
Published in Transactions on Machine Learning Research (11/2025)

ENTP: Encoder-only Next Token Prediction

Ethan Ewer∗ eewer@wisc.edu
University of Wisconsin-Madison

Daewon Chae∗ cdw098@korea.ac.kr
Korea University

Thomas Zeng∗ tpzeng@wisc.edu
University of Wisconsin-Madison

Jinkyu Kim jinkyukim@korea.ac.kr
Korea University

Kangwook Lee kangwook.lee@wisc.edu
University of Wisconsin-Madison

Reviewed on OpenReview: https: // openreview. net/ forum? id= CGHi289y8e

Abstract

Next-token prediction is conventionally done using decoder-only Transformers with causal
attention, as this approach allows for efficient reuse of keys and values. What if we were not
compute-limited, should we still use decoder-only Transformers? In this work, we introduce
Encoder-only Next Token Prediction (ENTP). We explore the differences between ENTP
and decoder-only Transformers in expressive power and complexity, highlighting potential
advantages of ENTP in settings with unbounded compute. We introduce the Count3 task
and show, both theoretically and experimentally, that while ENTP can perform this task
easily, a decoder-only Transformer cannot. Finally, we empirically demonstrate the superior
performance of ENTP across representative tasks where next-token prediction based Trans-
formers can be evaluated, including addition, in-context learning, and language modeling.

1 Introduction

Traditionally, auto-regressive language modeling has relied on decoder-only Transformers (Vaswani et al.,
2017) with causal attention, trained using the next-token prediction objective. Causal attention ensures that
each token can only attend to previous tokens, preventing future tokens from influencing past outputs. This
mechanism makes training and inference more efficient, as past keys and values do not need to be recomputed
for each token. This efficiency enables the scaling of decoder-only Transformers, such as GPT-4 (Achiam
et al., 2023) and Llama-3 (Dubey et al., 2024), up to billions of parameters using current hardware.

However, causal attention also introduces artificial constraints. Given tokens x1, x2, ..., xn, the contextual
embedding of xj (where j < n) can only attend to embeddings of earlier tokens, even when predicting xn+1.
While this constraint ensures a strict causal structure, it may not always be necessary or beneficial. We
investigate what happens when we remove this constraint, while still maintaining causality externally.

Specifically, we look at Encoder-only Transformers, which are typically used for tasks like classification, and
do not impose this causality constraint. Though traditionally not used for auto-regressive tasks, encoder-only
architectures can be adapted for next-token prediction. When computing the output at the current time
step, an encoder-only Transformer, or any sequence model, can be made causal by only providing inputs up

∗Equal contribution.

1

https://openreview.net/forum?id=CGHi289y8e

Published in Transactions on Machine Learning Research (11/2025)

Encoder-Only Next Token Prediction (ENTP)Decoder-Only Next Token Prediction

E
n
c
o
d
e
r

…
…

x1

x2

E
n
c
o
d
e
r

…
…

x1

…
…

x2

x3

E
n
c
o
d
e
r

…
…

x1

…
…

x2

…
…

x3

x4

D
e
c
o
d
e
r

…
…

x1

…
…

x2

…
…

x3

x4x2 x3

… …

Figure 1: Decoder-only vs. Encoder-only Transformers in next token prediction. Decoders use
causal attention, ensuring that each token attends only to the preceding tokens. In contrast, encoders
allow all tokens to attend to each other by performing attention computation from scratch for each token
prediction.

to and including the current time step (see Figure 1). Therefore, in this work, we investigate the idea of
using encoder-only Transformers for next-token prediction. We summarize our findings below.

Functions expressible with Decoder-only and Encoder-only Transformers. We demonstrate that
the sets of functions expressible by decoder-only and encoder-only Transformers are not comparable, which
goes against intuition that the expressivity of encoders would subsume that of decoders. Rather, there exist
functions expressible with decoder-only Transformers that are not expressible with encoder-only Transform-
ers, and vice versa, as well as functions expressible by both architectures.

Complexity of Decoder-only and Encoder-only Transformers. Based on the minimum time and
space complexities, we give a description of the functions that can be performed by decoder-only and encoder-
only Transformers. We propose an auto-regressive task that can be performed by encoder-only Transformers,
and cannot be performed by decoder-only Transformers (given that some mild assumptions hold). We
validate our hypothesis with small experiments using small decoder-only and encoder-only Transformers,
as well as experiments fine-tuning GPT-4o (Achiam et al., 2023), Llama3-8B (Dubey et al., 2024), and
BERT (Devlin et al., 2019).

Experiments on Small-Scale Language Modeling Tasks. We compare the performance of decoder-
only and encoder-only Transformers on a range of small-scale language modeling tasks. We test the sample
complexity and length generalization capabilities of decoders and encoders using arithmetic tasks (Lee et al.,
2023). We also train both models to perform in-context learning (Garg et al., 2022) on various simple func-
tions. Additionally, we train small decoder-only and encoder-only Transformers on a text dataset (Gokaslan
et al., 2019) and assess their performance on language modeling tasks.

2 Related Work

Expressive Power of Transformers. There have been various literature exploring the expressive power
of Transformers. From the lens of universal approximation, Yun et al. (2020) showed that any continuous
sequence-to-sequence function over a compact set can be approximated arbitrary close by a Transformer (of
finite albeit very large size). Other works approach expressiveness from the perspective of computability and
complexity such as Pérez et al. (2021) which showed Transformers are Turing complete and Merrill et al.
(2022); Merrill & Sabharwal (2024); Li et al. (2024) which use circuit complexity to characterize the languages
recognizable by Transformers of fixed depth. Giannou et al. (2023) presents a framework for Transformers
as universal computers by placing them in a loop. Communication complexity has also been used to show
the impossibility of one-layer Transformers of expressing certain functions e.g. induction head, without the

2

Published in Transactions on Machine Learning Research (11/2025)

model size being linear in the length of the input (Sanford et al., 2024b;a). We note that the existing bounds
(Sanford et al., 2024b;a) are highly related, but they do not directly imply the relative expressive power of
encoder and decoder (and specifically of the same fixed model size).

Transformer Architectures for Next Token Prediction. Transformers have become the de facto back-
bones for next-token prediction tasks, leading to several variants such as encoder-decoder, causal decoder-
only, and prefix decoder-only models. In the encoder-decoder model (Lewis et al., 2019; Chung et al., 2024),
similar to the vanilla Transformer (Vaswani et al., 2017), the encoder transforms the input tokens into con-
ditioning features, and the decoder auto-regressively predicts the target tokens by using cross-attention over
the encoded representation and causal attention over the output tokens. In contrast, the causal decoder-only
model (Brown et al., 2020; Chowdhery et al., 2023) uses only the Transformer decoder and applies causal
attention to all tokens to perform next-token prediction, ensuring that each token attends only to previous
tokens. The prefix decoder-only model (Raffel et al., 2020; Wu et al., 2021) is similar to the causal decoder-
only model but differs in that it applies non-causal attention (i.e., full self-attention) to the input sequence
(see Figure 8 for visualizations of the attention patterns in these variants).

With the development of these models, recent studies have investigated the performance of each variant
across various tasks. Notably, Wang et al. (2022) examined the zero-shot generalization performance of each
model along with various objectives, and Ding et al. (2024) analyzed the performance of causal decoder-only
and prefix decoder-only models in in-context learning. Patel et al. (2023) showed that bidirectional language
models, trained with denoising objectives such as masked language modeling, can be prompted in an auto-
regressive manner, achieving performance comparable to larger decoder-only Transformers. Building on this
foundation, ENTP explores the training of bidirectional language models using auto-regressive objectives.

3 Preliminaries

Sequence-to-Token Functions and Autoregression. Given a vocabulary V (which we traditionally
think of as some finite set, but could in general be any arbitrary perhaps uncountable set e.g. Rd), we can
define a sequence over V as (x1, .. ., xn) where x1, .. ., xn ∈ V. Let V ∗ = {(x1, .. ., xn) : n ∈ N; xi ∈ V } be the
set of all sequences generated by V . Then, we say that f : V ∗ → V is a sequence-to-token function.

We can view a causal model as a map from an input sequence to an output sequence with the causality
constraint that the i’th output token depends only on the first i input tokens. Mathematically, we enforce
this causality constraint by characterizing our causal model, Tf : V ∗ → V ∗, with some sequence-to-token
function f where on input sequence (x1, .. ., xn) we have that

Tf (x1, .. ., xn) := (f(x1), f(x1, x2), .. ., f(x1, .. ., xn)). (1)

Observe that a sequence-to-token function f can be used auto-regressively to generate tokens from some
initial sequence (x1, .. ., xn) via the following update rule:

xn+i := f(x1, .. ., xn+i−1). (2)

This can also be viewed as a special case of the causal model, where the input sequence is chosen so that

Tf (x1, x2, .. ., xn) = (x2, x3, .. ., xn+1). (3)

Hence, if we are trying to learn a causal or auto-regressive model, it suffices to learn the sequence function
that generates it. Thus in this paper, we focus on the type of sequence functions that encoders versus
decoders can learn and express.

Encoders and Decoders. We will use the letters E and D respectively to refer to encoders and decoders.
In this paper, both models refer to variants of the Transformer architecture introduced in Vaswani et al.
(2017), where the only difference lies in the masking used on the attention scores (decoder uses a causal
mask while encoder allows full attention, as illustrated in Figure 1).

The model size of a Transformer is determined by two parameters:

3

Published in Transactions on Machine Learning Research (11/2025)

• L: number of Transformer blocks.
• D: embedding dimension.

As Transformers are sequence-to-sequence maps, we will use subscript notation where T (x1, .. ., xn)i denotes
the i’th value in the output sequence. We also allow our models the option to use positional embeddings.
Tilde-notation i.e. Ẽ and D̃ will denote models that do not use positional embeddings. For token embeddings
x1, .. ., xn and positional embeddings p1, .. ., pn:

E(x1, .. ., xn) := Ẽ(x1 + p1, .. ., xn + pn).

In our experiments, we will use encoder and decoder models that have access to trainable positional embed-
dings.

Encoder and Decoders as Causal Models. Given encoder E and decoder D, we can associate them
with sequence-to-token functions as follows:

fE : (x1, .. ., xn) 7→ E(x1, .. ., xn)n

fD : (x1, .. ., xn) 7→ D(x1, .. ., xn)n.

We then have TE and TD as the causal models of E and D when used as sequence functions fE and fD
respectively.1

Under this characterization, we make two observations. Firstly, we can view TE as an explicit and necessary
way to introduce causality to the encoder E since there is nothing implicit to the encoder that forces causality.
Secondly, in juxtaposition to the previous statement, the causal model TD is exactly equivalent to just using
D, that is TD = D. This is because D enforces causality implicitly via the attention mask (see Appendix A.2
for formal proof). Therefore, the explicit enforcement becomes redundant. To concretely illustrate these
two observations we additionally provide a full derivation of the computation in a toy two-layer example
comparing difference between encoder and decoder in Appendix A.4.

4 Expressive Power of Encoder-only vs. Decoder-only Transformers

Given that we can learn causal functions (defined as causal model in preliminary) using either encoders
and decoders, the natural question to ask is how the expressive power of each model is related, i.e. can the
encoder express more causal functions than a decoder of the same model size? Or perhaps they express
the exact same class of causal functions? Towards answering this question, one trivial observation is that
one-layer decoders and encoders are equivalent (formal proof in Appendix A.3) which directly implies the
existence of causal functions2 that both architecture can model exactly.

Now, what about causal functions that a decoder can model but not encoder, or vice versa — that encoder
can model but not decoder? These functions exist too, as we show in the following two theorems:
Theorem 4.1. For any L ≥ 2 and D ≥ 1, there exists a position-free decoder D̃ that has L-layers and
embedding dimension D, such that for any encoder E, there exists some input sequence (x1, x2, ...) with
x1, x2, ... ∈ RD, and TD̃(x1, x2, ...) ̸= TE(x1, x2, ...).

Theorem 4.2. For any L ≥ 2 and D ≥ 1, there exists a position-free encoder Ẽ that has L-layers and
embedding dimension D, such that for any decoder D with positional embeddings satisfying p1 ̸= p2, there
exists some input sequence (x1, x2, ...) with x1, x2, ... ∈ RD, and TẼ(x1, x2, ...) ̸= TD(x1, x2, ...).

The above two theorems are existential in nature. Informally, Theorem 4.1 says that if we consider causal
model defined over the entirety of RD as its vocabulary, we can find some decoder, for which any encoder
will differ from it on some input sequence. Theorem 4.2 makes a similar (albeit weaker statement) in the

1To be fully consistent with notation in equation 1, we should denote them as TfE and TfD respectively. However we abuse
notation and use TE and TD for sake of simplicity.

2Here causal function refers to sequence-to-sequence function where the outputs are only determined by current and previous
inputs, i.e. F(x1, x2, ..., xn)i only depends on x1, x2, ..., xi, and not xj for any j > i.

4

Published in Transactions on Machine Learning Research (11/2025)

other direction; namely the existence of a causal function computable by an encoder, but not by any decoder
that uses “non-trivial” positional embeddings (e.g. embeddings for different positions are unique). Detailed
proof of both theorems are deferred to Appendix A.

Of course, the setting and assumptions of the above two statements are not necessarily very realistic. For
one, they focus on general class of causal models rather than only auto-regressive ones. The assumption of
unbounded domain is also not realistic as in practice decoders are trained and used over a finite domain of
tokens, each with some fixed embeddings. And specific to Theorem 4.2, no claim is made about decoders
that do not use positional embeddings. But despite the limitations, these theorems give an indication that
the expressive power of encoder and decoder model are different — despite the almost identical descrip-
tion modulo the attention mask. Changing the mask on the attention scores causes significant changes to
the properties of the model. Thus, in the following sections we propose an auto-regressive tasks and run
experiments comparing encoders and decoders that corroborates this view.

While the previous theorems show that ENTP and decoder-only Transformers can express different causal
functions exactly, they do not address their abilities to approximate functions. In practice, models only need
to approximate functions, not represent them exactly. Under this relaxed setting, ENTP can replicate causal
masking by augmenting their queries and keys, effectively simulating a decoder.

Given the decoder’s queries and keys, Q = [q1, q2, . . . , qn]T and K = [k1, k2, . . . , kn]T , the causal mask can
be replicated in a noncausal attention mechanism by augmenting the queries and keys. For a sequence of
length n = 4, the queries and keys are augmented as follows:

Q̃ =


qT

1 −∞ 0 0 0
qT

2 0 −∞ 0 0
qT

3 0 0 −∞ 0
qT

4 0 0 0 −∞

 K̃ =


kT

1 0 0 0 0
kT

2 1 0 0 0
kT

3 1 1 0 0
kT

4 1 1 1 0

 (4)

Multiplying these, we obtain:

Q̃K̃T =


qT

1 k1 −∞ −∞ −∞
qT

2 k1 qT
2 k2 −∞ −∞

qT
3 k1 qT

3 k2 qT
3 k3 −∞

qT
4 k1 qT

4 k2 qT
4 k3 qT

4 k4

 , (5)

which is exactly equivalent to applying causal attention. Functionally, −∞ is a sufficiently large negative
constant.

For any sequence length n, given an orthogonal basis a1, a2, . . . , an,

q̃i =
[

qi

−∞ai

]
and k̃i =

[
ki∑i−1

j=1 ai

]
,

so that

qT
i kj =

{
qT

i kj if i ≥ j

−∞ if i < j

Furthermore, from the Johnson-Lindenstrauss lemma, it is possible to approximate these augmented keys
and queries using embedding extensions of only O(log n) dimension, by using a basis that is approximately
orthogonal.

Thus, provided that positional information is accurately propagated through the Transformer via skip con-
nections, an encoder can effectively replicate causal attention.

Finding 1: While ENTP and decoder-only Transformers express distinct sets of causal functions
exactly, encoders can approximate any causal function that a decoder can compute.

5

Published in Transactions on Machine Learning Research (11/2025)

As will be shown in Section 6.2, the inverse does not hold: there exist some ENTP models that decoder-only
Transformers cannot approximate.

5 Time and Space Complexity Comparisons

Inspired by the different computational models of encoder-only and decoder-only Transformers, we character-
ize the causal sequence functions learnable by encoders and decoders based on their required computational
complexity. We give an informal comparison of encoders and decoders in terms of their required time and
space complexities — both over the entire sequence and for each additional token. We propose Count3,
which is closely related to Match3 (Sanford et al., 2024b), to highlight the “gap” between the complexity of
encoders and decoders. Count3 is feasible for an encoder but challenging for a decoder due to its limited
computation complexity.

Time Complexity Comparison. Decoder-only Transformers, using KV-Cache, take O(n) time to gener-
ate each token, and O(n2) time to generate an entire sequence. Because an ENTP has to compute the entire
attention matrix for every token, it takes O(n2) time to generate each token. Thus, it takes O(n3) time to
generate the entire sequence. While this implies that ENTP is more compute-intensive (i.e., ENTP will be
slower than decoder-only Transformer), this also implies that ENTP can express more compute-intensive
functions than decoders. Specifically, since the total amount of compute that decoders use for generating
n tokens is O(n2), they cannot run any algorithm whose runtime is ω(n2) (strictly greater than quadratic
time).

Space Complexity Comparison. Both encoder-only and decoder-only use O(n) space complexity to
generate an entire sequence. Although the standard implementation of attention uses O(n2) space, attention
can be implemented using only O(n) space. For details of algorithmic implementation of attention using
constant space per token, refer to Algorithm 1 in the appendix. Thus, we need a more detailed approach to
find a difference between the space complexity of the two models.

Towards this end, we classify memory used for the computation over the current token as either precomputed
or additional. Precomputed memory stores values from computation over past tokens. Values stored in
precomputed memory persist, and are used for computation over current and future tokens, e.g. the keys
and values of previous tokens for a decoder. Additional memory stores values that depend on the current
token, e.g. keys and values of the current token.

When generating the nth token, a decoder uses O(n) precomputed memory to store keys and values of
previous tokens and O(1) additional memory to compute results over the current token. An encoder computes
everything from scratch for each token, so it uses O(n) additional memory and no precomputed memory.
Under this view, there is a space complexity gap between encoder and decoder.

Table 1: Complexity for next-token inference.

Complexity Encoder-only Decoder-only

Additional Time Complexity O(n2DL) O(nDL)
Precomputed Space Complexity N/A O(nDL)

Additional Space Complexity O(nD) O(D)

Most of our complexity analysis focuses on Transformers with fixed sizes, so we primarily consider complexity
with respect to the sequence length n. However, we also account for the embedding dimension D and the
number of layers L in Table 1. Both encoder-only and decoder-only Transformers use O(LD) time because
the attention operation is performed O(L) times, and computing each query, key, and value vector is O(D).
In the case of multi-head attention, we assume D = hd, where h is the number of heads and d is the dimension
of the query, key, and value vectors. A decoder uses O(nhdL) = O(nDL) precomputed space because it
stores nhL query, key, and value d-dimensional vectors. Both encoders and decoders use O(D) additional
space for current token’s embedding vector — and we specifically note that there is no dependence on L as

6

Published in Transactions on Machine Learning Research (11/2025)

Transformer do computation sequentially on the layer (i.e. all the additional computation required for layer
ℓ is done before all the additional computation required for layer ℓ + 1). Thus, we can do the computation
over L layers using O(D) space by overwriting computation over previous layers.

6 Task-Specific Analysis with Count3

Consider the sequence function that maps an input sequence of positive integers x1, x2, .. ., xn to the number
of pairs xi, xj where the modulo-n sum of xi, xj and xn is equal to 0. More formally,

Count3(x1, x2, .. ., xn) :=
∣∣∣{(i, j) ∈ [n]2 : xi + xj + xn ≡ 0 (mod n)

}∣∣∣ (mod n). (6)

Count3 is an augmented version of Match3 (Sanford et al., 2024b). As shown in Sanford et al. (2024b),
the triple-wise relationships, used in both Match3 and Count3, are difficult for Transformers to represent,
because of the pairwise nature of self-attention.

Note that there exists algorithms that can compute Count3 on some length-n input sequence x1, x2, .. ., xn

in either O(n2) time and O(1) space or in O(n) time and O(n) space. See Algorithm 2 and Algorithm 3
in Appendix E for exact pseudocode implementations. In brief, Algorithm 2 iterates through all n2 pairs
checking if they meet the modulo-n sum requirement. Algorithm 3 uses the fact that xi + xj + xn ≡ 0
(mod n) is equivalent to xi + xn ≡ −xj (mod n). In two linear passes, it counts each −xj (mod n) and
stores each count in a table, then sums the values in the table for each xi + xn (mod n). Now, given these
two algorithms, we make the following conjecture:
Conjecture 6.1. Given an algorithm A that computes Count3(x1, x2, ..., xn), at least one of the following
must hold true:

(i) A requires Ω(n2) time with access to xn

(ii) A requires Ω(n) space storing values unique to n.

This conjecture seems plausible given that both Algorithm 2 and Algorithm 3, which we consider to be
optimal, adhere to it. Algorithm 2 uses O(n2) time after accessing xn (line 4 of Algorithm 2) and Algorithm 3
requires O(n) memory, where the stored values are a function of n (line 4 of Algorithm 3).

6.1 Expressivity of Transformers on Count3

We analyze the expressivity of decoder-only Transformers and ENTP on Count3. From Conjecture 6.1, we
have the following lemma:
Lemma 6.2. Given that Conjecture 6.1 holds and assuming O(log n) precision, any decoder-only Trans-
former with fixed embedding dimension D satisfying D(x1, ..., xm)m = Count3(x1, ..., xm) for all sequences
of length m ≤ n must have L = Ω(n). 3

Proof. Let D be a decoder with L layers and embedding dimension D satisfying D(x1, .. ., xm)m =
Count3(x1, .. ., xm) for all sequences of length m ≤ n. We can use D as an algorithm to compute
Count3(x1, .. ., xn), by outputting D(x1, .. ., xn)n on input (x1, .. ., xn). Thus either condition (i) or (ii) of
Conjecture 6.1 must hold when D computes the output sequence over (x1, .. ., xn).

Case 1: (i) is true. In this case D requires Ω(n2) time with access to xn, i.e. D uses Ω(n2) time for the
last token. From Table 1, we know that D uses O(nLD) time for each token. Thus condition (i) is true only
if we have that nLD = Ω(n2). Since D is fixed, it follows that L = Ω(n).

3O(log n) precision is not required for Lemma 6.2, but it is included to be consistent with Lemma 6.3.

7

Published in Transactions on Machine Learning Research (11/2025)

Full Sequence : [4, 41, 1, 40, 44, 26, 38, 34, 44, 0, 58, 46, 10, 10, 24, 49, 6, 3, 8, 10, 0, 18, 12, 2, 6, 1,
12, 18, 4, 20, 13, 2, 6, 18, 1, 16, 22, 33, 30, 6, 2, 21, 22, 1, 24, 35, 42, 12, 16, 27, 40, 15, 34, 48, 16, 40,
15, 16, 17, 14, 20, 58, 60, 8]

: Seed : Auto-regressively generated sequence using Count3

Example of 17th element🔍
6 pairs : (𝑥!, 𝑥") (𝑥", 𝑥!) (𝑥#, 𝑥$!) (𝑥$!, 𝑥#) (𝑥$!, 𝑥$%) (𝑥$%, 𝑥$!)

→ (41 + 38 + 49) mod 16 = 0 → (1 + 46 + 49) mod 16 = 0 → (46 + 49 + 49) mod 16 = 0

Figure 2: An example of a sequence used in a Count3 experiment.

Case 2: (ii) is true. In this case, D requires Ω(n) space storing values unique to n. Because decoders
are causal, we have D(x1, .. ., xn)i = Count3(x1, .. ., xi) for all i ∈ [n]. Then since we assume (ii) is true,
computing D(x1, .. ., xn)i requires Ω(i) space for each i ∈ [n]. Furthermore by the uniqueness assumption of
(ii), for i ̸= j, the values stored when computing Count3(x1, .. ., xi) are different from the values stored when
computing Count3(x1, .. ., xj). Since decoders are causal, the space used to compute D(x1, .. ., xn)i cannot
be overwritten when computing D(x1, .. ., xn)j , for j > i. Hence, when D computes Count3(x1, .. ., xn), it
uses Ω(i) space to compute Count3(x1, .. ., xi), for each i ∈ [n]. Thus, D uses Ω

(∑
i∈[n] i

)
= Ω(n2) space

to compute Count3(x1, .. ., xn). From Table 1, we know that D uses O(nLD) space for the entire sequence.
Then nLD = Ω(n2). Since D is fixed, it follows that L = Ω(n).

Finally, as L = Ω(n) is a necessary condition for both conditions (i) and (ii), Theorem 6.2 follows.

Lemma 6.3. Assuming O(log n) precision, there exists an encoder E with L = O(1) and D = O(1) such
that E(x1, ..., xm)m = Count3(x1, ..., xm) for all sequences of length m ≤ n. 4

Proof of Lemma 6.3 is in Appendix A.7.
Remark 6.4. With linear chain-of-thought (generating O(n) tokens before answering), a decoder would be
able to perform Count3. We provide a RASP5 (Weiss et al., 2021) program, Algorithm 6, to demonstrate
this.

6.2 Implications of Lemma 6.2 for Decoder Approximation of ENTP

Lemma 6.2 addresses the exact computation of Count3. Many continuous Transformer realizations can inter-
polate such a function. This is in contrast to Section 4, which focuses on exact replication and approximation
of continuous functions mapping sequences of vectors in Rd.

If no decoder-based language model can exactly replicate a given ENTP-based language model (i.e., produce
outputs whose argmax predictions match), then there must also be a limit on how closely a decoder can
approximate its output embeddings, assuming there is a nontrivial gap between the largest and second largest
logit values (as observed for our ENTP models on the Count3 task, which achieve near-zero loss in Figure 3).
Thus, combining Lemma 6.2 with the observation above, a decoder cannot approximate arbitrarily well an
ENTP model that successfully solves Count3, without its size scaling with sequence length.

6.3 Count3 Experiments

We train small decoder-only and encoder-only Transformers on auto-regressive sequences generated from
Equation (6). To generate unique sequences, we start each sequence with a seed containing 16 random
integers between 0 and 63. Then we extend the sequence to 64 integers using Equation (6) (see Figure 2).
Seeds are generated randomly during training and evaluation. With 6416 ≈ 1.16 × 1077 possible seeds, the
chance of significant duplication among the 1.28 × 107 seeds used for training and evaluation is negligible.

4We assume x1, ..., xm < m.
5RASP (Weiss et al., 2021) is a programming language that describes Transformer computations, by mapping attention and

feed-forward computation into simple primitives.

8

Published in Transactions on Machine Learning Research (11/2025)

Consequently, the reported results effectively correspond to “test” loss and accuracy. The seed portion of the
sequence was not used to compute the loss during training, so the model was only trained on the deterministic
part of the sequence.

As shown in Figure 3, the decoder-only Transformers demonstrate some ability to learn patterns related to
the distribution of numbers in Count3 sequences, but they completely fail to learn the task. In contrast, the
encoder successfully learns the task with near-perfect accuracy.

We also evaluated Prefix decoder-only models (Raffel et al., 2020; Wu et al., 2021), which perform non-
causal attention for the prefix portion of the sequence. We used the same experimental setup, and set the
16-integer seed as the prefix. As shown in Figure 3, while the Prefix decoder-only model slightly outperforms
the decoder-only model, it also fails to learn the triplet counting task. This suggests that incorporating full
attention over parts of the sequence in a decoder-only model is insufficient for solving tasks with Count3-level
complexity.

To demonstrate that ENTP is effective for larger pre-trained models, we fine-tuned BERT (Devlin et al.,
2019)6 using the ENTP approach under the same experimental conditions. As shown in Figure 3, BERT
combined with ENTP successfully learned triplet counting. Notably, as BERT is pre-trained and larger
compared to the medium transformer, it converged more quickly and achieves higher accuracy.

0 20000 40000 60000 80000 100000 120000

Training step

0.00

0.25

0.50

0.75

1.00
S
e
q
u
e
n
c
e

a
c
c
u
ra

c
y Medium Decoder

Medium Prefix

Medium ENTP

BERT + ENTP

0 20000 40000 60000 80000 100000 120000

Training step

0

1

2

3

L
o
ss

Medium Decoder

Medium Prefix

Medium ENTP

BERT + ENTP

Figure 3: Training loss (left) and sequence accuracy curve (right) for the Count3. ENTP success-
fully learns to perform the Count3 task, but the decoder-only Transformers and prefix Transformers struggle
to learn it.

(b) GPT-4o fine-tuning results(a) Llama3-8B fine-tuning results

Figure 4: Results of LLM fine-tuning on Count3. Decoder-only Transformer, even at large scales, fail
to efficiently learn the Count3 task.

To investigate the performance of decoder-only large language models (LLMs) on the Count3 task, we fine-
tune Llama-3 (Dubey et al., 2024) and GPT-4o (Achiam et al., 2023) using sequences of 64 integers introduced
previously. To enable the LLMs to leverage their knowledge, we also include the code for Algorithm 2 in the

6BERT is an encoder-only Transformer trained using the masked language modeling objective.

9

Published in Transactions on Machine Learning Research (11/2025)

prompt, asking the models to provide the result after executing the code (see Table 5 for the full prompt).
As shown in Figure 4, the LLMs struggle with the Count3 task, which is consistent with our small-scale
experiment. It demonstrates that the suggested characteristics of causal decoder-only models hold true even
at large scales. We provide the validation of the prompt design used, as well as details about the LLM
fine-tuning, in the Appendix C.1.

Finally, we remark that Count3 sequences have low Kolmogorov complexity, meaning the smallest program
generating them is short—upper bounded by the six-line Algorithm 2. However, as shown in Theorem 6.2
and the experiments above, no decoder-only Transformer, regardless of size, can efficiently learn the task.

Finding 2: ENTP can easily learn Count3, but large decoder-only Transformers cannot.

6.4 Similar Function Learnable by Decoder

Motivated by the question of how we need to change Count3 so that it can be learned by a decoder, we
examine a modified version of Match3 (Sanford et al., 2024b).

Match3′(x1, x2, .. ., xn) :=
{

1 ∃ (i, j) : x1 + xi + xj = 0 (mod 128)
0 otherwise

There are several key differences between Count3 and Match3′: (1) Match3′ uses a fixed modulus, whereas
Count3 employs the sequence length as the modulus. This simplifies the decoder’s task, as the modulus
remains constant across all tokens, enabling reuse of intermediate values from previous tokens; (2) Match3′

operates on triplets (x1, xi, xj) rather than (xi, xj , xn). By using x1 instead of xn, it becomes easier for the
decoder since x1 remains unchanged for different tokens, facilitating the reuse of intermediate values across
tokens; (3) Match3′ checks for the existence of a condition rather than counting occurrences. Counting is
challenging to implement within the attention mechanism without scaling values by the sequence length.
Due to the causal mask, scaling value vectors by sequence length is not straightforward.

We provide RASP (Weiss et al., 2021) program, Algorithm 5 that satisfies D(x1, x2, ..., xn)n =
Match3′(x1, x2, ..., xn) for sequences of any length, assuming O(log n) precision. We train small Trans-
formers to verify that both decoders and encoders can perform Match3′, and find that both models can
perform Match3′ with high accuracy.

Table 2: Match3′ performance.

Model Min Loss Token Accuracy Full Sequence Accuracy

Medium Decoder (6 layer) 0.0001 99.99% 99.92%
Medium Encoder (6 layer) 0.0016 99.97% 99.50%

7 Experimental Results for Small-Scale Language Modeling Tasks

Scaling up ENTP to large models remains challenging, but it can still be tested effectively at limited scales on
simple tasks. To assess its capabilities, we train ENTP models on small yet representative language modeling
benchmarks. These tasks include arithmetic reasoning (Lee et al., 2023; McLeish et al., 2024; Zhou et al.,
2024), in-context learning with synthetic data (Garg et al., 2022; Bai et al., 2023; Ding et al., 2024), and
language modeling on small datasets (Polo et al., 2024; Sinha et al., 2019). By focusing on these controlled
experiments, we can evaluate ENTP’s potential while keeping computational demands manageable.

10

Published in Transactions on Machine Learning Research (11/2025)

1250 2500 3750 5000 10000 15000 20000

Number of Training Examples

10−2

10−1

100

Te
st

E
rr

or
R

at
e

Decoder
ENTP

Figure 5: Addition Sample Complexity. The
train and test datasets include numbers with up to
3 digits.

≤ 10 11 12 13 14 15

Number of Digits (> 10 is OOD)

0.00

0.25

0.50

0.75

1.00

Te
st

E
rr

or
R

at
e

Decoder
ENTP

Figure 6: Addition Length Generalization. The
train set has numbers up to 10 digits, and the test
set has up to 15.

(a) Linear Regression (b) Sparse Linear Regression

Figure 7: Results of in-context learning experiment. The encoder-only models demonstrate superior
performance across both function classes compared to the decoder-only models.

7.1 Generalization on Addition

We test the sample complexity and length generalization capabilities of decoders and encoders using addition
tasks. We use the reversed addition format ($123+456=975$) from Lee et al. (2023). We find that encoders
exhibit lower sample complexity compared to decoders, as seen in Figure 5, meaning they require fewer
training examples to achieve similar performance. Additionally, encoders demonstrate superior ability to
generalize to longer sequences, as shown in Figure 6. We provide more experimental details and results in
Appendix C.3.

Finding 3: ENTP achieves superior generalization compared to decoder-only Transformers on both
in-distribution and out-of-distribution data.

7.2 In-Context Learning

We consider the problem of learning a function class F using in-context example (Garg et al., 2022). In this
problem, a function f ∈ F is sampled from a distribution DF , and a sequence of random inputs is sampled
i.i.d. from DX , forming a prompt P : (x1, f (x1) , x2, f (x2) , .. ., xN , f (xN)). The objective is for the model
to in-context learn the function f from the prompt P and predict f(xquery) for a new input xquery.

We examine two types of function classes: linear function and sparse linear function. For both function
classes, we sample xi from a Gaussian distribution and utilize the squared error as loss function.

11

Published in Transactions on Machine Learning Research (11/2025)

We present the in-context learning results according to the number of in-context examples for each function
class in Figure 7. ENTP demonstrates superior performance compared to the decoder-only models in in-
context learning for both function classes. A detailed description of each function class, along with additional
experimental results for the non-linear function classes, is provided in the Appendix C.2.

Finding 4: For in-context learning, ENTP shows competitive performance compared to decoders.

7.3 Natural Language Tasks

We train Transformer models on the OpenWebText dataset (Gokaslan et al., 2019), an open-source repli-
cation of WebText used for GPT-2 training (Radford et al., 2019), using a next-token prediction objective.
We conducted OpenWebText training of ENTP models with two different seeds. We use medium models,
described in Table 6, and hyperparameters from Table 8. As shown in Table 3, the encoder-only Transformer
slightly outperforms the decoder-only Transformer.

To assess commonsense reasoning, we use the TinyWinoGrande benchmark (Polo et al., 2024), which tests
pronoun resolution. After pretraining on OpenWebText, both models undergo zero-shot evaluation on this
benchmark.

We further evaluate the models on an NLP classification task using CLUTRR (Sinha et al., 2019), which
requires identifying familial relationships from text. After fine-tuning on CLUTRR, both models are tested
on a holdout set. We randomly select 10,000 examples for the training set and conduct each experiment
using three different random seeds.

As shown in Table 4, ENTP achieves higher accuracy than the decoder-only model on both the TinyWino-
Grande and CLUTRR tasks, demonstrating its potential for diverse natural language tasks.

Table 3: Minimum values of training and validation loss, as well as perplexity, for decoder-only and encoder-
only Transformers on the OpenWebText dataset. Results are averaged over two different random seeds. We
report results for the individual training runs in Table 7

Model Train Loss Validation Loss Train Perplexity Validation Perplexity

Decoder-only 4.689± 0.006 4.701± 0.005 108.7± 0.603 110.0± 0.496
Encoder-only 4.636 ± 0.008 4.643 ± 0.008 103.1 ± 0.795 103.8 ± 0.786

Table 4: The performance of decoder-only model and ENTP on the TinyWinoGrande and CLUTRR bench-
marks.

Benchmark Decoder-only Encoder-only (ENTP)

TinyWinoGrande Error Rate 43.5± 0.5 % 38.0 ± 1.0 %
CLUTRR Error Rate 0.9± 0.12 % 0.5± 0.03 %

Finding 5: ENTP performs better than decoder-only models on next-token prediction based lan-
guage modeling, leading to superior performance on downstream natural language tasks.

8 Discussion

In this work, we present theoretical and novel experimental results suggesting that, assuming compute is
unlimited, decoder-only Transformers are not the ideal model for sequence modeling. We show that ENTP
is more expressive without compromising generalization. Using Theorem 4.1 and 4.2, we find that the classes

12

Published in Transactions on Machine Learning Research (11/2025)

of functions encoder-only and decoder-only Transformers can exactly learn are different. We introduce the
Count3 task and demonstrate, both theoretically and experimentally, that while ENTP can perform it easily,
decoders cannot. We also find that encoders outperform decoders on various auto-regressive tasks, including
length generalization and in-context learning.

Despite its advantages, ENTP is currently computationally inefficient for practical deployment. However, it
is a valuable architecture for further study, as it can provide deeper insights into the fundamental workings
of Transformers. By understanding why ENTP exhibits superior expressiveness and generalization, we may
be able to leverage these insights to develop improved next-generation architectures for language models.

A promising future direction is developing a compute-efficient ENTP variant that retains its strengths while
narrowing the efficiency gap with decoders. Achieving this balance could lead to models that surpass existing
architectures in both performance and scalability, making it a valuable area for further research.

Acknowledgments

The work of Kangwook Lee is supported in part by NSF CAREER Award CCF-2339978, Amazon Research
Award, and a grant from FuriosaAI. Daewon Chae was supported by Hyundai Motor Chung Mong-Koo
Foundation.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo

Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774, 2023.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians: Provable in-
context learning with in-context algorithm selection. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=liMSqUuVg9.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter,
Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christo-
pher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are
few-shot learners. In Advances in Neural Information Processing Systems, volume 33, pp. 1877–1901.
Curran Associates, Inc., 2020.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language
modeling with pathways. Journal of Machine Learning Research, 24(240):1–113, 2023.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language models.
Journal of Machine Learning Research, 25(70):1–53, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding, 2019. URL https://arxiv.org/abs/1810.04805.

Nan Ding, Tomer Levinboim, Jialin Wu, Sebastian Goodman, and Radu Soricut. CausalLM is not optimal
for in-context learning. In The Twelfth International Conference on Learning Representations, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Shivam Garg, Dimitris Tsipras, Percy Liang, and Gregory Valiant. What can transformers learn in-context?
a case study of simple function classes. In Advances in Neural Information Processing Systems, 2022.

13

https://openreview.net/forum?id=liMSqUuVg9
https://arxiv.org/abs/1810.04805

Published in Transactions on Machine Learning Research (11/2025)

Angeliki Giannou, Shashank Rajput, Jy-Yong Sohn, Kangwook Lee, Jason D. Lee, and Dimitris Papailiopou-
los. Looped transformers as programmable computers. In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th Interna-
tional Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp.
11398–11442. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/v202/giannou23a.html.

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus. http://
Skylion007.github.io/OpenWebTextCorpus, 2019.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2022.

Nayoung Lee, Kartik Sreenivasan, Jason D Lee, Kangwook Lee, and Dimitris Papailiopoulos. Teaching
arithmetic to small transformers. In The Twelfth International Conference on Learning Representations,
2023.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdel rahman Mohamed, Omer Levy, Veselin
Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training for natural language
generation, translation, and comprehension. In Annual Meeting of the Association for Computational
Linguistics, 2019.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers to solve
inherently serial problems. arXiv preprint arXiv:2402.12875, 2024.

Sean McLeish, Arpit Bansal, Alex Stein, Neel Jain, John Kirchenbauer, Brian R. Bartoldson, Bhavya
Kailkhura, Abhinav Bhatele, Jonas Geiping, Avi Schwarzschild, and Tom Goldstein. Transformers can do
arithmetic with the right embeddings, 2024. URL https://arxiv.org/abs/2405.17399.

William Merrill and Ashish Sabharwal. A logic for expressing log-precision transformers. Advances in Neural
Information Processing Systems, 36, 2024.

William Merrill, Ashish Sabharwal, and Noah A Smith. Saturated transformers are constant-depth threshold
circuits. Transactions of the Association for Computational Linguistics, 10:843–856, 2022.

Ajay Patel, Bryan Li, Mohammad Sadegh Rasooli, Noah Constant, Colin Raffel, and Chris Callison-Burch.
Bidirectional language models are also few-shot learners, 2023. URL https://arxiv.org/abs/2209.
14500.

Jorge Pérez, Pablo Barceló, and Javier Marinkovic. Attention is turing-complete. Journal of Machine
Learning Research, 22(75):1–35, 2021.

Felipe Maia Polo, Lucas Weber, Leshem Choshen, Yuekai Sun, Gongjun Xu, and Mikhail Yurochkin. tiny-
benchmarks: evaluating LLMs with fewer examples. In Forty-first International Conference on Machine
Learning, 2024. URL https://openreview.net/forum?id=qAml3FpfhG.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models are
unsupervised multitask learners. 2019. URL https://api.semanticscholar.org/CorpusID:160025533.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
Journal of machine learning research, 21(140):1–67, 2020.

Clayton Sanford, Daniel Hsu, and Matus Telgarsky. One-layer transformers fail to solve the induction heads
task. arXiv preprint arXiv:2408.14332, 2024a.

Clayton Sanford, Daniel J Hsu, and Matus Telgarsky. Representational strengths and limitations of trans-
formers. Advances in Neural Information Processing Systems, 36, 2024b.

14

https://proceedings.mlr.press/v202/giannou23a.html
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://arxiv.org/abs/2405.17399
https://arxiv.org/abs/2209.14500
https://arxiv.org/abs/2209.14500
https://openreview.net/forum?id=qAml3FpfhG
https://api.semanticscholar.org/CorpusID:160025533

Published in Transactions on Machine Learning Research (11/2025)

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle Pineau, and William L. Hamilton. CLUTRR: A diagnostic
benchmark for inductive reasoning from text. CoRR, abs/1908.06177, 2019. URL http://arxiv.org/
abs/1908.06177.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017.

Thomas Wang, Adam Roberts, Daniel Hesslow, Teven Le Scao, Hyung Won Chung, Iz Beltagy, Julien
Launay, and Colin Raffel. What language model architecture and pretraining objective works best for
zero-shot generalization? In International Conference on Machine Learning, pp. 22964–22984. PMLR,
2022.

Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like transformers. In International Conference on
Machine Learning, pp. 11080–11090. PMLR, 2021.

Shaohua Wu, Xudong Zhao, Tong Yu, Rongguo Zhang, Chong Shen, Hongli Liu, Feng Li, Hong Zhu, Jiangang
Luo, Liang Xu, et al. Yuan 1.0: Large-scale pre-trained language model in zero-shot and few-shot learning.
arXiv preprint arXiv:2110.04725, 2021.

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar. Are transform-
ers universal approximators of sequence-to-sequence functions? In International Conference on Learning
Representations, 2020.

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Joshua M. Susskind, Samy Bengio,
and Preetum Nakkiran. What algorithms can transformers learn? a study in length generalization. In
The Twelfth International Conference on Learning Representations, 2024.

15

http://arxiv.org/abs/1908.06177
http://arxiv.org/abs/1908.06177

Published in Transactions on Machine Learning Research (11/2025)

A Notation and Deferred Proofs

A.1 Notation

• E , D: Encoder/Decoder with positional embeddings.

• Ẽ , D̃: Encoder/Decoder without positional embeddings (with same model weights as E , D) (which
we call position free).

• L: number of Transformer blocks.

• D: embedding dimension.

• pi: The i’th positional embedding where pi ∈ RD.

• Wi
Q/K/V : The weight matrix of the Query, Key and Value respectively of the i’th attention block.

• I: The identity matrix.

• 0: The zero matrix.

• (x1, x2, x3, . . .): A sequence of values/tokens.

• TE(x1, x2, x3, . . .) := (E(x1)1, E(x1, x2)2, E(x1, x2, x3)3, . . .).

For convention, we will use bold capital letters X to denote matrices, and unbold lowercase letters x to
denote vectors.

For theorem 4.1 and theorem 4.2, our model of Transformers will use single-head attention and assume the
dimension of the Query and Key are equal to the embedding dimension D. We also omit layer normalization
and scaling of attention scores by 1/

√
D.

A.2 TD = D

Proof. The main observation is that the the MLP layers of a decoder are element-wise, and the attention
layers of a decoder are causal (i.e. the contextual embedding of the i’th token is computed only using the
tokens j ≤ i). We thus have that

D(x1, . . . , xi, . . . , xn)i = D(x1, . . . , xi)i

for any i ∈ [n]. As a result,

D(x1, . . . , xi, . . . , xn)i = D(x1, . . . , xi)i

= fD(x1, . . . , xi)
= TD(x1, . . . , xi, . . . , xn)i,

for all i ∈ [n], i.e. D(x1, . . . , xn) = TD(x1, . . . , xn).

A.3 One-layer Encoder and Decoder are Equivalent

Proof. Let D and E have the same parameters. Then the query key, and value vectors for the attention layer
(denoted qi, ki, vi for each xi respectively) will be the same for both models.

For one-layer decoder: D(x1, ..., xn)i = MLP
(∑i

j=1 Softmax(qi, kj)vj

)
.

For one-layer encoder: E(x1, ..., xn)i = MLP
(∑n

j=1 Softmax(qi, kj)vj

)
.

If i = n, then D(x1, ..., xn)i = E(x1, ..., xn)i. Thus, TD(x1, x2, . . . , xn) = TE(x1, x2, . . . , xn).

16

Published in Transactions on Machine Learning Research (11/2025)

A.4 Illustrative Example of Computation over Two Layer Encoder and Decoder

Setup. We compare a two-layer Transformer with single head self-attention blocks only—no MLPs, no
residual connections, no layer norms, and no output projections—on a length-2 input (x1, x2). For token i
attending to token j in layer ℓ, define the score

s
(ℓ)
i→j :=

〈
W

(ℓ)
Q x

(ℓ−1)
i , W

(ℓ)
K x

(ℓ−1)
j

〉
.

Here x
(0)
i := xi are inputs, and x

(ℓ)
i are the outputs of layer ℓ. For an encoder, each token may attend to

both positions (1 and 2) in every layer. For a decoder, token 1 may attend only to itself, while token 2 may
attend to both positions (1 and 2) in every layer.

Layer computations. Each layer applies only attention with values W
(ℓ)
V . Below we write the length-2

updates explicitly (i.e., the computation when we are trying to generate the output corresponding to the
second token in our causal model), expanding the softmax weights directly.

Decoder:
x

(1)
1 = W

(1)
V x1,

x
(1)
2 = e s

(1)
2→1 W

(1)
V x1 + e s

(1)
2→2 W

(1)
V x2

e s
(1)
2→1 + e s

(1)
2→2

,

x
(2)
1 = W

(2)
V x

(1)
1 = W

(2)
V W

(1)
V x1,

x
(2)
2 = e s

(2)
2→1 W

(2)
V x

(1)
1 + e s

(2)
2→2 W

(2)
V x

(1)
2

e s
(2)
2→1 + e s

(2)
2→2

.

Encoder:

x
(1)
1 = e s

(1)
1→1 W

(1)
V x1 + e s

(1)
1→2 W

(1)
V x2

e s
(1)
1→1 + e s

(1)
1→2

,

x
(1)
2 = e s

(1)
2→1 W

(1)
V x1 + e s

(1)
2→2 W

(1)
V x2

e s
(1)
2→1 + e s

(1)
2→2

,

x
(2)
1 = e s

(2)
1→1 W

(2)
V x

(1)
1 + e s

(2)
1→2 W

(2)
V x

(1)
2

e s
(2)
1→1 + e s

(2)
1→2

,

x
(2)
2 = e s

(2)
2→1 W

(2)
V x

(1)
1 + e s

(2)
2→2 W

(2)
V x

(1)
2

e s
(2)
2→1 + e s

(2)
2→2

.

Takeaway. In the decoder, causality is implicit: x
(ℓ)
1 depends only on x1 for all ℓ, so previously computed

keys/values for the first position can be reused when producing the output corresponding to position two in
later layers. In the encoder, x

(1)
1 depends on both x1 and x2 when used to compute the output corresponding

to the second token. In other words, we explicitly enforces causality by recomputing each of the earlier hidden
representations when generating a new token.

A.5 Proof of theorem 4.1

Proof. We first provide a construction for D̃. For the attention-block of the first two layers, we use the same
weight matrices. Namely, we set W1

K = W2
K = W1

Q = W2
Q = 0 and W1

V = W2
V = I. For every other

attention block, we set them to the constant zero function by setting Wi
V = 0 for i ≥ 3. We similarly set

the weights and biases of every MLP block to zero. Thus, in essence D̃ is just two duplicate attention blocks
stacked on top of each other with a skip connection after each attention block.

17

Published in Transactions on Machine Learning Research (11/2025)

Now consider three arbitrary vectors x1, x2, x3 ∈ RD and its corresponding sequence (x1, x2, x3). Let us first
compute the output of D̃ on (x1, x2, x3). The first attention block and skip connection will map the input
sequence to the sequence (

2x1, x2 + x1 + x2

2 , x3 + x1 + x2 + x3

3

)
.

The second attention block and skip connection will then map to the following:(
4x1,

7x1 + 9x2

4 ,
23x1 + 17x2 + 32x3

18

)
.

Our first observation from this mapping is that there clearly exists x̃1, x̃2, x̃3 ∈ RD such that D̃(x̃1, x̃2, x̃3)3 ̸=
D̃(x̃2, x̃1, x̃3)3. Our second observation is that

4x1 = 7x1 + 9x2

4 ⇐⇒ x1 = x2,

which follows from simplifying the left hand equation.

Now, let us for sake of contradiction assume the existence of some encoder E such that TE exactly replicates
D̃ on every input sequence. We first claim that the first two positional embeddings p1, p2 of E must differ.
This follows by our first observation and thus the requirement that E(x̃1, x̃2, x̃3)3 ̸= E(x̃2, x̃1, x̃3)3 — which
can only happen if p1 ̸= p2 due to the permutation invariance of encoders when there are no positional
embeddings. Now as p1 ̸= p2, there exists vectors y1, y2, c ∈ RD such that y1 ̸= y2 and y1 + p1 = y2 + p2 = c.
It follows immediately that

E(y1)1 = Ẽ(y1 + p1)1

= Ẽ(c)1

= Ẽ(c, c)2

= Ẽ(y1 + p1, y2 + p2)2

= E(y1, y2)2.

But since y1 ̸= y2, by the second observation we made, it must be that D̃(y1)1 ̸= D̃(y1, y2)2. Since we
assumed that TE exactly replicates D̃ on every input sequence, it thus follows that E(y1)1 ̸= E(y1, y2)2 — a
contradiction. Hence, no such encoder E exists, which directly implies that we can always find some sequence
(x1, x2, . . .) where D̃(x1, x2, . . .) ̸= TE(x1, x2, . . .).

A.6 Proof of theorem 4.2

Proof. We first provide a construction for Ẽ . For the attention-block of the first two layers, we use the same
weight matrices. Namely, we set W1

K = W2
K = W1

Q = W2
Q = W1

V = W2
V = I. For every other attention

block, we set them to the constant zero function by setting Wi
V = 0 for i ≥ 3. We similarly set the weights

and biases of every MLP block to zero. Thus, in essence Ẽ is just two duplicate attention blocks stacked on
top of each other with a skip connection after each attention block.

Now consider two arbitrary vectors x1, x2 ∈ RD and its corresponding sequence (x1, x2). A brief inspection
will reveal that

TẼ(x1, x2) = (4x1, αx1 + βx2), (7)
where α, β > 0.

Next, we assume the existence of some D where p1 ̸= p2 and exactly replicates Ẽ . We fix x1 = 0 and let
x2 = p1 − p2. Observe that x2 ̸= 0 as p1 ̸= p2. It follows that there is some constant vector c ∈ RD where

D(x1, x2) = D̃(x1 + p1, x2 + p2)
= D̃(p1, p1)
= (c, c).

18

Published in Transactions on Machine Learning Research (11/2025)

Now from equation 7, we have that TẼ(x1, x2) = (0, βx2) for some β > 0. As x2 ̸= 0, it follows that βx2 ̸= 0
and hence (0, βx2) is not a constant sequence — contradicting the output of the decoder. Hence, no D where
p1 ̸= p2 can exactly replicates Ẽ .

A.7 Proof of theorem 6.3

Proof. Lemma 6.3 follows from Algorithm 4. From Weiss et al. (2021), a RASP program can be compiled
to a Transformer, with a fixed number of Transformer-layers and attention heads. However, it assumes that
the MLPs can perform any element-wise operation. Thus, it suffices to show that each MLP needs O(1)
layers with respect to sequence length n.

We first observe that the largest internal value possible within Algorithm 4 is n2, so there are n2 + 1 distinct
internal values including 0. Using ⌊2 log2 n⌋+1 bits, we can represent all of these values as unsigned integers.
Using floating-point numbers we would also need Θ(log n) bits.

All linear element-wise operations in Algorithm 4 can be implemented trivially, since an MLP can perform
arbitrary linear transformations. Therefore, we focus on the only nonlinear element-wise function g : [2n−
1]× [n]→ [n− 1]:7

g(a, b) =
{

a, a < b

a− b a ≥ b.

Using a constant number of linear operations and ReLU functions, g can be constructed as follows:

g(a, b) = ReLU(a−M ReLU(a− b + ϵ)) + ReLU(a− b),

where 0 < ϵ < 1 and M ≥ 2n
ϵ .

Because g can be implemented using a constant number of linear operations and ReLU functions, it can be
implemented by an MLP with ReLU activation functions and O(1) depth.

Because of skip-connections, we can concatenate MLPs by zeroing out attention. Then we can create any
MLP of O(1) depth.

Thus, it is possible to construct an encoder E with L = O(1) and D = O(1) such that E(x1, . . . , xm)m =
fTC(x1, . . . , xm) for all sequences of length m ≤ n.

B Attention patterns of different Transformer architectures

In Figure 8, we provide the visualization of attention patterns of encoder-only, decoder-only, prefix decoder-
only, and encoder-only models.

C Experiment Details and Additional Results

In all experiments, we train encoders in the same manner as decoders, processing entire sequences in each
batch with a single gradient optimization step. Although this approach does not offer the same efficiency
benefits for encoders as it does for decoders, we adopt it to maintain consistency between the training
processes of both models.

C.1 Count3 with LLM

In the main paper, we fine-tuned two LLMs for Count3: Llama3-8B (Dubey et al., 2024) and GPT-4o (Achiam
et al., 2023). Here, we provide the details about the fine-tuning of each model. For GPT-4o, we used the
official API, setting the batch size to 4 and the learning rate multiplier to 10. For Llama3-8B, we employed
LoRA fine-tuning Hu et al. (2022) with a batch size of 16 and a learning rate of 1.4 × 10−4. Regarding

7This function implements modular division for a bounded range. g(a, b) = a mod b, when 0 ≤ a < 2b.

19

Published in Transactions on Machine Learning Research (11/2025)

Encoder Only Next Token

En
co
de
r

O
nl
y

N
ex
t

To
ke
n

Prompt : “Encoder only next token prediction”
(Input/Prefix is “Encoder only” in encoder-decoder model and prefix decoder-only model)

Encoder Only Next Token

En
co
de
r

O
nl
y

N
ex
t

To
ke
n

Encoder Only Next Token

En
co
de
r

O
nl
y

N
ex
t

To
ke
n

Encoder-Decoder Decoder-Only Prefix Decoder-Only Encoder-Only (ENTP)

Encoder Decoder

E
nc
od
er

D
ec
od
er

Decoder

D
ec
od
er

Decoder

D
ec
od
er

Figure 8: Attention patterns of different Transformer architectures in next token prediction.
Encoder-decoder and prefix decoder-only models first perform full attention on the input (prefix), and then
use causal attention to predict subsequent tokens. In contrast, decoder-only models apply causal attention
to all tokens, without distinguishing between input and output. Encoder-only models also do not separate
input and output, but they recalculate attention from scratch for each token prediction, performing full
attention on all tokens.

prompt design, we included the algorithm code in the prompt so that the LLMs could leverage its knowledge
of natural language (see Table 5). We note that the loss was applied only to the answer part of the prompt.

Additionally, we verify the validity of the prompt design used for LLM fine-tuning. To this end, we modify
the task from Count3 to Count2 8 and fine-tune the Llama3-8B using prompts that include algorithmic
code, as in the main experiment. As shown in Figure 9, the model successfully learns Count2 with the
proposed prompt design, achieving high sequence accuracy. This demonstrates that the model’s difficulty in
learning Count3 is due to the characteristics of causal decoder-only architecture, rather than an issue with
the training strategy, such as the prompt design.

Figure 9: Results of LLM fine-tuning on Count2. The Llama3-8B successfully learns Count2 when using
the same prompt format as Count3. This demonstrates that the reason LLMs struggle with Count3 is not
due to the complexity of the prompt, but rather the characteristics of the decoder-only model.

C.2 In-context Learning

In this section, we discuss four function classes in the in-context learning experiments (Garg et al., 2022),
including the two function classes introduced in the main paper: linear function, sparse linear function,
two-layer neural network, and decision tree.

8Count2(x1, x2, . . . , xn) :=
∣∣∣{i ∈ n : xi + xn ≡ 0 (mod n)

}∣∣∣ (mod n).

20

Published in Transactions on Machine Learning Research (11/2025)

Table 5: Example of prompt used for LLM experiments. We include the code for the algorithm in
the prompt to leverage the knowledge of the LLMs.

Prompt:
def f(x: list[int]) -> int:

n = len(x)
count = 0
for i in range(n):

for j in range(n):
if (x[i] + x[j] + x[-1]) % n == 0:

count += 1
return count % n

x = [52, 14, 22, 48, 28, 37, 3, 28, 14, 1, 12, 20, 38, 48, 51, 41]
for _ in range(48):

x.append(f(x))
print(x)
What is the output of this code ?
Output: [52, 14, 22, 48, 28, 37, 3, 28, 14, 1, 12, 20, 38, 48, 51, 41, 0, 13, 14, 17, 12, 20, 17, 2, 10, 0, 6, 25,
26, 1, 28, 29, 22, 20, 19, 3, 22, 8, 4, 21, 24, 4, 39, 41, 36, 38, 40, 44, 16, 34, 7, 0, 5, 10, 1, 46, 5, 51, 8, 1, 32,
15, 44, 54]

For all function classes, the input xi is drawn from a Gaussian distribution N (0, Id) where d represents the
dimension of xi. We provide detailed descriptions of each function class below.

Linear function. We consider the class of linear functions F =
{

f | f(x) = w⊤x, w ∈ Rd
}

where w is
drawn from a Gaussian distribution N (0, Id). Following previous work (Garg et al., 2022), we set d = 20
and the number of data points N to 40.

Sparse linear function. We also consider a sparse linear function, which is similar to a linear function
setup. The difference is that after drawing w from N (0, Id), only k randomly selected coordinates are kept,
while the remaining ones are set to zero. Following previous work (Garg et al., 2022), we set k = 3.

Two-layer neural network We examine the class of two-layer ReLU neural networks F ={
f | f(x) = W(2)σ

(
W(1)x

)
, W(2) ∈ R1×h, W(1) ∈ Rh×d

}
where σ(·) = max(0, ·) (i.e., ReLU function). We

set h = 100, d = 20, and the number of data point N to 100.

Decision tree We consider the class of decision trees represented by full-binary trees of fixed height. In
these trees, the leaf node values are drawn from N (0, 1), and the non-leaf nodes are sampled from random
integers between 0 and d, indicating an index of the input x. At each non-leaf node, if the value of the input
at the specified index is positive, we move to the right; otherwise, we move to the left. Given an input, we
start at the root node and repeat this process until reaching a leaf node. The value of the leaf node becomes
the output of the function.

Additional in-context learning experiment results using the four function classes described above are pro-
vided in Figure 10. ENTP demonstrates better performance compared to the decoder-only models in linear
regression and sparse linear regression, while exhibiting competitive performance in two-layer NN regression
and decision tree.

21

Published in Transactions on Machine Learning Research (11/2025)

(a) Linear Regression (b) Sparse Linear Regression (c) Two-layer NN Regression (d) Decision Tree

Figure 10: Additional results of in-context learning experiment. The encoder-only models demon-
strate superior or competitive performance across all function classes compared to the decoder-only models.

C.3 Addition

We test the sample complexity of encoder-only and decoder-only Transformers using addition tasks, with up
to 3-digit numbers. We sample the dataset of all possible 3-digit addition examples using a method similar
to the method described in Lee et al. (2023). We start with all 1,000,000 3-digit, 2-digit, and 1-digit addition
examples. Then we randomly remove 90% of the 3-digit addition examples, adjusting the ratio of 3-digit
to 2-digit examples from around 100:1 to around 10:1. Next we split the data into training, testing, and
validation splits, stratified by the number of digits and carries in each addition example. All 1-digit addition
examples were put into the training split. Since our models tend to over fit the training dataset, we save
the model with the lowest loss on a validation dataset. We test decoder-only and encoder-only Transformers
on plain and reversed addition tasks, using between 1.25k to 20k training examples. All sample complexity
tests are run with at least 5 different seeds. We test small models, described in Table 6.

1250 2500 3750 5000 10000 15000 20000

Number of Training Examples

10−2

10−1

100

Te
st

E
rr

or
R

at
e

Decoder
ENTP

Figure 11: Addition Sample Complexity. The train and test datasets include numbers with up to 3
digits. The dataset uses the plain addition format ($123+456=579$), unlike the results in Figure 5.

We train Transformers to add larger numbers and evaluate their ability to perform length generalization.
Training is performed on numbers with up to 10 digits, while testing extends to numbers with up to 15
digits. Each model is trained on 100,000 examples using the reversed addition format (Lee et al., 2023).
The numbers are sampled to ensure equal probability for each length, without duplicates. Consequently, in
larger datasets, there are fewer 1-digit addition examples compared to 10-digit ones, as the total number of
possible 1-digit examples is smaller. All length generalization tests are run with 3 different seeds. We test
Small-Deep models described in Table 6.

22

Published in Transactions on Machine Learning Research (11/2025)

C.4 Model Sizes

In Table 6, we provide the configurations of the Transformer architectures used in the experiments from the
main paper.

Table 6: Model specifications.

Name Number of Layers Number of Heads Embedding Dimension

Small 3 3 192
Medium 6 6 384

Large 12 12 768
Small-Deep 8 2 128

C.5 OpenWebText

Table 7 summarizes the results on the OpenWebText dataset across two seeds, and Table 8 lists the hyper-
parameters used in these experiments.

Table 7: Minimum values of training and validation loss, as well as perplexity, for decoder-only and encoder-
only Transformers on the OpenWebText dataset. Results are shown for each seed.

Model Train Loss Validation Loss Train Perplexity Validation Perplexity

Decoder-only-1 4.694 4.705 109.3 110.5
Encoder-only-1 4.643 4.650 103.9 104.6
Decoder-only-2 4.683 4.696 108.1 109.5
Encoder-only-2 4.628 4.635 102.3 103.0

Table 8: OpenWebText Hyperparameters

Parameter Value
warmup_iters 2000
lr_decay_iters 600,000
min_lr 0.00006
max_lr 0.0006
beta1 0.9
beta2 0.95
weight_decay 0.1
block_size 128
batch_size 32

23

Published in Transactions on Machine Learning Research (11/2025)

D Implementation of Attention Using O(D) Memory

Algorithm 1 Implementation of Attention Using O(D) Memory
Require: q ∈ Rn×d, k ∈ Rn×d, v ∈ Rn×D

1: yn ← 0D

2: a← 0D

3: b← 0
4: for j = 1, . . . , n do
5: c← exp(qT

n kj)
6: a← a + cvj

7: b← b + c
8: end for
9: yn ← a

b
10: return yn

E Count3 Algorithms

Algorithm 2 Algorithm to compute Count3 in O(n2) time and O(1) space
Require: length n sequence of integers (x1, . . . , xn)

1: count← 0
2: for i = 1, . . . , n do
3: for j = 1, . . . , n do
4: if (xi + xj + xn) ≡ 0 (mod n) then
5: count← count + 1
6: end if
7: end for
8: end for
9: return count (mod n)

Algorithm 3 Algorithm to compute Count3 in O(n) time and O(n) space
Require: length n sequence of integers (x1, . . . , xn)

1: count← 0
2: table ← zero-indexed length-n array of 0’s
3: for i = 1, . . . , n do
4: k ← −xi mod n
5: table[k]← table[k] + 1
6: end for
7: for i = 1, . . . , n do
8: k ← (xi + xn) mod n
9: count← count + table[k]

10: end for
11: return count (mod n)

24

Published in Transactions on Machine Learning Research (11/2025)

F RASP Algorithms

In Algorithm 4, 5, and 6, we provide the Python RASP implementation (Zhou et al., 2024) for Count3 and
Match3′.

Algorithm 4 Count3 RASP Encoder Implementation
def g(a, b):

return a if a < b else a - b

def count_triplets (x):
idxs = indices (x)

set n[i] = len(x) and last_x [i] = x[-1] for all i (only possible with encoder)
n = sel_width (select (k=x, q=x, pred=true))
last_x = kqv(k=idxs , q=n - 1, v=x, pred=equals , reduction ="mean")

g(a, b) is equivalent a % b if 0 <= a < 2 * b
y = seq_map (n - x, n, g) # y[i] = -x[i] % n
z = seq_map (x + last_x , n, g) # z[i] = (x[i] + x[-1]) % n

conut the number of (i, j) such that y[i] == z[j]
c = sum(A), where A[i, j] = 1 if y[i] == z[j] else 0
c = kqv(

k=full(x, 1) ,
q=full(x, 1) ,
v= sel_width (select (k=z, q=y, pred= equals)) * n, # sum(v) = mean(v * n)
pred=equals ,
reduction ="mean",

)

conpute count % n
c -= idxs * n
because count <= n^2, there exists i such that c[i] = count % n or c[i] = n
the case c[i] = n is handled by the default value (0) when no keys are selected
return kqv(k=c, q=n, v=c, pred= lambda a, b: 0 <= a and a < b, reduction ="mean")

Algorithm 5 Match3′ RASP Decoder Implementation
def has_triplet (x):

idxs = indices (x)
first_x = kqv(k=idxs , q=full(x, 0) , v=x, pred=equals , reduction ="mean", causal =True)

use bitmask to compute mod
y = -x & 127 # y[i] = -x[i] % 128
z = (first_x + x) & 127 # z[i] = (x[0] + x[i]) % 128

max_count [-1] > 0 if there exists (i, j) such that y[i] == z[j]
max_count = kqv(

k=full(x, 1) ,
q=full(x, 1) ,
v= sel_width (select (k=y, q=z, pred= equals)),
pred=equals ,
reduction ="max",

)

return tok_map (max_count , lambda a: min(a, 1)) # return 0 or 1

25

Published in Transactions on Machine Learning Research (11/2025)

Algorithm 6 Count3 RASP Decoder COT Implementation
def count_triplets (x):

idxs = indices (x)
n = kqv(k=x, q=full(x, EOS), v=idxs , pred=equals , reduction ="min", causal =True)
n = tok_map (n, lambda a: a if a else -2)
last_x = kqv(k=idxs , q=n - 1, v=x, pred=equals , reduction ="mean")
seq_len = kqv(k=x, q=x, v=idxs , pred=true , reduction ="max", causal =True)

i = seq_len - n
j = seq_len - 2 * n
xi = kqv(k=idxs , q=i, v=x, pred=equals , reduction ="max", causal =True)
xj = kqv(k=idxs , q=j, v=x, pred=equals , reduction ="max", causal =True)

y = (n - xi) % n + 1
z = (last_x + xj) % n + 1

y_mask_write = (n <= idxs) & (idxs < 2 * n)
z_mask_write = (2 * n <= idxs) & (idxs < 3 * n)
y_mask_read = (n < idxs) & (idxs <= 2 * n)
z_mask_read = (2 * n < idxs) & (idxs <= 3 * n)

z_count = sel_width (
select (

k=x * y_mask_read ,
q=z,
pred= lambda a, b: a == b and a != 0,
causal =True ,

)
)

count = kqv(
k= z_mask_read ,
q= z_mask_read ,
v=n * x * z_mask_read ,
pred= lambda a, b: a & b,
reduction ="mean",
causal =True ,

)
ans = count % n

ans_mask_write = idxs == 3 * n
eos_mask_write = idxs > 3 * n

return (
y * y_mask_write
+ z_count * z_mask_write
+ ans * ans_mask_write
+ EOS * eos_mask_write

)

26

	Introduction
	Related Work
	Preliminaries
	Expressive Power of Encoder-only vs. Decoder-only Transformers
	Time and Space Complexity Comparisons
	Task-Specific Analysis with Count3
	Expressivity of Transformers on Count3
	Implications of Lemma 6.2 for Decoder Approximation of ENTP
	Count3 Experiments
	Similar Function Learnable by Decoder

	Experimental Results for Small-Scale Language Modeling Tasks
	Generalization on Addition
	In-Context Learning
	Natural Language Tasks

	Discussion
	Notation and Deferred Proofs
	Notation
	TD = D
	One-layer Encoder and Decoder are Equivalent
	Illustrative Example of Computation over Two Layer Encoder and Decoder
	Proof of thm:dyen
	Proof of thm:eydn
	Proof of lem:enc-bound

	Attention patterns of different Transformer architectures
	Experiment Details and Additional Results
	Count3 with LLM
	In-context Learning
	Addition
	Model Sizes
	OpenWebText

	Implementation of Attention Using O(D) Memory
	Count3 Algorithms
	RASP Algorithms

