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ABSTRACT
Multiple Choice Questions (MCQs) are commonly used by teach-
ers to assess student understanding, but generating high-quality
MCQs is a demanding task. Large Language Models (LLMs) offer a
potential solution, yet their use raises concerns about privacy, cost,
and energy consumption, especially in educational settings. In this
paper, we present a simple and reproducible evaluation framework
designed to assess the ability of small and medium-sized LMs to
answer (LM as student) and generate (LM as teacher) high-quality
MCQs. The framework uses a set of clearly defined measures, such
as syntactic correctness, relevance to source material, distractor
quality, and answer consistency, to provide a detailed analysis of
model performance. We applied the framework to evaluate several
language models and found that each exhibits distinct strengths
and weaknesses across different metrics. Notably, some small mod-
els—such as Phi-3.5-mini and Llama3.1:8b—outperform larger peers
in specific areas, demonstrating that model size does not always
correlate with overall quality. These findings empower teachers
to choose models that best align with their goals and priorities,
reinforcing their agency while highlighting the practical value of
lightweight models in educational settings. We also outline future
work, including targeted fine-tuning to improvemodel performance
on specific MCQ quality dimensions.
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1 INTRODUCTION
Multiple Choice Questions (MCQs) are widely used by teachers
to assess students’ understanding, progress, and analytical skills,
as outlined in Bloom’s taxonomy.1 However, creating good MCQs
takes time and effort, especially to ensure relevance, appropriate
difficulty, and coverage of key concepts.

Challenges and Goal. Large Language Models (LLMs), both gen-
eral and specialized, have been used to generate MCQs and can
produce reasonably good results. Yet, they raise ethical concerns,
such as exposing proprietary educational content, high energy
consumption, and financial costs. These issues often discourage
teachers from sharing their materials with such models.

Locally deployable small and medium-sized language models can
address these concerns. But using them effectively is challenging:
there is no framework that helps identify the model to choose, how
to configure it (e.g., precision, temperature), or how to evaluate the
quality of the questions it generates.

In this paper, we present such a framework with the goal of
helping teachers generate MCQs directly from their own teaching
material, on their own devices and infrastructures. Most impor-
tantly, our framework formalizes evaluation measures to assess the
quality of generated MCQs, and provides a reproducible pipeline
that helps teachers evaluate any language model on any dataset.
We demonstrate its use in this paper by evaluating several small
and medium-sized models on a specific educational dataset.

Contributions. Our aim is to develop a framework that reduces
expert effort in generating high quality data, in our case, MCQs. Our
first contribution is to define syntactic and semantic MCQ quality
dimensions. Our framework generalizes existing MCQ quality mea-
sures [5, 9, 12]. Our measures are tested in the context of medical
questions. Our second contribution is a reproducible methodology
depicted in Figure 1 that takes any language model and returns a
fine-grained evaluation of its ability to provide the correct answer
to MCQs for which ground-truth answers are known (model as a
student), and its ability to generate good MCQs from educational
material (model as a teacher). Our code for evaluating the ability of

1https://en.wikipedia.org/wiki/Bloom’s_taxonomy
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LMs to provide correct answers to MCQs, to generate MCQs from
input material, and to evaluate their quality, is made available at
our GitHub repository.

Figure 1: Our reproducible evaluation methodology for MCQ
answerability and generation.

Findings.Our experiments revealed that LMs of different sizes have
distinct strengths and weaknesses. While larger models generally
perform better on ground-truth answers, small-sized models like
Llama3.1:8b and Llama3.2:3b achieved similar results to larger mod-
els such as Mistral. Interestingly, smaller models like Phi-3.5:3.8b
excelled in syntactic quality, sometimes outperforming bigger mod-
els. These findings show that performance isn’t solely tied to model
size, giving teachers the flexibility to choose models based on their
specific needs. For instance, if the goal is to create simple questions
to assess basic understanding, a model that scores well on syntactic
accuracy and material relevance is preferable. If the focus is on
testing deeper understanding, teachers may prioritize models that
excel in distractor quality and semantic depth.

2 RELATEDWORK
Several recent works relied on (most often large) language models
to generate MCQs or to validate their outputs.

Meißner et al. [10] developed a quiz generation pipeline us-
ing GPT-4 and found that while it produced correct questions, its
MCQs lacked originality. Olney [14] compared a fine-tuned Macaw
model, instruction-tuned Bing Chat, and human-authored ques-
tions, concluding that LLMs perform almost as well as humans but
fail differently. It was observed that Bing Chat sometimes omits cor-
rect answers, while Macaw generates non-distinct options. Three
models, GPT-3.5, Llama3:70b, Mixtral:56b were checked for format,
language, grammar, and relevance, and Llama3:70b was shown to
perform best [11]. Scaria [12] evaluated five LLMs (Mistral, Llama,
Palm, GPT*2) for question diversity and cognitive depth, using
zero-shot, few-shot, and CoT prompting, as well as expert and
LLM-based assessments. Hwang [5] generated MCQs in chemistry
and biology using GPT-3.5, validated taxonomy alignment with
RoBERTa, and plans to improve formatting with agent planning.

Most research focuses on generating high-quality, taxonomy-aligned
(Bloom) questions that meet some, not all syntactic and semantic
standards. Our framework captures and expands existing quality
dimensions and tests a range of language models.

LLMs are also used to validate other LLM outputs. Shankar et
al. [17] developed a platform that evaluates outputs based on LLM-
generated criteria, aligning them with human classifications. Sev-
eral studies [6] [2][3] proposed LLM-based evaluation measures,
often outperforming traditional methods. Researchers have also

explored automated correction of LLM outputs. Pan et al. [16] cate-
gorized correctionmethods into training-time, generation-time, and
post-hoc approaches. Madaan et al. [8] introduced a self-refinement
pipeline, while Fernandes et al. [4] reviewed enhancement tech-
niques based on human feedback using Reinforcement Learning
from Human Feedback. Subhankar [9] found strong consistency be-
tween questions generated with GPT-4 Turbo and human-assessed
complexity, with GPT-4 aligning well with Bloom’s taxonomy. How-
ever, only 13 out of 60 questions met high human-validation stan-
dards, mostly at the "Understanding" and "Remembering" levels of
the taxomony.

3 MCQ QUALITY DIMENSIONS
To evaluate our models, we will first assess their ability to select
correct answers based on ground-truth data, shedding light on their
capabilities and the data they were trained on. We then evaluate
their ability to generate MCQs using a set of rigorous quality mea-
sures—some drawn from prior work, others newly introduced to
capture other key aspects. This section presents these measures.
We will illustrate some of our measures using a running example.
Consider the two example MCQs in Figures 2 and 3, both generated
by GPT-4o-2024-08-06 from the same input material (Figure 8). Each
MCQ includes a question and four answer options, with only one
correct choice; the others are referred to as distractors. While both
questions assess the understanding of depression, their syntactic
and semantic dimensions differ, as described in more details in
figures 4, 5, 6 and 7.

Figure 2: A good MCQ that is syntactically correct, does not
disclose the correct answer in the question, is relevant to
input material (depression), is of reasonable difficulty level,
and has high quality distractors.

Figure 3: A bad MCQ that is syntactically poor, has low qual-
ity distractors (not plausible answers), and that reveals the
correct answer (as it is the longest and more detailed)

2
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3.1 Syntactic dimensions
These dimensions focus on capturing the structure of an MCQ. We
provide a measure for each dimension and set empirically-verified
thresholds to return a Boolean value for each of them.

Question mark. We evaluate whether the question of an MCQ
ends with a question mark (’?’). While not all MCQs must do so,
we intentionally restrict ours to include a question mark.

Negation. To avoid confusion, we need to filter out questions
that start with a negation by verifying if a question starts with one
of a pre-defined set of negations2 and assign 1 if it does, 0 otherwise.

Originality. Answers should avoid repeating the question, as
this can lead to guessable answers. We propose to use trigram anal-
ysis and compare answer options to their questions. This returns 0
if more than 80% of the trigrams (from the question) also appear in
an answer option. In that case the answer is considered too similar
to the question.

Let𝑇 (𝑄) and𝑇 (𝐴) be the sets of trigrams from the question and
answer, respectively. The set of unique trigrams is:
𝑇𝑢𝑛𝑖𝑞𝑢𝑒 = 𝑇 (𝑄) \𝑇 (𝐴).

The originality score 𝑂 is then given by:

𝑂 =
|𝑇𝑢𝑛𝑖𝑞𝑢𝑒 |
|𝑇 (𝑄) | (with 𝑂 = 0 if |𝑇 (𝑄) | = 0)

Readability.MCQs based on educational material must be writ-
ten in a formal tone and rely on discipline-specific terms. We
rely on the Flesch-Kincaid grading system3 to define this measure.
𝑅 = 0.39 𝑡𝑜𝑡𝑎𝑙_𝑤𝑜𝑟𝑑𝑠

𝑡𝑜𝑡𝑎𝑙_𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠 + 11.8 𝑡𝑜𝑡𝑎𝑙_𝑠𝑦𝑙𝑙𝑎𝑏𝑙𝑒𝑠
𝑡𝑜𝑡𝑎𝑙_𝑤𝑜𝑟𝑑𝑠 − 15.59. According to

common practice in Education, a value of 9 to 12 indicates readabil-
ity at the high school level, and a value greater than 12 indicates
college level.

Figures 4 and 5 illustrate examples of these syntactic quality
measures using our running example.

Figure 4: Syntactic quality for a good MCQ.

3.2 Semantic dimensions
These dimensions focus on capturing the content of an MCQ. As
some of them are not easy to evaluate automatically, we follow
prior work [18] and rely on a large LM as a judge.

Disclosure. LMs may generate MCQs in which the question
discloses the correct answer. We prompt an LM judge (GPT 4o in
our experiments) to evaluate that.
2https://inspe-sciedu.gricad-pages.univ-grenoble-alpes.fr/qcm/QCM_principes.html
3https://en.wikipedia.org/wiki/Flesch-Kincaid_readability_tests

Figure 5: Syntactic quality for a bad MCQ

Figure 6: Semantic quality for a good MCQ

Figure 7: Semantic quality for a bad MCQ.

Relevance to input material. Since LMs are influenced by
their training data, we check how relevant the generated MCQ is
to the input educational material by measuring cosine similarity
between their tokenized versions.

Difficulty. MCQ difficulty increases when distractors closely
resemble the correct answer, which we measure using the average
cosine similarity between their embeddings.

Gpt4-o answer alignment. GPT-4o answer alignment mea-
sures how often a model selects the same correct answer as GPT-4o,
which was given the MCQs and the corresponding LISA sheet,
reflecting its consistency with a strong reference model..

Quality of distractors. To capture how plausible and challeng-
ing distractors are, we use an LM judge to rate them from 1 to 5,
and report the percentage of MCQs scoring 4 or higher (prompting
details in Section 4.3)..

Figures 6 and 7 illustrate the semantic measures on our running
example.
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4 EVALUATION
We evaluated our framework from the perspective of a teacher
aiming to compare several languagemodels on a specific dataset and
generate MCQs using their own material. Our evaluation focused
on two main questions:

• Model as a Student:Howwell does a model performwhen
answering ground-truth questions?

• Model as a Teacher:Which models are most suitable for
our teacher based on their desired quality dimensions?

Before presenting the results, we describe the selected models,
the dataset, and the framework’s infrastructure.

4.1 Infrastructure and models
For our comparative analysis, we established a controlled evalua-
tion environment using OpenRouter’s unified API system 4. This
infrastructure eliminates implementation variables while facilitat-
ing direct comparison under identical input conditions, ensuring
that performance differences reflected genuine model capabilities
rather than deployment inconsistencies.

We evaluated small models (Llama3.2:1b, Llama3.2:3b, Phi3.5:3.8b,
and Llama3.1:8b) andmedium sizedmodels (Mistral3:24b, Llama3.3:70b)
with 𝑄8_0 precision. We used GPT-4o (gpt-4o-2024-08-06) for qual-
ity dimensions that rely on an LLM as a judge. We vary the temper-
ature values in {0.1, 0.5, 0.7} and set the Top-p and context window
to 1 and 4096 respectively. The model generates as many tokens as
possible in JSON.

4.2 Dataset and ground truth

Figure 8: Example of a LISA sheet.

The UNESS5 (Université Numérique en Santé et Sport) platform
is designed for training medical students and professionals who
face significant mental and academic demands during their studies.
It comprises over 60k students of whom up to 4k are active simulta-
neously. The platform offers three types of exercises, aligned with
4https://openrouter.ai/
5https://entrainement-ecn.uness.fr/

Bloom’s taxonomy and varying in difficulty levels: 29,952 Isolated
Question Sequences (IQS), 4,757 Progressive Cases (PC) and 158
Critical Article Readings (CAR). In this work, we are interested in
enriching the UNESS database with additional IQSs that correspond
to MCQs on different medical specialties.

UNESS contains 4,500 LISA sheets, each of which can be seen
as a Wikipedia document describing a medical specialty. Figure 8
provides an example of a LISA sheet. Each MCQ will be generated
by giving one LISA sheet as input. The MCQ in Figure 2 and 3 were
generated from this LISA sheet.

We use the MedMCQA dataset [15] to assess the ability of lan-
guage models to answer multiple-choice questions with four op-
tions. It contains more than 194k high-quality AIIMS and NEET
PG entrance exam MCQs covering 2.4k healthcare topics and 21
medical subjects. We randomly sample 200 MCQs per subject, by
filtering out the ’Unknown’ one, with MCQs having: (i) only one
correct answer; (ii) uniform distribution across the correct options
where an option is the correct one in 25% of the MCQs. This results
in a subset of 4k MCQs, distributed over 20 subjects.

4.3 Prompt engineering
To assess disclosure and distractor quality, we employed carefully
designed prompts for our judge language model, GPT-4o. These
prompts were structured to elicit precise, consistent, and inter-
pretable outputs that align with the intended evaluation criteria.
All prompts used in this paper are made available along with the
source code at https://github.com/Its-OP/slm-mcq-eval.

To measure disclosure, we asked GPT-4o to determine whether
a test-taker without relevant domain knowledge could guess the
correct answer based solely on clues in the wording or structure of
the question. The model was instructed to respond only with "True"
or "False," minimizing ambiguity and simplifying result analysis.

To evaluate distractor quality, we prompted GPT-4o as shown
below, to rate the plausibility of the incorrect answer choices on a
scale from 1 to 5, based on how realistic or misleading they would
appear to a test-taker.

Distractor quality prompt

You are tasked to evaluate the quality of the distractors of a
multiple-choice question (incorrect options) on a scale of 1–5,
where:
1 = POOR: Implausible, obviously incorrect, or unrelated to
the question
2 = BELOW AVERAGE: Easy to eliminate, lacks plausibility
for knowledgeable test-takers
3 = AVERAGE: Somewhat plausible but contains minor flaws
that make it distinguishable
4 = GOOD: Plausible to most test-takers, represents common
misconceptions
5 = EXCELLENT: Highly plausible, represents sophisticated
misconceptions, requires deep understanding to eliminate
Provide only a numerical score from 1 to 5 that best represents
the level of distractor quality.

4
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Using a judge LLM is a practical alternative when no domain
expert is available. However, in our future work, we plan to validate
its outputs with a human expert to ensure accuracy and reliability.

4.4 Results
We report the results of evaluating language models on their ability
to answer existing MCQs, as well as the syntactic and semantic
quality of the MCQs they generate.

Model as a Student: Answerability. To evaluate the ability to
answer existing MCQs, we prompted the models to answer the
questions sampled from the MedMCQA dataset [15], normalized
their answers, and then compared them with the ground truth
answers provided by the same dataset. No additional material or
contextual information were provided, requiring each model to rely
solely on its pre-trained knowledge.

Ability to answer correctly (%) Temperature
Models 0,1 0,5 0,7
Llama3.2:1b 27 26,6 26,8
Llama3.2:3b 73,2 70,4 66,2
Phi-3.5:3.8b 58,3 58,4 57,7
Llama3.1:8b 74,4 57,15 46,05
Mistral3.2:24b 74 72,77 70,42
Llama3.3:70b 92,1 92,38 91,97

Table 1: Results on answerability when varying the tempera-
ture value with a precision model of q8_0.

As shown in Table 1, medium-sized models like Llama3.3:70b
perform well in answering questions across different temperature
settings. In contrast, smaller models show more variability in their
results. Among them, Llama3.2:3b stands out for its consistency and
performs surprisingly close to Mistral, despite having over six times
fewer parameters. In contrast, the smallest model, Llama3.2:1b, of-
ten hallucinates and consistently selects option A as the correct
answer, regardless of the question. Varying the temperature has
little to no effect on some language models, while it has a drastic
impact on others, such as Llama3.1:8b, so it may be an important
factor to consider.

Model as a Teacher: MCQ Generation. Each model is instructed
to generate MCQs with the same prompt and following the prede-
fined JSON format:
{"question": {

"question": "QUESTION_STATEMENT",
"option_a": "OPTION_TEXT_A",
"option_b": "OPTION_TEXT_B",
"option_c": "OPTION_TEXT_C",
"option_d": "OPTION_TEXT_D",
"correct_option": "CORRECT_OPTION"

}
}

To evaluate the ability to generate MCQs according to the ex-
pected valid JSON format, we prompted the models to generate one
MCQ per LISA sheet from our 1,600 sheets. As shown in Figure 9,

smaller models struggle to generate valid questions. "Not Gener-
ated" refers to generated content that is not readable. Given the
same material, small models produced fewer valid MCQs and often
required multiple runs to match the performance of larger models.
Since the models did not complete the same number of MCQs, our
evaluations are done on different sample sizes, we acknowledge
that smaller test sets (e.g., 200 questions) may lead to less reliable
estimates and higher variance in the results.

Figure 9: Number of valid generated MCQs per model for the
same input material.

Figure 10: Results on syntactic dimensions (model size in
billions of parameters).

Figure 10 reports performance on syntactic dimensions. Across
originality, readability, use of question marks, and negation, Phi-
3.5:3.8b outperforms not only the other SLMs but also the medium-
sized ones. Its strong results are likely due to its extensive train-
ing process, which included supervised fine-tuning, reinforcement
learning techniques, and preference-based optimization [1].

Figure 11 shows the performance of all language models on the
semantic evaluation dimensions. In addition to these measures, we
also evaluated how closely each answer selected by each model
during question generation aligns with those provided by GPT-
4o. Higher alignment scores indicate that the model’s answers are
more consistent with GPT-4o’s judgments. To perform this com-
parison, GPT-4o was given the generated MCQs, the four answer
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Figure 11: Results on semantic dimensions (model size in
billions of parameters).

options, and the corresponding LISA sheet material, and was asked
to identify the correct answer.

Results vary by dimension: medium-sized models outperform
small ones on disclosure, alignment with GPT-4o, and relevance,
though Phi-3.5:3.8b remains competitive. Surprisingly, small and
medium models both generate less plausible distractors, leading
to significantly lower quality than GPT 4-o (87% of ’good’ MCQs
with threshold of 3). Once again Phi3-3.5:3.8b performs surprisingly
well. Figure 11 also supports our earlier results about how well each
LM answers MCQs. The ’GPT-4 answer alignment’ plot shows that
larger LMs perform better followed closely by Llama3.1:8b, while
Llama3.2:1b tends to hallucinate and achieves very bad scores.

4.5 Limitations and Recommendations
This work has a few important limitations. First, while we used a
powerful language model (GPT-4) as an automatic evaluator (LM
as a judge), its outputs were not validated by a human expert. As
a result, the reliability of some evaluation measures, particularly
those requiring domain knowledge—may be limited. Second, the
models we compared were not all tested on the same number of
questions, which may affect the consistency and statistical reliabil-
ity of the results. Future work should include expert validation of
the LM judge’s assessments and ensure uniform evaluation condi-
tions across models.

By using our framework, teachers can assess howwell a language
model generates valid and well-structured questions, and how it
performs according to our evaluation measures. This allows them
to make informed decisions about which models to use and in
which context. Our results show that medium-sized models are a
strong option, but some smaller models, such as Llama3.1:8b and
Phi-3.5-mini—also perform remarkably well.

That said, the performance of small models can vary across
datasets, showing strengths in some areas and weaknesses in others.

For example, Phi-3.5-mini produces high-quality syntactic MCQs,
but often fails to generate properly formatted JSON, and about 20%
of its questions do not align with GPT-4 in identifying the correct
answer. This means that while Phi-3.5-mini can generate plausible
questions and distractors acting as a good teacher, it may fail to
select the right answer as a student.

As a result, teachers using such models should carefully review
the generated questions instead of blindly relying on them. Alter-
natively, they can use our framework to test other models and find
one that better fits their needs, thereby maintaining their agency.
Indeed, our reproducible pipeline allows anyone to easily evaluate
any newly released model.

5 CONCLUSION AND FUTUREWORK
We introduced a practical and reproducible framework that enables
teachers to evaluate and generate MCQs using their own material
and a variety of locally deployable language models. These models
and our framework can be easily used through platforms such as LM
Studio [7] or Ollama [13]. LM Studio and Ollama are user-friendly
platforms that allow teachers to run language models locally on
their computers, enabling them to test and evaluate models without
needing advanced technical skills or internet access. Our approach
addresses key concerns on privacy, LM deployment cost and energy
consumption by focusing on small and medium-sized models that
can run on personal devices.

Through systematic evaluation across syntactic and semantic
measures, we showed that while larger models often perform well
on semantic alignment and answer accuracy, some smaller mod-
els, such as Llama3.1:8b and Phi-3.5-mini, offer competitive and
sometimes superior performance on syntactic quality. However,
we also highlighted the variability and limitations of small models,
including issues with output format and answer consistency.

Ultimately, our framework gives teachers tools to make informed
choices about which LM best aligns with educational goals. While
no single model is universally optimal, our results demonstrate that
thoughtful evaluation enables targeted use of LMs in education,
promoting teachers’ agency and adaptability in question design.

In future work, we plan to fine-tune small language models to
improve their performance on specific aspects of MCQ generation.
Rather than aiming for general improvements across all dimensions,
we will focus on targeted fine-tuning to address model-specific
weaknesses. For example, our results show that Llama3.1:8b per-
forms well overall but lags behind in distractor quality. Fine-tuning
this model specifically to enhance its ability to generate plausible
and challenging distractors could significantly improve its overall
utility for teachers. Another important aspect would be to fine-tune
very small models to be able to generate valid JSON format, this
could be done by using Low-Rank Adaptation (LoRA) specifically
for the task of generating multiple-choice questions (MCQs) in
JSON format based on provided context text.

More broadly, this targeted fine-tuning approach is a natural
extension of our evaluation framework as it has the potential to
make small models more robust and better aligned with educational
needs, while maintaining the benefits of local deployment.
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