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ABSTRACT

This paper presents Non-Attentive Tacotron based on the Tacotron 2 text-to-speech
model, replacing the attention mechanism with an explicit duration predictor. This
improves robustness significantly as measured by unaligned duration ratio and
word deletion rate, two metrics introduced in this paper for large-scale robustness
evaluation using a pre-trained speech recognition model. With the use of Gaussian
upsampling, Non-Attentive Tacotron achieves a 5-scale mean opinion score for
naturalness of 4.41, slightly outperforming Tacotron 2. The duration predictor
enables both utterance-wide and per-phoneme control of duration at inference time.
When accurate target durations are scarce or unavailable in the training data, we
propose a method using a fine-grained variational auto-encoder to train the duration
predictor in a semi-supervised or unsupervised manner, with results almost as good
as supervised training.

1 INTRODUCTION

Autoregressive neural text-to-speech (TTS) models using an attention mechanism are known to be
able to generate speech with naturalness on par with recorded human speech. However, these types
of models are known to be less robust than traditional approaches (He et al., 2019; Zheng et al., 2019;
Guo et al., 2019; Battenberg et al., 2020). These autoregressive networks that predict the output one
frame at a time are trained to decide whether to stop at each frame, and thus a misprediction on a
single frame can result in serious failures such as early cut-off. Meanwhile, there are little to no hard
constraints imposed on the attention mechanism to prevent problems such as repetition, skipping, long
pause or babbling. To exacerbate the issue, these failures are rare and are thus often not represented in
small test sets, such as those used in subjective listening tests. However, in customer-facing products,
even a one-in-a-million chance of such problems can severely degrade the user experience.

There have been various works aimed at improving the robustness of autoregressive attention-based
neural TTS models. Some of them investigated reducing the effect of the exposure bias on the
autoregressive decoder, using adversarial training (Guo et al., 2019) or adding regularization to
encourage the forward and backward attention to be consistent (Zheng et al., 2019). Others utilized
or designed alternative attention mechanisms, such as Gaussian mixture model (GMM) attention
(Graves, 2013; Skerry-Ryan et al., 2018), forward attention (Zhang et al., 2018), stepwise monotonic
attention (He et al., 2019), or dynamic convolution attention (Battenberg et al., 2020). Nonetheless,
these approaches do not fundamentally solve the robustness issue.

Recently, there has been a surge in the use of non-autoregressive models for TTS. Rather than
predicting whether to stop on each frame, non-autoregressive models need to determine the output
length ahead of time, and one way to do so is with an explicit prediction of the duration for each
input token. A side benefit of such a duration predictor is that it is significantly more resilient to the
failures afflicting the attention mechanism.

However, one-to-many regression problems like TTS can benefit from an autoregressive decoder as
the previous mel-spectrogram frames provides context to disambiguate between multi-modal outputs.
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In this paper, we propose, Non-Attentive Tacotron1, a neural TTS model that combines the robust
duration predictor with the autoregressive decoder of Tacotron 2 (Shen et al., 2018).

Our work is similar to DurIAN (Yu et al., 2019; Zhang et al., 2020), which incorporates the duration
predictor with an autoregressive decoder. But besides the differences in architecture, we also introduce
a couple of novel features in our model.

The key contributions of this paper are summarized as follows:

1. Replacing the attention mechanism in Tacotron 2 with duration prediction and upsampling
modules leading to better robustness with the naturalness matching recorded natural speech;

2. Introduction of Gaussian upsampling significantly improving the naturalness compared to
vanilla upsampling through repetition;

3. Global and fine-grained controlling of durations at inference time;

4. Semi-supervised and unsupervised duration modeling of Non-Attentive Tacotron, allowing
the model to be trained with few to no duration annotations; and

5. More reliable evaluation metrics for measuring robustness of TTS models, as well as
comparing Non-Attentive Tacotron with Tacotron 2 with respect to those metrics.

2 RELATED WORKS

In the past decade, model-based TTS synthesis has evolved from hidden Markov model (HMM)-based
approaches (Zen et al., 2009) to using deep neural networks. Over this period, the concept of using
an explicit representation of token (phoneme) durations has not been foreign. Early neural parametric
synthesis models (Zen et al., 2013) require explicit alignments between input and target and include
durations as part of the bag of features used to generate vocoder parameters. Explicit durations
continue to be used with the advent of the end-to-end neural vocoder WaveNet (Oord et al., 2016) in
works such as Deep Voice (Arik et al., 2017; Gibiansky et al., 2017) and CHiVE (Kenter et al., 2019).

As general focus turned towards end-to-end approaches, the autoregressive sequence-to-sequence
model with attention mechanism used in neural machine translation (NMT) (Bahdanau et al., 2015)
and automatic speech recognition (ASR) (Chan et al., 2016) became an attractive option, removing
the need to represent durations explicitly. This led to works such as Char2Wav (Sotelo et al., 2017),
Tacotron (Wang et al., 2017; Shen et al., 2018), Deep Voice 3 (Ping et al., 2018), and Transformer
TTS (Li et al., 2019). Similar models have been used for more complicated problems, like direct
speech-to-speech translation (Jia et al., 2019), speech conversion (Biadsy et al., 2019), and speech
enhancement (Ding et al., 2020).

Tacotron 2, on which our work is based, is one such model. It connects a character-level encoder
and an autoregressive decoder producing mel spectrogram frames with the use of a location-sensitive
attention mechanism (Chorowski et al., 2015).

Recently, there has been a surge of non-autoregressive models, bringing back the use of explicit
duration prediction. This approach initially surfaced in NMT (Gu et al., 2017), then made its way into
TTS with models such as FastSpeech (Ren et al., 2019; 2020), AlignTTS (Zeng et al., 2020), TalkNet
(Beliaev et al., 2020), and JDI-T (Lim et al., 2020). See Appendix C for a rough categorization of
these models.

To train the duration predictor, FastSpeech uses target durations extracted from a pre-trained autore-
gressive model in teacher forcing mode, while JDI-T also extracts target durations from a separate
autoregressive model but co-trains it with the feed-forward model. TalkNet uses a CTC-based ASR
model to extract target durations, while CHiVE, FastSpeech 2, and DurIAN use target durations from
an external aligner module utilizing forced alignment. Finally, AlignTTS forgoes target durations
completely and uses a specialized alignment loss inspired by the Baum-Welch algorithm to train a
mixture density network for alignment.

1Audio samples available in supplemental materials.
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Figure 1: Architecture of Non-Attentive Tacotron.

3 MODEL

Modern neural TTS models typically consist of two separate networks: (1) a feature generation
network that transforms input tokens (e.g., grapheme or phoneme ids) into acoustic features (e.g.,
mel-spectrogram), and (2) a vocoder network that transforms the acoustic features into a time-domain
audio waveform. This paper focuses on the feature generation network, and can be used with
any vocoder network, e.g., WaveNet (Oord et al., 2016), WaveRNN (Kalchbrenner et al., 2018),
WaveGlow (Prenger et al., 2019), MelGAN (Kumar et al., 2019), or WaveGrad (Chen et al., 2020).
The architecture of Non-Attentive Tacotron is illustrated in Figure 1a. See Appendix A for specific
parameter value settings.

The model follows that of Tacotron 2 (Shen et al., 2018), transforming input idsX = (x1, . . . ,xN )
of length N into mel-spectrogram predictions Y = (y1, . . . ,yT ) of size T ×K. Phonemes are used
as inputs, and include a silence token at word boundaries as well as an end-of-sequence token. The
ids are used to index into a learned embedding and is then passed through an encoder consisting of 3
× (dropout, batch normalization, convolution) layers followed by a single bi-directional LSTM with
ZoneOut to generate a 2-dimensional output of length N . This output is concatenated with a speaker
embedding vector to produce the final encoder outputH = (h1, ...,hN ).

The autoregressive decoder also follows Tacotron 2, and predicts mel-spectrograms one frame at
a time. At training time, teacher forcing (Williams & Zipser, 1989) is employed and the previous
groundtruth mel-spectrogram frame is used as input, while at inference time the previous predicted
mel-spectrogram frame is used. This previous frame is passed through a pre-net containing two
fully-connected layers of ReLU units with dropout, then concatenated with an upsampled (aligned)
encoder output corresponding to the current frame. The upsampled encoder outputs for future frames
are not visible to the decoder at the current frame. In Tacotron 2, this upsampling or alignment
is achieved using a location-sensitive attention mechanism (Chorowski et al., 2015), while in this
work the attention mechanism is not used and a separate upsampling mechanism described later is
used in its stead. The result is then passed through two uni-directional LSTM layers with ZoneOut.
The LSTM output is concatenated with the upsampled encoder output yet again then projected to
the mel-spectrogram dimension as frames of a preliminary predicted spectrogram Y ′. Once all the
mel-spectrogram frames have been predicted, they are passed through a 5-layer batch normalized
convolutional post-net with tanh activation on all except the last layer. The post-net predicts a residual
to add to the prediction Y ′ to obtain the final prediction Y .

In place of the attention mechanism used in Tacotron 2, duration-based models upsample the encoder
outputs using per-token duration information. This can be done by simply repeating each encoder
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output by its duration as in FastSpeech (Ren et al., 2019), but instead we adopt a different process we
call Gaussian upsampling, which is described in subsection 3.1. Note that while durations in seconds
are used for loss computation, they are converted to durations in integer frames for upsampling.

For Gaussian upsampling, a duration and a range parameter must be predicted for each token. The
range parameter is called thus because it controls the range of a token’s influence. The duration
predictor passes the encoder output through two bi-directional LSTM layers followed by a projection
layer to predict the numeric duration d = (d1, . . . , dN ) for each input token. During training, these
predicted durations are only used for loss computation, and the target durations are used instead in
the upcoming steps2. The range parameter predictor passes the encoder output concatenated with
durations through two bi-directional LSTM layers followed by a projection layer and a SoftPlus
activation to predict a positive range parameter σ for each input token.

After the encoder outputs are upsampled, a Transformer-style sinusoidal positional embedding
(Vaswani et al., 2017) is concatenated. The positional embedding tracks the index of each upsampled
frame within each token; if the duration values are [2, 1, 3], the indices for the positional embedding
would be [1, 2, 1, 1, 2, 3].

The model is trained using a combination of duration prediction loss and mel-spectrogram recon-
struction loss. The duration prediction loss is the L2 loss between predicted and target durations in
seconds, and the mel-spectrogram reconstruction loss is a L1 + L2 loss between the predicted and
the groundtruth mel-spectrogram both before and after the post-net (following Jia et al. (2018)).

L = Lspec + λdurLdur (1)
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3.1 GAUSSIAN UPSAMPLING

Given a sequence of vectors to be upsampled H = (h1, . . . ,hN ), integer duration values d =
(d1, . . . , dN ), and range parameter values σ = (σ1, . . . , σN ), we compute the upsampled vector
sequence U = (u1, . . . ,uT ) as:
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That is, we place a Gaussian distribution with standard deviation σi at the center of the output segment
corresponding to the i-th input token as determined by the duration values d, and for each frame we
take a weighted sum of the encoder outputs in accordance with the values of Gaussian distributions at
that frame. This is similar to the softmax-based aligner in Donahue et al. (2020), except a learned σ
rather than a fixed temperature hyperparameter is used here.

Compared with vanilla upsampling by repetition (as in Ren et al. (2019)), which can be seen as a case
of learning a hard monotonic attention, Gaussian upsampling results in an alignment that is more
akin to single-component GMM attention. Another benefit of Gaussian upsampling is that it is fully
differentiable, which is critical to semi-supervised and unsupervised duration modeling (section 4) as
it allows the gradients from the spectrogram losses to flow through to the duration predictor.

3.2 TARGET DURATIONS

Neural TTS models using duration need alignments between input tokens and output features. This
can be accomplished by implementing an aligner module in the model or by using an external aligner.

2Note that target durations may not be required with semi-supervised and unsupervised duration modeling.
See section 4.
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In our work, target durations are extracted by an external, flatstart trained, speaker-dependent HMM-
based aligner with a lexicon (Talkin & Wightman, 1994). However, sometimes it is difficult to
train a reliable aligner model and/or extract accurate alignments due to data sparsity, poor recording
conditions, or unclear pronunciations. To address this problem, we introduce semi-supervised and
unsupervised duration modeling.

4 SEMI-SUPERVISED AND UNSUPERVISED DURATION MODELING

A naı̈ve approach to unsupervised duration modeling would be to simply train the model using the
predicted durations (instead of the target durations) for upsampling, and use only mel-spectrogram
reconstruction loss for optimization. To match the length between the predicted durations and the
target mel-spectrogram frames, the predicted per-token durations can be scaled by T/

∑
i di. In

addition to that, an utterance-level duration loss Lu = 1
N (T −

∑
i di)

2 could be added to the total
loss. However, experiments show that such an approach does not produce satisfying naturalness in
the synthesized speech (subsection 6.3).

The proposed unsupervised duration modeling is illustrated in Figure 1b. We instead utilize a
fine-grained VAE (FVAE) similar to Sun et al. (2020) to model the alignment between the input
tokens and the target mel-spectrogram frames, and extract per-token latent features from the target
mel-spectrogram based on this alignment. The token encoder output H is aligned to the target
spectrogram Y ∗ using an attention mechanism following Lee & Kim (2019):

ci = Attn(hi, fspec(Y
∗)),

where hi is used as the query in the attention, and fspec is a spectrogram encoder whose output
per frame is used as the values in the attention. A simple dot-product attention from Luong et al.
(2015) was used in this work. A latent feature zi is then computed from ci and hi using a variational
auto-encoder (VAE) (Kingma & Welling, 2014) with a Gaussian prior N (0, I), optimized through
the evidence lower bound (ELBO):

log p (Y |H) ≥ −
∑
i

DKL (q (zi | hi, ci) ‖ p (zi)) + Eq(zi|hi,ci) [log p (Y |H,Z)] (4)

where the first term is the KL divergence between the prior and posterior, and the second term can be
approximated by drawing samples from the posterior.

Because these latent features are extracted from the target spectrogram with an alignment, they
are capable of carrying duration related information. At training time, the per-token duration d is
predicted from the concatenation of the token encoder output H and the posterior latent Z; while
at inference time, the prior latent is used for Z (either sampled from the distribution or using the
distribution mode), and the internal attention mechanism of the FVAE is not used.

Unlike Sun et al. (2020), scheduled sampling was not utilized for factorizing latent dimensions.
These latent features are only used for duration prediction, and are not used for range parameter
prediction or mel-spectrogram reconstruction. We also cap the range parameters for each token
to twice its predicted duration in this setup for better training stability. As in section 3, durations
predicted in seconds are used for loss computation, but are converted to durations in integer frames
for upsampling.

The overall loss used for semi-supervised and unsupervised training is thus

L = Lspec + λdurLdur + λuLu + λKLDKL, (5)

where DKL and Lspec correspond to the first and second terms in Equation 4, respectively, and Ldur is
only counted for examples with target duration labels (i.e. supervised examples). The last three terms
are all weighted per valid token.

5 ROBUSTNESS EVALUATION

Previous work typically evaluated the robustness of TTS systems on a small set of handpicked “hard
cases” (He et al., 2019; Zheng et al., 2019; Guo et al., 2019). Although such evaluation is helpful for
guiding improvements, it is not reflective of the overall robustness of the system. The handpicked
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samples may be biased to the weaknesses of a certain system, and is prone to lead further optimization
to overfit to the specific evaluation set.

In this work, we evaluate the robustness of TTS systems on large evaluation sets in an automated way
by leveraging existing ASR systems. We run ASR and forced alignment evaluations on the synthesized
speech against the verbalized text, and report two metrics measuring over- and under-generation:

1. Unaligned duration ratio (UDR): The synthesized speech is forced aligned with the
verbalized input text using an ASR system. Each token in the input text is aligned to a
segment in the synthesized audio. Any long audio segments (> 1 second) not aligned to any
input token are typically due to over-generation from the TTS system, such as long pauses,
babbling, word repetitions, or failures to stop after finishing the utterance. The total duration
of such long unaligned segments divided by the total output duration is the UDR. Note that
short unaligned segments are ignored. If the synthesized speech is unable to be aligned with
the input text, it is considered as having a UDR of 100%.

2. ASR word deletion rate (WDR): This is the deletion error portion in a standard ASR word
error rate (WER) evaluation. Under-generation in the synthesized speech, such as early
cutoff and word skipping, is reflected by a higher WDR.

As the ASR system will make mistakes, the metrics above are just an upper-bound on the actual
failures of the TTS system.

6 EXPERIMENTS

All models were trained on a proprietary dataset with 66 speakers with 4 different English accents
(US, British, Australian, and Nigerian). The amount of data per speaker varied from merely 5 seconds
to 47 hours, totaling 354 hours.

A preliminary experiment comparing different attention mechanisms (including monotonic, stepwise
monotonic, dynamic convolution and GMM attention (GMMA)) showed that GMMA performed
the best. We therefore compared our non-attentive Tacotron not only with Tacotron 2 with location-
sensitive attention (LSA) which was used in the original Tacotron 2 paper but also with Tacotron 2
with GMMA. The Tacotron 2 models used reduction factor 2 and L1 + L2 loss.

Following Shen et al. (2018), predicted features were obtained in teacher-forcing mode from a
Tacotron 2 model and used to train a WaveRNN vocoder which was then used for all experiments.

6.1 NATURALNESS

The naturalness of the synthesized speech was evaluated through subjective listening tests, including
5-scale Mean Opinion Score (MOS) tests and side-by-side preference tests. The sentences were
synthesized using 10 US English speakers (5 male / 5 female) in a round-robin fashion. The amount
of training data for the evaluated speakers varied from 3 hours to 47 hours.

Table 1 contains MOS results. Non-Attentive Tacotron with Gaussian upsampling matched Tacotron 2
(GMMA) in naturalness, and both were close to the groundtruth audio. A preference test between

Table 1: MOS with 95% confidence intervals.

Model MOS

Tacotron 2
w/ LSA 4.35 ± 0.05
w/ GMMA 4.37 ± 0.04

Non-Attentive Tacotron
w/ Gauss. upsampling 4.41 ± 0.04
w/ vanilla upsampling 4.13 ± 0.05

Ground truth 4.42 ± 0.04
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Figure 2: Preference test result with Non-Attentive
Tacotron with Gaussian upsampling compared
against Tacotron 2 (GMMA).
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Non-Attentive Tacotron and Tacotron 2 (GMMA) further confirmed this result, as shown in Figure 2.
Non-Attentive Tacotron with vanilla (repeating) upsampling was rated as significantly less natural
than with Gaussian upsampling.

The effectiveness of a learned range parameter versus a fixed temperature hyperparameter set at 10.0
as per Donahue et al. (2020) is compared using a preference test in Table 2. While there is only
a slight perceived benefit in using a learned range parameter, it reduces the need to tune another
dataset-dependent hyperparameter. Additionally, in multi-speaker setups it is possible that the optimal
σ may be speaker-dependent.

Table 2: Preference test between a learned σ versus a fixed σ set at 10.0. Pace is defined as in
subsection 6.2. A negative preference value means that the learned σ is preferred over the fixed σ.

Pace 0.8× 1.0× 1.25×
Preference −0.017± 0.057 −0.055± 0.054 −0.017± 0.055

6.2 PACE CONTROL

I'm so saddened about the devastation in Big Basin

I'm so saddened about the devastation in Big Basin

I'm so saddened about the devastation in Big Basin

0 50 100 150 200 250

I'm so saddened about the devastation in Big Basin

Figure 3: Single word pace control with sentence
“I’m so saddened about the devastation in Big Basin.”
The top spectrogram is with regular pace. The rest
slow down the words “saddened”, “devastation”, and
“Big Basin” respectively to 0.67× the regular pace
by scaling the predicted duration by 1.5×.

Table 3 shows WER and MOS results after
modifying the utterance-wide pace by dividing
the predicted durations by various factors. The
WER is computed on speech synthesized on
transcripts from the LibriTTS test-clean subset
with the same 10 speakers in subsection 6.1,
and then transcribed by an ASR model de-
scribed in Park et al. (2020) with a WER of
2.3% on the ground truth audio.

With pace between 0.8× – 1.25×, the WERs
were hardly impacted. The WER was signif-
icantly worse when the pace was increased
to 1.5× normal, partially because the ASR
model used was not optimized for speech
so fast. In contrast, the subjective MOS de-
creased rapidly when the pace was sped up or
slowed down significantly. However, most of
the comments from raters were simply com-
plaining about the pace, such as “too slow to
be natural” (0.8x) or “way too fast” (1.25x).

Non-Attentive Tacotron is also able to control
the pace of the synthesized speech at a finer
granularity, such as per-word or per-phoneme,
while still maintain the naturalness of the syn-
thesized speech. Figure 3 shows examples of
controlling the pace for specific words in a
sentence.

Table 3: Performance of controlling the utterance-wide pace of the synthesized speech.

Pace 0.67× 0.8× 0.9× 1.0× 1.11× 1.25× 1.5×
WER 3.3% 2.8% 2.6% 2.6% 2.5% 2.7% 6.1%
MOS 3.28 ± 0.06 3.87 ± 0.05 4.24 ± 0.04 4.41 ± 0.04 4.28 ± 0.04 3.79 ± 0.06 3.18 ± 0.06

6.3 SEMI-SUPERVISED AND UNSUPERVISED DURATION MODELING

Ten different US English speakers (5 male / 5 female) each with about 4 hours of training data were
used for evaluating the performance of the unsupervised and semi-supervised duration modeling.
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Figure 4: Alignment on text “What time do I need to show up to my sky diving lesson?” from the
unsupervised model. The predicted alignments are from Gaussian upsampling.

Table 4: Performance of unsupervised and semi-supervised duration modeling. Zero vectors are used
as FVAE latents for inference. MAE denotes the mean absolute error.

Training Model Dur. MAE (ms) MOS

Unsupervised w/o FVAE 124.4 2.91 ± 0.09
w/ FVAE 41.3 4.31 ± 0.04

Semi-supervised w/o FVAE 21.5 4.19 ± 0.05
w/ FVAE 18.3 4.35 ± 0.04

Supervised Non-Attentive Tacotron 15.4 4.37 ± 0.04
Tacotron 2 w/ GMMA - 4.35 ± 0.04

Ground truth - 4.52 ± 0.03

The duration labels for these 10 speakers (i.e. about 11% of the training data) were withheld for the
semi-supervised models, and all duration labels were withheld for the unsupervised models.

Figure 4 shows predicted alignment after Gaussian upsampling and the internal alignment from the
attention module in the FVAE compared with the alignment computed from the target durations,
for the unsupervised model. Despite not having access to any target durations, both the FVAE and
duration predictor were able to produce an alignment close to that computed from the target durations.

As shown in Table 4, with the use of the FVAE, the naturalness of both semi-supervised and
unsupervised models were very close to that of the supervised models, even though duration prediction
errors were higher. The autoregressive decoder trained with teacher forcing may have been powerful
enough to correct the duration prediction errors to some degree. However, the naturalness degraded
significantly without the use of the FVAE. Although the duration error from the semi-supervised
model without FVAE was lower than that from the unsupervised model with FVAE, the former was
significantly less natural than the latter. This may be due to a lower consistency between supervised
and unsupervised speakers without FVAE.

Although these models were close to the supervised model in MOS, manual investigation found
that samples from both semi-supervised models and unsupervised models had a small chance of
containing slight errors that do not occur in the supervised model, such as unclear pronunciations,
phoneme repetitions, or extra pauses. However, they are significantly less severe than similar errors
from Tacotron 2, mostly impacting just one or a few phonemes. These errors are further confirmed in
the large scale robustness evaluation (subsection 6.4).

The utterance-wide or fine-grained pace control (subsection 6.2) can be applied to the semi-supervised
and unsupervised models as well. However, as the alignments are not as accurate, the synthesized
speech with fine-grained pace control are not as natural as from the supervised model. The duration
may be extended by simply inserting more silence, and the extended portion may include phoneme
repetitions or unclear pronunciations.
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Table 5: Robustness measured by UDR and WDR on two large evaluation sets. The evaluation
speakers are unsupervised ones in the semi-supervised and unsupervised models.

System LibriTTS web-long
UDR (%) WDR (%) UDR (%) WDR (%)

Tacotron 2
w/ LSA 16.96 0.4 46.04 4.4
w/ GMMA 3.812 0.1 6.157 1.3

Non-Attentive Tacotron
Supervised 0.005 0.1 0.011 1.1
Semi-supervised 0.266 0.9 0.695 3.5
Unsupervised 0.223 0.7 0.527 3.2

6.4 ROBUSTNESS

We evaluated the robustness of the neural TTS models by measuring UDR and WDR on two large
evaluation sets: LibriTTS: 354K sentences from all train subsets from the LibriTTS corpus (Zen et al.,
2019); and web-long: 100K long sentences mined from the web, which included a small amount of
irregular text such as programming code. The median text lengths of the two sets were 74 and 224
characters, respectively. The input was synthesized using the same 10 speakers in subsection 6.3 in a
round-robin fashion. All model outputs were capped at 120 seconds.

We used the ASR model trained on the LibriSpeech (Panayotov et al., 2015) and LibriLight (Kahn
et al., 2020) corpora from Park et al. (2020) for measuring WDR, and a confidence islands-based
forced alignment model (Chiu et al., 2018) for measuring UDR.

Table 5 shows the robustness metrics for Tacotron 2 and Non-Attentive Tacotron. Tacotron 2 (LSA)
suffered from severe over-generation as measured by UDR, especially on long inputs. Manual
investigation uncovered that they were typically long babbling or long silence, often at the end (failure
to stop). It also had a high level of under-generation as measured by WDR, typically due to early
cutoff. Tacotron 2 (GMMA) performed almost as well as the supervised Non-Attentive Tacotron in
WDR because of its soft monotonic nature, which made end-of-sentence prediction easier. However,
it still had significantly higher level of over-generation compared to Non-Attentive Tacotron, even
when unsupervised or semi-supervised duration modeling is used for the latter. The robustness of
semi-supervised and unsupervised Non-Attentive Tacotron is significantly worse than the supervised
one. Manual investigation uncovered that the typical failure pattern is that part of the spectrogram
is not correctly synthesized (often as silence, but sometimes as babbling), despite that the duration
prediction seems reasonable. Such failure pattern contributes to both UDR and WDR. This indicates
further improvements to be made. Even then, the semi-supervised and unsupervised Non-Attentive
Tacotron still performs significantly better on over-generation compared to Tacotron 2.

In practice, we also observed that Tacotron 2 required significantly more care in data preprocessing
to achieve this level of robustness, including consistent trimming of leading and trailing silences and
filtering out utterances with long pauses. On the other hand, Non-Attentive Tacotron is significantly
less sensitive to the data preprocessing steps.

7 CONCLUSIONS

This paper presented Non-Attentive Tacotron, showing a significant improvement in robustness
compared to Tacotron 2 as measured by unaligned duration ratio and word deletion rate, while also
slightly outperforming it in naturalness. This was achieved by replacing the attention mechanism
in Tacotron 2 with an explicit duration predictor and Gaussian upsampling. We demonstrated the
ability to control the pacing of the entire utterance as well as individual words using the duration
predictor. We also described a method of modeling duration in a semi-supervised or unsupervised
manner using Non-Attentive Tacotron when accurate target duration are scarce or unavailable by
using a fine-grained variational auto-encoder, with results almost as good as supervised training.

9



Under review as a conference paper at ICLR 2021

REFERENCES

Sercan O Arik, Mike Chrzanowski, Adam Coates, Gregory Diamos, Andrew Gibiansky, Yongguo
Kang, Xian Li, John Miller, Andrew Ng, Jonathan Raiman, Shubho Sengupta, and Mohammad
Shoeybi. Deep Voice: Real-Time Neural Text-to-Speech. In Proc. ICML, pp. 195–204, 2017.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Translation by Jointly
Learning to Align and Translate. In Proc. ICLR, 2015.

Eric Battenberg, RJ Skerry-Ryan, Soroosh Mariooryad, Daisy Stanton, David Kao, Matt Shannon, and
Tom Bagby. Location-Relative Attention Mechanisms For Robust Long-Form Speech Synthesis.
In Proc. ICASSP, 2020.

Stanislav Beliaev, Yurii Rebryk, and Boris Ginsburg. TalkNet: Fully-Convolutional Non-
Autoregressive Speech Synthesis Model. arXiv preprint arXiv:2005.05514, 2020.

Fadi Biadsy, Ron J. Weiss, Pedro J. Moreno, Dimitri Kanvesky, and Ye. Jia. Parrotron: An End-to-End
Speech-to-Speech Conversion Model and its Applications Hearing-Impaired Speech and Speech
Separation. In Proc. Interspeech, pp. 4115–4119, 2019.

W. Chan, N. Jaitly, Q. Le, and O. Vinyals. Listen, Attend and Spell: A Neural Network for Large
Vocabulary Conversational Speech Recognition. In Proc. ICASSP, pp. 4960–4964, 2016.

Nanxin Chen, Yu Zhang, Heiga Zen, Ron J Weiss, Mohammad Norouzi, and William Chan. WaveG-
rad: Estimating Gradients for Waveform Generation. arXiv preprint arXiv:2009.00713, 2020.

Chung-Cheng Chiu, Anshuman Tripathi, Katherine Chou, Chris Co, Navdeep Jaitly, Diana Jaun-
zeikare, Anjuli Kannan, Patrick Nguyen, Hasim Sak, Ananth Sankar, Justin Tansuwan, Nathan
Wan, Yonghui Wu, and Xuedong Zhang. Speech Recognition for Medical Conversations. In Proc.
Interspeech, pp. 2972–2976, 2018.

Jan K Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and Yoshua Bengio.
Attention-based models for speech recognition. In Proc. NeurIPS, 2015.

Shaojin Ding, Ye Jia, Ke Hu, and Quan Wang. Textual Echo Cancellation. arXiv preprint
arXiv:2008.06006, 2020.
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A MODEL PARAMETERS

Table 6: Model parameters.

Common Training mode Synchronous
Batch size (per replica) 32
Replicas 8
Parameter init Xavier
L2 regularization 1× 10−6

Learning rate 0.001
Learning rate schedule Linear rampup 4K steps then

decay half every 50K steps.
Optimizer Adam(0.9, 0.999, 1× 10−6)
LSTM zone-out prob 0.1
LSTM cell abs value cap 10.0

Inputs and Targets Sampling rate (Hz) 24,000
Normalize waveform No
Pre-emphasis No
Frame size (ms) 50
Frame hop (ms) 12.5
Windowing Hanning
FFT window size (point) 2048
Mel channels K 128
Mel frequency lower bound (Hz) 20
Mel frequency upper bound (Hz) 12,000
Mel spectrogram dynamic range compression log (x+ 0.001)
Token embedding dim 512
Speaker embedding dim 64

Encoder Conv kernel 5× 1
Conv dim [512, 512, 512]
Conv activation [None, None, None]
Conv batch norm decay 0.999
Bi-LSTM dim 512× 2

FVAE Segment encoder conv kernel 3× 1
Segment encoder conv dim [512, 512, 512]
Segment encoder Bi-LSTM dim 256× 2
Layer norm attention inputs Yes
Latent dim 8 projected to 16

Duration Predictor Bi-LSTM dim 512× 2
Projection activation None
λdur supervised 2.0
λdur semi-supervised 100.0
λu semi-supervised 100.0
λKL semi-supervised 1× 10−3

λu unsupervised 1.0
λKL unsupervised 1× 10−4

Range Parameter Predictor Bi-LSTM dim 512× 2
Projection activation SoftPlus

Positional Embedding Embedding dim 32
Timestep denominator 10,000

Decoder Pre-net dim supervised [256, 256]
Pre-net dim semi/unsupervised [128, 128]
Pre-net activation [ReLU, ReLU]
Pre-net dropout prob [0.5, 0.5]
LSTM dim 1,024
LSTM init uniform(0.1)
Projection init uniform(0.1)
Post-net conv kernel 5× 1
Post-net conv dim [512, 512, 512, 512, 128]
Post-net conv activation [tanh, tanh, tanh, tanh, None]
Post-net conv init uniform(0.1)
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B WER BREAKDOWNS IN THE ROBUSTNESS EVALUATION

Table 7: WER breakdowns in the robustness evaluation. Deletion rate (del) is the WDR in Table 5.

System LibriTTS web-long
WER del ins sub WER del ins sub

Tacotron 2
w/ LSA 1.8 0.4 0.3 1.1 13.0 4.4 2.0 6.7
w/ GMMA 1.7 0.1 0.1 1.5 10.1 1.3 1.3 7.4

Non-Attentive Tacotron
Supervised 1.4 0.1 0.1 1.2 9.3 1.1 1.3 6.9
Semi-supervised 3.3 0.9 0.2 2.2 14.1 3.5 1.6 9.0
Unsupervised 3.5 0.7 0.3 2.6 15.3 3.2 2.0 10.1

C CLASSIFICATION OF SOME TTS MODELS

Table 8: Classification of some TTS models into autoregressive (AR)/feed-forward (FF), RNN/Trans-
former/fully convolutional, and attention-based/duration-based.

Model Year AR FF RNN Transformer Full Conv Attention Duration

Deep Voice 2017
Char2Wav 2017
Tacotron 2017
Deep Voice 2 2017
Tacotron 2 2018
Deep Voice 3 2018
Transformer TTS 2019
CHiVE 2019
DurIAN 2019
Fastspeech 2019
TalkNet 2020
AlignTTS 2020
JDI-T 2020
Non-Attentive Tacotron 2020
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