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ABSTRACT

Training Vision-Language Models (VLMs) for Graphical User Interfaces (GUI)
agents via Reinforcement Learning (RL) faces critical challenges: environment-
based RL requires costly interactions, while environment-free methods struggle
with distribution shift and reward generalization. We propose an environment-
free RL framework that decouples value estimation from policy optimization by
leveraging a pretrained Value Environment Model (VEM), which requires no live
environment interaction during policy optimization. VEM predicts state-action
values directly from offline data, distilling human-like priors about GUI interaction
outcomes without requiring next-state prediction or environmental feedback. This
avoids compounding errors and enhances resilience to UI changes by focusing
on semantic reasoning (e.g., “Does this action advance the user’s goal?”’). The
framework operates in two stages: (1) pretraining VEM to estimate long-term ac-
tion utilities and (2) guiding policy exploration with frozen VEM signals, enabling
layout-agnostic GUI automation. Evaluated across diverse benchmarks including
Android-in-the-Wild for mobile apps and Multimodal-Mind2Web for web environ-
ments, VEM achieves state-of-the-art or highly competitive performance in both
offline and online settings. It significantly outperforms environment-free baselines
and matches or exceeds environment-based approaches, crucially without incurring
interaction costs. Importantly, VEM demonstrates that robust, generalizable GUI
agents can be trained efficiently using semantic-aware value estimation, proving
effective across distinct interaction platforms like mobile and web. The code is
available at https://anonymous.4open.science/r/VEM-Agent-51E7,

1 INTRODUCTION

Vision-Language Models (VLMs) have shown strong capabilities in common-sense reasoning, ab-
straction, and generalization, enabling applications across domains|Zhou et al.|(2022); Zhang et al.
(2024d), including autonomous GUI agents [Zhang et al.| (2024a); |Wang et al.| (2024b); [Nguyen
et al.|(2024). These agents leverage VLMs to interpret visual and textual inputs for automating GUI
interactions, such as locating and clicking interface elements based on natural language commands.
This allows automation of tasks ranging from web navigation to complex software operations|Yan
et al.[(2023); |Zhang & Zhang| (2023)); [Zhang et al.| (2023)); [Rawles et al.| (2024); Bai et al.| (2024);
Hong et al|(2024). Despite the progress in general-purpose models like GPT-40|OpenAl| (2024) and
Gemini 1.5 Pro|DeepMind|(2024), real-world GUI tasks remain challenging due to the variability of
interfaces. Minor layout changes (e.g., pop-ups or repositioned buttons) can lead to misinterpreta-
tion [ Xie et al.|(2024)); Zhang et al.| (2024bge); Bai et al.| (2024)); [Zhang et al.|(2024a). This highlights
the need for specialized VLMs optimized for GUI tasks. Reinforcement Learning (RL) [Sutton
(2018)) is an effective approach for aligning models with target behaviors [Zhai et al.|(2024); |Sun
et al.| (2024). In environment-based RL, models learn by interacting with environments and receiving
feedback [Toyama et al.|(2021); |Bai et al.| (2024)); Carta et al.| (2023); |Wang et al.| (2024c); [Lai et al.
(2024)), but these methods suffer from high interaction costs and sample inefficiency Xie et al.| (2021);
Niu et al.| (2022). Simulated environments |Chae et al.| (2024)); \Gu et al.| (2024) can alleviate this but
often face fidelity issues and compounding prediction errors |Guan et al.|(2023); |[Zhang et al.| (2024{);
Ge et al.|(2024)). Alternatively, environment-free RL leverages offline RL |Snell et al.{(2022); Hong
et al.[(2023)); Bai et al.| (2024); [Wang et al.|(2024a) or reward model training [Stiennon et al.| (2020);
Ouyang et al.|(2022), avoiding the need for online interaction. However, offline RL is challenged by
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distribution shift|Levine et al.| (2020) and limited exploration Prudencio et al.|(2023), while reward
model-based methods may fail to generalize in dynamic GUI scenarios where interface changes
render static reward signals ineffective |Stiennon et al.|(2020).
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code similar priors about action outcomes |Hao
et al| (2023); Bai et al] (2023); [Chen et al| | & Youli@Shorts °ongO@
(2023)). To operationalize this capability and ad- ns.. cicimor  coor e vome
dress aforementioned challenges, we propose an B s
environment-free RL framework that decouples '
value estimation from policy optimization. Un-
like prior approaches that rely on reward models
or require direct interaction with the environ-
ment, our method leverages a pretrained value
environment model (VEM) to directly approx-
imate state-action values from offline data. A
key distinction here lies in feedback and value
estimation: traditional reward models typically
provide sparse, trajectory—level feedback (i'e.’ (a) Task: What's the l_atest video (b) Task: Op_en the clalendarand
. . . from GameSpot Reviews? show me this week's events?

evaluating an entire sequence of actions rather

than individual steps), whereas the VEM learns
a dense, step-wise value function—one that es-
timates the long-term utility of each individual
action in the sequence. This dense, step-specific
value signal delivers more granular and action-
able guidance, which is particularly critical for complex multi-step tasks where assigning credit to
specific actions is otherwise difficult. By distilling human-like priors into a frozen VEM, our policy
model bypasses the need for explicit reward engineering or error-prone next-state simulations. Addi-
tionally, the VEM’s resilience to superficial UI changes stems from its focus on semantic reasoning:
it evaluates an action based on its contribution to the overall task goal (e.g., "Does this action advance
the user’s goal?"), rather than attempting to predict brittle, pixel-level next states.
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Figure 1: Two GUI tasks with the action marked
as ared dot (@). In (a), clicking the ’share’ button
is unlikely to reveal reviews. In (b), the action may
open the calendar app to display weekly events.

Concretely, our framework operates in two stages:

1. Value Environment Model Pretraining: The VEM is trained offline to predict state-action
values (s, a), capturing the long-term utility of actions in diverse GUI contexts. This avoids the
compounding errors of next-state prediction by focusing on value estimation, which aligns better
with VLMSs’ inherent reasoning strengths.

2. Policy Exploration with Frozen VEM: During policy training, the VEM provides value-guided
signals to iteratively refine the policy’s action selection. By directly exploring for high-value actions
that are grounded in the VEM’s understanding of GUI semantics, the policy learns to generalize
across unseen layouts and functionalities without online interaction.

To evaluate our method, we conduct rigorous experiments across diverse GUI automation bench-
marks, specifically Android-in-the-Wild (AITW) Rawles et al.| (2024) for mobile applications and
Multimodal-Mind2Web (MM-Mind2Web) Deng et al.| (2023)) for web-based tasks, using dual of-
fline/online protocols. Across both platforms, our approach achieves strong performance. On the
AITW benchmark, with only 500 training trajectories (equivalent to one-third the scale of the Di-
giRL/DigiQ Bai et al.|(2024;|2025a)) dataset), our approach achieves 34%/35% offline task success
rates on General/Webshopping domains, outperforming environment-free counterparts by 5-26%
and exceeding previous environment-based methods by 8%. In AITW online deployment, we attain
49.15% general task success, surpassing environment-free methods by 23-49% while remaining
comparable to environment-based policies (38.98%) in procedural efficiency (7.59 vs. 7.25 average
steps). On the MM-Mind2Web dataset, our method achieves success rates of 55.8%/51.2%/50.5%
on the cross-task/cross-website/cross-domain test sets, outperforming other methods trained on the
same MM-Mind2Web training set by 4-35%. Notably, we only use 7.7k training samples, yet our per-
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formance surpasses models trained on large-scale pretraining data by 2-39%. Crucially, our method
eliminates catastrophic failures seen in generic models (e.g., GPT-40) and achieves substantial relative
improvements over the strongest baselines across both mobile and web environments, all without
environmental interaction costs. These results demonstrate that offline policy optimization guided by
VEM can rival online-trained systems while significantly advancing environment-free paradigms for
broader GUI automation tasks.

2 RELATED WORKS

2.1 ENVIRONMENT-BASED METHODS

Environment-based RL methods train VLMs through direct interaction with GUI environments, where
rewards are explicitly provided by the environment. Several frameworks like AndroidEnv|Toyama et al.
(2021) and DistRL [Wang et al.|(2024c) enable agents to learn through trial-and-error interactions with
real-world digital interfaces. Recent works such as DigiRL |Bai et al.[(2024) and AutoWebGLM |Lai
et al| (2024) demonstrate that environment-based RL can effectively align VLMs with complex
GUI navigation tasks through autonomous exploration. However, these methods face significant
limitations in sample efficiency due to the high cost of environment interactions Xie et al.[(2021); Niu
et al.| (2022), particularly in real-world applications where collecting online feedback is expensive
and suffers from high latency. To address this, some approaches like WebRL |Q1 et al.| (2024) and
WorldGPT |Ge et al.| (2024) attempt to simulate GUI environments, but they struggle with state
prediction accuracy and compounding errors in long interaction sequences |Guan et al.|(2023);|Zhang
et al.| (2024f). The fundamental challenge lies in the dynamic nature of real-world GUIs, where
interface elements and layouts frequently change, making environment-dependent reward signals
inherently unstable |Zhang et al.| (2024bge).

2.2 ENVIRONMENT-FREE METHODS

Traditional planning-based methods, such as Agent Q [Putta et al.|(2024), ReST-MCTS [Zhang et al.
(2024c), and QLASS [Lin et al.| (2025), rely on Monte Carlo Tree Search or similar algorithms. These
approaches require extensive environment interaction and on-policy data, limiting their practicality in
real-world GUI scenarios due to privacy, latency, and cost issues. Environment-free methods address
these limitations by using offline datasets or learned reward models. Offline RL techniques|Snell et al.
(2022); Hong et al.| (2023) fine-tune vision-language models (VLMs) with pre-collected trajectories,
as seen in large-scale GUI agent training [Wang et al| (2024a)); Bai et al|(2024). Reward model-
ing|Stiennon et al.[(2020); Ouyang et al.| (2022)) predicts task success from static datasets, enabling
behavior alignment without real-time feedback. General-purpose VLMs like GPT-40 |OpenAl| (2024)
leverage pre-trained capabilities for zero-shot GUI understanding [Yan et al.| (2023)); |[Zhang et al.
(2023)), offering out-of-the-box solutions without RL training. However, environment-free methods
face challenges. Offline RL suffers from distribution shift in novel GUI configurations |Levine et al.
(2020), and reward models are sensitive to interface changes Prudencio et al.|(2023). Advanced
VLMs like GPT-40 struggle with GUI complexity due to insufficient task-specific fine-tuning Xie et al.
(2024)); Zhang et al.| (2024b). Recent hybrid approaches aim to bridge these gaps. SeeClick Cheng
et al.| (2024)) combines environment-free pretraining with targeted fine-tuning, while Digi-Q Bai et al.
(2025a) learns a Q-value function for action generation without full environment simulation. Our
method introduces a Value Environment Model (VEM) that learns environment dynamics and value
structure offline, reducing reliance on real-environment rollouts for scalable GUI agent development.

3 METHOD

This section presents our method for training a GUI agent with offline data, followed by an extended
theoretical analysis. As shown in Figure |2| we first describe how to learn VEM from GPT-40
labeled data, then show that the resulting policy can achieve near-optimal performance under certain
coverage and accuracy conditions. We further incorporate distribution-shift arguments to highlight
the relationship between dataset quality and final policy performance.
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3.1 PRELIMINARY

We formalize GUI navigation as a Markov Decision Process M = (S, A, P, r,~) where: States
s € §: Task descriptions + interaction histories + current GUI screenshot. Actions a € A: Our
Agent Action design is compatible with the corresponding benchmark, as detailed in Appendix [C}
P(s'|s, a): Unknown environment dynamics. Rewards (s, a) € {1,2}: 1 for suboptimal actions, 2
for optimal actions. y € [0, 1): Discount factor.

Given an offline dataset D = {(s;, a;, i, s;)} ¥, collected by unknown behavior policies or subopti-
mal behavior policy 3, our goal is to learn a policy 74 (a|s) maximizing expected returns without
environment interaction.

3.2 VALUE ENVIRONMENT MODEL TRAINING

A core challenge in GUI automation is the scarcity of explicit reward signals that indicate whether a
chosen action advances or hinders task completion. While the benchmark datasets include trajectory-
level success labels, they lack the more granular, step-level value supervision necessary for training a
Q-function. Therefore, we leverage GPT-40 to generate these necessary dense value signals based
on the full trajectory context. Our strategy is to generate coarse but direct supervision by leveraging
GPT-40’s understanding of the GUI context. Specifically, we assign each state-action pair a binary
label, capturing whether the action is beneficial or detrimental to the target task. This annotated
supervision then guides the learning of a VEM, which is a state-action value function @y, avoiding
the need for explicit environment interactions.
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Figure 2: VEM Architecture: (1) Offline dataset annotation using GPT-40’s task understanding, and
VEM training via supervised regression. (2) Policy optimization through frozen VEM maximization,
encouraging the policy model to explore high-value actions.

LLM-Guided Annotation. For each state-action pair (s, a) in our offline dataset D, we leverage
GPT-40 with chain-of-thought reasoning|Wei et al.|(2022) to generate binary labels £(s, a) € {1, 2},
simulating human-like task progress assessment. This choice simplifies the annotation process, and
the specific values do not affect training as they are normalized before optimization (see Appendix [E]
for details). By providing the LLM with the full task and trajectory context, it assesses an action’s
semantic contribution to the final goal. By conditioning on the full interaction context rather than
predicting explicit next states, VEM learns to judge whether an action semantically advances the task
goal. This encourages reasoning that abstracts away from surface-level layout details and emphasizes
task-level semantics. These annotations provide coarse supervision signals, where ¢ = 2 indicates
actions expected to aid task completion, while £ = 1 marks potentially counterproductive steps. This
labeling scheme approximates long-term value through immediate assessments, circumventing the
need for explicit reward engineering.

Supervised Value Learning. Using the annotated subset D = {(s;,a;,¢;)}, we fine-tune a
Qwen2.5VL Bai et al.| (2025b) model to predict label values through mean squared error mini-
mization:

min B, , 5 | (Qo(s,0) = )

4
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The trained @)y estimates action quality through environmental understanding distilled from GPT-40’s
annotations, rather than online interactions, to reduce cost and latency during subsequent training.

Stable Policy Guidance. After convergence, we freeze )y as a fixed VEM to provide consistent
action evaluations. While the binary labels represent simplified supervision, they effectively encode
task progression patterns that guide subsequent policy learning. This approach maintains stability by
decoupling environment modeling from policy optimization, while remaining fully offline-trainable.

3.3 PoLICY LEARNING WITH THE FROZEN VEM

Having established a VEM that can evaluate actions in any given GUI state, we now wish to derive a
policy that selects actions maximizing the predicted value. By freezing Qg as a fixed state-action
value estimator, we transform policy learning into a stable optimization problem that leverages
consistent value predictions without environment interactions.

3.4 VALUE MAXIMIZATION WITH FROZEN VALUE MODEL

We formulate policy learning as a value maximization problem guided by a frozen Q-function
Qo (s,a), referred to as the Value Environment Model (VEM). This model is pre-trained offline
using trajectory-level annotations from GPT-40 and remains unchanged during policy optimization.

The policy 74(a | s) is optimized to maximize the expected value estimated by the fixed VEM over
the offline dataset D:

max E,up amm.(-ls s,a
2 D, a~my(|s) | Qo(s;a)

frozen

This frozen Q-function serves as a surrogate reward signal, allowing policy optimization without
further environment interaction. The decoupling of value learning and policy learning ensures training
stability and computational efficiency.

Coverage Regularization via SFT Initialization. To reduce the risk of distribution shift and ensure
that the policy remains within the support of the offline dataset, we initialize 7, using supervised
fine-tuning (SFT) on behavior trajectories. This anchors the policy close to the behavior policy /3,
implicitly encouraging good coverage of D without requiring explicit regularization during policy
optimization.

Policy Optimization. We apply standard policy gradient methods to optimize 7y against the fixed
Q-function. The gradient of the objective is:

VT (Tg) = Esup, ammy(ls) [V logmg(a | s) - Qa(s,a)],

where )y remains fixed throughout. This update increases the likelihood of high-value actions,
leveraging static supervision from the VEM.

Distinction from Traditional RL. Unlike actor—critic or Q-learning frameworks—which jointly
update the value and policy networks—our method explicitly separates these stages. Qg is trained once
offline, then frozen during RL. This separation offers the following advantages: (1) No environment
interactions are needed after Q-learning. (2) A fixed target avoids instability from bootstrapping
errors. (3) Policy learning reduces to maximizing a fixed, pretrained signal.

Interpretation of the Frozen Value Model. The VEM @y encodes action quality based on task-
level success signals, without depending on transition dynamics. It replaces traditional reward
feedback, transforming policy learning into a form of offline, value-guided behavior cloning. Training
over static data with a frozen value model yields stable updates and avoids the variance associated with
on-policy rollouts or dynamic targets. This is especially suited for GUI domains, where environment
resets are expensive or unavailable.



Under review as a conference paper at ICLR 2026

3.5 THEORETICAL ANALYSIS

We now present a formal performance guarantee under realistic offline RL conditions. Specifically,
we show that if the learned value model QQy—trained offline and frozen during policy optimiza-
tion—approximates the true optimal Q-function Q* on the support of the offline dataset D, and the
learned policy remains sufficiently close to the data distribution, then the resulting policy achieves
provably bounded suboptimality.

Coverage and Approximate Q-Function Assumptions Let d(s,a) denote the state-action
visitation distribution of policy m. We define two key conditions for our analysis:

(1) Coverage Ratio. Cov(D, ) = E(4 q)~d, [1{(s,a) € supp(D)}] . We require Cov(D,7) > 14,
meaning the learned policy rarely selects actions outside the dataset’s support.

(2) Q-Function Approximation. We assume () is a uniformly accurate approximation of Q* over the
dataset support: |Qy(s,a) — Q*(s,a)| <e V(s,a) € D.

Performance Bound with Frozen Value Model The following theorem quantifies the suboptimal-
ity of the policy 7, which maximizes the frozen Q-values over offline states:

Theorem 3.1 (Frozen Q Performance Bound). Let # = argmax, E.op qun(|s) [Qo(s,a)], and
suppose that the coverage and approximation assumptions above hold. Then, there exists a constant
¢ > 0 (depending on the discount factor vy and episode horizon) such that:

J(m") = J(7) < ¢ (e +9),

where T denotes the optimal policy.

The proof follows from standard performance difference bounds and offline RL distribution mismatch
arguments (see Appendix [D|for details). It highlights that the total performance gap is bounded by
the Q-function error € and the dataset coverage gap 6.

Assumption Validity and Practical Considerations In our implementation, the VEM @y is
trained using GPT-40-generated value labels that reflect task completion success. Human validation
on 50 random samples from each dataset shows a 90% agreement rate (see details in Appendix I},
suggesting that the approximation error € is small in practice. To control coverage shift, we initialize
74 via supervised fine-tuning (SFT) on behavior trajectories. This anchors the policy distribution near
the dataset’s support without requiring an explicit KL penalty during policy optimization. Empirically,
we measure Cov(D, 7) ~ 81%'| which is sufficient to maintain theoretical guarantees.

Design Implications and Empirical Support Theorem [3.1|highlights three practical strategies
for tightening the suboptimality bound: (1) improving annotation fidelity or scaling model capacity
to reduce the value approximation error €; (2) maintaining high dataset coverage by initializing the
policy via supervised fine-tuning (SFT) on behavior-aligned trajectories, which mitigates distribution
shift; and (3) freezing the learned value model @Dy during policy optimization to stabilize gradients
and enable tractable offline learning.

Empirically, we find that enhancing the quality of QQy—via larger vision-language models or refined
prompting—consistently improves downstream task success rates. For instance, scaling the value
model from 7B to 32B parameters yields better action-value estimation and stronger policies. Addi-
tionally, policies trained without SFT exhibit degraded performance, underscoring the importance of
warm-starting to remain within high-coverage regions of D and support the assumptions required for
theoretical guarantees.

4 EXPERIMENTS

In this section, we evaluate the effectiveness of our proposed Value Environment Model (VEM)
framework. We conduct experiments on two GUI automation benchmarks: AITW |Rawles et al.| (2024)
representing mobile application environments, and MM-Mind2Web |Deng et al.| (2023) representing
web-based environments.

'This data is calculated by Auto-GUI-Base in offline AITW benchmark
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4.1 DATA COLLECTION

Training Data for Critic Model. To align Qwen2.5VL with the critic model’s schema and evalu-
ation framework, we used GPT-40 for multimodal data annotation and assessed agent actions. As
shown in Figure|l} our evaluation system defines two action quality levels based on effectiveness.

Level 1 (Suboptimal Actions). Manifest deviations from optimal task execution, specifically
including: (1) erroneous text inputs compromising workflow integrity, (2) interface interactions
triggering adversarial outcomes such as advertisement redirections, and (3) premature declarations of
task completion prior to objective fulfillment.

Level 2 (Optimal Actions). Demonstrate maximally effective task-solving behaviors, characterized
by three critical patterns: (1) verifiable task completion through interface state validation, (2) robust
recovery strategies, and (3) context-aware selection of optimal entry points for subtask resolution.

The complete evaluation prompts and annotation protocols are formally specified in Appendix

Table 1: AITW dataset: training/testing tasks  Table 2: MM-Mind2Web dataset composition:

and interaction steps with action quality levels. number of tasks and interaction steps.
Category Split  Tasks Steps L1 L2 Split Tasks Steps
General Train 436 3340 1187 2153 Train 1009 7775
Test 100 777 214 563 Cross-Task Test 252 2094

. Cross-Website Test 177 1373
. Train 560 6240 1939 4301 .
Webshopping Test 91 772 273 499 Cross-Domain Test 912 5911

Both benchmarks follow SeeClick |(Cheng et al.|(2024)) standards for data selection and evaluation.
Tables [I] and 2] detail AITW and MM-Mind2Web task/step distributions and action quality levels
(Level 1/2).

4.2 IMPLEMENTATION DETAILS

Critic model We used GPT-4o to annotate and score benchmark data with task descriptions, action
sequences, evaluated actions, and annotated screenshots, enhancing labeling accuracy with visualized
annotations. Suboptimal data was generated using GPT-4o to address data imbalances. Prompts are
in Appendix[J] More details are provided in Appendix

Policy model The AITW dataset policy is built on the SFT Auto-GUI base model, while the MM-
Mind2Web policy uses Qwen2.5VL-3B as its base. In both cases, the critic model parameters are
kept frozen during training. Our Q-value curve in training is very stable, as detailed in Appendix

4.3 VEM PERFORMANCE

We evaluate the performance of our VEM models on both the General and WebShopping datasets, as
shown in Table|3| Our trained VEM achieves accuracy scores of 77% and 85% on the AITW and
MM-Mind2Web benchmarks, demonstrating high performance reliability. This level of accuracy is
sufficient to drive policy optimization via exploration. As shown in Figure[3] the model assigns a high
value to the correct action (’click cart’) while penalizing suboptimal actions, guiding the policy’s
exploration.

4.4 MAIN RESULTS

We evaluate our method on two benchmarks: AITW (General and Webshopping tasks) and MM-
Mind2Web. For AITW, we use two evaluation schemes: (1) Offline Evaluation computes step/task
success rates (SRs) by comparing predicted actions with human annotations; (2) Online Evaluation
deploys the agent in Android environments (aligned with DigiRL), using GPT-40 as a judge, with
10-step limits and duplicate task removal. To ensure the reliability of this metric, we performed
a manual validation study which revealed a 97.5% agreement rate between the LLM judge and
human expert evaluations, supporting its use as an accurate proxy for task success (see Appendix [H]
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Figure 3: VEM scoring different actions at a single timestep.
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Figure 4: A case study of task execution trajectory comparison with DigiRL.

for details). For MM-Mind2Web, we conduct Offline Evaluation, calculating element accuracy,
operation F1, and step success rate. Baseslines Details can be found in Appendix [E|

4.4.1 AITW BENCHMARK RESULTS
Table 3: Performance on the VEM.

As shown in Table [ and Table B} our

. Dataset Precision Recall F1 Acc

approach achieves SOTA performance on
AITW benchmarks. Ofﬂine’ our method AITW (General+Webshopping) 0.83 0.84 083 0.77
MM-Mind2Web 0.85 084 0.84 0.85

with Auto-GUI policy model attains 30.0%
Task SR in General and Webshopping do-
mains, outperforming baselines. Scaled to SeeClick (9.6B), it reaches 34.0% and 35.0%, showing
value model guidance efficacy without extra data. Online, our method generalizes well under
real-world noise, achieving 49.15% and 20.00% success in General and Webshopping. Interaction
efficiency is maintained with step lengths comparable to supervised methods (Auto-GUI: 7.83/7.86
vs. 7.92/9.34 , SeeClick: 7.59/7.68 vs. 8.80/9.80), avoiding DigiRL-online’s trade-off of shorter steps
(7.25/7.37) for lower success.

4.4.2 MIND2WEB BENCHMARK RESULTS

As shown in Table@ our 3B model attains the highest Step Success Rate (Step SR) of 55.8%, 51.2%),
and 50.5% under Cross-Task, Cross-Website, and Cross-Domain settings. Compared with other
models trained only on the MM-Mind2Web dataset, our model achieves state-of-the-art (SOTA)
performance across all metrics. Even when compared with models that have been extensively and
diversely trained on larger datasets, our model shows only slight underperformance in operation
F1 on two test sets, while still surpassing them in step success rate. This fully demonstrates the
effectiveness of VEM, which can effectively simulate interaction with the environment on a limited
training set, achieving excellent results even on a 3B policy model.

4.4.3 ABLATION STUDY

We performed extensive ablation studies (detailed in Appendix [F)) which confirmed the benefits of a
larger critic model and more training data. Crucially, the studies showed that SFT initialization is
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Table 4: Offline results on AITW benchmark. Table 5: Online results on AITW benchmark.
General Webshopping General ‘Webshopping

Step SR Task SR Step SR Task SR Task SR Step Len Task SR Step Len
GPT-40[OpenAT(2024] 68.4 9.0 63.9 5.0 GPT-40[OpenAT|(2024] 0.00 9.00 0.00 9.91
Auto-GUI (200M)Zhang & Zhang|(2024}  83.3 20.0 78.0 18.0 Auto-GUI(200M)|Zhang & Zhang[(2024] ~ 28.81 7.92 2.86 9.34
CogAgent (9B)Hong et al.[(2024] 73.7 16.0 722 9.0 CogAgent (9B) Hong et al. (2024 38.98 7.23 14.29 7.80
Seeclick (9.6B)/Cheng et al. (2024] 83.3 26.0 79.1 18.0 Seeclick (9.6B)/Cheng et al. (2024} 25.42 8.80 11.43 9.80
Digirl-offline (200M)(Bai et al. {(2024] 832 23.0 84.2 24.0 Digirl-offline (200M)[Bat et al.{(2024] 3898  7.61 1429 826
Digirl-online (200M)|Bai et al.|(2024] 833 26.0 85.1 26.0 Digirl-online (200M)|Bai et al. (2024 38.98 7.25 11.43 7.37
DigiQ (200M)|Bai et al.|(2025a) 84.2 29.0 85.4 28.0 DigiQ (200M)|Bai et al. [{2025a) 33.90 6.76 571 8.43
Oursawocur 200M) 847 30.0 85.6 30.0 Ours suo-gut (200M) 237 783 1429 7386
Oursseeciick (9.6B) 86.3 34.0 86.7 35.0 Oursseeciick (9.6B) 49.15 7.59 20.00 7.68

Table 6: Performance comparison on MM-Mind2Web across different settings. We report element
accuracy (Ele.Acc), operation F1 (Op.F1), and step success rate (Step SR).

Method Cross-Task Cross-Website Cross-Domain
Ele.Acc  Op.Fl Step SR Ele.Acc Op.Fl Step SR Ele.Acc  Op.Fl Step SR

Agent Framework

GPT-40 + SeeClick|Cheng et al. [(2024] 32.1 - - 33.1 - - 335 - -
GPT-40 + UGround|Gou et al. [(2025]" 47.7 - - 46.0 - - 46.6 - -
GPT-4V + SeeAct|Zheng et al. (2024a] 46.4 734 40.2 38.0 67.8 324 424 69.3 36.8
GPT-4V + OmniParser|Wan et al. (2()24‘,i 42.4 87.6 39.4 41.0 84.8 36.5 45.5 85.7 42.0
Agent Model

GPT-40|0OpenAl |(2024] ¥ 5.7 77.2 4.3 5.7 79.0 39 5.5 86.4 4.5
GPT-4 (SOM) OpenAl et al. (2024] ¥ 29.6 - 20.3 20.1 - 13.9 27.0 - 23.7
MindAct-XL-3B |Deng et al. 12023]* § 55.1 75.7 52.0 42.0 65.2 38.9 42.1 66.5 39.6
WebGUM-XL-3B |[Furuta et al. (2024:*§ 572 80.3 53.7 453 70.9 41.6 439 722 414
SeeClick-9.6B Cheng et al. (2024 )° 28.3 87.0 255 21.4 80.6 16.4 232 84.8 20.8
ShowUI-2B|Lin et al. (2024} 39.9 88.6 372 41.6 83.5 35.1 39.4 86.8 352
Falcon-UI-7B Shen et al. |[(2024) - - 31.7 - - 25.8 - - 25.2
Magma-8B|Yang et al. [(2025] 57.2 76.9 454 54.8 79.7 43.4 55.7 80.6 47.3
MiniCPM-V-GUI-8B |Chen et al. (2024) 20.3 81.7 17.3 23.8 86.8 20.8 17.9 74.5 17.6
Ours-3B | 615 85.7 558 | 589 86.5 512 | 582 87.4 50.5

* These results come from Qin et al.|(2025). T These results come from |Gou et al{(2025). ¥ These models, likf;
Ours, were trained only on the training set of MM-Mind2Web, while other models were trained on more data. *
Text-only input.

vital for performance, our binary labeling scheme was more effective than a finer-grained 3-class
approach. It also includes an efficiency comparison against environment-based RL and analyses of
different LLM annotators.

4.5 CASE STUDY

Real-world deployment of GUI agents faces challenges from dynamic environments, often causing
navigation errors like entering ads. Models trained via SFT struggle to recover, while our value-guided
approach enables robust adaptation. As shown in Figure 4] our method completes the task-"Show
the shopping cart on newegg.com" via precise state valuation, avoiding common failures seen in
DigiRL baselines. This is enabled by our value model’s continuous feedback interpretation. Further
comparisons are in Appendix [K}

5 CONCLUSION

We presents an environment-free RL framework for GUI automation that decouples value estimation
from policy optimization through a Value Environment Model (VEM). Our approach replaces
error-prone next-state simulations with semantic reasoning over GUI elements, enabled by offline
learning from human demonstration data. The two-stage training paradigm achieves structured credit
assignment without environmental interaction, while maintaining procedural efficiency comparable
to environment-based methods. Experimental results on Android-in-the-Wild and Multimodal-
Mind2Web demonstrate superior task success rates over existing environment-free approaches and
significant improvements in generalization capability compared to vision-language models. The
framework establishes semantic-driven value estimation as an effective pathway for layout-agnostic
GUI automation with sample efficiency. In the future, we plan to explore self-supervised approaches
for training the value model, aiming to reduce labeling overhead and further improve scalability.
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APPENDIX

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In accordance with the ICLR policy on LLM usage, we hereby disclose that Large Language
Models (LLMs) were only used as auxiliary tools for language polishing and minor grammatical
improvements in the writing process. They were not involved in research ideation, experimental
design, implementation, data analysis, or the generation of scientific content. The authors take full
responsibility for the content of this paper.

B IMPACT STATEMENT

This work presents an environment-free framework for training GUI agents via a pretrained Value
Environment Model (VEM), which offers several positive societal implications.

First, in the domain of GUI agents, the proposed method significantly lowers the barrier to developing
and deploying intelligent agents across diverse user interfaces, including mobile and web environ-
ments. By eliminating the need for interactive environments during training, the framework enhances
sample efficiency and robustness to layout variability, enabling broader adoption of automation
technologies in areas such as accessibility support, software testing, and digital task assistance.

Second, from the perspective of reward modeling, VEM shifts the focus from environment-dependent
rewards to semantically grounded value estimation. This approach provides stable and generalizable
supervision signals, reducing reliance on brittle hand-crafted rewards or noisy environment feedback.
It offers a scalable and interpretable alternative for aligning agent behavior with human intent in
scenarios where explicit reward signals are unavailable or costly to obtain.

Third, with regard to world modeling, the VEM introduces a value-centric abstraction that bypasses
the need for explicit state transition modeling. By learning long-term action utility directly from
offline data, the method avoids compounding prediction errors common in traditional model-based
approaches. This lightweight form of world modeling demonstrates strong generalization across tasks
and environments, offering a promising direction for leveraging pretrained multimodal models as
implicit world models.

In summary, this work contributes to the development of scalable, robust, and semantically aligned
agents, advancing the broader goal of building efficient and general-purpose intelligent systems for
real-world graphical user interfaces.

C ACTIONS

C.1 AITW ACTIONS

The available actions include CLICK, TYPE, PRESS_BACK, PRESS_HOME, SCROLL_DOWN,
SCROLL_UP, SCROLL_LEFT, SCROLL_RIGHT, PRESS_ENTER, STATUS_TASK_COMPLETE,
and STATUS_TASK_IMPOSSIBLE.

Please note that the action space here is different from the origin action space in AITW. We have
split the DUAL_POINT in AITW into two parts: click and scroll, specifically as follows: CLICK,
SCROLL_DOWN, SCROLL_UP, SCROLL_LEFT, SCROLL_RIGHT.

C.2 MM-MIND2WEB ACTIONS

The available actions include CLICK, TYPE, SELECT, this is consistant with the action space in
MM-Mind2Web.
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D PROOF OF EXTENDED PERFORMANCE BOUND

Proof. We bound the suboptimality gap J(7*) — J(7) in two stages: (i) relating value-function
approximation error to policy return difference, and (ii) accounting for distribution shift between 7
and the behavior policy 5.

1. Relating Q-function Error to Return Difference. By the performance-difference lemma |Kakade
& Langford| (2002)), for any two policies 7 and 7/,

1 / /
J(’]‘(‘) 7 J(ﬂ'/) — 17 Eswdw |:Ea~7r(~|s)Qﬂ— (5, a) -y (3):| .
-
Taking 7 = 7* and 7/ = 7, and noting V™ (s) = max, Q* (s, a), we get
1
T) = J®) = 7 Eoa [maxQ*(5,0) = EanrQ*(5,a)|.

Under our approximate-Q assumption,
|Qo(s,a) — Q*(s,a)| <e V(s,a) €D.
Since 7 maximizes Esp o~ [Qo(S, a)], for each s € D,
max Qg (s, a) — B, zQo(s,a) < 0.
Hence for all s € D,
max Q*(s,a) — E,u7Q(s,a)
< [maX Q9(57 CL) - anﬁQ@(sa a)] +2 < 2e.

Thus, restricting the expectation in the performance-difference lemma to s € D,

2
J(r) — JF) < 1751}»(3 €D | s~ dy).
-7
Under coverage condition, 7 does not visit unseen (s, a), so D covers the support of d,+, and the
above probability is (approximately) 1.

2. Accounting for Distribution Shift. In practice, 7 may induce a state distribution d5 differing
from d~. Standard distribution-shift bounds (see, e.g., Levine et al.| (2020)) yield

2e Riax
J(r*) = J(@)| < v — dz |
) = I@] < T+ T [
where Ry.x = max, . |r(s,a)| and || - || is a divergence measure. Since r(s,a) is bounded by

Q*(s,a) < Qmax, We absorb constants into ¢. Moreover, ||d,~ — dz|| can be bounded by |7 — f||
under mixing conditions (cf. [Petrik & Scherrer| (2008))).

Conclusion. Combining the two steps, there exists a constant ¢ > 0 (depending on v, Q,ax, and
mixing properties) such that

J(m*) = J(@) < c(e+]7 - Bl).
Finally, because 7 is trained purely offline with a fixed Qy, its gradient estimates rely on deterministic

VEM queries rather than noisy environment samples, yielding lower variance compared to on-policy
RL.

This completes the proof. O

E IMPLEMENTATION DETAILS

Data Format The reinforcement learning paradigm requires standardized data transformations
across input modalities. For our experiments on the AITW dataset, we trained the Auto-GUI-Base
model, which is pre-trained to output normalized coordinates in the range of [0,1]. Therefore, we
utilize a device-agnostic [0,1] screen-space coordinate system. For the MM-Mind2Web dataset,
we trained and experimented with the Qwen2.5-VL-3B model, which tends to produce absolute
coordinates rather than normalized [0,1] coordinates, so we used the original coordinate space to
achieve better performance. Detailed action space configurations are provided in Appendix
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Critic model We employ GPT-40 to annotate and score data within the benchmark training set.
The input provided to GPT-4o0 comprised the task description, the complete sequence of actions, the
specific action that requires evaluation, and the corresponding annotated screenshot. The inclusion
of the global action sequence, along with visualized annotations on the screenshot (indicating click
coordinates), enhanced the accuracy of GPT-40’s automated labeling. Furthermore, acknowledging
inherent data quality issues within the benchmark dataset, which includes a small proportion of sub-
optimal steps, we proactively generated additional suboptimal data using GPT-40. This augmentation
strategy aimed to mitigate potential biases in the Critic Model’s training due to skewed data score
distributions. The prompts utilized for data annotation and suboptimal sample generation by GPT-40
are detailed in Appendix [J}

To evaluate GPT-40’s annotation quality on the benchmarks, we randomly sampled 50 instances from
each dataset and had them independently annotated by three human experts. Using majority voting
as the human ground truth, we found GPT-40 annotations to match with 90% accuracy. GPT-40
annotations on both benchmarks achieve 90% human consistency with 3-hour processing efficiency.
Evaluation details can be found in [I

We fine-tuned the Qwen2.5VL-7B model using the LLaMA-Factory [Zheng et al.| (2024b) framework
to develop state classification capabilities. The input part of our Critic Model includes: the textual
task description, the history of actions, the current screen image, and the action currently pending
execution. The output of our Critic Model is the score given by GPT-40. The formal specification of
input composition and prompting strategy appears in Appendix [J|

Training leveraged distributed data parallelism on an 4-GPU NVIDIA A100 cluster, configured
with 3 training epochs and a global batch size of 16. The optimization process employed AdamW
with an initial learning rate of 1 x 10~°, achieving convergence within 12 hours while maintaining
computational efficiency through gradient accumulation strategies.

Policy model In our experiments, we found that training with reinforcement learning without prior
supervised fine-tuning leads to poor performance. We attribute this to two main reasons: (1) prompts
alone are insufficient to ensure correct output formatting, and (2) the model’s initial capability is
weak, resulting in extremely sparse positive samples during training, which makes effective learning
difficult. In training the critic model, we enhance the quality of annotated data by providing GPT-40
with the global action sequence and the annotated current screenshot. Additionally, we construct
suboptimal negative samples using GPT-40 to mitigate the issue of label bias. These strategies
collectively contribute to improving the quality of Qg.

For the AITW dataset, the policy architecture builds upon the Supervised Fine-Tuned (SFT) Auto-
GUI base model. For the MM-Mind2Web dataset, we used Qwen2.5VL-3B as the base model.
During the training of our policy model, we kept the parameters of the critic model frozen.

For the MM-Mind2Web dataset, we first used Qwen2.5VL-3B as the base model and performed
supervised fine-tuning using the LLaMA-Factory |[Zheng et al.| (2024b) framework with a learning
rate of le-5 for one epoch, enabling the model to learn the output format. This was followed by
reinforcement learning training.

Our implementation executed full-parameter optimization on an 4-GPU NVIDIA A100 cluster,
configuring the training process with a batch size of 16 samples and 1 x 1075 across 10-20 training
epochs. This configuration achieved stable convergence through progressive reward signal alignment,
demonstrating parameter-efficient adaptation characteristics.

Figure 5] shows the Q-value curves during training of the policy model based on Auto-GUI for the
AITW dataset and the policy model based on Qwen2.5VL-3B for the MM-Mind2Web dataset. As
observed, the Q-values initially increase and then begin to converge. From the figure, it’s evident that
our training is very stable.

Please note that the Q-value discussed herein has undergone a normalization procedure. Specifically,
the Critic Model yields Q-values that are either 1 or 2. Subsequently, a scaling transformation is
applied according to the formula:

Q

Qscaled = 5 —0.75

This transformation effectively maps the original Q-values into a bounded range of [—0.25, 0.25].
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AITW: Auto-GUI MM-Mind2Web: Qwen2.5VL-3B
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Figure 5: Q-value progression during policy model training.

Notably, the gradient update strategy incorporated differential learning rate scheduling between
the frozen Critic components and tunable policy layers, effectively balancing knowledge retention
with operational flexibility. The training of the Auto-GUI model required under 12 hours, while
the training of the Qwen2.5VL-3B model required under 36 hours, reflecting optimized memory
utilization patterns.

Datasets The Android in the Wild (AITW) dataset is a large-scale benchmark designed for research
in Android device control via natural language instructions. It comprises 715k episodes across 30k
unique instructions, collected from over 350 Android applications and websites. The dataset includes
interactions recorded on eight device types (from Pixel 2 XL to Pixel 6) running Android versions 10
through 13, encompassing various screen resolutions.

Following the setup adopted in SeeClick Cheng et al.[(2024), we selected a subset of data from the
General and WebShopping categories of the AITW dataset to serve as our training and testing sets.
This selection was made to align with the instruction-wise split strategy proposed by SeeClick, which
aims to mitigate overfitting and better assess generalization capabilities across diverse tasks and
applications.

The MM-Mind2Web benchmark comprises over 2k open-ended tasks collected from 137 real-world
websites across 31 domains. MM-Mind2Web features a training set and three test sets: (1)Cross Task,
which includes tasks from websites seen during training; (2)Cross Website, which contains tasks from
unseen websites; (3)Cross Domain, which comprises tasks from entirely unseen domains—designed
to evaluate different aspects of model generalization.

Baselines For AITW benchmark, to comprehensively evaluate our proposed method, we compare it
against several baselines on the Android-in-the-Wild (AITW) benchmark. These baselines encompass
a diverse range of approaches in multimodal reasoning, visual-language modeling, and reinforcement
learning for GUI-based agents.

* GPT-40|0OpenAl (2024) is OpenATI’s flagship multimodal model that integrates text, vision,
and audio modalities. Despite its general-purpose capabilities, GPT-40 exhibits limited
performance on GUI navigation tasks, highlighting the challenges of applying generalist
models to specialized domains.

¢ Auto-GUI Zhang & Zhang| (2024) introduces a multimodal chain-of-action framework
that leverages visual context and historical action sequences to predict subsequent actions.
Trained on the AITW dataset, Auto-GUI achieves competitive performance in both offline
and online settings.

* CogAgent Hong et al.| (2024) is a visual-language model designed for GUI understanding
and navigation. By employing high-resolution image encoders, CogAgent effectively
captures fine-grained Ul elements, leading to improved performance on benchmarks like
AITW and Mind2Web.

* SeeClick |[Cheng et al.|(2024) focuses on GUI grounding by pretraining on the ScreenSpot
dataset, which includes diverse screenshots and instructions. As a purely vision-based
agent, SeeClick demonstrates strong performance on GUI tasks with minimal training data,
emphasizing the efficacy of GUI grounding pretraining.
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DigiRL Bai et al.{(2024) employs an offline reinforcement learning approach to train device-
control agents. By utilizing advantage-weighted RL and an automatic curriculum, DigiRL
significantly improves success rates on the AITW dataset compared to supervised fine-tuning
methods.

DigiQ Bai et al.| (2025a) builds upon DigiRL by introducing Q-value function learning
for visual-language models. This approach enhances data efficiency and convergence
performance, enabling better policy extraction and improved success rates on GUI navigation
tasks.

For MM-Mind2Web benchmark, we evaluate our approach against a diverse set of baselines, en-
compassing both agent frameworks and agent models. These baselines are selected to represent the
current state-of-the-art in multimodal web agents, covering a range of modalities and grounding
strategies.

Agent Frameworks

GPT-40 + SeeClick Cheng et al.[(2024): This framework utilizes GPT-40 for planning and
SeeClick for visual grounding. SeeClick is a vision-based grounding method that identifies
clickable elements on the Ul using object detection techniques.

GPT-40 + UGround |Gou et al.| (2025): UGround is a universal grounding framework that
combines textual and visual cues to map instructions to UI elements. When paired with
GPT-4o, it enhances the agent’s ability to interpret and act upon complex web interfaces.

GPT-4V + SeeAct [Zheng et al.| (2024a): SeeAct integrates GPT-4V with a grounding
strategy that leverages both HTML structure and visual information. It demonstrates strong
performance in executing tasks on live websites by effectively grounding textual plans into
actionable steps.

GPT-4V + OmniParser |Wan et al.[(2024): OmniParser is a vision-based UI parser that
converts screenshots into structured representations. Combined with GPT-4V, it enables the
agent to understand and interact with web interfaces using visual inputs alone.

Agent Models

GPT-40 OpenAl (2024): GPT-4o is a cutting-edge multimodal large language model
engineered to process and generate responses across text, vision, and audio modalities. Its
robust architecture enables it to serve as a powerful baseline for evaluating sophisticated
multimodal understanding and the generation of contextually relevant actions in diverse
scenarios.

GPT-4 (SOM) |OpenAl et al.| (2024)): This approach leverages the capabilities of the GPT-4
large language model, enhanced by the Set-of-Marks (SOM) prompting technique. SOM
aims to significantly improve the model’s grounding abilities, particularly in tasks that
require precise identification and interaction with specific user interface (UI) elements
within visual inputs.

MindAct-XL-3B Deng et al.|(2023): A 3B-parameter model for web automation, excelling
at generating executable actions (clicks, typing, navigation) from webpage visuals and natu-
ral language. Trained on MM-Mind2Web, it shows strong performance on the Mind2Web
benchmark.

WebGUM-XL-3B |[Furuta et al| (2024): A 3B-parameter multimodal agent processing
webpage screenshots and HTML for web navigation (clicking, typing). Jointly fine-tuned on
instruction-finetuned LM and vision encoder, achieving SOTA on MiniWoB and WebShop,
with strong generalization to Mind2Web.

SeeClick-9.6B (Cheng et al|(2024): A visual GUI agent automating tasks using only
screenshots, focusing on GUI grounding. It employs GUI grounding pre-training and
automated data curation, introducing ScreenSpot, a GUI grounding benchmark. Results
show a correlation between GUI grounding and downstream task performance.

ShowUI-2B [Lin et al.| (2024): A 2B-parameter vision-language-action model for GUI
automation. Key features include Ul-guided visual token selection and interleaved vision-
language-action streaming. Trained on a 256K instruction-following dataset.
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* Falcon-UI-7B Shen et al.| (2024): A GUI agent model enhancing GUI context understanding.
It introduces Insight-UI Dataset for instruction-free pre-training of GUI comprehension,
followed by fine-tuning on instruction-based datasets.

* Magma-8B |Yang et al.| (2025): A foundation model for multimodal AI agentic tasks,
integrating verbal and spatial-temporal intelligence. Pre-trained on diverse datasets with
Set-of-Mark (SoM) for action grounding and Trace-of-Mark (ToM) for action planning,
excelling in Ul navigation and robotic manipulation.

* MiniCPM-V-GUI-8B |Chen et al.| (2024): A visual-based GUI agent model trained on
the GUICourse dataset suite. Based on MiniCPM-V, it enhances VLM'’s interaction with
GUIs, improving performance in OCR, grounding, and understanding GUI components and
interactions.

F ABLATION STUDY

To comprehensively evaluate our VEM framework and validate its key design choices, we conducted
an extensive series of ablation studies and analyses. These experiments investigate the impact of data
scale, model size, the supervision signal itself, and the overall algorithmic contribution and efficiency
of our approach.

F.1 IMPACT OF CORE COMPONENTS AND TRAINING STRATEGY

We first analyze the impact of fundamental components: the scale of training data, the size of the
critic and policy models, and the necessity of Supervised Fine-Tuning (SFT) initialization.

Data and Model Scaling. As shown in Table[7] performance consistently improves with more VEM
training data and larger critic/policy models. For instance, increasing the critic model from 7B to
32B parameters boosts the General Task SR. Notably, even with only 30% of the training data, our
method remains effective. This demonstrates the framework’s robustness and scalability.

Importance of SFT Initialization. To quantify the role of SFT, we trained a policy using only
VEM-guided RL without the SFT warm-start. Table [§|shows a substantial drop in performance on
the MM-Mind2Web benchmark. This confirms that SFT is a crucial step for guiding the policy into a
reasonable region of the state-action space and mitigating distribution shift, a common practice in the
field.

Table 7: Ablation study on data and model scaling (AITW offline benchmark). The asterisk (¥*) marks
the baseline configuration for each study.

Ablation Var | Configuration | General | Webshopping
\ | Step SR (%) Task SR (%) | Step SR (%) Task SR (%)

Full Dataset (100%)* | 84.7 30.0 85.6 30.0
VEM Training Data | Reduced (50%) 84.1 28.0 85.2 28.0
Minimal (30%) 83.4 26.0 840 270
o . Qwen2.5VL-7B* 847 30.0 85.6 30.0
Critic Model Size | )\yen2 5vL-32B ‘ 857 32,0 ‘ 86.2 320
. | Ours (200M)* 84.7 30.0 85.6 30.0
Policy Model Size ‘ Ours (9.6B) ‘ 86.3 340 ‘ 86.7 35.0

Table 8: Ablation on SFT initialization (MM-Mind2Web benchmark). Performance degrades signifi-
cantly without the SFT warm-start.

Method Cross-Task(%) Cross-Website(%) Cross-Domain(%)
SFT + VEM RL (Ours) 55.8 51.2 50.5
VEM RL only (no SFT) 37.5 41.7 39.1
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F.2 ANALYSIS OF THE VEM SUPERVISION SIGNAL

The quality of the VEM is contingent on the supervision signal used to train it. We analyzed several
factors, including the granularity of the value labels and the methodology for generating them.

Value Label Granularity. We experimented with a finer-grained 3-class labeling scheme (Low,
Medium, High). As shown in Table[9} the simpler binary labeling approach outperformed the 3-class
scheme on the AITW benchmark. This suggests that the binary distinction provides a more stable and
effective supervision signal, likely because most actions in the dataset are either clearly beneficial or
not, making the intermediate category sparse and difficult to learn from.

Annotator and Prompt Design. The quality of LLM-based annotation is critical. We evaluated the
impact of the LLM annotator and the prompt design on annotation accuracy for MM-Mind2Web,
using the dataset’s ground truth as a reference. As detailed in Table [I0] using a more powerful
LLM (GPT-40) and providing the full trajectory context in the prompt both lead to higher-quality
supervision. This validates our chosen methodology for generating reliable value labels.

Table 9: Comparison of binary vs. 3-class value labels on the AITW offline benchmark.
Label Type Step SR (%) Task SR (%)

Binary (Ours) 83.6 29.0
3-Class 82.9 25.0

Table 10: Analysis of annotation accuracy on MM-Mind2Web based on LLM annotator and prompt
design.

Configuration Annotation Accuracy (%)
Annotator Choice
GPT-40 (Ours) 96.39
Qwen2.5VL-32B 93.45
Prompt Design
Full Trajectory (Ours) 96.39
Step-only Context 62.57

F.3 ALGORITHMIC CONTRIBUTION AND EFFICIENCY

Finally, we conducted experiments to isolate the contribution of our algorithm and quantify its
efficiency gains.

Isolating Algorithmic Contribution. To verify that our performance gains stem from the VEM
framework itself, not just the base model, we compared our method against Digi-Q using an iden-
tical LLaVA-1.5-7B backbone. As shown in Table[IT] even on a level playing field, our method
significantly outperforms Digi-Q, confirming the algorithmic advantage of our value-estimation
approach.

Efficiency Analysis. To quantify the practical benefits of our environment-free approach, we
compared its computational and sample costs against a representative environment-based method,
DigiRL (Table[I2). Our VEM framework achieves superior or comparable performance while being
significantly more efficient, entirely avoiding the time, cost, and complexity of live environment
rollouts.

G LIMITATIONS

Our approach requires training a Value Environment Model, which in turn necessitates additional
high-quality data annotation. In this work, we leverage GPT-40 to perform the annotation task. By
providing GPT-40 with a detailed task description, the complete action history, the current action,
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Table 11: Comparison with Digi-Q on the AITW online benchmark using an identical LLaVA-1.5-7B
backbone,

Method General Webshopping
Task SR (%) StepLen Task SR (%) Step Len

Digi-Q (LLaVA-7B) 33.90 6.76 5.71 8.43

Ours (LLaVA-7B) 40.68 7.91 14.29 8.12

Table 12: Efficiency comparison between our offline VEM framework and an environment-based RL
method.

Metric VEM (Ours) DigiRL (Env-based)
Training Time ~12 hours (offline) ~3-5 days (with env rollouts)
API Calls for Supervision ~15k (for annotation) N/A (uses env rewards)
Total Samples Used ~58k (offline) >150k (online + offline)

and the annotated screenshot corresponding to the current action, we are able to generate high-quality
annotations that achieve up to 90% agreement with human experts.

Moreover, due to the limited number of negative samples in the dataset, there is a risk of label bias
affecting the training of the Critic Model. To mitigate this issue, we also utilize GPT-40 to construct
high-quality negative samples. These designs significantly improve the annotation accuracy of the
Critic Model, albeit at the cost of requiring additional annotation resources. Exploring how to achieve
comparable performance with fewer additional resources, or even in an unsupervised manner, remains
an important direction for future work.

H VALIDATION OF LLM-BASED ONLINE EVALUATION

While oracle-based evaluation functions represent the gold standard for benchmarks, our online
evaluation for AITW relies on an LLM-based judge (GPT-40). This approach was chosen specifically
for fair and direct comparability with recent state-of-the-art methods such as DigiRL and DigiQ,
which are evaluated in the same manner.

To directly address and verify the reliability of this LLM-based evaluation, we conducted an additional
manual validation study. We randomly sampled 40 task trajectories from our online experiments and
had expert human annotators independently review the final outcomes determined by the LLM judge.

The results, summarized in Table show a 97.5% agreement rate between the LLM’s judgments
and human experts. The LLM was highly accurate, particularly in identifying failures. This high
degree of agreement strongly supports the reliability of using GPT-40 as a practical and accurate
proxy for task success in the AITW-online setting.

Table 13: Human Validation of the LLM Judge for AITW-online Evaluation.
Task Outcome (LLM Judge) Number of Samples Human Expert Confirmation

Failure 29 29 Confirmed Failures
Success 11 10 Confirmed Successes
Total 40 39 Agreements (97.5%)

I RESEARCH ON THE AUTOMATED ANNOTATION QUALITY OF GPT-40

We conducted a systematic study on the annotation quality of GPT-40, aiming to evaluate its consis-
tency and accuracy on standard benchmark tasks. Specifically, we randomly sampled 50 instances
from each of two public datasets—AITW and MM-Mind2Web. Three professional annotators, who
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are proficient in both Android and Web platforms and have experience with GUI Agents, were invited
to independently annotate each instance. During the annotation process, all annotators completed
their work independently without knowledge of each other’s labels. The annotation platform provided
a unified interface and a detailed instruction document, which included example data, annotation
criteria, and strategies for resolving common ambiguities.

We adopted a majority voting strategy to generate the human reference labels (the “gold standard”)
and compared them against the automated annotations produced by GPT-40. The results show
that GPT-40 achieved 90% agreement with the human annotations across both tasks. Moreover, it
completed all annotations in approximately 3 hours, demonstrating strong efficiency and practical
potential.

Regarding ethics, this study was approved by the Institutional Review Board (IRB) of our institution.
There were no foreseeable physiological or psychological risks to participants, and all annotators
provided informed consent before participation, fully understanding the nature and objectives of the
study. Annotators were compensated on an hourly basis at a rate not lower than the local minimum
wage, and in accordance with the average pay standards for professional data annotators. This
complies with the NeurIPS Code of Ethics regarding fair compensation for labor involved in data
collection and curation.

J PROMPT

Prompt of AITW GPT-40 input

As an expert in the field of GUI and reinforcement learning,
you will receive complete screenshots and textual
descriptions of interactions for a given task. You need
to evaluate a specific step in terms of its value within
the task chain, similar to what a value function does in
reinforcement learning. Detailed criteria and standards
are given below.

## Explanation of the input content:

1. Task: Brief description of the current GUI task, such as
implementing the "Get Hong Kong hotel prices" task in
Android GUI.

2. Complete operation description and corresponding
screenshot sequence for the task
(1) Text description of operations: Contains 11 types of

GUI operations. Specific fields and their meanings are

as follows:

[1] CLICK: Click on a specific position on the screen.
If it is a link or software, it will enter; if it
is text, it will be selected. The "click_point" is
represented by a two-dimensional array indicating
the position of the click, relative to the top-left

corner of the screenshot and within a range from

0.0 to 1.0.
- example: "action_type": "CLICK", "click_point":
[0.5, 0.5]

[2] TYPE: An action type that sends text. Note that
this simply sends text and does not perform any
clicks for element focus or enter presses for
submitting text.

- example: "action_type": "TYPE", "typed_text": "
capital of England”
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[3] PRESS_BACK: Return to the previous page. Usually
the previous webpage.

- example: "action_type": "PRESS_BACK"

[4] PRESS_HOME: Return to the system home page. Use
this action to return to the home screen when the
current screen is not the desired one, so you can
reselect the program you need to enter.

- example: "action_type": "PRESS_HOME"
[5] PRESS_ENTER: Press the enter key to execute a step.
Generally, after confirming the input text, use
this action to start the search.
— example: "action_type": "PRESS_ENTER"

[6] STATUS_TASK_ _COMPLETE: An action used to indicate

that the desired task has been completed and resets
the environment. This action should also be used
if the task is already completed and there is
nothing more to do. For example, the task is to
turn on the Wi-Fi when it is already on.

- example: "action_type": "STATUS_TASK_COMPLETE"

[7] STATUS_TASK_IMPOSSIBLE: An action used to indicate
that the desired task is impossible to complete and

resets the environment. This can result from
various reasons including UI changes, Android
version differences, etc.

- example: "action_type": "STATUS_TASK_IMPOSSIBLE"
[8] SCROLL_DOWN: Scroll down.
- example: "action_type": "SCROLL_DOWN"
[9] SCROLL_UP: Scroll up.
- example: "action_type": "SCROLL_UP"
[10] SCROLL_LEFT: Scroll left.
- example: "action_type": "SCROLL_LEFT"
[11] SCROLL_RIGHT: Scroll right.
- example: "action_type": "SCROLL_RIGHT"

(2) Corresponding screenshot before each operation. If the
operation is of the "CLICK" type, the click position
is marked with a red dot in the image.
3. The current action to be evaluated and the corresponding
screenshot.

## Evaluation Criteria:

Here are the detailed descriptions of the two levels.
Attention needs to be paid to whether the action taken
based on the current screenshot promotes efficient task
execution, rather than the relevance of the content shown

in the current screenshot to the task:

Level 1: The action is not the optimal choice for
completing the task at this moment, which may lead to
deviations from the task flow. For example:

(1) Incorrect text input.

(2) Clicking a button that might lead to an
advertisement.

(3) Announcing the task’s success when it has not
actually been achieved.

Level 2: The action is the optimal and correct choice for
completing the task at this moment. For example:

(1) When showing task completion, the displayed content
can fully achieve it.
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(2) When entering an unrelated interface, you can
return to the main screen by executing "PRESS_HOME
n
(3) Selecting the most correct entry point to complete
the current task.

## Output requirements:
- Format: {"rating": int, "explanation": str}. Do not include
any additional characters beyond this format
— The "rating" field should be represented by the number 1 or
2 indicating the evaluation level. The "explanation"
field should explain the evaluation process that led to
this rating, without including descriptions of operations
after the current step (future operations are considered
unknown) .

## Example Input:
Task Requirements: What is the capital of England?
Action and ScreenShot:

step 0: "action_type": "CLICK", "click_point": "[0.524,
0.061"

step 1: "action_type": "TYPE", "typed_text": "capital of
England"

step 2: "action_type": "PRESS_ENTER"

step 3: "action_type": "STATUS_TASK_COMPLETE"

Current Action:

step 2: "action_type": "PRESS_ENTER"

## Example Output:

{"rating": 2, "explanation": "The action of pressing enter
after typing ’'capital of England’ is an appropriate step
to get the answer to the task requirement of finding out
the capital of England, which is an optimal action
towards achieving the task goal."}

Task Requirements: {}
Action and ScreenShot: {}
Current Action:

{1

Prompt of AITW critic input

As an expert in the field of GUI and reinforcement learning,
you will receive textual descriptions of history
interactions for a given task. You need to evaluate the
current action, similar to what a value function does in
reinforcement learning. Detailed criteria and standards
are given below.

## Explanation of the input content:

1. Task: Brief description of the current GUI task, such as
implementing the "Get Hong Kong hotel prices" task in
Android GUI.

2. Description of History operation
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Contains 11 types of GUI operations. Specific fields and
their meanings are as follows:

[1] CLICK: Click on a specific position on the screen. If
it is a link or software, it will enter; if it is text
, it will be selected. The "click_point" is
represented by a two-dimensional array indicating the
position of the click, relative to the top-left corner

of the screenshot and within a range from 0.0 to 1.0.
- example: "action_type": "CLICK", "click_point": [0.5,
0.5]

[2] TYPE: An action type that sends text. Note that this
simply sends text and does not perform any clicks for
element focus or enter presses for submitting text.

- example: "action_type": "TYPE", "typed_ text": "
capital of England”

[3] PRESS_BACK: Return to the previous page. Usually the
previous webpage.

- example: "action_type": "PRESS_BACK"

[4] PRESS_HOME: Return to the system home page. Use this
action to return to the home screen when the current
screen is not the desired one, so you can reselect the

program you need to enter.
- example: "action_type": "PRESS_HOME"

[5] PRESS_ENTER: Press the enter key to execute a step.
Generally, after confirming the input text, use this
action to start the search.

— example: "action_type": "PRESS_ENTER"

[6] STATUS_TASK_COMPLETE: An action used to indicate that
the desired task has been completed and resets the
environment. This action should also be used if the
task is already completed and there is nothing more to

do. For example, the task is to turn on the Wi-Fi
when it is already on.
- example: "action_type": "STATUS_TASK_COMPLETE"

[7] STATUS_TASK_IMPOSSIBLE: An action used to indicate
that the desired task is impossible to complete and
resets the environment. This can result from various
reasons including UI changes, Android version
differences, etc.

- example: "action_type": "STATUS_TASK_IMPOSSIBLE"
[8] SCROLL_DOWN: Scroll down.
- example: "action_type": "SCROLL_DOWN"
[9] SCROLL_UP: Scroll up.
- example: "action_type": "SCROLL_UP"
[10] SCROLL_LEFT: Scroll left.
- example: "action_type": "SCROLL_LEFT"
[11] SCROLL_RIGHT: Scroll right.
- example: "action_type": "SCROLL_RIGHT"

3. The current action to be evaluated and the corresponding
screenshot (the screenshot before each operation. If the
operation is of the "CLICK" type, the click position is
marked with a red dot in the image.)

## Evaluation Criteria:

Here are the detailed descriptions of the two levels.
Attention needs to be paid to whether the action taken
based on the current screenshot promotes efficient task
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execution, rather than the relevance of the content shown

in the current screenshot to the task:

Level 1: The action is not the optimal choice for
completing the task at this moment, which may lead to
deviations from the task flow. For example:

(1) Incorrect text input.

(2) Clicking a button that might lead to an
advertisement.

(3) Announcing the task’s success when it has not
actually been achieved.

Level 2: The action is the optimal and correct choice for
completing the task at this moment. For example:

(1) When showing task completion, the displayed content
can fully achieve it.
(2) When entering an unrelated interface, you can
return to the main screen by executing "PRESS_HOME
n
(3) Selecting the most correct entry point to complete
the current task.

## Output requirements: 1 or 2 (INT)
## Example Input:

Task Requirements: What is the capital of England?
Previous Action:

step 0: "action_type": "CLICK", "click_point": "[0.524,
0.061"

step 1: "action_type": "TYPE", "typed_ text": "capital of
England"

Current Action and Screenshot:

step 2: "action_type": "PRESS_ENTER"

## Example Output:
2

Task Requirements: {}

Previous Action:

{1}

Current Action and Screenshot:
<image>

{}

Prompt of MM-Mind2Web GPT-40 input

As an expert in web interaction and reinforcement learning,
you will receive a complete sequence of web interaction
steps and corresponding descriptions for a given task.
You need to evaluate a specific step in terms of its
value within the task chain, similar to a value function
in reinforcement learning. Detailed criteria and
standards are given below.

## Explanation of the input content:
1. Task: Brief description of the current web task, such as "
Search for a product on an e-commerce website".
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2. Complete operation description and corresponding sequence
for the task:

(1) Text description of operations: Contains 3 types of
web actions. Specific fields and their meanings are as

follows:

[1] CLICK: Click on a web element at a specific
position. The "click_point" is represented by a two
—dimensional array indicating the absolute position

of the click in pixels.
- example: "action_type": "click", "click_point":
[100, 150]
[2] TYPE: Click and input text into a field at a
specific position. The "click_point" is represented
by a two-dimensional array indicating the absolute
position of the click in pixels.
- example: "action_type": "type", "click_point":
[200, 300], "value": "search term"

[3] SELECT: Click at a specific position to open a
dropdown menu, then select an option. Note: The
dropdown options may not be visible before clicking
, and the "value" field represents the option that
will appear and be selected only after the dropdown

is opened. The "click_point" is represented by a
two-dimensional array indicating the absolute
position of the click in pixels.

- example: "action_type": "select", "click_point":
[150, 200], "value": "Qween"

(2) A corresponding screenshot of each operation on the
current page. The "click_point" position of current
action is marked with a semi-transparent red dot in
the image.

3. The current action to be evaluated and the corresponding
screenshot. Please note that you only need to evaluate
the current Action (just one step within the complete
operation sequence) .

## Evaluation Criteria:

Focus on whether the action taken at the current step
efficiently promotes task completion, not just its
relevance to the current page:

Level 1: The action is not the optimal choice for
completing the task at this moment, which may lead to
deviations from the task flow. For example:

(1) Clicking the wrong element.
(2) Typing incorrect or irrelevant text.
(3) Selecting an incorrect dropdown option.

Level 2: The action is the optimal and correct choice for

completing the task at this moment. For example:

(1) Clicking the correct button or link to proceed.

(2) Typing the correct text into the appropriate field.
(3) Selecting the correct dropdown option.

## Output requirements:
— Format: {"rating": int, "explanation": str}. Do not include
any additional characters beyond this format.
— The "rating" field should be 1 or 2, indicating the
evaluation level. The "explanation" field should explain
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the reasoning for this rating, without referencing any
operations after the current step (future actions are
unknown) .

## Example Input:
Task Requirements: Search for "laptop" on an e-commerce

website.

Action and Screenshot:

step 0: "action_type": "click", "click_point": [120, 40]

step 1: "action_type": "type", "click_point": [300, 400], "
value": "laptop"

step 2: "action_type": "click", "click_point": [350, 400]

Current Action(to be evaluated):

step 1: "action_type": "type", "click_point": [300, 400], "
value": "laptop"

## Example Output:

{"rating": 2, "explanation": "The action of typing ’laptop’
into the search field is the correct and optimal choice
for completing the task of searching for a laptop on an e
—commerce website. This action directly contributes to
achieving the task goal."}

Task Requirements: {}
Action and ScreenShot: {}
Current Action:

{}

Prompt of MM-Mind2Web critic input

As an expert in web interaction and reinforcement learning,
you will receive textual descriptions of history
interactions for a given web task. You need to evaluate
the current action, similar to what a value function does

in reinforcement learning. Detailed criteria and
standards are given below.

## Explanation of the input content:
1. Task: Brief description of the current web task, such as "

Search for a product on an e-commerce website".

2. Description of History operation

Contains 3 types of web actions. Specific fields and their

meanings are as follows:

[1] CLICK: Click on a web element at a specific position.
The "click_point" is represented by a two-dimensional
array indicating the absolute position of the click in

pixels, such as [100, 150].
- example: "action_type": "click", "click_point": [100,
150]

[2] TYPE: Click and input text into a field at a specific
position. The "click_point" is represented by a two-
dimensional array indicating the absolute position of
the click in pixels.

- example: "action_type": "type", "click_point": [200,
3001, "value": "search term"
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[3] SELECT: Click at a specific position to open a
dropdown menu, then select an option. Note: The
dropdown options may not be visible before clicking,
and the "value" field represents the option that will
appear and be selected only after the dropdown is
opened. The "click_point" is represented by a two-
dimensional array indicating the absolute position of
the click in pixels.

- example: "action_type": "select", "click_point":
[150, 200], "value": "Qween"

3. A corresponding screenshot of each operation on the
current page. The "click_point" position of current
action is marked with a semi-transparent red dot in the
image.

## Evaluation Criteria:

Here are the detailed descriptions of the two levels.
Attention needs to be paid to whether the action taken
based on the current screenshot promotes efficient task
execution, rather than the relevance of the content shown

in the current screenshot to the task:

Level 1: The action is not the optimal choice for
completing the task at this moment, which may lead to
deviations from the task flow. For example:

(1) Clicking the wrong element.
(2) Typing incorrect or irrelevant text.
(3) Selecting an incorrect dropdown option.

Level 2: The action is the optimal and correct choice for

completing the task at this moment. For example:

(1) Clicking the correct button or link to proceed.

(2) Typing the correct text into the appropriate field.
(3) Selecting the correct dropdown option.

## Output requirements: 1 or 2 (INT)

## Example Input:
Task Requirements: Search for "laptop" on an e-commerce

website.
Previous Action:
step 0: "action_type": "click", "click_point": [120, 40]
step 1: "action_type": "type", "click_point": [300, 400], "
value": "laptop"
Current Action and Screenshot:
step 2: "action_type": "click", "click_point": [350, 400]

## Example Output:
2

Task Requirements: {}

Previous Action:

{1}

Current Action and Screenshot:
<image>

{1

Prompt of AITW GPT-40 get negative samples input
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As an expert in the field of GUI and negative sample data
constructor, you need to generate a new negative sample
of the current action based on historical screenshots and

corresponding action descriptions, task description, and
the original current action. Detailed criteria and
standards are given below.

## Explanation of the input content:

1. Task: Brief description of the current GUI task, such as
implementing the "Get Hong Kong hotel prices" task in
Android GUI.

2. History operation description and corresponding screenshot

sequence for the task
(1) Text description of operations: Contains 11 types of
GUI operations. Specific fields and their meanings are
as follows:
[1] CLICK: Click on a specific position on the screen.
If it is a link or software, it will enter; if it
is text, it will be selected. The "click_point" is
represented by a two-dimensional array indicating
the position of the click, relative to the top-left
corner of the screenshot and within a range from

0.0 to 1.0.
- example: "action_type": "CLICK", "click_point":
[0.5, 0.5]

[2] TYPE: An action type that sends text. Note that
this simply sends text and does not perform any
clicks for element focus or enter presses for
submitting text.

- example: "action_type": "TYPE", "typed_text": "
capital of England"

[3] PRESS_BACK: Return to the previous page. Usually
the previous webpage.

- example: "action_type": "PRESS_BACK"

[4] PRESS_HOME: Return to the system home page. Use
this action to return to the home screen when the
current screen is not the desired one, so you can
reselect the program you need to enter.

- example: "action_type": "PRESS_HOME"
[5] PRESS_ENTER: Press the enter key to execute a step.
Generally, after confirming the input text, use
this action to start the search.
- example: "action_type": "PRESS_ENTER"

[6] STATUS_TASK_COMPLETE: An action used to indicate

that the desired task has been completed and resets
the environment. This action should also be used
if the task is already completed and there is
nothing more to do. For example, the task is to
turn on the Wi-Fi when it is already on.

- example: "action_type": "STATUS_TASK_COMPLETE"

[7] STATUS_TASK_ IMPOSSIBLE: An action used to indicate
that the desired task is impossible to complete and

resets the environment. This can result from
various reasons including UI changes, Android
version differences, etc.
- example: "action_type": "STATUS_TASK_ IMPOSSIBLE"

[8] SCROLL_DOWN: Scroll down.
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- example: "action_type": "SCROLL_DOWN"
[9] SCROLL_UP: Scroll up.

- example: "action_type": "SCROLL_UP"
[10] SCROLL_LEFT: Scroll left.

- example: "action_type": "SCROLL_LEFT"
[11] SCROLL_RIGHT: Scroll right.

- example: "action_type": "SCROLL_RIGHT"

(2) Corresponding screenshot before each operation. If the
operation is of the "CLICK" type, the click position
is marked with a red dot in the image.
3. The positive current action and the corresponding
screenshot.

## Criteria for generating negative samples:

The given input is a positive current action that meets the
Level 2 standard below. To conduct data augmentation, we
need to generate its corresponding negative current
action, i.e., the action described below as level 1.
Level 1: The action is not the optimal choice for

completing the task at this moment, which may lead to
deviations from the task flow. For example:
(1) Incorrect text input.
(2) Clicking a button that might lead to an
advertisement.
(3) Announcing the task’s success when it has not
actually been achieved.
Level 2: The action is the optimal and correct choice for
completing the task at this moment. For example:
(1) When showing task completion, the displayed content
can fully achieve it.
(2) When entering an unrelated interface, you can
return to the main screen by executing "PRESS_HOME
n
(3) Selecting the most correct entry point to complete
the current task.

## Output requirements:

— Format: {"action_desc": dict, "explanation": str}. Do not
include any additional characters beyond this format

— The "action_desc" field needs to provide the fields
involved in the newly generated negative sample action
according to the text description given above. The "
explanation" field needs to explain the logic for giving
this new negative sample.

## Example Input:
Task Requirements: What is the capital of England?
Previous Action and ScreenShot:

step 0: "action_type": "CLICK", "click_point": "[0.524,
0.061"

step 1: "action_type": "TYPE", "typed_text": "capital of
England"

Origin Action:

step 2: "action_type": "PRESS_ENTER"

## Example Output 1:
{
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}

"action_desc": {"action_type": "STATUS_TASK_COMPLETE"}
"explanation": "Since text about the capital of England
has already been entered in the search box, pressing
enter directly at this step should give the answer.
However, if I generate an action indicating task
completion, it will seriously deviate from the current
task."

Example Output 2:

"action_desc": {"action_type": "CLICK", "click_point":
"[10.87, 0.521"}
"explanation": "Since text about the capital of England

has already been entered in the search box, pressing
enter directly at this step should give the answer.
However, if I generate a click on the adjacent
advertising area, it will deviate from the task."

Task Requirements: {}
Previous Action and ScreenShot: {}
Origin Action: {}

Prompt of MM-Mind2Web GPT-40 get negative samples input

As

an expert in web interaction and negative sample data
constructor, you need to generate a new negative sample
of the current action based on historical screenshots and
corresponding action descriptions, task description, and
the original current action. Detailed criteria and
standards are given below.

Explanation of the input content:

Task: Brief description of the current web task, such as

Search for a product on an e-commerce website".

History operation description and corresponding screenshot

sequence for the task:

(1) Text description of operations: Contains 3 types of

web actions. Specific fields and their meanings are as
follows:

[1] CLICK: Click on a web element at a specific
position. The "click_point" is represented by a two
—dimensional array indicating the absolute position

of the click in pixels.
- example: "action_type": "click", "click_point":
[100, 150]
[2] TYPE: Click and input text into a field at a
specific position. The "click_point" is represented
by a two-dimensional array indicating the absolute
position of the click in pixels.
- example: "action_type": "type", "click_point":
[200, 300], "value": "search term"

[3] SELECT: Click at a specific position to open a

dropdown menu, then select an option. Note: The
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dropdown options may not be visible before clicking
, and the "value" field represents the option that

will appear and be selected only after the dropdown
is opened. The "click_point" is represented by a

two-dimensional array indicating the absolute

position of the click in pixels.

- example: "action_type": "select", "click_point":

[150, 2001, "value": "Qween"

(2) A corresponding screenshot of each operation on the
current page. The "click_point" position of current
action is marked with a semi-transparent red dot in
the image.

3. The positive current action and the corresponding
screenshot.

## Criteria for generating negative samples:
The given input is a positive current action that meets the
Level 2 standard below. To conduct data augmentation, we
need to generate its corresponding negative current
action, i.e., the action described below as level 1.
Level 1: The action is not the optimal choice for
completing the task at this moment, which may lead to
deviations from the task flow. For example:
(1) Clicking the wrong element.
(2) Typing incorrect or irrelevant text.
(3) Selecting an incorrect dropdown option.

Level 2: The action is the optimal and correct choice for
completing the task at this moment. For example:
(1) Clicking the correct button or link to proceed.
(2) Typing the correct text into the appropriate field.
(3) Selecting the correct dropdown option.

## Output requirements:

- Format: {"action_desc": dict, "explanation": str}. Do not
include any additional characters beyond this format.

— The "action_desc" field needs to provide the fields
involved in the newly generated negative sample action
according to the text description given above. The "
explanation" field needs to explain the logic for giving
this new negative sample.

## Example Input:
Task Requirements: Search for "laptop" on an e-commerce

website.
Previous Action and Screenshot:
step 0: "action_type": "click", "click_point": [120, 40]
step 1: "action_type": "type", "click_point": [300, 400], "
value": "laptop"
Origin Action:
step 2: "action_type": "click", "click_point": [350, 400]

## Example Output 1:
{

"action_desc": {"action_type": "click", "click_point":
[900, 10071},
"explanation": "Instead of clicking the search button to

submit the query, clicking a random area on the page
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will not help complete the search task and may deviate
from the task flow."
}

## Example Output 2:
{

"action_desc": {"action_type": "type", "click_point":
[300, 4001, "value": "asdfgh"},
"explanation": "Typing irrelevant text into the search

field instead of the correct query will not help
achieve the task goal."
}

Task Requirements: {}
Previous Action and Screenshot: {}
Origin Action: {}

K CASE STUDY

Here we randomly sample cases (Figure[6] ), from our test experiments to show the difference
between our method and baselines.
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Task:What's the latest video from GameSpot Reviews?
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Figure 6: Case study of Ours, DigiRL offline and DigiRL online on the task: what’s the latest video

from GameSpot reviews?
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Task: Search for top rated burger restaurants on Google Maps
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Figure 7: Case study of Ours, DigiRL offline and DigiRL online on the task: search for top rated
burger restaurants on Google Maps.

Task:What's on the menu at Red Lobster?
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B e@Om
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DigiRL online Click Click Type Click Done

Figure 8: Case study of Ours, DigiRL offline and DigiRL online on the task: what’s on the menu at
Red Lobster?
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Task:What is the speed of a rocket?

Press Enter
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sad toh |k
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Figure 9: Case study of Ours, DigiRL offline and DigiRL online on the task: what is the speed of a
rocket?
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