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ABSTRACT

Video generation models nowadays are capable of generating visually realistic
videos, but often fail to adhere to physical laws, limiting their ability to generate
physically plausible videos and serve as “world models”. To address this issue, we
propose PhysMaster, which captures physical knowledge as a representation for
guiding video generation models to enhance their physics-awareness. Specifically,
PhysMaster is based on the image-to-video task where the model is expected to
predict physically plausible dynamics from the input image. Since the input image
provides physical priors like relative positions and potential interactions of objects
in the scenario, we devise PhysEncoder to encode physical information from it as
an extra condition to inject physical knowledge into the video generation pro-
cess. The absence of physical representation definition prevents a straightforward
supervision of PhysEncoder. Thus we leverage the physical plausibility of gener-
ated videos guided by PhysEncoder as feedback for reinforcement learning (RL),
thereby optimizing PhysEncoder for extracting physical representations with Di-
rect Preference Optimization (DPO). PhysMaster provides a feasible solution for
improving physics-awareness of PhysEncoder and thus of video generation, prov-
ing its ability on a simple proxy task and generalizability to wide-ranging physical
scenarios. This implies that our PhysMaster, which unifies diverse physical pro-
cesses via RL-based representation learning, offers a generic and plug-in solution
for physics-aware video generation and broader applications.

1 INTRODUCTION

Video generation models (Brooks et al., 2024; Kuaishou, 2024; Yang et al., 2024c) have developed
rapidly nowadays, achieving significant performances in generating visually appealing videos (Run-
wayML, 2024; Team, 2024; Kong et al., 2024). However, they primarily act as sophisticated pixel
predictors based on case-specific imitation, and often face challenges in adherence to physical
laws (Kang et al., 2024; Liu et al., 2025a; Meng et al., 2025). This limits their ability to generate
physically plausible videos and further comprehend physical principles to serve as “world models”.
To evolve these models from content creators to world simulators, we aim to incorporate physical
knowledge into the video generation process to enhance their physical realism.

Solutions for physics-aware video generation can be broadly categorized into two types based on the
usage of simulation. Simulation-based approaches (Lv et al., 2024; Liu et al., 2024b) attempt to ap-
ply physics-based simulation results to guide video generation, but they are often constrained in the
range of simulable physical processes and modalities, lacking the potential to generalize to diverse
phenomena. Simulation-free methods (Xue et al., 2024; Furuta et al., 2024) rely on post-training on
physics-rich data or employ reinforcement learning for aligning to human preference. The former
highly depends on fitting similar training samples, and the latter utilizes either expensive human
annotation suffering from rater variability, or scalable but inaccurate AI evaluators. In summary,
existing works find it hard to truly abstract and understand physics of the world (Lin et al., 2025;
Motamed et al., 2025), hindering generalization to diverse physics. We summarize the specific chal-
lenges of physics-aware video generation into the following two points. First, the commonly used
Mean Squared Error (MSE) loss for data-driven finetuning focuses on appearance fitting rather than
comprehension of physical knowledge, and it is non-trivial to directly supervise the physical per-
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formance of pretrained models beyond merely appearance. Second, generative models struggle to
extract appropriate physical knowledge from a textual instruction or an input image and translate it
into physical guidance for generation, which demands logical reasoning from descriptions or images
to physical knowledge, and to visual phenomena.

Facing the aforementioned challenges, we propose to learn a physical representation as the bridge
between the necessary physical knowledge and generated videos to guide generative models towards
physics awareness. Specifically, we focus on image-to-video (I2V) generation where an initial frame
and textual description are given, the model is supposed to predict physically plausible dynamics
from input scenes. The input image offers visual cues like object configurations, relative positions,
and potential interactions that largely dictate the subsequent physical evolution of video, making
it a reliable source of physical priors. Thus firstly, we devise a physical encoder, PhysEncoder, to
extract implicit physical representation from the input image as an extra input condition to guide the
generation process for enhancing physics-awareness of the model.

However, how to learn an appropriate physical representation for video generation remains an open
question. Without a explicit definition for physical representation, we can not conduct straightfor-
ward supervision of PhysEncoder. Thus we propose indirect supervision by optimizing its ability to
guide physically plausible video generation. This is achieved through a reinforcement learning with
human feedback (RLHF) framework, which has proven effective in finetuning of both large language
models (LLMs) (Yuan et al., 2023; Xu et al., 2024; Yuan et al., 2023) and generative models (Lee
et al., 2023; Prabhudesai et al., 2024; Fan et al., 2023). The physical plausibility of generated videos
guided by PhysEncoder acts as feedback for optimizing PhysEncoder to extract effective physical
representations. Specifically, we train PhysEncoder on human preference data via Direct Preference
Optimization (DPO) (Rafailov et al., 2023) in a three-stage training pipeline. We first conduct su-
pervised fine-tuning (SFT) of both base model and PhysEncoder, then we adopt a two-stage DPO
with pairwise supervision to enhance PhysEncoder’s capacity to capture physical representations
and model’s physical performance, with trainable module separately set as LoRA (Hu et al., 2021)
of the DiT model and PhysEncoder. With SFT providing the model with the initial ability to predict
physically plausible videos under the guidance of simultaneously finetuned PhysEncoder, the sub-
sequent DPO processes further steer PhysEncoder’s output towards physics-aware representation,
thus helping improve the physical understanding of model.

Last but not least, we condition the video generation model on physical representation in a plug-in
manner, enhancing physics-awareness by injecting physical knowledge into it. Such a paradigm en-
ables the model to learn general physical properties, rather than overfitting to specific phenomena or
being constrained to particular motion modalities as in previous works, thus allowing it to generalize
to diverse scenarios. We demonstrate the effectiveness of PhysEncoder starting from a simple proxy
task of “free-fall”, and then generalize to broader physical scenarios governed by a wide range of
physical laws. PhysEncoder proves its capablity by guiding the generation model towards enhanced
physical performance, and such generalization implies that PhysMaster, our representation learning
paradigm facilitates the physical understanding of physical laws in a broad scope.

In summary, PhysMaster provides a more generalizable solution for video generation models to
capture physical knowledge across diverse physical phenomena, showing its advantage in acting
as a foundational solution for physics-aware video generation and potential to energize more fancy
applications (Agarwal et al., 2025; Yang et al., 2024b; 2023).

2 RELATED WORKS

Physics-aware video generation. While recent video generation models achieve impressive vi-
sual effects (Brooks et al., 2024; Kong et al., 2024), they still struggle with adherence to real-world
physical laws (Lin et al., 2025; Kang et al., 2024). Physics-aware video generation approaches can
be broadly categorized based on the application of explicit physical simulation. Simulation-based
methods (Lv et al., 2024; Xie et al., 2025; Montanaro et al., 2024; Zhang et al., 2024b) guide gen-
eration with simulation results. PhysGen (Liu et al., 2024b) utilizes rigid-body dynamics simulated
with physical parameters inferred by large foundation models. PhysMotion (Tan et al., 2024) relies
on MPM-based simulation to generate coarse videos which are refined by a video diffusion model.
As for simulation-free approaches, they either fine-tune on large-scale video datasets to implicitly
internalize physical priors (Wang et al., 2025; Zhang et al., 2025), or use reinforcement learning with
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Figure 1: Overall architecture of PhysMaster. Given an input image, PhysEncoder encodes its
physical feature and concatenates with visual features, then the DiT model predicts subsequent
frames conditioned on physical, visual, and text embeddings. We optimize PhysEncoder ’s physical
representation via feedback from generated video pairs of the model by maximizing reward derived
from “positive” and “negative” video outputs in a DPO paradigm.

feedback from human annotators or vision-language models (Xue et al., 2024; Furuta et al., 2024).
PhyT2V (Xue et al., 2024) uses MLLMs to refine prompts iteratively through multiple rounds of
generation and reasoning. WISA (Wang et al., 2025) incorporates structured physical information
into the generative model and uses Mixture-of-Experts for different physics categories. However,
those methods are restricted to fixed physical categories or exhibit limited physical comprehension.
Our PhysMaster incorporates physical knowledge into video generation process via physical repre-
sentation to enhance general physics-awareness.

RLHF for video generation. Inspired by the success of RLHF in LLMs (Ouyang et al., 2022; Jaech
et al., 2024), researchers have explored applying this paradigm to video generation (Zhang et al.,
2024a; Qian et al., 2025). VideoDPO (Liu et al., 2024a) pioneers the adaptation of DPO (Rafailov
et al., 2023) to video diffusion models by considering both visual quality and semantic alignment for
data pair construction. VideoAlign (Liu et al., 2025b) introduces a multi-dimensional video reward
model and DPO for flow-based video generation model based on it. PISA (Li et al., 2025) inves-
tigates specifically for video generation of object free-fall, improving physical accuracy through
reward modeling based on depth and optical flow. Unlike the aforementioned methods, we optimize
a physical encoder rather than the whole video generation model by leveraging generative feedback
from the model’s outputs. This paradigm mitigates overfitting to specific physical processes and
promotes the encoder’s generalizability for learning universal physical knowledge through RLHF.

3 METHOD

Based on I2V setting, PhysMaster extracts physical representation from the input image and opti-
mizes both the generation model and PhysEncoder in a three-stage training pipeline. It seeks direct
supervision from groundtruth via SFT and pairwise supervision from generated videos via DPO, and
is implemented on the simplest proxy task and broader scenarios. We will separately detail physical
representation (Sec 3.1), task formulation (Sec 3.2) and training scheme (Sec 3.3).

3.1 PHYSICAL REPRESENTATION

PhysMaster is implemented upon a transformer-based diffusion model (DiT) (Peebles & Xie, 2023),
which employs 3D Variational Autoencoder (VAE) (Kingma, 2013) to transform videos and initial
frame to latent space, and T5 encoder ET5 (Raffel et al., 2020) for text embeddings ctext.

We propose to learn a physical representation from input image as extra guidance for the I2V model
to inject physical information, since the input image contains not only explicit physical states, such
as object material and spatial distribution, but also implicit physical laws, like the gravitational field.
It is worth expecting that the learned physical representation can be used as a generalizable guidance
of both physical properties and dynamics for physics-aware video generation. Following the struc-
ture of Depth Anything (Yang et al., 2024a), we build PhysEncoder with a DINOv2 (Oquab et al.,
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2023) encoder and a physical head. The former adopts pretrained weights from Yang et al. (2024a)
for initialization and takes the role of semantic perception, while the latter adapts the extracted high-
level semantic features into an appropriate dimension to be injected into the DiT model. Taking the
first frame as image input, PhysEncoder encodes it into physical embeddings cphys, which are then
fed into DiT model after concatenated with image embeddings cimage. For SFT, the flow-based DiT
model with weights θ directly parameterizes the vθ(zt, t, ctext, cimage, cphys) to regress velocity
(z1 − z0) with the Flow Matching objective (Lipman et al., 2022):

LLCM = Et,z0,ϵ||vθ(zt, t, ctext, cimage, cphys)− (z1 − z0)||22. (1)

3.2 TASK FORMULATION

Our work aims to provide a scalable and generalizable methodology for learning physics from tar-
geted data, so for demonstrating the effectiveness of our PhysMaster, we start by defining a proxy
task under simple physical principles and construct domain-specific data for preliminary validation;
then we verify its generalizability across a broader range of physical laws and various tasks.

Proxy task. For preliminary verification, “free-fall” (involving the complete physical process of
objects dropping from mid-air and colliding with other objects on a surface), a simple yet expressive
scenario is chosen as the proxy task for the following characteristics. First, “free-fall” embodies
clear and fundamental physical principles (e.g., energy and momentum conservation) shared across
diverse physical scenarios, making it a suitable representative for further generalization. Second,
such physical scenario involves a wide range of object-level physical properties, such as density,
elasticity, and hardness, allowing proof of generalizability of learned representations across different
physical attributes. Third, this task can be easily simulated for scalable generation of synthetic data
and allows for straightforward evaluation by comparing generated videos against ground-truths.
The reason is that by assuming the falling object starts from rest and is only influenced by gravity,
the trajectories of objects become fully deterministic given the initial frame, which also enables
automatic construction of preference video pairs for DPO by similarity with ground-truths.

Broader scenarios. We further substantiate generalization capabilities of PhysMaster across diverse
physical processes. Following WISA (Wang et al., 2025), we include large-scale scenarios broadly
covering common physical phenomena observed in real world for PhysEncoder to acquire a far more
comprehensive and generalizable understanding of physical laws and thus effectively enhances the
physics awareness of the video generation model. Different from the proxy task implementation, we
modify the text prompts provided to the generation model by adding domain-specific prefixes (e.g.,
“Optic, A ray of light ...”, “Thermodynamic, A glass of water ...”). This conditions the model on the
type of involved physics laws and guides it to associate visual phenomena with underlying physics
extracted from PhysEncoder. For preference assignment, we rely on human annotators to provide
pairwise labels for DPO data construction and evaluation.

3.3 TRAINING SCHEME

We propose a three-stage training pipeline for PhysMaster to enable physical representation learning
of PhysEncoder by leveraging the generative feedback from I2V model. The core idea is formulating
DPO for PhysEncoder with the reward signal from generated videos of pretrained DiT model, thus
help physical knowledge learning without explicit modeling.

Stage I: SFT for DiT and PhysEncoder. First, we condition the I2V base model on physical rep-
resentation from PhysEncoder by SFT, thus it is possible for us to optimize PhysEncoder with the
performance of model as feedback in following stages. Since PhysEncoder’s training starts from
the frozen DINOv2 with pretrained weights from Depth Anything (Yang et al., 2024a) and train-
able physical head with randomly initialized weights, this stage can be viewed as adapting Depth
Anything for physical condition injection. As in Figure 1, by concatenating physical embeddings
extracted by PhysEncoder with visual embeddings encoded by VAE, we inject physical representa-
tion as extra condition to the model. SFT following Eq 5 equips the model with the initial ability to
predict subsequent frames from the input image, guided by simultaneously finetuned PhysEncoder.

Stage II: DPO for DiT. Second, we expect to adapt the output of the pretrained model to a more
physically plausible distribution, paving the way for the PhysEncoder to learn from generated videos
with higher physical accuracy. Then in Stage II, we apply LoRA (Hu et al., 2021) to finetune the DiT
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model on preference dataset with DPO, during which the model learns to generate positive samples
with higher probability and negative samples with lower probability. Regarding I2V setting, each
sample in our preference dataset includes a prompt p, an image i, a human-chosen video xw and
a human-rejected video xl. The goal of DPO is to learn a conditional distribution πθ(x | p, i) that
maximizes the reward rϕ(x, p, i) while staying close to a reference model πref:

max
πθ

Ep∼Dp,i∼Di,x∼πθ(x|p,i) [rϕ(x, p, i)]− β DKL [πθ(x | p, i) ∥πref(x | p, i)] (2)

where β controls the regularization term (KL-divergence) from πref. For our flow-based DiT model,
Flow-DPO objective (Liu et al., 2025b) LFD(θ) is then given by:

−E

[
log σ

(
− β

2

(
∥vw − vθ(x

w
t , t)∥2 − ∥vw − vref(x

w
t , t)∥2 −

(
∥vl − vθ(x

l
t, t)∥2 − ∥vl − vref(x

l
t, t)∥2

)))]
,

(3)

where the conditioning prompt p and image i are omitted for simplicity, vθ denotes the predicted
velocity field, vw, vl are the target velocity of “preferred” and “less preferred” data.

The pretrained DiT model from Stage I is regarded as the reference model and is used to construct the
preference data pairs. Specifically, we generate two groups of videos with the pretrained model using
the same prompt p and initial frame i but different seeds. By establishing clear distinctions between
positive samples xw and negative samples xl, the model learns to generate physically plausible
videos. As a result, we further enhance the model’s physics awareness.

Stage III: DPO for PhysEncoder. We leverage generative feedback from the pretrained DiT model
to optimize PhysEncoder’s physical representation via DPO paradigm. As illustrated in Figure 1,
our framework consists of two parts: PhysEncoder to be optimized and the pretrained DiT model
providing generative feedback. With physical head of PhysEncoder the only trainable module, Stage
III shares the same training objective Eq 3 with Stage II, differing solely in the learnable parameters.
LFD(θ) leads PhysEncoder to learn a physical representation that guides the predicted velocity field
vθ closer to the target velocity vw of the “preferred” data. In this manner, by directing the DiT model
to generate more accurate physical dynamics, the PhysEncoder’s original representation is gradually
optimized with more physical knowledge through model feedback.

4 EXPERIMENTS

To evaluate the effectiveness of PhysMaster for physical representation learning and demonstrate
its potential to enhance physical performance of the DiT model, comprehensive experiments are
conducted on both the proxy task and wide-ranging scenarios.

4.1 IMPLENTATION DETAILS

Training configuration. The training of both PhysEncoder and the DiT model is conducted on 8
NVIDIA-A800 GPUs in all three stages, with 20 hours for SFT, 15 hours for DPO on LoRA and 8
hours for DPO on PhysEncoder. The training process employs the Adam optimizer (Kingma, 2014),
and we utilize 50 DDIM steps (Song et al., 2020) and set the CFG scale to 7.5 during inference.

Dataset construction. For the proxy task, we follow PISA (Li et al., 2025) to use Kubric (Greff
et al., 2022) to create synthetic datasets of “free-fall”. The object assets are sourced from the Google
Scanned Objects (GSO) dataset (Downs et al., 2022). For generalizability demonstration, we utilize
WISA-80K (Wang et al., 2025) encompassing 17 types of real-world physical events across three
major branches of physics (Dynamics, Thermodynamics, and Optics).

Evaluation protocols. PisaBench (Li et al., 2025) is introduced to evaluate our model’s perfor-
mance on the proxy task. We use SAM 2 (Ravi et al., 2025) for segmentation of object masks and
compute the following metrics between corresponding masks of generated and ground truth videos
for evaluation: L2 distance between the centroids of the masked regions, chamfer distance (CD) and
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Table 1: Ablation study for models from different training stages and strategies on proxy task,
evaluated on the test set split into “seen” and “unseen”. vθ is DiT model, Ep is PhysEncoder.

Training Stages Seen Unseen Average

L2(↓) CD(↓) IoU(↑) L2(↓) CD(↓) IoU(↑) L2(↓) CD(↓) IoU(↑)

Base 0.1066 0.323 0.119 0.1065 0.339 0.111 0.1066 0.331 0.115

SFT for vθ 0.0532 0.134 0.137 0.0512 0.133 0.135 0.0522 0.134 0.136
SFT for vθ & Ep (Stage I) 0.0568 0.141 0.137 0.0498 0.128 0.134 0.0533 0.134 0.135

SFT for vθ + DPO for vθ 0.0560 0.143 0.144 0.0446 0.115 0.128 0.0503 0.129 0.136
SFT for vθ & Ep + DPO for vθ (Stage II) 0.0520 0.125 0.133 0.0454 0.116 0.136 0.0487 0.120 0.134
SFT for vθ & Ep + DPO for Ep 0.0559 0.140 0.138 0.0503 0.129 0.134 0.0531 0.134 0.136
SFT for vθ & Ep + DPO for vθ & Ep 0.0501 0.124 0.141 0.0458 0.121 0.140 0.0480 0.123 0.141

SFT for vθ & Ep + DPO for vθ + DPO for Ep (Stage III) 0.0489 0.120 0.141 0.0450 0.115 0.145 0.0470 0.118 0.143
SFT for vθ & Ep + DPO for vθ + DPO for vθ & Ep 0.0477 0.121 0.144 0.0452 0.115 0.141 0.0466 0.118 0.142

A plastic bottle falls.

Ours PISA PhysGen

A plastic box is dropping.

Figure 2: Qualitative comparison with video generation models specialized for rigid-body mo-
tion proves the advantage of our model in shape consistency and trajectory accuracy on “free-fall”.

Intersection over Union (IoU) of the mask regions. We utilize VIDEOPHY (Bansal et al., 2024)
for evaluating physics awareness of video generation in broader scenarios. We test on 344 carefully
crafted prompts from it, which reflect a wide array of physical principles, and report the physical
commonsense (PC) and semantic adherence (SA) scores.

4.2 EVALUATION ON PROXY TASK

To validate that our training pipeline can effectively improve the physical performance of base model
on the proxy task, we compare the physical accuracy of our model on ”free-fall” motion with existing
works and ablate different training techniques of PhysEncoder.

Comparison. We compare our model with PhysGen (Liu et al., 2024b) and PISA (Li et al., 2025) on
the real-world subset from PisaBench (Li et al., 2025) which is unseen to any model during training
for robust evaluation. We apply more rigorous metrics of similarity over all objects in the scene
by comparing against the ground truth. Table 2 shows that our model outperforms both baselines.
PhysGen struggles with accurately modeling spatial relationships between objects and surfaces like
ground or tables, thus often leads to physically implausible object interactions. For PISA, its best
variant with depth-based reward optimizes for trajectory accuracy (comparable L2/CD) at the cost
of shape consistency (lower IoU). In contrast, ours excels in IoU while maintaining competitive
trajectory accuracy, achieving the best overall performance, which is also proved in Figure 2.

Ablation study. We report the qualitative results from different training stages and pipelines on
the synthetic subset of PisaBench in Table 1, where block 1 denotes the I2V base model; block
2 - 4 refer to our model and its variants in Stage I - III of training pipeline. “Seen” corresponds
to a split of videos with objects and backgrounds seen during training, and “Unseen” with novel
objects and backgrounds. 1) Ablation for different training stages. row 3, 5, and 8 indicate that
our SFT endows the model with preliminary ability to predict objects’ motion of “free-fall”, the
subsequent DPO for DiT model further steers the generated videos’ distribution towards physically
plausible paths, and the optimization of PhysEncoder in the last stage improves its capability in guid-
ing model towards higher level of physics-awareness. The qualitative results in Figure 3 consistently
prove our pipeline’s efficacy. 2) Ablation for PhysEncoder. The comparative pipeline in row 2 and
4 is not equipped with PhysEncoder, thus SFT and DPO are both implemented on the DiT model.
Although the performance after SFT on both DiT and PhysEncoder (row 3) is even worse than SFT
on DiT alone (row 2), showing that simple SFT cannot help PhysEncoder learn appropriate physical
representations for guiding the DiT model towards physics-awareness, DPO unlocks PhysEncoder ’s
potential to extract physical information and guide the model to generate videos with better physical
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Base

SFT for	𝒗𝜽	& 𝑬𝒑

A brown bottle falls. A black bag is dropping.

SFT for	𝒗𝜽 & 𝑬𝒑+DPO for	𝒗𝜽

SFT for	𝒗𝜽 & 𝑬𝒑+DPO for	𝒗𝜽 +DPO for 𝑬𝒑

Base

SFT for	𝒗𝜽	& 𝑬𝒑

SFT for	𝒗𝜽 & 𝑬𝒑+DPO for	𝒗𝜽

SFT for	𝒗𝜽 & 𝑬𝒑+DPO for	𝒗𝜽 +DPO for 𝑬𝒑

Figure 3: Qualitative ablation for models in each training stage on proxy task. The model ex-
hibits a preliminary capability for predicting object motion trends after SFT. Two-stage DPO further
improves model performance in preserving objects’ rigidity and complying with physical laws (e.g.,
gravitational acceleration and collision). vθ is DiT model and Ep is PhysEncoder.

Table 2: Quantitative comparison
with video generation models special-
ized for rigid-body motion verifies su-
periority of our model on proxy task.

Methods L2(↓) CD(↓) IoU(↑)

PhysGen 0.0433 0.0967 0.418
PISA 0.0294 0.0570 0.433
Ours 0.0299 0.0567 0.468

𝑬𝒑 in Stage I 𝑬𝒑 in Stage IIIInput𝑬𝒑 in Stage I 𝑬𝒑 in Stage IIIInput

Figure 4: Visualization of the first three PCA compo-
nents of physical representation. Ep in Stage III reveals
similarities in objects under the same external forces (red:
on the ground; green: in the air) over Ep in Stage I.

performance (row 4, 5,8). 3) Ablation for DPO strategies. All strategies of DPO succeed in further
improving physical accuracy on average than previous stages. Only optimizing PhysEncoder (row
6) encounters difficulties in performance improvements. The model itself has not been aligned to
adherence to physics before providing feedback to PhysEncoder, preventing DPO from functioning
effectively. Although Stage II of our training pipeline underperforms joint DPO of DiT and PhysEn-
coder (row 7), our Stage III surpasses all other methods. Joint optimization of DiT and PhysEncoder
in Stage III (row 9) achieves comparable overall performances with our Stage III but performs worse
on ”unseen” split, probably because this variant with trainable DiT is more likely to overfit training
data, harming the model’s generalizability to novel scenarios.
PCA analysis. We also visualize the principal component analysis (PCA) on the physical features
from PhysEncoder in Stage I and Stage III in Figure 4. In our Stage III physical feature maps,
similarities are shown clearly for objects under the same external forces, (green for objects in mid-air
and only affected by gravity, red for objects on the ground subjected to the support force); differences
are also shown more obviously between materials (e.g., deformable object in white box has clearly
distinct colors), which proves two aspects of physical understanding of our PhysEncoder.

4.3 GENERALIZATION ON BROADER SCENARIOS

PhysEncoder demonstrates its physics-awareness for enhancing model’s physical realism on the
proxy task, suggesting its potential to generalize to broader scenarios. We apply our training pipeline
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CogVideoX-5B
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Wan2.1-T2V-1.3B

WISA (Wan2.1-T2V-14B)

CogVideoX-5B
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Wan2.1-T2V-1.3B

WISA (Wan2.1-T2V-14B)

CogVideoX-5B

Multiple rigid balls roll along a metal track, clashing into each other as they move. A plastic bottle slides down a chute, driven forward by the force of rushing water.

A slice of lemon drops into water, splashing droplets upward.A glass strikes the ground and shatters, scattering sharp fragments in all directions.

Rigid-body movements Fluid motion

Ours

Wan2.1-T2V-1.3B

WISA (Wan2.1-T2V-14B)

CogVideoX-5B

Figure 5: Qualitative comparison with existing T2V models on broader scenarios including ob-
jects of various materials and in different environments, validates the generalizability of our method.

A close-up of a clear glass bottle is being topped off with a stream of water. A hand pours beer into a tall glass filled with ice and a slice of lime on the rim.

Stage I

Stage III

Stage I

Stage I

Stage I

A man shaves his beard with a razor, pushing away the foam from his face. A towel on the table is used to wipe away dust from the surface.

Stage III

Stage III

Stage III

Figure 6: Qualitative ablation for models in different stages on broader scenarios. DPO following
Stage I improves the physical coherence of model in Stage III (e.g., fluid mechanics and gravitation).

on a large-scale dataset (Wang et al., 2025) broadly covering common physical phenomena observed
in real world to substantiate the generalizability of our method.

Comparison. We compare with two types of video generation models, general models includ-
ing HunyuanVideo (Kong et al., 2024), CogVideoX-5B (Yang et al., 2024c), Cosmos-Diffusion-
7B (Agarwal et al., 2025), Wan2.1-T2V-1.3B and specialized physics-focused models represented
by PhyT2V (Xue et al., 2024) and WISA (Wang et al., 2025). Table 3 shows that, although our
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Table 3: Quantitative comparison with
existing video generation models on
broader scenarios . Our model shows supe-
rior performance in both physics-awareness
and efficiency.

Methods Inference Time(s) SA(↑) PC(↑)

HunyuanVideo 1080 0.46 0.28
Wan2.1-T2V-1.3B 180 0.49 0.24
CogvideoX-5B 210 0.60 0.33
Cosmos 600 0.57 0.18
PhyT2V 1800 0.61 0.37
WISA 220 0.67 0.38
Our base model 23 0.59 0.29
Our final model 26 0.67 0.40

Table 4: Ablation study for PhysEncoder on
broader scenarios. vθ is DiT model, Ep is PhysEn-
coder. The results validate that DPO enables Ep

to acquire a comprehensive understanding of real-
world physics and thus effectively enhances the
physics awareness of vθ.

Methods SA(↑) PC(↑)

Base 0.59 0.29

SFT for vθ 0.63 0.33
SFT for vθ + DPO for vθ 0.64 0.35

SFT for vθ & Ep (Stage I) 0.61 0.33
SFT for vθ & Ep + DPO for vθ + DPO for Ep (Stage III) 0.67 0.40

base model is surpassed by CogvideoX-5B, the base model of WISA, our final model in Stage III
achieves state-of-the-art performance on both SA and PC metrics, demonstrating that our proposed
method enhances the realism of generated videos physically and semantically. Our model also has a
significant advantage in efficiency. It is approximately 70x faster than PhyT2V—an iterative method
requiring feedback from VLM, and 8x faster than WISA. Our model generates a 5-second video in
just 26 seconds on a single A800 GPU, establishing it as a highly practical solution that does not
sacrifice physical or semantic adherence. Figure 5 includes qualitative comparison with both ex-
isting T2V models, demonstrating our superior ability in challenging cases of both rigid-body and
fluid motion.

Table 5: User study for models from
different stages validates the effect of
our training pipeline in two selected
physical scenarios. Our final model
shows superior ability of PhysEncoder
in Stage III in enhancing the model’s
physics-awareness over the base model
and Stage I.

Methods Rigid-body movement Fluid motion

Base 7.8 12.2
Stage I 25.3 16.7
Stage III 66.9 71.1

Ablation study. We conduct ablation analysis to verify
the effectiveness of our core component and strategy of
training in Table 4. 1) Effectiveness of PhysEncoder:
Compared to our base model (row 1), our final model
(row 5) improves SA and PC scores by 0.08 and 0.11.
The comparative pipeline is not equipped with PhysEn-
coder, with SFT (row 2) and the following DPO (row 3)
both implemented on the DiT model only. Such a pipeline
without PhysEncoder improves SA and PC scores by 0.05
and 0.06, proving the advantage of our proposed PhysEn-
coder in successfully extracting crucial physical knowl-
edge from the training data and using it to guide the gen-
erator toward greater physical realism, which is unattain-
able by simply applying SFT or DPO to the DiT model alone. 2) Effectiveness of DPO: Simply
applying SFT to PhysEncoder (row 2 vs. row 4) does not yield an immediate benefit, suggesting
that SFT alone is insufficient for PhysEncoder to learn a useful guiding physical representation.
However, DPO unlocks the potential of PhysEncoder, allowing it to effectively translate its learned
physical representations into improved generation quality in both physical commonsense and se-
mantic adherence (row 4 vs. row 5). Additionally, Figure 6 visualizes the videos generated by our
model in Stage I and III, further validating the effectiveness of DPO. 3) Effectiveness of whole
training pipeline: Table 5 includes human preference rates among models from different training
stages in two types of real-world scenarios, showing that annotators prefer videos from Stage III
model than Stage I model or I2V base model in adherence to physical laws.

5 CONCLUSIONS

We propose PhysMaster, which learns physical representation from input image for guiding I2V
model to generate physically plausible videos. We optimize physical encoder based on generative
feedback from a pretrained video generation model via DPO, which proves to enhance the model’s
physical accuracy and demonstrate generalizability across various physical processes by injecting
physical knowledge into generation, proving its potential to act as a generic and plug-in solution for
physics-aware video generation and broader applications.

Limitations. We rely on human annotators to construct preference datasets for DPO in real-world
scenarios, which is costly and time-consuming. Existing AI evaluators, however, have flawed
physics knowledge and inherit biases, limiting the scalability of reinforcement learning. Fortunately,
our DPO training paradigm is effective even with a small amount of human-labeled data (500 in our
experiment), mitigating this limitation.
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points. The training data used in this study was sourced from open-source datasets or prepared using
open-source methods. Prior to model training, we implemented a comprehensive data filtering and
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Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv:2304.07193, 2023. 3

11

https://kling.kuaishou.com/en


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. In NeurIPS, 2022. 3

William Peebles and Saining Xie. Scalable diffusion models with transformers. In ICCV, 2023. 3,
14

Mihir Prabhudesai, Russell Mendonca, Zheyang Qin, Katerina Fragkiadaki, and Deepak Pathak.
Video diffusion alignment via reward gradients. arXiv:2407.08737, 2024. 2

Wenxu Qian, Chaoyue Wang, Hou Peng, Zhiyu Tan, Hao Li, and Anxiang Zeng. Rdpo:
Real data preference optimization for physics consistency video generation. arXiv preprint
arXiv:2506.18655, 2025. 3

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. In
NeurIPS, 2023. 2, 3, 14, 15

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. JMLR, 2020. 3, 14

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
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APPENDIX
PHYSMASTER: MASTERING PHYSICAL REPRESENTATION FOR VIDEO
GENERATION VIA REINFORCEMENT LEARNING

A OVERALL STRUCTURE

In this appendix, we first provide more details of experiments in both training and evaluation in
Sec B. Next, in Sec C, we give a more detailed discussion of ablation study for data construction,
training strategy and model design. Then, we show more results to validate the generalizability of
our PhysMaster on real-world scenarios involving different physical knowledge in Sec D. Afterward,
we present more qualitative comparisons on the proxy task and relevant scenarios in Sec E. Broader
impact and limitations are discussed in Sec F and Sec G. Finally, we clarify the use of large language
models (LLMs) in Sec H. We also set up a local website to showcase the dynamic effects of our
physics-aware video generation in supplementary material.

B EXPERIMENTAL DETAILS

Image-to-video diffusion transformer model. Our PhysMaster is based on the image-to-video
(I2V) task where the model is expected to predict subsequent frames from the input image.

We utilize a transformer-based diffusion (DiT) (Peebles & Xie, 2023) model as the text-to-video
(T2V) foundation model and finetune the DiT model to the setting of I2V. Specifically, the DiT
model employs a 3D Variational Autoencoder (VAE) (Kingma, 2013) to transform videos and initial
frame from pixel space to latent space, and T5 encoder ET5 (Raffel et al., 2020) for text embeddings
ctext.

We use Rectified Flow (Liu et al., 2022; Esser et al., 2024) to define a probability flow ordinary
differential equation (ODE), which transfers the clean data z0 to noised data zt at timestep t along a
straight path, formulated as:

zt = (1− t)z0 + tϵ, (4)

where ϵ ∼ N (0, I) is Gaussian noise. Taking the first frame as image input, VAE encodes it into
image embeddings cimage, which are then fed into the DiT model after being concatenated with
video embeddings. We remove the noise added to the first frame of the video during training, and
for inference, we replace the gaussian noise of first frame with the image embedding cimage encoded
from input image, and then predict the following frames by the model. The flow-based DiT model
with weights θ directly parameterizes the vθ(zt, t, ctext, cimage) to regress velocity (z1 − z0) with
the Flow Matching objective (Lipman et al., 2022):

LLCM = Et,z0,ϵ||vθ(zt, t, ctext, cimage)− (z1 − z0)||22. (5)

Training pipeline. We train PhysEncoder on human preference data via Direct Preference Opti-
mization (DPO) (Rafailov et al., 2023) in a three-stage training pipeline detailed in Figure 7. We
first conduct supervised fine-tuning (SFT) of both base model and PhysEncoder with a global batch
size of 192 and a learning rate of 1e-5. Then we adopt two-stage DPO with pairwise supervision
to enhance PhysEncoder’s capacity to capture physical representations and model’s physical per-
formance, with trainable module separately set as LoRA (Hu et al., 2021) of the base model and
PhysEncoder independently, both with learning rate equals to 1e-6 and global batch sizes of 96 and
72. With SFT providing the model with initial ability to predict physically plausible videos guided
by the simultaneously finetuned PhysEncoder, the subsequent DPO processes further steer PhysEn-
coder’s output distribution towards physics-aware representation, thus help improve the physical
accuracy of generated videos.

Dataset construction. Our training and test datasets of the proxy task is simulated on Kubric (Greff
et al., 2022), a simulation and rendering engine designed for scalable video generation as in Fig-
ure 8. Each video consists of 1-6 dropping objects onto a (possibly empty) pile of up to 4 objects
underneath them. The camera remains stationary in each video and is oriented parallel to the ground
plane. The object assets are sourced from the Google Scanned Objects (GSO) dataset (Downs et al.,
2022) of various true-to-scale 3D models, which are created from real-world scans across diverse
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Transformer Blocks

3D VAE Encoder

3D VAE DecoderGenerated 
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🔥PhysEncoderText Encoder
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Input image Input image

❄❄

Gradient 
backpropagation

🔥

Stage I: SFT for DiT and PhysEncoder

Feedback

LoRA

Stage II: DPO for DiT via LoRA

🔥

Transformer❄Videos

Feedback

Stage III: DPO for PhysEncoder

Transformer❄Videos

🔥PhysEncoder

Figure 7: Training pipeline of PhysMaster. Given an input image, the DiT model predicts sub-
sequent frames conditioned on physical, visual, and text embeddings. In Stage I, by concatenating
physical embeddings extracted by PhysEncoder with visual embeddings encoded by VAE, we inject
physical representation as extra condition to the I2V base model through SFT on both PhysEncoder
and DiT model; In Stage II, we apply LoRA (Hu et al., 2021) to finetune the DiT model on prefer-
ence dataset with DPO; In Stage III, we only optimize PhysEncoder ’s physical representation via
feedback from generated video pairs of the model in a DPO paradigm (Rafailov et al., 2023).

(a) Collected scenes (b) Collected objects (c) Motion trajectory

Figure 8: Illustration of the dataset construction process. We use the Kubric (Greff et al., 2022)
simulation and rendering engine for creating our simulated videos. Each scene consists of objects
from the Google Scanned Objects (GSO) dataset (Downs et al., 2022) and uses environmental light-
ing from HDRI maps provided by Kubric, the motion trajectory is simulated on PyBullet (Coumans,
E. et al., 2010) and rendered by Blender (Community, B. O., 2018).

categories (e.g., shoes, vegetables, toys, .etc). Our training data for SFT in stage I comprise 7k sam-
ples and the test set includes 500 videos for preference data construction, both with resolution of
512x512. Hence, the preference datasets used in Stage II and III both consist of 500 pairs of videos
with positive and negative labels. The input image for the model is sampled from the first frame of
each video, and each video segment consists of 32 frames corresponding to a duration of 2 seconds
at 16 frames per second (fps).

For generalizability demonstration, we utilize WISA-80K (Wang et al., 2025), a large-scale dataset
collected based on qualitative physical categories and consisting of 80,000 videos, encompassing
17 types of physical events (e.g., Collision, Melting, and Reflection) across three major branches of

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 6: Quantitative results for models in Stage II (DPO for DiT model) using different met-
rics as criterion for preference data construction on proxy task, evaluated on the test set split into
“seen” and “unseen”. IoU and L2 are more effective than CD with favorable model performance,
which stems from their explicit correspondence to physical attributes: IoU for shape consistency,
and L2 for motion trajectories.

Preference Criterion Seen Unseen Average

L2(↓) CD(↓) IoU(↑) L2(↓) CD(↓) IoU(↑) L2(↓) CD(↓) IoU(↑)

CD 0.0515 0.131 0.143 0.0481 0.123 0.142 0.0498 0.127 0.142
L2 0.0513 0.124 0.145 0.0473 0.118 0.149 0.0493 0.121 0.147
IoU (Ours) 0.0520 0.125 0.133 0.0454 0.116 0.136 0.0487 0.120 0.134

physics: Dynamics, Thermodynamics, and Optics. The preference datasets used in Stage II and III
both consist of 500 pairs of videos with human-annotated positive and negative labels.

User study. A user study is conducted to compare the physical plausibility of video pairs, separately
generated by the model assisted by physical representation from PhysEncoder of Stage I and III.
Specifically, 30 annotators are involved, and for the two types of real-world scenarios concerning
rigid-body movements and fluid motion, 20 videos are randomly picked from the benchmark of
VIDEOPHY (Bansal et al., 2024), thus a total of 40 video pairs are provided for evaluation.

C ABLATION STUDY

We conduct a detailed analysis of core designs of our pipeline from the model and data perspectives
on the proxy task.

C.1 DATA CONSTRUCTION

Preference criterion. In Stage II of DPO for the DiT model, we construct a preference dataset
consisting of 500 video pairs generated by the Stage I model. Each pair contains a positive and
a negative sample, determined by their similarity to the ground-truth videos. The evaluation met-
rics—L2, Chamfer Distance (CD), and Intersection over Union (IoU)—can all serve as similarity
indicators between the generated video and the ground truth, and thus as the basis for preference
assignment. To investigate the impact of these choices, we ablate the different metrics used as
the decisive preference criteria for constructing these training data pairs for DPO, and evaluate the
model’s performance. Note that this ablation is specifically conducted in Stage II, applying DPO
on the DiT model via LoRA. The results, presented in Table 6, indicate that constructing preference
data using either IoU or L2 metrics leads to favorable performance. While IoU measures the spatial
overlap between objects in the generated video and the ground truth, L2 represents the Euclidean
distance of the centroid of object segmentation map. Compared to CD, these metrics serve as more
effective standards for preference assignment, since they explicitly correspond to key physical at-
tributes: IoU is sensitive to the changes in object properties such as shape during motion, and L2
captures the motion trajectory of free falls, making them more effective for improving the physical
plausibility of generated videos.

Data size. We further conduct an ablation study on the size of preference dataset to investigate the
data scale required for achieving optimal performance of physics-aware alignment on the bench-
mark. We create random subsets of 500, 1500, and 2500 samples from the full test dataset and
finetune our model for the same number of steps in Stage II on each subset. Notably, as shown
in Table 7, we observe that only 500 samples are needed to achieve optimal results, and they even
perform better on average than larger data sizes. While a larger data scale (1500 or 2500 samples)
slightly improves performance on the test split featuring objects and backgrounds “seen” during
training, it significantly degrades performance on the “unseen” setting, which involves novel objects
and backgrounds. This suggests that using more data pairs might lead the model to overfit to the
specific domain of the training data, consequently sacrificing generalization capability to unseen
scenarios.
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Table 7: Quantitative results for models in Stage II (DPO for DiT model) trained on different
data sizes on proxy task. It indicates that 500 samples suffice for optimal overall performance and
even outperform larger datasets on average, and increasing data scale improves results on “seen”
data but significantly degrades performance on “unseen” scenarios due to overfitting and reduced
generalization.

Data Size Seen Unseen Average

L2(↓) CD(↓) IoU(↑) L2(↓) CD(↓) IoU(↑) L2(↓) CD(↓) IoU(↑)

500(Ours) 0.0520 0.125 0.133 0.0454 0.116 0.136 0.0487 0.120 0.134
1500 0.0508 0.124 0.136 0.0497 0.128 0.132 0.0505 0.126 0.137
2500 0.0514 0.126 0.142 0.0496 0.126 0.133 0.0503 0.126 0.134

Table 8: Quantitative results for models in Stage II (DPO for DiT model) finetuned via dif-
ferent trainable modules on proxy task, which shows that full-finetuning degrades performance
compared to LoRA-finetuning, for LoRA more effectively preserving the model’s intrinsic capabil-
ities acquired during SFT in Stage I.

Trainable Module Seen Unseen Average

L2(↓) CD(↓) IoU(↑) L2(↓) CD(↓) IoU(↑) L2(↓) CD(↓) IoU(↑)

LoRA (Ours) 0.0520 0.125 0.133 0.0454 0.116 0.136 0.0487 0.120 0.134
Full model 0.0555 0.138 0.134 0.0501 0.129 0.134 0.0528 0.133 0.134

C.2 TRAINING STRATEGY

Trainable modules. In Stage II, we perform DPO on the DiT model. We compare two finetuning
strategies: full model finetuning and LoRA finetuning in Table 8, which indicates that full finetun-
ing degrades the model’s performance compared to LoRA. This finding demonstrates that applying
LoRA to finetune the linear layers of the transformer model largely preserves the intrinsic perfor-
mance of the model after SFT in Stage I. Consequently, this preservation leads to better physical
accuracy in the generated videos, as indicated by the superior performance.

C.3 MODEL DESIGN

Architecture of PhysEncoder. Our PhysEncoder comprises a DINOv2 encoder and a physical
head, following the architecture of the Depth Anything model (Yang et al., 2024a). Such an archi-
tecture is denoted as “Depth-based PhysEncoder”. In Stage I, the training of “Depth-based PhysEn-
coder” starts from a frozen DINOv2 encoder with pretrained weights from Depth Anything (Yang
et al., 2024a), coupled with a trainable physical head initialized with random weights. This stage can
therefore be viewed as adapting the Depth Anything architecture for the injection of physical condi-
tions. To analyze PhysEncoder with different architectures in Stage I, we conduct SFT on both the
PhysEncoder and the DiT model. Specifically, we compare our proposed architecture, ”Depth-based
PhysEncoder ”, with the other two variants, “DINOv2-based PhysEncoder” consisting of a DINOv2
encoder pretrained from the original model and a physical head, “CLIP-based PhysEncoder” which
replaces the DINOv2 encoder with a pretrained CLIP encoder. Table 9 indicates that our “Depth-
based PhysEncoder” significantly outperforms “CLIP-based PhysEncoder” and holds a slight edge
over the “DINOv2-based PhysEncoder”. This superior performance validates the rationale behind
our architectural design, demonstrating its potential for effectively capturing the essential physical
conditions for our task.

D GENERALIZATION ON REAL-WORLD SCENARIOS

Our PhysMaster demonstrates its physics-awareness by enhancing the physical realism of gener-
ated videos on synthetic data of proxy task. This suggests its potential to generalize to real-world
scenarios and a broader range of physical laws. To substantiate this claim of generalization, we
extend beyond “free-fall” in simulation scene by incorporating real-world scenarios. We then fine-
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A card bag is dropping.A red bottle falls.

SFT for	𝒗𝜽 & 𝑬𝒑

SFT for	𝒗𝜽 & 𝑬𝒑+DPO for	𝒗𝜽+DPO for 𝑬𝒑

SFT for	𝒗𝜽 & 𝑬𝒑

SFT for	𝒗𝜽 & 𝑬𝒑+DPO for	𝒗𝜽+DPO for 𝑬𝒑

Figure 9: Qualitative comparisons for models in each training stage on the real-world test set
of object dropping and collision. The model exhibits a preliminary capability for predicting object
motion trends after SFT. Two-stage DPO further improves model performance in preserving objects’
rigidity and complying with physical laws (e.g., gravitational acceleration and collision). vθ is DiT
model and Ep is PhysEncoder.

Stage I

A serene moment of tea being poured into a glass cup from a clear glass teapot.

Stage III

Stage I

A man is conducting a scientific experiment on a yellow ball in a kitchen.

Stage III

Stage I

A soccer ball soaring toward the goal, landing into the net.

Stage III

Stage I

A person is flipping golden-colored food in a frying pan with a spatula.

Stage III

Figure 10: Qualitative ablation for models in different stages on broader scenarios. DPO fol-
lowing Stage I improves the physical coherence of model in Stage III (e.g., fluid mechanics and
gravitation).

tune our model using the three-stage training pipeline on a combined dataset on both simulated and
real-world data governed by different physical principles, and assess the physics-awareness of the
resulting video generation model in each stage. It allows us to demonstrate the generalizability of
our approach in two key aspects: (1) Physical Attributes: handling different object materials and
physical laws; and (2) Data Domain: adapting to both synthetic and real-world data.

Specifically, we utilize WISA-80K (Wang et al., 2025) dataset and split it into two sets for SFT and
DPO. When combining the simulated and real-world datasets for training, we introduce an extra
label to prompts for distinguishing data domains: ”Virtuality” for simulation data and ”Reality” for
real-world data. To evaluate the training results, we conduct comparisons in two aspects.

Proxy task. We evaluate the performance of proxy task on both real-world and simulated test
datasets from PisaBench (Li et al., 2025). During inference, we also incorporate the corresponding
label of ”Reality” or ”Virtuality” with prompts as in training. In Table 10, we quantitatively compare
the performance of five model variants: row 1 is the I2V base model; row 2 - 3 refer to the models
in Stage I and III of our training pipeline and row 5 - 6 are the models of comparative pipeline.
“Seen” and “Unseen” represent two test splits of simulation scenario and “Real” is the real-world
test dataset. The comparison indicates that in our training pipeline, with SFT endowing the model
with preliminary ability to predict objects’ motion “free-fall”, the optimization of PhysEncoder in
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Table 9: Quantitative results for models in Stage I with PhysEncoder of different architectures
on proxy task.

Architecture of PhysEncoder Seen Unseen Average

L2(↓) CD(↓) IoU(↑) L2(↓) CD(↓) IoU(↑) L2(↓) CD(↓) IoU(↑)

Depth-based (Ours) 0.0568 0.141 0.137 0.0498 0.128 0.134 0.0533 0.134 0.135
CLIP-based 0.0580 0.149 0.129 0.0499 0.133 0.127 0.0540 0.141 0.128
DINOv2-based 0.0551 0.137 0.149 0.0515 0.132 0.124 0.0533 0.135 0.137

Table 10: Quantitative results for models from different training stages and pipelines on proxy
task, evaluated on the test set split into “Seen”, “Unseen” and ”Real”. vθ is DiT model and Ep is
PhysEncoder. Our training pipeline is in the first block and the comparative pipeline is in the second.

Training Stages Seen Unseen Real

L2(↓) CD(↓) IoU(↑) L2(↓) CD(↓) IoU(↑) L2(↓) CD(↓) IoU(↑)

Base 0.1066 0.323 0.119 0.1065 0.339 0.111 0.1600 0.459 0.104
SFT for vθ & Ep (Stage I) 0.0543 0.136 0.158 0.0474 0.115 0.150 0.0762 0.179 0.158
SFT for vθ & Ep + DPO for vθ + DPO for Ep (Stage III) 0.0461 0.114 0.153 0.0466 0.118 0.145 0.0748 0.176 0.163
SFT for vθ 0.0532 0.134 0.137 0.0512 0.133 0.135 0.0765 0.187 0.163
SFT for vθ + DPO for vθ 0.0560 0.143 0.144 0.0446 0.115 0.128 0.0755 0.183 0.163

last stage improves its capability in guiding model towards higher level of physics-awareness. The
comparative pipeline is not equipped with PhysEncoder, thus SFT and the following DPO are both
implemented on the DiT model as in the second block. It is proved that DPO of PhysEncoder
unlocks the potential of approach to extract physical information and guide the model to generate
videos with better physical performance by comparing row 3 and row 5. It is worth noting that,
through joint training on combined data, we also achieve a significant performance enhancement on
the out-of-domain real-world test data. The performance on the real-world domain does not suffer
degradation, even though no real-world data for the dropping and collision task is included in the
training set. This success is thanks to the domain transfer ability provided by our prompt labels
and the strong generalization capability of the PhysEncoder itself. We also visualize the qualitative
results in Figure 9, which consistently confirms the effectiveness of our training mechanism.

Broader scenarios. Figure 10 provides a qualitative comparison of the models in Stage I and Stage
III of our training pipeline on real-world scenarios. The video generated by the latter model exhibits
significantly more plausible physical behavior. For instance, as the liquid is poured, the liquid level
in the glass bottle gradually rises, and the transparent water demonstrates realistic refraction of the
ball along with believable interaction with the human hand. These results consistently demonstrate
the generalizability and effectiveness of PhysMaster in injecting physical information and enhancing
physical plausibility of generation across different physical phenomena and data domains. There-
fore, PhysMaster provides a generalizable solution for unleashing the capabilities of physical com-
prehension across diverse physical phenomena. This highlights its ability to act as a foundational
solution for physics-aware video generation and energize more sophisticated applications.

E MORE COMPARISONS

We compare qualitatively with two types of video generation models, general models including
CogVideoX-5B (Yang et al., 2024c), Wan2.1-T2V-1.3B (Agarwal et al., 2025), and specialized
physics-focused models represented by WISA (Wang et al., 2025). Figure 11 includes more qualita-
tive comparison with existing T2V models, demonstrating our superior ability in challenging cases
of both rigid-body and fluid motion.

F BROADER IMPACT

Our proposed method, which aims to achieve physics-aware video generation, holds significant po-
tential for both positive societal impacts and necessitates careful consideration of potential negative
implications. On the positive side, generating physically plausible video content can substantially
enhance the realism and quality of visual media across various domains. This directly benefits con-
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An apple falls into a bottle of red wine. Glittering droplets of oil float on the surface of the pool water.

With the help of metal tools, the clay slowly takes shape. A man is skating on a sidewalk beside a greenbelt.

Ours

Wan2.1-T2V-1.3B

WISA (Wan2.1-T2V-14B)

CogVideoX-5B

Ours

Wan2.1-T2V-1.3B

WISA (Wan2.1-T2V-14B)

CogVideoX-5B

Ours

Wan2.1-T2V-1.3B

WISA (Wan2.1-T2V-14B)

CogVideoX-5B

Ours

Wan2.1-T2V-1.3B

WISA (Wan2.1-T2V-14B)

CogVideoX-5B

Figure 11: Qualitative comparison with existing T2V models on broader scenarios including ob-
jects of various materials and in different environments, validates the generalizability of our method.

tent creation for films, television, and online media by facilitating the production of more convincing
visuals, thereby reducing production costs and increasing efficiency. Furthermore, the ability to gen-
erate videos adhering to physical principles is fundamentally important for predicting the motion of
objects and the evolution of events in the real world. This capability is a crucial building block
for realizing advanced “World Models”, By serving as powerful world simulators, video generation
models have broad applications in various fields, including:(1) Robotics: for training robots with
generated videos that accurately reflect real-world physics, enabling safer and more efficient learn-
ing of manipulation and navigation tasks; (2) Scientific Research: for visualizing complex physical
phenomena, testing hypotheses, and gaining insights into system behavior. (3) Engineering and De-
sign: for simulating the performance of physical systems and prototypes under various conditions
before physical construction. In summary, the development of more accurate and versatile World
Models, enabled by physics-aware video generation, has profound implications for society.

However, it is imperative to acknowledge the potential negative impacts. As with any powerful
generative technology, the ability to create highly realistic yet synthetic videos raises concerns re-
garding the potential misuse for generating deceptive or misleading content (e.g., deepfakes), which
could erode trust and spread misinformation. Additionally, the increasing sophistication of genera-
tive models necessitates discussions around intellectual property rights and the ethical implications
of creating content that may be indistinguishable from real-world recordings. Future research and
deployment of such models must be accompanied by robust ethical guidelines, transparency mech-
anisms, and efforts to mitigate potential harms.

G LIMITATIONS & DISCUSSION

While our proposed method demonstrates significant potential as a generic solution for physics-
aware video generation, certain limitations exist. In this study, we rely on human annotators to
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construct preference datasets for DPO across a wide range of scenarios. This process, while neces-
sary, is both expensive and time-consuming, requiring manual effort to curate diverse, high-quality
data that can be used for training. However, existing scalable AI evaluators, which are designed
to automate the evaluation process, often exhibit flawed physical knowledge and inherit inherent
biases from their training data. These limitations restrict the overall training scale and effectiveness
of reinforcement learning, as the evaluators’ inaccuracies introduce noise and reduce the quality
of feedback provided to the model. Fortunately, our DPO training paradigm has shown significant
effectiveness even with a small amount of human-labeled data (500 examples in our experiment),
alleviating the impact of this limitation on our results. To address these challenges, we plan to ex-
plore the development of more robust, physics-aware evaluators that can more accurately assess the
performance of models in a wide variety of physical contexts. Such evaluators would be designed to
integrate better physical reasoning and reduce biases, thereby enabling more efficient and scalable
training processes. We envision that this will not only enhance the overall performance of DPO
but also allow for the application of our method across a broader set of real-world scenarios, thus
expanding the potential of reinforcement learning in video generation. Future research will focus on
bridging this gap and advancing the state of the art in physics-aware evaluation and scalable model
training.

H THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, we utilized large language models (LLMs) exclusively for the purpose of grammar
checking and text polishing. Specifically, LLMs were employed to assist in enhancing the clarity,
coherence, and readability of the text, by identifying and correcting grammatical errors, improving
sentence structure, and refining language usage. These models were not involved in any aspect of
the research ideation, data analysis, experimental design, or any other stages of the research process.
The content, ideas, and conclusions presented in this work are solely the result of the authors’
intellectual contributions.
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