
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HINT: HIERARCHICAL INTERACTION MODELING
FOR AUTOREGRESSIVE MULTI-HUMAN MOTION
GENERATION

Anonymous authors
Paper under double-blind review

“They greet each another by waving hands.” “ Next,  they bow to each other.”

“ Then they take steps back together.” “Finally, they jump up”
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Timestamp

0 1 2 3 4 5 6 7 8
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Figure 1: Visualization of three-human motion generation results of HINT. By continuously
updating the text guidance, HINT can autoregressively generate coherent, plausible human motions.

ABSTRACT

Text-driven multi-human motion generation with complex interactions remains a
challenging problem. Despite progress in performance, existing offline methods
that generate fixed-length motions with a fixed number of agents, are inherently
limited in handling long or variable text, and varying agent counts. These limi-
tations naturally encourage autoregressive formulations, which predict future mo-
tions step by step conditioned on all past trajectories and current text guidance.
In this work, we introduce HINT, the first autoregressive framework for multi-
human motion generation with Hierarchical INTeraction modeling in diffusion.
First, HINT leverages a disentangled motion representation within a canonicalized
latent space, decoupling local motion semantics from inter-person interactions.
This design facilitates direct adaptation to varying numbers of human participants
without requiring additional refinement. Second, HINT adopts a sliding-window
strategy for efficient online generation, and aggregates local within-window and
global cross-window conditions to capture past human history, inter-person depen-
dencies, and align with text guidance. This strategy not only enables fine-grained
interaction modeling within each window but also preserves long-horizon coher-
ence across all the long sequence. Extensive experiments on public benchmarks
demonstrate that HINT matches the performance of strong offline models and sur-
passes autoregressive baselines. Notably, on InterHuman, HINT achieves an FID
of 3.100, significantly improving over the previous state-of-the-art score of 5.154.

1 INTRODUCTION

Human motion generation shows diverse applications spanning character animation (Petrovich et al.,
2022), human-robot interaction (Sahili et al., 2025), virtual reality (Chen et al., 2024), and content
creation (Tevet et al., 2022; Guo et al., 2022). Recently, text-driven approaches (Javed et al., 2024;
Liang et al., 2024; Zhao et al., 2024) have received growing attention, as they allow natural language
to serve as a human-friendly control for generating semantically aligned human trajectories. Beyond
the single-human setting (Tevet et al., 2022; Zhang et al., 2024b; Barquero et al., 2024), generating
realistic, diverse, and controllable interactions for multiple humans remains highly challenging.
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Generative Model

Text: Two people 
greet each other 
by shaking hands.

1 Tt+1t… …

HINTText: The two guys approach one 
another, 
and greet each other by shaking hands, 
after that…

… …

History Future 

… … …

t-1t-Ht-H-1… t t+Ft+F-Ht+F-H-1… … t+F+1 t+F+2 …

(a) Conventional Single-shot Methods (b) HINT: Flexible and Streaming Generation

… …

Interaction
-Aware

Diffusion

Motion
VAE

Current Inference 

Future Inference

…
only fixed-

length output variable-length output

Figure 2: Architecture Comparison. (a) Conventional Single-shot Methods: Existing approaches
(e.g., InterGen, in2IN, InterMask) generate motion sequences in a single shot with fixed length.
(b) HINT: Our framework integrates autoregressive and diffusion modeling to support streaming
generation. Within a sliding window, the Interaction-Aware Diffusion leverages history and text to
progressively synthesize future motions, thereby supporting open-ended, variable-length generation.

Existing approaches (Javed et al., 2024; Liang et al., 2024) are offline frameworks that generate
motions of a fixed frame length and a fixed number of agents, as shown in Fig. 2 (a). While ef-
fective for short sequences, these methods are inherently limited in handling variable-length natural
language descriptions, dynamic interaction patterns, and varying agent counts. Moreover, they often
fail to capture long-range dependencies across extended motion sequences, leading to incoherent or
repetitive behaviors. These challenges naturally call for autoregressive formulations, as shown in
Fig. 2 (b), where future motions are generated step by step conditioned on both past trajectories and
textual instructions. Yet, autoregressive models in this domain remain underexplored, particularly
for the multi-human setting with complex interactions.

In this work, we propose HINT, the first autoregressive diffusion-based framework for multi-human
motion generation with hierarchical interaction modeling in diffusion. HINT presents two novel
contributions. First, Canonicalized Latent Space, which encodes each human’s motion in its own
local coordinate system, rather than encoding all agents in world coordinates (Liang et al., 2024).
Prior approaches (Liang et al., 2024; Javed et al., 2024; Ruiz-Ponce et al., 2024) typically adopt such
joint space, where motion dynamics are entangled with inter-agent positions, limiting scalability and
requiring re-training when the number of agents changes. In contrast, HINT decouples individual
motion representation from social interactions, while explicit relative transformations (rotations and
translations) among agents are provided separately as conditions in diffusion. This separation en-
ables the latent space to concentrate on motion semantics and ensures seamless adaptability to sce-
narios involving variable number of agents without finetuning or re-training. Second, we propose
a sliding-window strategy for efficient online generation. Local to global temporal, spatial, and se-
mantic cues are then aggregated to guide the diffusion process. Local conditions are collected inside
each window, i.e., target human’s motion history, step index, partners’ motion, and word-level text
guidance, capturing fine-grained social and temporal dependencies within the window and prevent-
ing semantic drift. Global conditions, including sequence index of the current window, total frame
length, and compositional command text guidance, are used to locate the current window within the
entire sequence and thereby enforce long-term consistency. This hierarchical design enables natural,
coherent, and semantically aligned multi-human motion generation, as shown in Fig. 1.

We conduct extensive experiments on the InterHuman (Liang et al., 2024) and InterX (Xu et al.,
2024a) benchmarks. Results show that HINT not only matches the performance of strong offline
methods but also outperforms existing autoregressive baselines by a large margin.

2 RELATED WORK

Single Human Motion Generation. Recent work approaches single-person motion generation
mainly with diffusion or autoregressive models. Diffusion-based methods (Tevet et al., 2022; Chen
et al., 2023; Zhang et al., 2024b; Barquero et al., 2024) capture complex distributions and yield
high-quality sequences across modalities such as text, audio, and scene context (Tevet et al., 2022;
Xu et al., 2023; Alexanderson et al., 2023), but are typically limited to fixed-length clips. Au-
toregressive models (Jiang et al., 2023; Zhang et al., 2023) instead generate motions step by step,
enabling variable-length synthesis and finer control, though they are prone to error accumulation.
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DART (Zhao et al., 2024) bridges these paradigms through a latent diffusion–autoregressive design
that supports streaming, controllable motion generation. We build on this paradigm to extend au-
toregressive diffusion to multi-human interaction, explicitly modeling semantic dependencies and
coordination between participants.

Human-Human Interaction Generation. Recent years have witnessed increasing interest in hu-
man interaction motion generation (Chopin et al., 2023; Xu et al., 2024b; Liu et al., 2024; Ghosh
et al., 2024; Tan et al., 2025; Liang et al., 2024; Shafir et al., 2024; Ruiz-Ponce et al., 2024; Wang
et al., 2024; Javed et al., 2024; Cai et al., 2024), particularly in the areas of reaction and inter-
action generation. Reaction generation aims to synthesize plausible responses conditioned on a
partner’s motion, with approaches ranging from Transformer-based coordination (Chopin et al.,
2023) and diffusion with distance constraints (Xu et al., 2024b) to physics-driven modeling (Liu
et al., 2024), spatio-temporal cross-attention (Ghosh et al., 2024), and reasoning with LLMs (Tan
et al., 2025). Interaction generation instead models both humans jointly, using dual-branch diffu-
sion (Liang et al., 2024), lightweight communication across pretrained models (Shafir et al., 2024),
dual-level textual prompts (Ruiz-Ponce et al., 2024), LLM-based planning (Wang et al., 2024), or
masked spatio-temporal token prediction (Javed et al., 2024). Beyond pairwise interactions, So-
cialGen (Yu et al., 2025) leverages language models for group social behaviors, Multi-Person In-
teraction Generation (Xu et al., 2025) scales two-person priors to larger groups, and PINO (Ota
et al., 2025) enables long-duration and customizable generation for arbitrary group sizes. Despite
these advances, most methods still generate fixed-length sequences, limiting their applicability in
real-time and streaming scenarios.

3 METHOD

We address text-driven online multi-human motion generation, which sequentially predicts future
poses of N agents conditioned on their past motions and a textual description T . Formally, let

M1:T =
{
mt

(i) ∈ Rd
∣∣∣ i = 1, . . . , N ; t = 1, . . . , T

}
(1)

denote the motion sequence of N humans over T timesteps, where mt
(i) is the motion representation

of agent i at time t, d is the dimension of the representation. Autoregressive multi-human motion
generation recursively predicts

M̂t:t+K ∼ pθ

(
Mt:t+K

∣∣∣ M̂1:t−1, T 1:t+K
)
, (2)

with trained parameters θ, thereby capturing both temporal dependencies across timesteps and social
dependencies across humans. We jointly predict K future timesteps for efficiency. For clarity, we
use h1:H

A to represent the H-timestep history motion of agent A and f1:K
A to represent the K-timestep

future motion within a sliding window, as shown in Fig. 3. We empirically set H = 4,K = 16.

3.1 OVERVIEW OF HINT

Fig. 3 demonstrates the two-human motion generation pipeline of HINT, which employs a sliding-
window strategy to autoregressively extend future segments with a diffusion model (see Fig. 2). We
show that HINT naturally generalizes to multi-human settings in Sec. 3.5

Motion VAE. In Fig. 3 (a), we first construct a canonicalized shared latent space to map raw motion
sequences into latent representations. Concretely, the motion of each individual, mA,mB ∈ RT×d,
with T timesteps and d dimensions, is divided into overlapping windows and canonicalized in
its local coordinate to remove absolute position. A transformer-based Motion VAE, following
DART (Zhao et al., 2024), is then employed for sliding-window modeling. The VAE consists of
an encoder E and a decoder D. Given a window with H history h1:H

(i) and K future frames f1:K
(i) for

human i ∈ {A,B}, E conditions on the history and encodes the future into a latent vector zf(i) ∈ Rl

in the shared latent space, where zf(i) denotes the future motion representation of agent i, and l is
the latent dimensionality. D reconstructs the K future frames from zf(i), conditioned on the corre-
sponding history. Once trained, both encoder E and decoder D are frozen in subsequent modules,
ensuring that the latent space remains stable and consistent.

3
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Figure 3: Overview of HINT in two-human interaction generation. (a) Canonicalized latent
space. (b) Within this latent space, motion is generated in a sliding-window autoregressive manner,
where the Interaction-Aware Diffusion predicts the next K frames. (c) The detailed architecture of
the Interaction-Aware Diffusion, in which hierarchical conditions guide the generation process.

Sliding-Window Strategy for Autoregressive Generation. As illustrated in Fig. 3 (b), HINT em-
ploys a sliding-window autoregressive process for both training and generation. During training, the
ground-truth motion sequence is divided into overlapping windows. Future frames in each window
are encoded into a latent zf(i), i ∈ {A,B} by the motion encoder E , where noise is added to obtain
z̃f(i). Conditioned on z̃f(i), historical motion h1:H

(i) , and text T , the Interaction-Aware Diffusion model
learns to predict the denoised latent ẑf(i). During inference, we sample a future latent ẑf(i) conditioned

on the history and text. Then the frozen decoder D reconstructs the future K frames f̂1:K
(i) from ẑf(i).

f̂1:K
(i) is appended to the history to condition the next window, proceeding autoregressively.

Interaction-Aware Diffusion. Fig. 3 (c) illustrates the Interaction-Aware Diffusion module, ex-
emplified with two-human interaction generation. The model employs shared weights and shared
conditioning signals for both agents A and B, ensuring that the same model parameters are applied
symmetrically across the two. Taking the motion generation of human A as an example, the model
is first conditioned on the historical motion sequences of both human A and human B, denoted as
h1:H
A and h1:H

B , respectively. Then the relative rotation RA←B and translation TA←B are encoded
and integrated, which are calculated from the history motion. Additionally, the module integrates a
set of hierarchical conditions: 1) step index within the current temporal window; 2) word-level text
embedding; 3) sequence index of the current window in the overall sequence, total frame length TN

to be generated according to the textual description; and 4) compositional command embedding.
Together, these conditions encode both textual semantics and multi-scale positional information,
enabling the model to capture fine-grained temporal dependencies while maintaining global consis-
tency across the generated motion sequence.

3.2 CANONICALIZED LATENT SPACE

We propose a Canonicalized Latent Space, as illustrated in Fig. 3 (a), which encodes explicit motion
sequences into compact latents. Existing methods (Liang et al., 2024; Javed et al., 2024) on human-
human interaction generation often adopt a Joint Multi-Human Latent Space by applying the same
coordinate transformation to both agents’ motions, which preserves relative position but entangles
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motion semantics with inter-person geometry, hindering generalization to multi-human scenarios.
Instead, we perform independent canonicalization and normalization for each agent A,B, transform-
ing motions to their respective local coordinate, while explicitly encoding relative transformations
(rotation RA←B and translation TA←B) as conditions for the generative model. Specifically, after
canonicalization, each individual is oriented toward the positive z-axis, with the root joint positioned
at the origin.

Formally, given a motion sequence M(i) for human i ∈ {A,B}, the canonicalized motion is de-
fined as Mc

(i) = R(i)M(i) + T(i), where R(i) and T(i) denote the rotation and the translation,
respectively. Following the reparameterization strategy (Kingma & Welling, 2013), the latent repre-
sentation zf(i) is obtained via the encoder E as

zf(i) ∼ qϕ(z
f
(i) | M

c
(i)), (3)

where qϕ is a Gaussian inference network. Training objectives are described in Sec. 3.4. To inject
relative positional information, we compute the relative rigid transformation as follows,

Ri←j = R(i)R
⊤
(j), Ti←j = T(i) −Ri←jT(j). (4)

This transformation [Ri←j ,Ti←j ] is encoded into the diffusion network as a condition term.

Canonicalized Latent Space vs. Joint Multi-Human Latent Space. Our canonicalized latent
space has two advantages over previous joint multi-human latent space (Liang et al., 2024; Javed
et al., 2024; Ruiz-Ponce et al., 2024). First, it effectively disentangles absolute position information
from motion dynamics, forcing the latent to focus on the movement patterns themselves without
being biased by spatial location. Second, such design enforces cross-human consistency in the latent
space, thereby facilitating robust generalization to interactions involving three or more humans.

3.3 HIERARCHICAL MOTION CONDITION

To enable effective autoregressive motion generation, we incorporate local-to-global guidance into
the diffusion process. Built upon a latent diffusion backbone, our Hierarchical Motion Condition
(HMC) strategy organizes temporal, spatial, and semantic cues into multi-level conditions. We pro-
vide local conditions, which capture short-term dependencies and fine-grained semantic alignment
within the current window, and global conditions, which enforce long-term consistency across the
sequence described by the text guidance. We demonstrate HMC on human-human interaction gener-
ation (Fig. 3 (c)), illustrating the procedure from human A’s perspective, as weights and conditions
are shared across both humans.

Local Conditions. Within each window, we employ four types of local conditions as follows.

1) Target Human History Embedding. As shown in Fig. 3 (c-1), the history motion of human A,
h1:H
A , is first mapped into a feature representation zhA via a linear projection. zhA is then concatenated

with the future motion token zfA to form the motion feature zA.

2) Step Index. Both human A and B provide H history frames. Each history frame is indexed by its
timestep from 1 to H , and the index is encoded into an embedding es (Fig. 3 (c-2)). Adding this to
the motion feature zA yields zstep

A = zA + es, which is then processed via self-attention to capture
temporal dependencies:

zself
A = SelfAttn(zstep

A , zstep
A , zstep

A ). (5)
This enables the model to reason about temporal ordering within the prediction window.

3) Partner History Embedding. To model interactions, human B’s history h1:H
B is transformed into

human A’s local coordinate via relative rotation RA←B and translation TA←B (Fig. 3 (c-3)):

h1:H
B→A = RA←Bh1:H

B +TA←B . (6)

This is integrated into the diffusion model through Interaction Cross-Attention:

zpart
A = CrossAttn(zself

A , h1:H
B→A, h

1:H
B→A). (7)

4) Word-Level Text Embedding. Finally, we introduce word-level text embedding to impose fine-
grained semantic fidelity within each window, as depicted in Fig. 3 (c-4). Since a single sentence

5
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may be very long or contain complex commands, we split it into words, each serving as a token,
Eword = [e1, . . . , eL], where el denotes the embedding of the l-th token, and integrated into latent
features via Text Cross-attention:

zword
A = CrossAttn(zpart

A ,Eword,Eword).

By jointly leveraging individual history, step index, partner history, and token-level text embedding,
the model captures fine-grained interaction patterns and achieves precise text–motion alignment
within each rollout, thereby alleviating semantic drift in long-sequence generation.

Global Conditions. Across all windows, we collect the following two types of global information.

1) Sequence Index and Total Frame Number. In Fig. 3 (c-5), we first incorporate both the global
sequence index t and the total number of frames TN of the corresponding text segment, which indi-
cate the position of the current window within the entire motion sequence and the overall sequence
length, respectively. This information is then injected into the diffusion network through Adaptive
Layer Normalization (AdaLN) (Peebles & Xie, 2023), ensuring that the generation process is aware
of both the frame-level position and the global temporal context.

During training and quantitative evaluation, we simply set TN to the ground-truth sequence length
provided by the dataset, matching offline baselines that generate the entire sequence at once for a
fair comparison. In deployment, however, TN can be flexibly specified or automatically selected
according to practical needs (see Sec. B.4 for details).

2) Compositional Command Embedding. If the user provides a textual description for the entire
sequence, where the description consists of multiple interconnected commands that drive the human
body to achieve one or more specific goals, we encode the whole text T into a single global token e
to serve as guidance for the sequence generation, as depicted in Fig. 3 (c-6). Then e is injected into
the model through Text Cross-Attention to provide global semantic guidance across windows:

zcom
A = CrossAttn(zpart

A , e, e). (8)

Conceptually, word-level embeddings Eword = [e1, . . . , eL] serve as local conditions while com-
positional command embedding e functions as the global condition. In practice, however, both
are concatenated and jointly fed into the same Text Cross-Attention block, allowing simultaneous
modeling of fine-grained semantics and holistic context within a unified interaction.

3.4 TRAINING STRATEGY

We adopt a two-stage training strategy that decouples motion encoding and generation.

Stage I: Motion VAE Pretraining. The Motion VAE is pretrained to obtain stable latent represen-
tations by optimizing the standard VAE objective (Kingma & Welling, 2013):

LVAE =
∑
i

Lrec(M̂(i),M(i)) + β LKL

(
qϕ(z

f
(i) | M

c
(i)) ∥ p(z

f
(i))

)
, (9)

where Lrec reconstructs future frames, LKL regularizes the latent distribution with KL divergence, β
is a balancing factor, and p(zf(i)) denotes the standard Gaussian prior. After pretraining, the encoder
and decoder are frozen in generation.

Stage II: Diffusion with Autoregressive Sliding Window. We train the Interaction-Aware Diffu-
sion model using an autoregressive sliding-window strategy. At each window, the diffusion model is
optimized with the standard denoising loss Ldiff, augmented by interaction-specific regularizers in-
spired by InterGen (Liang et al., 2024), including joint affinity Laff, cross-person distance constraint
Ldist, and relative orientation constraint Lori:

L = Ldiff + λaffLaff + λdistLdist + λoriLori, (10)

where λ∗ indicates balancing weights. Please refer to Appendix B.2 for details of each loss term.

3.5 FROM TWO-HUMAN TO MULTI-HUMAN MOTION GENERATION

Built upon the Canonicalized Latent Space (Sec. 3.2) and the shared-weight Interaction-Aware Dif-
fusion model (Fig. 3 (c)), HINT naturally generalizes to multi-human interaction scenarios. The
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Table 1: Results on InterHuman and InterX. → denotes closer to ground truth is better, ↑ / ↓
means higher/lower is better, ± indicates the 95% confidence interval. Bold denotes the best result.
InterMask* is the online version of InterMask, while DART† is the two-human version of DART.

Dataset Setting Method R@Top3↑ FID↓ MM Dist↓ Diversity→

Inter
Human

Ground Truth 0.701±.008 0.273±.007 3.755±.008 7.948±.064

offline

T2M (Guo et al., 2022) 0.464±.014 13.769±.072 5.731±.013 7.046±.022

MDM (Tevet et al., 2022) 0.339±.012 9.167±.056 7.125±.018 7.602±.045

ComMDM (Shafir et al., 2024) 0.466±.010 7.069±.054 6.212±.021 7.244±.038

InterGen (Liang et al., 2024) 0.624±.010 5.918±.079 5.108±.014 7.387±.029

MoMat–MoGen (Cai et al., 2024) 0.666±.004 5.674±.085 3.790±.001 8.021±.350

in2IN (Ruiz-Ponce et al., 2024) 0.662±.009 5.535±.120 3.803±.002 7.953±.047

InterMask (Javed et al., 2024) 0.683±.004 5.154±.061 3.790±.002 7.944±.033

online
InterMask* 0.557±.004 14.352±.133 3.852±.001 7.485±.032

DART† 0.642±.005 4.979±.053 3.813±.001 7.950±.032

HINT 0.672±.004 3.100±.035 3.796±.001 7.898±.023

InterX

Ground Truth 0.736±.003 0.002±.0002 3.536±.013 9.734±.078

offline

T2M (Guo et al., 2022) 0.396±.005 5.481±.382 9.576±.006 2.771±.151

MDM (Tevet et al., 2022) 0.426±.005 23.701±.057 9.548±.014 5.856±.077

ComMDM (Shafir et al., 2024) 0.236±.004 29.266±.067 6.870±.017 4.734±.067

InterGen (Liang et al., 2024) 0.429±.005 5.207±.216 9.580±.011 7.788±.208

InterMask (Javed et al., 2024) 0.705±.005 0.399±.013 3.705±.017 9.046±.073

online
InterMask* 0.169±.003 19.445±.199 7.885±.003 6.250±.007

DART† 0.510±.003 8.600±.075 5.492±.014 8.405±.073

HINT 0.682±.003 0.278±.012 4.007±.016 8.886±.066

proposed space can be directly applied to multi-human motion generation without additional train-
ing, since it decouples individual motion with social interactions. For the diffusion model, we only
update one condition term: partner history embedding (Sec. 3.3, Local Conditions) by directly con-
catenating all partners motion history and feeding them into the diffusion. We do not perform any
fine-tuning when scaling to more humans. Here, we only provide the most straightforward extension
from two-person to multi-person motion generation. If additional multi-person motion datasets are
employed, fine-tuning the cross-attention module is expected to yield further performance improve-
ments. Please refer to Supplementary Materials for video results.

4 EXPERIMENTS

Datasets. We evaluate HINT on InterHuman (Liang et al., 2024) and InterX (Xu et al., 2024a). Inter-
Human comprises 7,779 motion sequences paired with 23,337 unique textual annotations containing
5,656 distinct words. It is built upon the SMPL-H body model, and we adopt a motion representa-
tion similar to InterGen (Liang et al., 2024), where each frame is expressed as xi = [jpl , j

v
l , j

r, cf ].
Here, jpl ∈ R3Nj and jvl ∈ R3Nj represent the joint positions and velocities in the normalized local
frame, jr ∈ R6(Nj−1) denotes the 6D rotation (Zhou et al., 2019) of each joint in the root frame,
cf ∈ R4 is a binary foot-ground contact feature, and Nj denotes the number of joints, set to 22 for
InterHuman. InterX is based on the SMPL-X body model and contains 13,888 motion sequences
with 34,164 fine-grained textual descriptions. Each motion frame is represented as xi = [jr, rpl , r

v
l ],

where jr ∈ R6Nj is the 6D rotation in the normalized local frame, and rpl ∈ R3, rvl ∈ R3 denote the
root joint’s position and velocity in the local frame, respectively. For InterX, Nj is set to 55.

Baselines. Offline baselines: T2M (Guo et al., 2022), MDM (Tevet et al., 2022), ComMDM (Shafir
et al., 2024), InterGen (Liang et al., 2024), MoMat-MoGen (Cai et al., 2024), in2IN (Ruiz-Ponce
et al., 2024), and InterMask (Javed et al., 2024) on InterHuman, and with T2M, MDM, ComMDM,
InterGen, and InterMask on InterX. In addition, we introduce two extended baselines: InterMask*,
which denotes our online adaptation of InterMask, and DART†, which denotes our extension of
DART (Zhao et al., 2024) from single-human to two-human scenarios(see Appendix B.3 for details).
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InterMask

InterMask*

DART†

HINT

(a) The first person lowers his arm and then takes a step back 

with the other person.

(b) The two individuals maintain their original 

posture, while their bodies continue to rotate 90 

degrees clockwise to the right.

Figure 5: Visual comparisons of InterMask, InterMask*, DART† and HINT on InterHuman. HINT
performs better in regions with complex interactions.

Evaluation Metrics. R-Precision (reported as R@Top3; see Appendix C for R@Top1/Top2) and
Multimodal Distance (MM Dist) are used to evaluate text-motion consistency. Specifically, R-
Precision measures the rank of the Euclidean distance between motion and text embeddings, while
MM Dist computes the average Euclidean distance between each generated motion and its corre-
sponding text. Frechet Inception Distance (FID) evaluates the similarity in the feature space between
generated and ground-truth motions, reflecting motion realism. Diversity (Div) measures motion va-
riety via average pairwise feature distances among generated motions. All methods are evaluated 20
times with different random seeds, and we report the mean results with the 95% confidence interval.

Inference Speed. HINT takes about 1.1s to generate 16 future frames from a single window on a
single NVIDIA GeForce 3090 GPU, while DART† takes about 0.3s and InterMask* takes about 1.1s
under the same conditions.

4.1 COMPARISON WITH BASELINES

Figure 4: User study between HINT, DART†
and InterMask.

Tab. 1 presents the evaluation results. Among all
compared methods, HINT achieves state-of-the-art
FID scores of 3.100 on InterHuman and 0.278 on
InterX, improving 2.054 and 0.121 over the second-
best method, InterMask. This significant gain high-
lights the superior realism and naturalness of the mo-
tions generated by HINT, which can be primarily at-
tributed to HINT’s hierarchical interaction modeling
strategy. It explicitly and comprehensively condi-
tions on past motion histories and relative position
relations between humans. As a result, within each sliding window, HINT is able to effectively cap-
ture and construct rich inter-human interactions. For other metrics, HINT is consistently superior to
online competitors InterMask* and DART†, while slightly inferior to the offline method InterMask.
For instance, on InterHuman, compared to InterMask, HINT shows a small decrease of 0.011 in
R@Top3 and 0.006 in MM Dist. As an autoregressive method, HINT does not perform global op-
timization, which inevitably leads to insufficient alignment with the global text command. Overall,
these experiment results validate HINT’s effectiveness.

Fig. 5 shows qualitative comparisons of InterMask, InterMask*, DART†, and HINT trained on In-
terHuman with the same text descriptions. In (a), InterMask fails to generate the backward motion
of the left person, InterMask* produces less natural movements, while both DART† and HINT align
well with the text. In (b), InterMask and InterMask* fail to generate motions consistent with the
semantics, DART† does not explicitly model interactions and thus shows weaker interaction quality,
whereas HINT achieves superior semantic alignment, interaction effectiveness, and motion fluency.
More visual results are provided in Appendix C. Videos are provided in Supplementary Materials.
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Table 2: Ablations HINT’s key components on InterHuman. L/G indicates local/global conditions.

Method R@Top3↑ FID↓ MM Dist↓ Diversity→

Ground Truth 0.701±.008 0.273±.007 3.755±.008 7.948±.064

w/o Canonicalized Latent Space 0.633±.006 5.274±.051 3.814±.001 7.802±.025

L

w/o History Motion Embedding 0.660±.005 4.597±.063 3.802±.001 7.849±.030

w/o Step Index Embedding 0.658±.005 3.224±.044 3.802±.001 7.875±.030

w/o Relative History Embedding 0.647±.006 4.574±.058 3.808±.001 7.912±.031

w/o Word-level Text Embedding 0.672±.004 3.295±.049 3.798±.001 7.908±.031

G
w/o Sequence Index

& Total Frame Number 0.667±.004 3.543±.058 3.800±.001 7.874±.024

w/o Compositional Command Embedding 0.669±.003 3.341±.045 3.797±.001 7.879±.024

HINT 0.672±.004 3.100±.035 3.796±.001 7.898±.023

User Study. To further evaluate the subjective quality of the generated results, we conducted a user
study. Fifty participants are invited to compare HINT against InterMask and DART† in terms of
semantic alignment and motion fluency. Results are shown in Fig. 4. HINT received over 50% of
the votes across all metrics.

4.2 ABLATION STUDIES

Table 3: Ablation of the Canonicalized La-
tent Space on InterHuman.

Method Recon FID↓ MPJPE↓ MROE↓

Joint Multi-Human Latent Space 7.783±.006 0.213±.001 0.426±.001

Canonicalized Latent Space 0.307±.005 0.138±.001 0.118±.002

Tab. 3 further compares our Canonicalized Latent
Space (CLS) with the Joint Multi-Human Latent
Space (JMLS) on the InterHuman dataset in terms
of Reconstruction FID, MPJPE (Mean Per Joint Po-
sition Error), and MROE (Mean Relative Orientation
Error), measuring reconstruction quality. For a fair
comparison, we implement a motion VAE that di-
rectly encodes two-human motion trajectories as the JMLS baseline. The results demonstrate that
CLS substantially outperforms JMLS in reconstruction quality (Recon FID: 0.307 vs. 7.783), high-
lighting that canonicalization enables more effective modeling of local human motion.

As shown in Tab. 2, we evaluate the contributions of HINT’s key components, including the canon-
icalized latent space (CLS), local conditions (L), and global conditions (G). Replacing CLS with
JMLS leads to a severe degradation in generation quality, with FID increasing from 3.100 to 5.274,
underscoring its necessity. For local conditions, we remove individual components to assess their
effectiveness. Excluding the history motion, step index, relative history, and word-level text embed-
dings results in slight R@Top3 drops of 0.012, 0.014, 0.025, and 0.000 (unchanged), respectively,
compared to the full HINT (0.672). However, the corresponding FID values worsen significantly by
1.497, 0.124, 1.474, and 0.195. These consistent degradations verify that each local condition term
provides complementary temporal or semantic cues and is indispensable for improving text-motion
alignment and motion fidelity. For global conditions, the exclusion of compositional command em-
bedding decreases R@Top3 by 0.003 and worsens FID by 0.241. Removing sequence index and
total frame number has an even larger impact, with R@Top3 dropping by 0.005 and FID increas-
ing by 0.443. These results highlight that both structural sequence information and compositional
commands play crucial roles in ensuring coherent long-horizon motion generation and semantically
grounded interaction synthesis.

5 CONCLUSION

In this paper, we presented HINT, the first autoregressive framework for multi-human motion gener-
ation with hierarchical interaction modeling in diffusion. By disentangling local motion semantics
from inter-person interactions in a canonicalized latent space and adopting a sliding-window strat-
egy that integrates both local and global context, HINT effectively adapts to varying numbers of
human participants while maintaining long-horizon coherence. Extensive experiments on public
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benchmarks demonstrate that HINT not only matches the performance of strong offline models but
also significantly outperforms existing autoregressive baselines. In the future, an exciting direction
is to extend our framework to incorporate objects and environments, enabling multi-human motion
generation with object interactions. Text-driven generation of complex multi-agent behaviors in dy-
namic scenes remains a highly challenging yet impactful problem, and we believe HINT provides a
strong foundation for advancing this line of research.

Ethics Statement. This work includes a user study to evaluate the perceptual quality of generated
motion sequences. All participants were adult volunteers who provided informed consent prior to
participation. No personally identifiable or sensitive information was collected. The study was
conducted in accordance with standard academic ethical practices, and participants were free to
withdraw at any time without consequence.

Reproducibility Statement. All experiments are conducted on publicly available datasets, and the
implementation details, including model architectures, training procedures, and hyperparameters,
are fully described in the main text and the appendix. Clear instructions for training and evaluation
are provided in the Supplementary Material to ensure that the reported results can be reproduced
under the same settings. In addition, we will release the source code and pretrained models to
facilitate verification and further research by the community.
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A EXTENSION TO MULTI-HUMAN MOTION GENERATION

Our method can be naturally extended to multi-human interaction scenarios. Building upon the two-
person generation framework, we simply incorporate the motion histories of additional participants
into the conditioning to achieve joint modeling of multiple agents without modifying the architec-
ture. In the two-person setting, all conditioning terms are defined relative to the current target agent,
and thus remain valid when scaling to more agents. The only term that needs adaptation is the
partner-history condition: for two agents, we pad the partner’s motion history to a fixed length; for
more than two agents, we concatenate the histories of all partners and then apply zero padding. To
improve robustness, the location of the partner-history segment is randomly shifted during training.

Although the model is trained solely on two-person datasets, we observe that this strategy general-
izes surprisingly well to multi-human interactions (as illustrated in Fig. A-1).

“Two of them shake hands while the third waves.” “They all step back in sync.”

“ Then they bow to each other.” “Finally, they dance gracefully.”

“Two people wave hands to each other, while the other two bow together.”

“Then all four have a conversation.” “Finally, they sit down.”

(a) Three-human generation

(b) Four-human generation

Figure A-1: Additional examples of three-human and four-human motion generation result.

We use HOI-M3∗ to further illustrate the effectiveness of HINT. The HOI-M³* dataset is extended
from HOI-M³ (Zhang et al., 2024a). HOI-M3∗ contains 52 videos (each approximately 6 minutes
long) with 1,919 corresponding atomic textual descriptions. Fig. A-2 shows the configuration of
HOI-M3∗. Quantitative evaluation results on HOI-M3∗ are demonstrated in Tab. A-1, while qualita-
tive results are shown in Fig. A-3. More videos are provided in the supplementary material.

Table A-1: Results on HOI-M3∗. → denotes closer to ground truth is better, ↑ / ↓ means
higher/lower is better, ± indicates the 95% confidence interval.

Segment Transition

Method R@Top3↑ FID↓ MM Dist↓ Diversity→ FID↓ Diversity→ PerkJerk→ AUJ↓

Ground Truth 0.881±.002 0.001±.003 7.176±.001 6.809±.034 0.001±.000 6.113±.028 0.164±.001 0.005±.001

HINT 0.460±.004 1.501±.009 8.202±.004 6.849±.042 1.305±.021 6.188±.026 0.442±.005 0.272±.005
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Person1 jumps. Person1 walks to fan, moves fan. Person1 sits on stool.

0s 19.0s 29.0s1.0s

Person0 sits on sofa and talks to Person1.

0s 29.0s

Person2 walks. Person2 sits on bed.Person2 walks to bed.

0s 24.0s 29.0s12.0s

Person3 walks. Person3 sits on bed, then lies on bed.

0s 19.0s 29.0s

Figure A-2: Configuration of HOI-M3∗.

Person2 stands beside Person1 and talks to others.

Person3 walks around,then walks beside Person2.

Person1 sits on the another sofa.

Person0 sits on the sofa.

Person2 sits on bed, talks to Person3 and Person1.

Person3 stands behind Person1, puts hands on Person1's shoulder.

Person1 sits on sofa, talks to others.

Person0 sits on bed.

Figure A-3: Visualization Results on HOI-M3∗.

B IMPLEMENTATION DETAILS

We provide more details of the model architecture, training, and the compared baselines. The im-
plementation code of HINT is provided in the supplementary material as an attachment.

B.1 MODEL ARCHITECTURE

Motion VAE. The Motion VAE adopts a transformer-based encoder–decoder architecture. Both en-
coder and decoder are constructed from stacked Transformer layers with residual connections and
learned positional encodings. Raw motion sequences (history and future) are first linearly projected
into a hidden space, and concatenated with a set of learnable global motion tokens. The encoder out-
puts the mean and variance of a Gaussian distribution, from which latent variables are sampled using
the reparameterization trick. For the decoder, two variants are supported: we use all-encoder struc-
ture, where latent vectors and history embeddings are concatenated with query tokens and passed
through a symmetric Transformer encoder.

Interaction-Aware Diffusion.The denoiser consists of Ldiff = 8 transformer blocks with H = 4
heads, hidden size d = 512, and feed-forward width dff = 1024. It incorporates our Hierarchical
Motion Condition (HMC), which fuses local conditions (individual history, step index, token-level
text embedding, partners’ history), global conditions (sequence length, sentence-level text embed-
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ding), through self- and cross-attention, enabling both fine-grained alignment and global consis-
tency.

Tab. B-2 shows the details model parameters of Motion VAE and Interaction-Aware Diffusion.

Table B-2: Parameters of Motion VAE and
Interaction-Aware Diffusion.

Parameter Value

Latent dim (dz) 256
Hidden dim (dh) 512
Feed-forward dim (dff ) 1024
Layers for VAE (LV AE) 5
Transformer blocks
of diffusion (Ldiff ) 8

Attention heads (H) 4
Dropout (p) 0.1
CLIP version ViT-L/14@336px

Table B-3: Training hyperparameters for Mo-
tion VAE and Interaction-Aware Diffusion.

Hyperparameter Value

stage1 steps 100,000
stage2 steps 100,000
stage3 steps 100,000
learning rate 10−4

β 10−4

λaff 10−1

λdist 10−1

λori 10−4

D1 10−1

D2 1.0

B.2 TRAINING DETAILS

Three-stage Training Strategy for Motion VAE. We adopt a three-stage training strategy for the
Motion VAE and Interaction-Aware Diffusion following DART (Zhao et al., 2024):

Stage I (Ground-Truth History): The model is trained on motion windows fully extracted from
ground-truth sequences.

Stage II (Mixed History): We gradually introduce predicted windows as part of the historical context.
Specifically, the probability of replacing ground-truth history with the model’s predictions is linearly
increased during training.

Stage III (Predicted History): The model is trained with history composed entirely of its own pre-
dicted windows, ensuring robustness in fully autoregressive generation.

Detailed Loss Definition for Interaction-Aware Diffusion. Following InterGen (Liang et al.,
2024), the detailed definition of regularization loss is as follows:

1) Joint affinity

Laff =
∥∥∥(D(mA,mB)−D(m̂A, m̂B)

)
⊙ I

(
D(mA,mB) < D1

)∥∥∥2
2
, (B-1)

where D(·) computes the pairwise joint distance matrix, I(·) is the indicator function, and D1 de-
notes a predefined distance threshold. This loss encourages the predicted motion (m̂A, m̂B) to
preserve the joint-level spatial affinity observed in the ground truth (mA,mB).

2) Distance map

Ldist =
∥∥(D(mA,mB)−D(m̂A, m̂B)

)
⊙ I

(
D(m̂A, m̂B) < D2

)∥∥2
2
, (B-2)

Ldist enforces accurate modeling of close-range spatial relationships while ignoring distant pairs that
are less critical for interaction.

3) Relative orientation
Lori = ∥O(mA,mB)−O(m̂A, m̂B)∥22 , (B-3)

where O(·A, ·B) denotes the 6D representation (Zhou et al., 2019) of the relative rotation matrix
from human A to B. Lori enforces the predicted motions to preserve the relative orientations between
the two humans, ensuring coherent and physically plausible interactions.

We also use a truncated regularization strategy: the regularization loss is only applied at lower
diffusion timesteps. This prevents the denoiser from being biased towards implausible averaged
poses and ensures more realistic motion generation.

Tab. B-3 presents the key hyperparameters of Motion VAE and Interaction-Aware Diffusion.
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B.3 DETAILS OF COMPARED METHODS

The details of baselines are as follows:

Offline Methods. T2M (Guo et al., 2022) is a Transformer-based motion generation framework
that formulates text-conditioned motion synthesis as a sequence-to-sequence problem in a learned
motion latent space. MDM (Tevet et al., 2022) employs a diffusion-based approach that conditions
the denoising process on text or other modalities to generate high-quality, temporally coherent mo-
tions. ComMDM (Shafir et al., 2024) adds a lightweight communication block between two frozen
MDM pretrained models to enable few-shot human-human interaction generation. InterGen (Liang
et al., 2024) incorporates a mutual attention mechanism into the diffusion process to explicitly model
inter-person dependencies for multi-person interaction generation. MoMat-MoGen (Cai et al., 2024)
combines motion matching with generative modeling to enhance diversity while preserving motion
naturalness, enabling high-quality text-driven motion synthesis. in2IN (Ruiz-Ponce et al., 2024)
leverages both individual motion descriptions and global interaction semantics to improve diversity
and accuracy in human–human interaction generation. InterMask (Javed et al., 2024) encodes mo-
tions as 2D token maps and jointly predicts masked tokens for both characters, enabling high-fidelity
and diverse interaction generation. We use the results reported in their original papers.

Online Extensions. For InterMask*, we retain the 2D VQ-VAE structure of the original InterMask
(Javed et al., 2024), but retrain it under our sliding-window setting to adapt to online generation. On
top of this representation, we employ our autoregressive framework: within each prediction window,
InterMask is used for motion generation. During generation, the history morion remains unmasked.
And for DART†, we retrain DART (Zhao et al., 2024) on the InterHuman (Liang et al., 2024) and
InterX (Xu et al., 2024a) dataset, where both humans share the same network during generation.

B.4 EXPERIMENTS SETUP

B.4.1 HOW TO SET TOTAL FRAMES TN ?

TN is directly provided by the dataset. Similar to offline generation methods, which generate the
entire sequence using the ground-truth length, we also use the ground-truth sequence length as the
total generation length for a fair comparison.

However, in real applications, TN can be determined in several practical ways,

1. User-controlled based on instruction complexity. Empirically, users can assign a suitable TN

according to the complexity of the textual command.

2. Using a large TN and trimming afterward. One may set TN to a sufficiently large value and then
manually trim the generated video once the intended action has been completed.

3. Automatic stopping with a language–motion similarity metric (Our Eval Model). A more ad-
vanced option is to set TN to a relatively large upper bound and use the evaluation model we employ
for computing MM-Dist. This model measures the similarity between the generated motion and the
given textual description, and generation can stop as soon as the similarity surpasses a predefined
threshold.

B.4.2 HOW TO DETERMINE HISTORY MOTION?

During training and quantitative evaluation, we simply use the first few frames of the ground-truth
sequence as the history motion. At inference time, our system supports two types of initialization:

1. User-provided motion history. In scenarios that require precise control or integration with external
systems, the user can provide a short initial sequence for each human. The model then performs
online generation conditioned on this history.

2. Initialization from scratch under text-only conditioning. When only a textual description is given
and no external history is available, we adopt a simple, unified initial pose such as a standing pose or
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Table C-4: Detailed R-precision results on InterHuman and InterX. Bold denotes the best result for
each setting.

Dataset Setting Method R-Precision↑
Top 1 Top 2 Top 3

Inter
Human

Ground Truth 0.452±.008 0.610±.009 0.701±.008

offline

T2M (Guo et al., 2022) 0.238±.012 0.325±.010 0.464±.014

MDM (Tevet et al., 2022) 0.153±.012 0.260±.009 0.339±.012

ComMDM (Shafir et al., 2024) 0.223±.009 0.334±.008 0.466±.010

InterGen (Liang et al., 2024) 0.371±.010 0.515±.012 0.624±.010

MoMat–MoGen (Cai et al., 2024) 0.449±.004 0.591±.003 0.666±.004

in2IN (Ruiz-Ponce et al., 2024) 0.425±.008 0.576±.008 0.662±.009

InterMask (Javed et al., 2024) 0.449±.004 0.599±.005 0.683±.004

online
InterMask* 0.331±.005 0.471±.005 0.557±.004

DART† 0.395±.005 0.553±.005 0.642±.005

HINT 0.432±.004 0.587±.004 0.672±.004

InterX

Ground Truth 0.429±.004 0.626±.003 0.736±.003

offline

T2M (Guo et al., 2022) 0.184±.010 0.298±.006 0.396±.005

MDM (Tevet et al., 2022) 0.203±.009 0.329±.007 0.426±.005

ComMDM (Shafir et al., 2024) 0.090±.002 0.165±.004 0.236±.004

InterGen (Liang et al., 2024) 0.207±.004 0.335±.005 0.429±.005

InterMask (Javed et al., 2024) 0.403±.005 0.595±.004 0.705±.005

online
InterMask* 0.061±.004 0.119±.003 0.169±.003

DART† 0.252±.003 0.402±.003 0.510±.003

HINT 0.386±.005 0.572±.004 0.682±.003

T-pose. The diffusion model then rolls out the full motion sequence from this starting state, guided
by the text and interaction design.

B.4.3 HOW TO CONTROL ERROR ACCUMULATION ACROSS WINDOWS?

Error accumulation across windows can be controlled using the following methods,

1. Short-window latent prediction reduces error propagation. Rather than rolling out frame by frame,
HINT operates in a canonicalized latent space and predicts future motion in short windows (history
length H , future length K). Each step only propagates errors at the window level, and the diffusion
process refines a coherent latent trajectory within each window, which empirically stabilizes long-
horizon rollouts.

2. Hierarchical conditions and canonicalized latent space prevent drift. Local conditions enforce
short-term physical and social consistency inside each window, while global conditions anchor each
window to the overall script, preventing long-term semantic drift. In addition, encoding motion in
canonicalized per-person coordinates while feeding global geometry as explicit relative transforms
decouples global position from motion semantics, reducing the amplification of small pose errors
over time.

3. Autoregressive generation enables interactive correction. Since our model is online, users may
issue light steering commands (e.g., “move slightly to the right”) to correct deviations, a capability
not available in offline methods. This is an inherent advantage of an online autoregressive design.

4. Global goal guided autoregressive generation. If the dataset provides additional global anchors,
for example, a text prompt such as ”go to the bed and sit on the bed”, then the location of the bed
can be supplied in advance as a conditioning term to the diffusion network. This global goal serves
as a high-level anchor that guides the local window predictions, ensuring that the generated motion
does not drift away from the intended final objective.
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Table C-5: Detailed R-precision results of ablation studies on InterHuman. L and G indicate local
and global conditions, respectively.

Method R Precision↑
R@Top1 R@Top2 R@Top3

Ground Truth 0.452±.008 0.610±.009 0.701±.008

w/o Canonicalized Latent Space 0.396±.005 0.548±.005 0.633±.006

L

w/o History Motion Embedding 0.421±.006 0.576±.005 0.660±.005

w/o Step Index Embedding 0.413±.005 0.570±.007 0.658±.005

w/o Relative History Embedding 0.405±.005 0.563±.005 0.647±.006

w/o Word-level Text Embedding 0.429±.006 0.591±.006 0.672±.004

G
w/o Sequence Index
& Total Frames Embedding 0.425±.004 0.584±.004 0.667±.004

w/o Compositional Command Embedding 0.420±.005 0.582±.003 0.669±.003

HINT 0.432±.004 0.587±.004 0.672±.004

C ADDITIONAL VISUALIZATION RESULTS

Quantitative Results. Detailed R-Precision results for InterHuman and InterX are presented in
Tab. C-4. The ablation R-Precision results are reported in Tab. C-5.

Qualitative Results. More visualization results are shown in Figs. C-4–C-9.

InterMask

InterMask*

DART†

HINT

Figure C-4: They rush towards each other.

D LIMITATION

In our experiments on the InterHuman dataset, we adopt a joint-based representation to ensure fair
comparison with prior methods. For visualization, the corresponding SMPL parameters are recon-
structed via inverse kinematics. Similarly, on the InterX dataset, we also restrict the representation
to joint rotations. As a result, body penetration may occur. This limitation could be alleviated by en-
riching the representation space, introducing mesh-aware loss functions, and incorporating guidance
during sampling.
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InterMask

InterMask*

DART†

HINT

Figure C-5: The two people take a small step to the right side with their right foot.

InterMask

InterMask*

DART†

HINT

Figure C-6: The first one walks towards the second one and takes a few steps, pretends to hit the
second one with the right hand, and then walks away to the side.

E DETAILS OF USER STUDY

We randomly sampled 30 textual descriptions from the test set of InterHuman (Liang et al., 2024).
For each description, motion videos of the same length as the ground truth are generated using
HINT, DART†, and InterMask (Javed et al., 2024). An online questionnaire is then distributed,
where participants viewed the text and the corresponding videos and selected the best video based
on semantic alignment and motion fluency. In total, 15 participants completed the survey. Fig. E-10
shows a screenshot of the questionnaire interface.

F USE OF LLMS

This paper used large language models (LLMs) to assist with language polishing. No core ideas,
analyses, or experimental results were generated by LLMs.

G PHYSICAL REALISM, INTER-BODY CONTACT, AND PENETRATION
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InterMask

InterMask*

DART†

HINT

Figure C-7: One person extends their left arm and pushes the other person’s right arm, and then
they push each other back and forth.

InterMask

InterMask*

DART†

HINT

Figure C-8: Two people proceed ahead together.

Physical plausibility is an important objective in multi-human motion generation. In HINT, the
main mechanism for encouraging realistic interactions is architectural rather than constraint-based:
we explicitly encode the relative transformations between humans (e.g., relative rotations and trans-
lations) and feed this information as conditions to the diffusion network. This design allows the
model to learn multi-person interaction patterns and contact behaviors directly from data.

For completeness, we further investigate an optional physics-aware loss that explicitly penalizes
inter-penetration between human bodies. Instead of constructing a dense volumetric SDF for the
full mesh, we adopt a lightweight skeletal SDF approximation: each human body is represented as
a union of overlapping spheres centered at major joints or along limb segments. This choice is both
computationally efficient and well aligned with the underlying kinematic structure of our SMPL(-X)
skeleton.

Concretely, let MB denote the body of human B in a given frame, and let {(cj , rj)}Jj=1 be the
centers and radii of the J spheres used to approximate MB (typically attached to joints or bones).
We define the signed distance field of B at a query point x ∈ R3 as

dB(x) = min
1≤j≤J

(
∥x− cj∥2 − rj

)
(G-4)

where dB(x) < 0 indicates that x lies inside at least one sphere (i.e., inside the approximated
body volume), dB(x) = 0 corresponds to the surface, and dB(x) > 0 is outside. This analytic,
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InterMask

InterMask*

DART†

HINT

Figure C-9: Both they encircle joining hands.

Figure E-10: Interface of the User Study.

joint-centered SDF behaves similarly to a mesh-based SDF near the body surface, while avoiding
expensive mesh–mesh distance queries.
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We then sample a set of points PA from human A (e.g., the mesh vertices) and define the penetration
loss from A into B as

Lpen(A → B) =
1

|PA|
∑

p∈PA

(
max(0, −dB(p))

)2
(G-5)

Only points with dB(p) < 0 (i.e., inside B’s spherical proxy) contribute to the loss; points outside
yield zero penalty. The total inter-penetration loss between two humans is symmetrized as

Ltotal
pen = Lpen(A → B) + Lpen(B → A) (G-6)

and can be extended to more than two agents in a straightforward way by summing over all ordered
pairs.

Finally, this term is added to the original training objective with a weighting factor λpen(set as 0.1 in
our experiments):

Ltotal = L+ λpenLtotal
pen (G-7)

Table G-6: Penetration and feet sliding analysis.

Method PD(cm)↓ PFR(%)↓ FS(%)→

Ground Truth 1.740±.0003 0.68±.000 1.090±.0006

InterMask* 3.570±.0002 10.350±.0003 2.630±.0001

DART† 3.240±.0002 5.850±.0003 2.530±.0001

HINT 2.652±.0005 3.260±.0009 1.770±.0002

HINT w Ltotal
pen 2.460±.0002 1.510±.0001 0.910±.0001

Tab. G-6 reports the penetration and feet-sliding metrics of different methods on InterX. PD (Pene-
tration Depth) measures the average depth to which bodies interpenetrate. PFR (Penetration Frame
Rate) measures the percentage of frames in which any penetration occurs. FS (Foot Sliding Rate)
measures the percentage of frames in which noticeable foot sliding is observed.

The results indicate that HINT already performs competitively without explicit physical constraints,
and the physics-enhanced version yields additional improvements.
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