gradients.

4.3. End-to-End Generalization Performance on

DARTS

In this section, we evaluate the effectiveness of CRoZe in
rapidly searching for generalized neural architectures in the
DARTS search space and compare it with previous clean
one-shot NAS (Xu et al., 2020; Chen et al., 2020), clean
zero-shot NAS (Tanaka et al., 2020), and robust NAS (Mok
et al., 2021; Guo et al., 2020) in terms of performance and
computational cost.
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Table 1: Comparison of Spearman’s ⇢ between the actual accuracies and the proxy values on CIFAR-10 in the NAS-Bench-201
search space. Plain, Grasp, Fisher, GradNorm, SynFlow are zero-cost methods from Abdelfattah et al. (2021). NASWOT (Mellor
et al., 2021) is using activation as a proxy. Clean stands for clean accuracy and robust accuracies are evaluated against adversarial
perturbations (Goodfellow et al., 2015) with various attack sizes (✏) and common corruptions (Hendrycks & Dietterich, 2019). Avg.
stands for average Spearman’s ⇢ values with all accuracies. Bold and underline stands for the best and second.

Proxy Type Clean Adversarial Perturbation Common Corruption

✏ = 8 ✏ = 4 ✏ = 2 Weather Noise Blur Digital Avg.

FLOPs 0.726 0.753 0.740 0.716 0.665 0.138 0.219 0.473 0.554
#Params. 0.747 0.756 0.739 0.713 0.674 0.131 0.215 0.489 0.558
Plain -0.073 -0.059 -0.055 -0.029 -0.041 0.048 0.035 -0.032 -0.026
Grasp 0.440 0.547 0.563 0.541 0.459 0.217 0.164 0.327 0.407
Fisher 0.356 0.457 0.491 0.498 0.407 0.217 0.221 0.240 0.361
GradNorm 0.598 0.750 0.766 0.743 0.641 0.246 0.227 0.423 0.549
SynFlow 0.737 0.778 0.750 0.727 0.673 0.188 0.165 0.554 0.572
NASWOT 0.660 0.511 0.507 0.435 0.466 -0.066 -0.005 0.413 0.365

CRoZe 0.823 0.826 0.801 0.780 0.743 0.190 0.224 0.566 0.619

(a) Standard-Trained

Proxy Type Clean FGSM PGD HRS(FGSM) HRS(PGD)

FLOPs 0.670 0.330 0.418 0.531 0.515
#Params. 0.678 0.341 0.429 0.541 0.526
Plain -0.042 -0.007 -0.012 -0.016 -0.016
Grasp 0.470 0.324 0.341 0.392 0.375
Fisher 0.482 0.226 0.276 0.335 0.334
GradNorm 0.659 0.336 0.400 0.490 0.478
SynFlow 0.635 0.355 0.420 0.519 0.498
NASWOT 0.600 0.332 0.381 0.437 0.438

CRoZe 0.723 0.417 0.501 0.602 0.588

(b) Adversarially-Trained

Table 2: Comparison of Spearman’s ⇢ between the actual accu-
racies and the proxy values on CIFAR-100 and ImageNet16-120
in NAS-Bench-201 search space. Plain, Grasp, Fisher, GradNorm,
SynFlow are zero-cost methods from Abdelfattah et al. (2021).
NASWOT (Mellor et al., 2021) is zero-cost proxy approach using
activation as a proxy. Avg. stands for average Spearman’s ⇢ values
with all accuracies within each task.

Proxy Type CIFAR-100 ImageNet16-120

Clean FGSM Weather Noise Blur Digital Avg. Clean FGSM Avg.

FLOPs 0.705 0.663 0.674 0.25 0.444 0.607 0.557 0.657 0.611 0.634
#Params. 0.720 0.654 0.685 0.240 0.438 0.618 0.559 0.683 0.627 0.655
Plain -0.126 -0.100 -0.095 -0.002 -0.064 -0.080 -0.078 -0.15 -0.145 -0.148
Grasp 0.475 0.548 0.486 0.262 0.374 0.441 0.431 0.400 0.437 0.419
Fisher 0.378 0.573 0.419 0.325 0.435 0.391 0.420 0.315 0.388 0.352
GradNorm 0.635 0.791 0.549 0.358 0.534 0.609 0.579 0.562 0.643 0.603
SynFlow 0.769 0.685 0.703 0.217 0.389 0.642 0.568 0.751 0.695 0.723
NASWOT 0.683 0.513 0.353 0.273 0.517 0.000 0.390 0.653 0.686 0.670

CRoZe 0.787 0.693 0.747 0.251 0.450 0.682 0.602 0.769 0.696 0.733

We validate the final performance of the neural architectures
discovered by CRoZe (Table 3) and compare the search
time and performance with existing NAS frameworks in-
cluding robust NAS (RobNet (Guo et al., 2020) and Ad-
vRush (Mok et al., 2021)), clean zero-shot NAS (SynFlow,
GradNorm (Abdelfattah et al., 2021)), and clean one-shot
NAS (PC-DARTS (Xu et al., 2020) and DrNAS (Chen et al.,
2020)). For a fair comparison between clean zero-shot
NAS (SynFlow, GradNorm) and CRoZe, we sample the
same number (5,000) of candidate architectures using the
warmup+move strategy in the DARTS search space. All
experiments are conducted on a single NVIDIA 3090 RTX
GPU to measure search costs.

Our proxy surpasses the robust NAS methods, RobNet and
AdvRush, in terms of robust accuracy against FGSM on
CIFAR-10, achieving improvements of 8.95% and 6.21%,
respectively. Notably, CRoZe also shows the highest HRS
accuracy with an 8.56% increase compared to AdvRush
on CIFAR-10, indicating that the neural architectures dis-
covered by CRoZe effectively mitigate the trade-off be-
tween clean and robust accuracy, even with 14.7 times re-
duced search cost. When compared to the previously best-
performing clean zero-cost proxy, SynFlow, CRoZe finds
architectures with significantly superior performance across
clean, common corruptions, and FGSM scenarios, showcas-
ing the effectiveness of our proxy in identifying generalized

Table 3: Comparisons of the final performance of the searched
network and search time in DARTS search space on CIFAR-10
and CIFAR-100.

NAS Method Zero # Params Time Standard-Trained

cost (M) (GPU sec) Clean CC. FGSM HRS

CIFAR-10

PC-DARTS (Xu et al., 2020) 3.60 8355 95.35 73.62 14.56 25.26
DrNAS (Chen et al., 2020) 4.10 46857 94.64 72.62 13.96 24.33
RobNet (Guo et al., 2020) 5.44 274062 95.30 72.51 13.43 23.54
AdvRush (Mok et al., 2021) 4.20 251245 94.80 72.00 16.17 27.63
GradNorm (Abdelfattah et al., 2021) X 4.69 9740 92.84 71.82 15.55 26.64
SynFlow (Abdelfattah et al., 2021) X 5.08 10138 90.41 66.93 10.59 18.96
CRoZe X 5.52 17066 94.45 74.63 22.38 36.19

CIFAR-100

PC-DARTS (Xu et al., 2020) 3.60 8355 76.96 49.95 7.93 14.38
DrNAS (Chen et al., 2020) 4.10 46857 77.46 50.76 7.87 14.29
RobNet (Guo et al., 2020) 5.44 274062 76.15 49.43 6.47 11.93
AdvRush (Mok et al., 2021) 4.20 251245 76.33 49.53 8.21 14.83
GradNorm (Abdelfattah et al., 2021) X 3.83 9554 67.95 42.81 5.11 9.51
SynFlow (Abdelfattah et al., 2021) X 4.42 9776 75.93 48.53 8.22 14.83
CRoZe X 4.72 17457 75.18 49.35 10.84 18.95

architectures. Additionally, the neural architecture chosen
by CRoZe outperforms clean one-shot NAS approaches in
HRS accuracy (Figure 1).

5. Conclusion

While neural architecture search (NAS) is a powerful tech-
nique for automatically discovering high-performing deep
learning models, previous works suffer from two major
drawbacks: computational inefficiency and compromised
robustness against diverse perturbations, which hinder their
applications in real-world scenarios with safety-critical ap-
plications. In this paper, we proposed a simple yet effective
lightweight robust NAS method that can rapidly search for
well-generalized neural architectures against diverse pertur-
bations. To this end, we proposed a novel consistency-based
zero-cost proxy that evaluates the robustness of randomly
initialized neural networks by measuring the consistency in
their features, parameters, and gradients for both clean and
perturbed inputs. Experimental results demonstrate the ef-
fectiveness of our approach in discovering well-generalized
architectures across diverse search spaces, multiple datasets,
and various types of perturbations, outperforming the base-
lines with significantly reduced search costs. Such simplic-
ity and effectiveness of our approach open up new possibili-
ties for automatically discovering high-performing models
that are well-suited for safety-critical applications.
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