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Abstract

Algorithms for learning programmatic representations for sequential decision-
making problems are often evaluated on out-of-distribution (OOD) problems, with
the common conclusion that programmatic policies generalize better than neural
policies on OOD problems. In this position paper, we argue that commonly used
benchmarks undervalue the generalization capabilities of programmatic representa-
tions. We analyze the experiments of four papers from the literature and show that
neural policies, which were shown not to generalize, can generalize as effectively
as programmatic policies on OOD problems. This is achieved with simple changes
in the neural policies training pipeline. Namely, we show that simpler neural archi-
tectures with the same type of sparse observation used with programmatic policies
can help attain OOD generalization. Another modification we have shown to be
effective is the use of reward functions that allow for safer policies (e.g., agents
that drive slowly can generalize better). Also, we argue for creating benchmark
problems highlighting concepts needed for OOD generalization that may challenge
neural policies but align with programmatic representations, such as tasks requiring
algorithmic constructs like stacks.

1 Introduction

Deep reinforcement learning (RL) has led to remarkable successes in domains ranging from games to
robotics, largely by representing policies as highly parametrized neural networks and optimizing them
end-to-end [[Lillicrap ef al.l 2019; Schulman et al.,|2017]]. However, neural policies often struggle
to generalize outside the distribution of their training environments, exhibiting brittle behavior
when confronted with out-of-distribution (OOD) scenarios. In contrast, a growing literature on
programmatic policies, where decision—making rules are expressed in a domain-specific language,
claims superior OOD generalization [[Verma et al.|, 2018, [2019; Trivedi ef al.| [2021} Inala et al., [2020].

We argue that commonly used benchmarks undervalue the generalization power of programmatic
representations. Previous work on programmatic policies has observed a substantial gap in terms
of OOD generalization between programmatic and neural representations. We revisit these OOD
generalization claims and show that, in some cases, the apparent gap between programmatic and neural
representations arises not from an inherent limitation of neural representations but from variables we
failed to control in evaluating OOD generalization with neural models. Namely, the input observation
of the neural agent must be as sparse as the observation the programmatic agent considers. Sparse
observations automatically remove distractions that can improve OOD generalization, especially
when used with simpler models that are easier to train, such as fully connected networks. Moreover,
neural policies tend to be more sensitive to the reward function because they tend to optimize it better
than programmatic ones. As a result, a policy that is “too specialized” in one setting might perform
poorly in OOD problems. As we show in our experiments, simple changes to the reward function can
dramatically enhance OOD generalization.
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We demonstrate how some of these ideas improve the OOD generalization on benchmark problems
commonly used in the literature, including a car racing environment (TORCS) [Verma et al., 2018
2019], grid-world planning problems (KAREL) [Trivedi ef al.,[2021]], and continuous control with
repetitive behavior (PARKING) [Inala ef al.l2020]. Given our observation that neural policies can
generalize to OOD problems in these benchmarks, we suggest creating problems that showcase the
OOD generalization of programmatic representations by requiring learning structures that neural
networks fail to master, such as stacks [Joulin and Mikolovl, 2015]]. As an illustrative example, we
suggest a problem that requires the agent to use memory through a stack or a queue to solve.

Focusing on benchmark problems that require features beyond the reach of neural models will help us
better understand where programmatic representations are most needed. This understanding can help
us develop novel representations that combine the flexibility of highly parameterized models with the
desired properties of symbolic programs, such as sparsity and the usage of complex data structures.

The code used to run our experiments is publicly available online.

2 Problem Definition

We consider sequential decision-making problems as Markov decision processes (MDPs) M =
(S, A, p, 7, p,7y). Here, S and A are the sets of states and actions. The function p : S x A — S is the
transition model, which returns the state s;;; reached once the agent takes action a; in state s; at
time step ¢. The agent observes a reward value of R;1 = r(s¢, a;) when transitioning to s;41; such
values are given by the reward function r : § x A — R. The MDP’s initial states are determined by
the distribution u, with states sampled from g denoted as sq. Finally, v € [0, 1] is the discount factor.
A policy 7 : S x A — [0, 1] receives a state s and action a and returns the probability of taking a at
s. Given a class of policies II, the goal is to find a policy 7 within II that maximizes the return:
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The class II determines the biases of the policies we consider. For example, II could be an architecture
of a neural network, and the policies 7 within this class are the different weights we can assign to the
connections of the neural network. We consider classes 11 determined by a domain-specific language,
so programs written in the language form II. A language is defined with a context-free grammar
(N ,T,R,T), where N, T, R, T are the sets of non-terminals, terminals, the production rules, and
the grammar’s initial symbol, respectively. Figure[I|(a) shows an example of a context-free grammar
encoding a language for TORCS policies. The grammar’s initial symbol Z is E. It accepts strings
such as the one shown in Figure[I] (b), which is obtained through a sequence of production rules
applied to the initial symbol: £ — if B then F else E — if B and B then Felse E — ---.

We empirically compare solutions to Equation [1| when the class II is defined with pre-defined
neural network architectures and domain-specific languages. We call the former neural and the
latter programmatic policies. We consider the following problem domains in our experiments:
ToRCS [Verma et al.| 2018, 2019], KAREL [Trivedi et al.l 2021]], and PARKING [Inala et al., 2020].

3 Background: Searching for Programmatic Policies

This section describes the algorithms used to synthesize programmatic policies for solving TORCS
(Section [3.T), KAREL (Section [3.2), and PARKING (Section [3.3). We aim to provide enough
information so the reader understands our results in Sectiond] We do not intend to detail the original
algorithms. For full method descriptions, see the cited papers in each subsection.

3.1 Neurally Directed Program Search (NDPS)

Verma et al.| [2018]] introduced Neurally Directed Program Search (NDPS), a method that uses
imitation learning through the DAGGER algorithm [Ross ef al.,[2011] to learn programmatic policies.
Figure [1| (a) shows the domain-specific language [Verma et al.| [2018]] considered in their experi-
ments on the TORCS benchmark. The peek function reads the value of a sensor. For example,
peek(hgpy, —1) reads the latest value (denoted by the parameter —1) of the rotation-per-minute
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(a) Domain-Specific Language (b) Example Policy

P := peek((e—h;),—1)
I == fold(+,e— h;) if (0?10(1 - Peek(hhi:z};?os, -1) > 0)) )
’ and (0.001 + peek(hrrackpos, —1) > 0
D = peek(hi, ~2) — peek(h;, ~1) then 3.97  peek((0.44 — hgey), —1)
C = c*P+co*xl+c3xD +0.01 * fold(+, (0.44 — hgpn))
B = ¢ , K(hy. —1) 4 .. +48.79 * (peek (hgpu, —2) — peek(hgpy, —1))
co+c1xpee k( }i’ )1+ 0 else 3.97 x peek((0.40 — hgpy), —1)
<+ +cp x peek(hpy, —1) >0 | +0.01 * fold (+, (0.40 — hgpy))
Bor B|BandB +48.79 * (peek(hgpy, —2) — peek(hppy, —1))
E = C(C|if Bthen F else F.

Figure 1: (a) Context-free grammar specifying a domain-specific language for TORCS, a racing car
domain [[Verma et al.| [2018]]. The initial symbol of the language is F, € is a pre-defined constant, and
{h;}, is a set of m sensors from which the agent can read. The grammar allows programs that
switch between different PID controllers. (b) Example of a policy written in the language.

sensor (hgpy); peek(hgpn, —2) would read the second latest value of the sensor. The fold(+, € — h;)
operation adds the difference ¢ — h; for a fixed number of steps of the past readings of sensor h;.

The non-terminal symbols P, I, and D in Figure|l|(a) form the operations needed to learn PID
controllers, with programs that switch between different PID controllers, as shown in Figure[T] (b).

NDPS uses a neural policy as an oracle to guide the NDPS’s synthesis. Given a set of state-action pairs
H, where the actions are given by the neural oracle, NDPS evaluates a program p by computing the
action agreement of p with the actions in H. NDPS runs a brute force search algorithm [Albarghouthi
et al.,2013; [Udupa et all [2013]], to generate a set of candidate programs C. Then, it learns the
parameters of the programs (c1, ¢z, and c¢3 in Figure [T)) with Bayesian optimization [Snoek et al.]
2012] such that the programs mimic H. Once NDPS determines the parameters of programs C, it
selects the candidate c in C' that maximizes the agent’s return; c is the starting point of a local search
that optimizes a mixture of the action agreement function and the agent’s return.

Verma et al.|[2019] introduced Imitation-Projected Programmatic Reinforcement Learning (PROPEL),
an algorithm that also synthesizes a program for solving control problems. PROPEL is similar to
NDPS in that it relies on a neural policy to guide its search through the space of programs. The
difference between PROPEL and NDPS is that the neural policy of the former is trained so that it
does not become “too different” from what the programmatic learner can express—the inability to
represent the teacher’s policy is known as the representation gap in the literature [Qiu and Zhul 2021]].
The programmatic policies of both NDPS and PROPEL are called for every state the agent encounters.

3.2 Learning Embeddings for Latent Program Synthesis (LEAPS)

Trivedi et al.|[2021] introduced Learning Embeddings for Latent Program Synthesis (LEAPS), a
system that learns a latent representation of the space of programs a language induces. When given an
MDP M, LEAPS searches in the learned latent space for a vector decoded into a program encoding
a policy that maximizes the agent’s return at M. LEAPS’s premise is that searching in the learned
latent space is easier than searching in the space of programs, as NDPS and PROPEL do.

Figure |2 (a) shows the context-free grammar specifying the language used to encode policies for
KAREL. The language accepts programs with conditionals and loops. It also includes a set of
perception functions, such as frontIsClear, which verifies whether the cell in front of the agent is
clear. Further included are action instructions such as move and turnLeft. The set of perception
functions is important because it defines what the agent can observe. As we show in Section 4.2}
having access to less information allows the agent to generalize to OOD problems. Figure[2](b) shows
an example of a KAREL program. Here, the agent will perform two actions, pickMarker and move,
if a marker is present in its current location; otherwise it will not perform any action.

To learn its latent space, LEAPS generates a data set of programs P by sampling a probabilistic
version of the context-free grammar defining the domain-specific language. That is, each production
of a non-terminal can be selected with a given probability. A program can be sampled from this
probabilistic grammar by starting at the initial symbol and randomly applying production rules until



(a) Domain-Specific Language (b) Example Policy

p = def run m(s m)
s:= whilec(b ¢) w( s w) |if c(b c) i(s i) |

ifelse c(b c) i(s i) elsee(s e) | def run m(

repeat R=n r(s r) |s;s | a if c( markersPresent c) i(
b:= h | not (h) pickMarker move
n:= 0,1,---,19 i)
h:= frontIsClear | leftIsClear | rightIsClear | m)

markersPresent | noMarkersPresent
a:= move | turnLeft | turnRight |
putMarker | pickMarker

Figure 2: (a) Context-free grammar specifying a domain-specific language for KAREL. The programs
written in this language accept conditional statements and loops. There is a set of perception functions
(h) and functions that return actions (a). (b) Example of a policy for a KAREL task.

we obtain a program with only terminal symbols. This set of programs is used to train a Variational
Auto-Encoder (VAE) [Kingma and Welling}, [2014], with its usual reconstruction loss. However, in
addition to learn spaces that are more friendly to search algorithms, LEAPS uses two additional losses
that attempt to capture the semantics of the programs. These two losses incentivize latent vectors
that decode into programs with similar agent behavior to be near each other in the latent space. The
intuition is that this behavior locality can render optimization landscapes easier to search.

Once the latent space is trained, it is used to solve MDPs. Given an MDP, LEAPS uses the Cross-
Entropy Method (CEM) [Mannor ef al.l 2003 to search for a vector that decodes into a program that
maximizes the return. The rollouts of the decoded policies are used to inform the CEM search.

3.3 Programmatic State Machine Policies (PSM)

Inala et al|[2020] introduced Programmatic State Machine Policies, which we refer to as PsM, a
system that learns a policy as a finite-state machine. A finite state machine policy for an MDP M
is a tuple (M, S, A, 0, mg, F, «) where M is a finite set of modes. The sets .S and A are the sets of
states and actions from M. The function § : M x S — M is the transition function, mg in M is the
initial mode, and F' C S is the set of modes in which the policy terminates. The transition function
0 defines the next mode given the current mode and input state s in S. Finally, & : M x § — A
determines the policy’s action when in mode m and the agent observes state s.

In the PARKING environment, Inala et al.| [2020]] considered a domain-specific language for the
transition function § and constant values for c. The grammar defining the language 6 is the following.

B = sl 2o}, [{sli] <o}, [ BAB[BVB

Here, the values v are constants that need to be learned, s[i] is the i-th entry of the state s the agent
observes at a given time step, and n is the dimensionality of the observation.

Figure [3] shows an example of the type of policy PSM learns. In this example, the policy is for
PARKING, a domain where the agent must learn how to exit a parking spot with a car in front of the
agent’s car (cary) and another at the rear (cary). The policy uses the following state features: the
distance between the agent’s car and cary (dy) and cary (dp), the = coordinate of the car, and the
angle 6 of the car. A solution involves the agent moving forward to the left (mode m) and then back
to the right (mode my), until the agent has cleared car (transitioning to mode ms3).

The agent solves the problem if it straightens the car after clearing cary, thus transitioning from mg
to my. PSM’s policies are called only once for the initial state; the policy returns only at the end of
the episode.

PsM learns policies with a teacher-student scheme, where the student is a finite state machine
encoding the policy. The teacher is a loop-free learner that finds state-action pair sequences that
optimize for two objectives. Specifically, they maximize the agent’s return and minimize how much
they deviate from the student’s policy. Optimizing for the latter avoids sequences that cannot be
encoded in a finite-state machine. After optimizing the teacher, the student updates its policy based on
the teacher’s sequence. The student’s policy is updated through a clustering scheme on the teacher’s
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Figure 3: Example of a state machine policy, where my is the initial mode and m is an accepting
mode. The tuples inside each mode specify the agent’s action when in that mode (e.g., (F, L) means
“move forward and steer to the left”. The transitions from one mode to another are triggered by a
Boolean expression shown in the arrows. For example, if the car is too close to the car in front of
it (dy < 0.30), then the policy moves from m; to mo. The agent remains in the current mode if no
outgoing Boolean expression is triggered. This policy is based on an example by |[Inala et al.|[2020].

NDPS DRL (8 =1.0) DRL (8 =0.5)

TRACKS LAP TIME LAP TIME LAP TIME
G-TRACK-1 1:01 54 1:17

G-TRACK-2 (OOD) 1:40 CR 1608M 1:48 (0.76)
E-RoAD (OOD) 1:51 CRrR 1902M 1:54 (0.69)
AALBORG 2:38 1:49 2:24

ALPINE-2 (OOD) 3:16 CR 1688M 3:13 (1.00)
RUUDSKOGEN (OOD) 3:19 CR 3232M 2:46 (1.00)

Table 1: For DRL (8 = 0.5), we trained 30 models (seeds) for G-TRACK-1 and 15 for AALBORG.
Each cell shows the average lap time (mm:ss) over three laps per model, then averaged across models;
13 models learned to complete G-TRACK-1 and four models learned to complete AALBORG. Values
in parentheses for DRL (5 = 0.5) show the fraction of seeds that successfully generalized to the test
track (out of 13 and 4 for G-TRACK-1 and AALBORG, respectively). For NDPs and DRL (8 = 1.0),
we used the data from [[Verma et al.| 2018]], which is over three models. “CR” indicates that all three
models crashed, and the number reported is the average distance at which the agent crashed the car.

sequence. The Boolean expressions denoting transitions between modes are found through discrete
search. The process is repeated, and the teacher’s sequence-based policy is optimized.

4 Experiments

In this section, we revisit the experiments of Verma et al.|[2018]] and [Verma et al.|[2019] on TORCS
(Sectiond.T|and Appendix [A)), of Trivedi et al.| [2021]] on KAREL (Section4.2]and Appendix [B)), and
of [Inala et al.| [2020] on PARKING (Section 4.3]and Appendix [C).

4.1 TORCS

Verma et al.|[2018] and |Verma et al.|[2019] showed that programmatic policies written in the language
from Figure 1| generalize better to OOD problems than neural policies in race tracks of the Open
Racing Car Simulator (TORCS) [Wymann ef al.}, 2000]. The results of [Verma et al.| [2018] also
showed that neural policies better optimize the agent’s return than programmatic policies, as the
former complete laps more quickly than the latter on the tracks on which they are trained. We
hypothesized that the programmatic policies generalize better not because of their representation, but
because the car moves more slowly, thus making it easier to generalize to tracks with sharper turns.

We test our hypothesis by training models with two different reward functions: the original function
used in previous experiments (5 = 1.0 in Equation [2), which we refer to as “original”, and a function
that makes the agent more cautious about speeding (3 = 0.5), which we refer to as “cautious”.

B x Vycos(0) — |V sin(0)| — Vi |di] - )

Here, V,, is the speed of the car along the longitudinal axis of the car, 6 is the angle between the
direction of the car and the direction of the track axis, and d; is the car’s lateral distance from the
center of the track. The first term of the reward measures the velocity along the central line of the
track, while the second is the velocity moving away from the central line. Maximizing the first term



STAIRCLIMBER MAZE ToOPOFF FOURCORNER HARVESTER

Leapst Small 1.00 (0.00) 1.00 (0.00) 0.81(0.07)  0.45 (0.40) 0.45 (0.28)
S 100x 100 1.00 (0.00) 1.00 (0.00) 0.21(0.03)  0.45(0.37) 0.00 (0.00)
) Small 1.00 (0.00) 1.00 (0.00) 0.32(0.07)  0.29 (0.05) 0.90 (0.10)

+
PPO with ConvNet! 5. 100 0.00 (0.00) 0.00 (0.00)  0.01 (0.01) 0.00 (0.00) 0.00 (0.00)
) Small 0.13 (0.29) 1.00 (0.00) 0.63(0.23)  0.36 (0.44) 0.32 (0.18)

T

PPO with LSTM 100100 0.00(0.00)  0.04(0.05) 0.15(0.12)  0.37 (0.44) 0.02 (0.01)
PPO with a Small 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 1.00 (0.00) 0.59 (0.05)
-1 100x 100 1.00 (0.00) 1.00 (0.00)  1.00 (0.00) 1.00 (0.00) 0.04 (0.00)

Table 2: Generalization results on KAREL, where cells show the average return and standard deviation.
“PPO with ConvNet” observes the entire state and employs a convolutional network to learn its
representation. “PPO with LSTM” uses an LSTM layer for both actor and critic, while “PPO with
a;—1” uses a fully connected network with the observation space augmented with the agent’s last
action. “Small” refers to the problems in which the models were trained, which were of size either
8 x 8 or 12 x 12. Rows marked with a T are from Trivedi et al.|[2021]]. The results for PPO with
a—1 are over 30 seeds, and each seed is evaluated on 10 different initial states; the results for LEAPS
and PPO with a ConvNet and with an LSTM are over five seeds and 10 different initial states.

minus the second allows the agent to move fast without deviating from the central line. The last term
also contributes to having the agent follow the center of the track. Once we set 8 = 0.5, the agent
will learn policies where the car moves more slowly, which allows us to test our hypothesis.

Following [Verma et al.|[2018]], we use the Deep Deterministic Policy Gradient (DDPG) algorithm
[Lillicrap et al.l 2019] and TORCS’s practice mode, which includes 29 sensors as observation space
and the actions of accelerating and steering. We considered two tracks for training the agent: G-
TRACK-1 and AALBORG. The first is considered easier than the second based on the track’s number
of turns, length, and width. The models trained on G-TRACK-1 were tested on G-TRACK-2 and
E-ROAD, while the models trained on AALBORG were tested on ALPINE-2 and RUUDSKOGEN.

Table [T] presents the results. NDPS can generalize to the test problems in all three seeds evaluated.
DRL with 3 = 1.0 does not generalize to the test tracks, with the numbers in the table showing the
average distance at which the agent crashes the car in all three seeds. For DRL (8 = 0.5) we trained
30 models (seeds) for G-TRACK-1 and 15 for AALBORG. Then, we verified that 13 of the 30 models
learned how to complete laps of the G-TRACK-1 track, and 4 of the 15 models learned to complete
laps of the AALBORG track; these models were evaluated on the OOD tracks.

The results support our hypothesis that by changing the reward function, we would allow the agent to
generalize. On the training tracks, the lap time increases as we reduce . Most models trained with
B = 0.5 generalize from the G-TRACK-1 to G-TRACK-2 (76% of the models) and E-ROAD (69%)
tracks; all models that learned to complete a lap on AALBORG generalized to the other two tracks.

4.2 KAREL

Trivedi et al|[2021]] showed that programs LEAPS synthesized in the language shown in Figure 2]
(a) generalized better than deep reinforcement learning baselines to problem sizes much larger than
those the agent encountered during training. In our experiments, we consider the fully observable
version of KAREL, where the agent has access to the entire grid, and the partially observable version,
where the agent can only perceive the cells around it, as shown by the non-terminal 4 in Figure 2] (a).

In the partially observable case, the problem can-
not, in principle, be solved with fully connected . .
neural networks. Consider the two states shown . .. .
in Figure[d In one, the agent is going downstairs; . .

in the other, it is going upstairs. Yet, the obser-

vation is the same for both states. [Irivedi et al. . .. . ..
[2021]] used LSTMs [Hochreiter and Schmidhuber, > ...... ....-.
1997 to deal with the partial observability problem.

Instead of using LSTMs, which tend to be more
complex to train than fully connected networks,

Figure 4: Different states but same observation.



Psm DQN
Successful-on-100  Success Rate  Successful-on-100  Success Rate

Training 0.06 0.26 0.40 0.86
Test 0.06 0.16 0.00 0.18

Table 3: Evaluation of 30 seeds of PSM and 15 seeds of DQN on the PARKING domain. Each model
trained was evaluated on 100 different initial states of both training and testing settings. The columns
“Successful-on-100” report the fraction of models trained that successfully solved all 100 initial states.
The columns “Success Rate” reports the average number of initial states solved across different seeds.

we add the last action the agent has taken as part of the observation. For the fully observable case, we
report the results of |Trivedi et al.|[2021]], which used a convolutional network on the input.

We trained policies for the following problems, which were chosen to match the design of |Trivedi
et al.|[2021]: STAIRCLIMBER, MAZE, TOPOFF, FOURCORNER, and HARVESTER. The grid size
of these problems was either 8 x 8 or 12 x 12. After learning to solve these small problems, we
evaluated them on grids of size 100 x 100, also following Trivedi et al.|[2021]. In the MAZE problem,
the agent learns to escape a small maze and is evaluated on a larger one. Table [2] shows the results.

Our results show that partial observability combined with a simpler model can generalize to larger
grids. Namely, “PPO with a;_,”, which uses a fully connected network with the observation
augmented with the agent’s last action, generalizes to larger problems. This contrasts with “PPO with
ConvNet”, which operates in the fully observable setting, and “PPO with LSTM”, which operates in
the partially observable setting but uses a more complex neural model. To illustrate, in MAZE, if the
agent can only see the cells around itself, it can learn strategies such as “follow the right wall”, which
is challenging to learn in the fully observable setting. The LSTM agent fails not only to generalize to
larger problems, but it often also fails to learn how to solve even the smaller problems.

4.3 PARKING

In the PARKING domain, an agent must get out of a parking spot. During training, the distance
between the two parked cars is sampled uniformly from the range [12.0, 13.5]. In contrast, the test
environment uses a narrower and more challenging range of [11.0, 12.0], requiring the agent to
generalize to tighter parking scenarios.

We evaluate both programmatic policies, as described by [Inala et al.|[2020], and neural policies
trained using Deep Q-Networks (DQN) [Mnih ef al.|2015]. Preliminary experiments showed that
DOQN performed better than the PPO and DDPG algorithms considered in our other experiments. For
each policy type, we trained 30 independently seeded models and evaluated each one on 100 test
episodes, where the test gap was sampled uniformly from the range [11.0, 12.0].

Table [3|shows the results. We trained 30 independent models of PSM and 15 of DQN. Each model
was evaluated on 100 different initial states. The columns “Successful-on-100" refer to the ratio of
models that could solve all 100 initial states. For example, 0.06 for PSM means that two of the 30
models solved all initial states on training and test. The “Successful Rate” column shows the ratio of
times across all models and initial states that the learned policy could solve the problem. For example,
0.86 for DQN in training means that DQN models solved 86% of the 15 x 100 = 1500 initial states.

Our results suggest that the PSM policies generalize better than the DQN policies, as two out of 30
models could solve all 100 test initial states. Looking at the difference between the “Success Rate”
of PsM and DQN in training and test also suggests that PSM’s policies generalize better, as the gap
between the two scenarios is small for PSM: 0.26 —0.16 = 0.10 versus 0.86 — 0.18 = 0.68 for DQN.
However, looking at the test “Success Rate” alone suggests that DQN is the winner, as DQN policies
can solve more test initial states on average than PSM can. Independent of the metric considered, our
results show that PARKING is a challenging domain for both types of representation.

4.4 Discussion

Our experiments showed that neural models can also generalize to OOD problems commonly used in
the literature. One key aspect of programmatic solutions is the policy’s sparsity. For example, the



mode transitions in Figure 3 use a single variable in the Boolean expression. By contrast, neural
networks typically use all variables available while defining such transitions, often by encountering
spurious correlations between input features and the agent’s action. That is why providing fewer
input features, combined with a simpler neural model, helped with generalization in KAREL—we
remove features that could generate spurious correlations with the model’s actions. These results on
reducing input features to enhance generalization align with other studies involving the removal of
visual distractions that could hamper generalization [Bertoin e? al.| 2022; (Grooten ef al.,[2024].

In the case of TORCS, OOD generalization was possible due to a “safer” reward function. If the agent
learns on a track that allows it to move fast and never slow down, then it is unlikely to generalize
to race tracks with sharp turns that require the agent to slow down. In this case, generalization or
lack thereof is not caused by the representation, but by how well the agent can optimize its return
while using that representation. We conjecture that NDPS and PROPEL would not generalize to OOD
problems if they could find better optimized policies for the agent’s return in the training tracks.

PARKING was the most challenging benchmark we considered in our experiments, and we believe
it points in the direction of benchmarks that could value the generalization power of programmatic
representations. Recurrent neural networks such as LSTMs can, in principle, represent the solution
shown in Figure[3] In fact, due to the loop of the agent interacting with the environment, the solution
to PARKING does not even require loops. If we augment the agent’s observation with its last action, a
decision tree could encode the repetitive behavior needed to solve the problem. Yet, we could not find
a neural policy that reliably generalizes to OOD problems in this domain. By reliably we mean that if
the agent learns how to solve the training setting, it automatically generalizes to the test setting.

4.5 Beyond Generalization

Our analysis has focused on generalizing to OOD problems. However, there are other important
dimensions to consider when considering programmatic representations. The most common are
interpretability and verifiability [Bastani ef al.l 2018]], as one can choose a language that results in
programs that are easier for us to understand and verify. Intuitively, the policies of NDPS, LEAPS,
and PSM tend to be more interpretable than neural policies we learned in our experiments.

Another important dimension is sample efficiency. A programming language’s inductive bias can
make the problem easier to solve. For example, we could add to the language used to define the
Boolean expressions of the PSM’s policies, an expression that verifies whether the agent is close to an
object. Such an expression could be reused and potentially make the approach more sample-efficient.
The idea of composing a solution from existing programs underlies library-learning approaches [Ellis
et al., 2023} |Cao et al., [2023; Bowers et al., 2023; Rahman et al., [2024; Palmarini et al., [2024].
Programmatic solutions tend to be more composable than neural ones, although recent work has
investigated the decomposition of reusable pieces of neural networks [Alikhasi and Lelis, [2024].

S Valuing the Generalization Power of Programmatic Policies

If commonly used problems undervalue the generalization power of programmatic policies, what
properties of problems could showcase how programmatic policies can generalize? We propose an
illustrative benchmark problem that requires computations that neural networks struggle to learn
from data. Although recurrent models are, in theory, computationally universal [Siegelmann and
Sontag, |1994,[1995]], they are more limited in practice [Weiss ef al., 2018]]. We consider a problem
that requires a stack or a queue, which neural models can struggle with [Joulin and Mikolov, 2015].

We consider finding the shortest paths on a grid. Suppose the agent can only sense the cells around
itself, as in the KAREL problem. If the environment is not dense in walls, such that the agent can use
simple strategies such as “follow the right wall”, it needs to remember the cells it has visited to find
the shortest path from its initial location to a goal location. Iterative-Deepening Depth-First Search
(IDDFS) uses a stack to solve shortest-path problems. Dijkstra’s algorithm [[Dijkstral |1959] could
also be used, but it requires that the agent “jumps around” the state space as states far from each other
can be expanded from one time step to the next based on the priority of the algorithm’s queue.

The maze environment from the KAREL benchmark is similar to the problem we consider, which we
call SparseMaze; see Figure[5] What makes the KAREL mazes easier than what we propose is that the
agent always has a wall as a reference, favoring strategies such as “follow the right wall” that do not



Figure 5: Maze problem from KAREL (left) and our proposed sparse maze (right).

Model Return (std)

FUNSEARCH Original 1.00 (0.00)
100 x 100  1.00 (0.00)
PPO with GRU  Original 0.09 (0.29)
100 x 100  0.11 (0.32)

Table 4: Results on SPARSEMAZE. The return is an average over 10 initial states. Results for PPO
are averaged over 30 seeds; results for FUNSEARCH are a single run of the system.

require memory use. If the map is sparse, as in Figure 3] (right), finding any solution, let alone finding
the shortest one, becomes challenging due to the model’s inability of learning stacks and queues.

Table [ presents the generalization results of neural and programmatic policies in SPARSEMAZE.
As neural policies, we considered PPO with a GRU 2014]. As for a programmatic
policy, we used FUNSEARCH [Romera-Paredes ef al., [2024] with Qwen 2.5-Coder (32B)
to synthesize Python programs encoding policies to SPARSEMAZE. We use the return
of a rollout of the policies as the evaluation function in FUNSEARCH. Appendix [D|provides the
training information of the neural policies and the prompt used in FUNSEARCH. Each approach was
trained on maps of size 20 x 20 (“Original” in Table[)), and evaluated on maps of size 100 x 100.
While PPO could not learn a good policy even for the smaller map, FUNSEARCH synthesized the
breadth-first search (BFS) algorithm after 21 iterations of evolution, which generalizes to maps of
any size (see Appendix [D]for FUNSEARCH’s policy). Similarly to Dijkstra’s algorithm, BFS also
uses a queue and thus assumes that the agent can “jump around” the state space. Nevertheless, this
proof-of-concept experiment shows an example where programmatic representations can generalize
to OOD problems, while neural policies are unlikely to generalize.

6 Conclusion

In this paper, we argued that commonly used benchmarks undervalue the generalization capabilities
of programmatic representations. We empirically showed that the OOD generalization gap between
programmatic and neural policies on commonly used benchmarks is not as large as we previously
thought. We showed that simple neural networks can generalize to OOD problems in KAREL
problems when using the sparse observations of programmatic representations. We also showed that,
due to neural policies’ ability to optimize the agent’s return, they might become too specialized in a
problem to generalize OOD. This can be fixed in TORCS by using a more cautious reward function
that allows the car to move more slowly and thus generalize to unseen and possibly more challenging
race tracks. We also evaluated the PARKING problem, where the agent must learn repetitive behaviors.
While programmatic policies generalized slightly better than neural policies in this domain, both
representations struggled to learn policies that generalize reliably, thus suggesting that more research
is needed to understand what is required to attain OOD generalization in this type of problem. Finally,
we argued for benchmarks focusing on the weaknesses of neural networks. As an illustrative example,
we suggested a benchmark that requires the agent to use data structures that neural networks struggle
to learn. By focusing on the weaknesses of neural networks, we will better understand the scenarios
in which programmatic representations are needed and, importantly, how programmatic and neural
representations can be combined into representations that inherit the best properties of both worlds.
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A  TORCS Details

We use the hyperparameters in Table [5| with DDPG [Lillicrap et all,2019].

Hyperparameter Selected Value
Actor’s learning rate 0.0003
Critic’s learning rate 0.001
Batch size 64
Buffer size 100000

T 0.005

L1 regularization 0.00001
Max steps 20000
Training episodes 600

Table 5: Hyperparameter Configuration Used for TORCS
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Figure 6: Architecture of the critic network used in DDPG for the TORCS environment.

B KAREL Details

We used Proximal Policy Optimization (PPO) [Schulman ef al.| [2017] with the agent’s previous
action appended to the observation vector. A comprehensive hyperparameter sweep was conducted
over the values from Table[6l

Hyperparameter Values Tested
Learning rate {0.001, 0.0001, 0.00001}
Clipping coefficient {0.01,0.1,0.2}
Entropy coefficient {0.001,0.01,0.1}

L1 regularization {0.0,0.0001, 0.0005,0.001}
Actor’s hidden layer size {32, 64}

Training time steps {2 million}

Seeds per config {3}

Table 6: PPO + Last Action: Hyperparameter Sweep Configuration for Karel

The max steps used for training and testing different Karel tasks are shown in Table[7}

12



STAIRCLIMBER MAZE TOPOFF FOURCORNER HARVESTER

TRAINING 50 100 100 100 200
TEST 1000 100000 1000 1000 10000

Table 7: Max steps of episodes for each Karel task during training and test.

Table[§]shows the best-performing configuration across all five tasks for final evaluation. The selection
was based on the agent’s average return across the three seeds after two million time steps of training.

Hyperparameter Selected Value
Learning rate 0.001
Clipping coefficient 0.1
Entropy coefficient 0.1

L1 regularization 0.0
Actor’s hidden layer size 32

Table 8: Best Hyperparameter Configuration Used for Final Training of Karel

The best configuration was then trained with 30 random seeds, and evaluation results were averaged
over 10 distinct initial configurations per seed. Additionally, four other hyperparameter configurations
achieved 100% generalization on four out of five tasks: STAIRCLIMBER, MAZE, and TOPOFF.

Training used diverse initial state configurations. Whenever feasible, we enumerated all combinations
of agent and goal placements. Specifically:

* For STAIRCLIMBER, TOPOFF, and FOURCORNER, all possible agent-goal placements were
used.

* For MAZE, where full enumeration was computationally infeasible, we sampled 5 random
mazes and placed the goal at every position on the grid.

The training grid sizes for each task were:

e 12 x 12 for STAIRCLIMBER, TOPOFF, and FOURCORNER

e 8 x 8 for MAZE and HARVESTER

C PARKING Details

We used a single-hidden-layer DQN architecture with 64 units for the neural baseline. The agent
operated over a discretized action space, where continuous actions were mapped onto n equally
spaced values using a fixed action resolution. We performed a grid search over the hyperparameter
values listed in Table[9] The selected hyper-parameters are shown in Table [I0]

Hyperparameter Values Tested
Learning rate {0.01,0.001, 0.0001}
Batch size {64, 128, 256}
Target update frequency {100, 500, 1000}

€ {0.1,0.01}
Replay buffer size {1 million,2 million}
Action resolution {3,5,7}

Seeds per config {10}

Table 9: DQN: Hyperparameter Sweep Configuration for Parking Domain
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Hyperparameter Selected Value

Learning rate 0.0001
Batch size 64
Target update frequency 1000

€ 0.01
Action resolution 2 million

Table 10: Best Hyperparameter Configuration Used for Final Training

The original PARKING benchmark introduced by [[nala et al.|[2020] was not designed with rein-
forcement learning in mind—it provides “safety check” to invalidate policies that crash the car or
get out of boundaries. We define both a shaped reward function and a termination condition to
adapt it for RL. If the agent successfully reaches the parking exit, the episode ends with a large
positive reward (2 x max episode length); if it takes an unsafe action, it terminates immediately with
a large negative penalty (-2 x max episode length). Otherwise, at each timestep the agent receives
7t = — (2| agent — Tgoal | + [Yagent — Ygour|) — 1, i.€., the (weighted) negative Manhattan distance minus
an extra step penalty of 1, encouraging the car to move closer to the exit.

D SPARSEMAZE Details

We trained agents using Proximal Policy Optimization (PPO) [Schulman et al.| |2017] with the
previous action included in the observation vector. A hyperparameter sweep was conducted with the
values in Table [Tl

Hyperparameter Values Tested
Learning rate {0.001, 0.0001, 0.00001}
Clipping coefficient {0.01,0.1,0.2}
Entropy coefficient {0.001,0.01,0.1}

L1 regularization {0.0,0.0001, 0.0005,0.001}
Actor’s hidden layer size {32, 64}

Number of minibatches {32, 64, 128}
Training time steps {56 million}

Seeds per config {5}

Table 11: PPO with a;_; and GRU: Hyperparameter Sweep for SPARSEMAZE

As shown in Table we evaluated a range of hyperparameters, and selected the best set listed
in Table [I2] for PPO with a;_; and in Table [I3|for PPO with GRU based on training AUC. This
configuration was then trained with 30 seeds, and evaluation results were averaged over 10 distinct
environment seeds per model. The environment grid size was set to 20 x 20 during training. A
smaller grid, such as 8 x 8, would make the maze too sparse for effective learning in this domain.
Results are available in Table 4l

Hyperparameter Selected Value
Learning rate 0.0001
Actor’s hidden layer size 64
Entropy coefficient 0.01
Clipping coefficient 0.1
Number of minibatches 32

Table 12: Best Hyperparameter Configuration of PPO with a;_; for SPARSEMAZE

Listing [1| shows the policy that Funsearch [Romera-Paredes ef al.,|2024] gave after 21 iterations and
Listing [2]is the given prompt. We used Qwen 2.5-Coder, 32B variant [Bai ez al.,[2023] as the LLM
for this part.
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Hyperparameter Selected Value

Learning rate 0.0001
Actor’s hidden layer size 32
Entropy coefficient 0.01
Clipping coefficient 0.2
Number of minibatches 32
Value learning rate 0.0005
GRU hidden layer size 64

Table 13: Best Hyperparameter Configuration of PPO with GRU for SPARSEMAZE

Listing 1: Funsearch Policy

def get_action(env: KarelGymEnv) -> Union[list[int], str]:
"""Creates a policy that returns a list of actions for the Karel agent to take in
the environment."""

def find_path_bfs(start_r, start_c, goal_r, goal_c, walls):
from collections import deque

queue = deque([(start_r, start_c, [1)1)
visited = set((start_r, start_c))
directions = [(0, 1), (1, 0), (0, -1), (-1, 0)]

while queue:
current_r, current_c, path = queue.popleft()

if (current_r, current_c) == (goal_r, goal_c):
return path

for dr, dc in directions:
new_r, new_c = current_r + dr, current_c + dc
if O <= new_r < env.env_height and 0 <= new_c < env.env_width and not walls[
new_r, new_c] and (new_r, new_c) not in visited:
visited.add((new_r, new_c))
queue.append((new_r, new_c, path + [(dr, dc)]))

return []

def convert_path_to_actions(start_r, start_c, start_d, path):
actions = []
current_r, current_c, d = start_r, start_c, start_d
directions_map = {(0, 1): 1, (1, 0): 2, (0, -1): 3, (-1, 0): 0}

for dr, dc in path:
target_d = directions_map[(dr, dc)]

while d != target_d:
if (d + 1) % 4 == target_d: # Turn right
actions.append(2)
elif (d - 1) % == target_d: # Turn left
actions.append(1)
else: # Turn around
actions.extend([1, 1])
d = target_d
actions.append(0) # Move forward

return actions

state_arr = env.task.get_state()
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walls = state_arr[4].astype(bool)
r, ¢, d = env.task.get_hero_pos()
goal_r, goal_c = env.task_specific.marker_position

path = find_path_bfs(r, c, goal_r, goal_c, walls)

if not path:
return [random.randint(0, 4) for _ in range(50)]

actions = convert_path_to_actions(r, c, d, path)
# Extend actions to ensure the policy has enough steps
while len(actions) < 50:

actions.append(random.choice([1, 2])) # Randomly turn left or right

return actions

Listing 2: Funsearch Prompt

nnn

Specification for the Karel SparseMaze environment.

We are searching for a function ‘get_action(env)‘ that returns a list of actions
list[int] for the Karel environment.

get_action(env) should return a policy that can solve the maze all the time,
regardless of the initial configuration. Then by calling this policy, it can
get the actions for that specific initial configuration.

Input is a KarelGymEnv object.
- You can access the height and width of the env like this: env.env_width, env.
env_height
- You can access walls like this:
# static walls from feature index 4 of the Karel state
state_arr = env.task.get_state() # shape: (features, H, W)
self.walls = state_arr[4].astype(bool) # True where wall
- You can the row, column, and direction of the agenr like this:
r, ¢, d = env.task.get_hero_pos()
- And the directions are like this:
0: ’Karel facing North’,
1: ’Karel facing East’,
2: ’Karel facing South’,
3: ’Karel facing West’,
- Access the goal marker position like this:
goal_r, goal_c = env.task_specific.marker_position
- You can access the observation like this:
obs = env._get_observation_dsl() # shape: (4,), [frontIsClear, leftIsClear,
rightIsClear, markersPresent]

The actions are:

: move

turnLeft

: turnRight

pickMarker (not used in maze)
putMarker (not used in maze)

= W N = O

In the maze task, the agent starts at a fixed position and must find its path to a
goal marker. The environment uses a sparse reward: 1 when reaching the goal, O
otherwise.

The environment is a sparse maze (corridors are 2 cells wide) and has multiple
initial configurations (both mazes and goal positions).

This specification describes the key classes, variables, and functions used to

define a Gym compatible "Karel SparseMaze" task, where an agent navigates a
carved maze to reach a goal marker under sparse rewards.
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Package Layout:
project_root/
| -- funsearch/

|-- implementation/

|-- utils.py
|-- templ.py # top-level script that calls evaluate and get_action

| -- karel_wide_maze/

|-- __init__.py

| -- karel_wide_maze.py

| -- karel_wide_maze_prompt_spec.py

|-- gym_envs/

| |-- __init__.py

| |-- karel_gym.py # Defines KarelGymEnv
| -- karel_tasks/

| |-- __init__.py

| |-- maze.py # Defines Maze, MazeSparse, MazeWide, etc.

| -- karel/

| |-- __init__.py

| |-- environment.py # Defines KarelEnvironment and features
| -- base/

[-- __init__.py

|-- task.py # Defines BaseTask

Usage Summary:

1. The FunSearch framework "evolves" a Python function ‘get_action(env)‘ to
2.

3.

maximize ‘evaluate(n)‘.
‘evaluate(n) ¢ runs n episodes of the Karel SparseMaze environment, each seeded

differently, with different locations for walls and goal.

Each episode calls ‘run_episode()‘, which repeatedly:
- Queries ‘get_action(env)‘ to obtain actioms: {0..4}.
- Steps the Gym environment and accumulates sparse/dense rewards.
- Terminates when Karel reaches the goal or max_steps is reached.

distance progress).

. KarelGymEnv wraps these Tasks into a standard Gym API: it exposes ‘step()‘,
reset() ¢, ‘render()°‘,

‘action_space‘, ‘observation_space‘, and handles "multiple initial

configurations" if requested.

. Maze-classes in karel_tasks/maze.py carve out a random maze layout (via DFS),
set a goal marker,
and compute rewards either sparsely (1 upon reach) or densely (normalized

<
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