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ABSTRACT

Recent advances have seen Vision-Language Models (VLMs) achieve impressive
reasoning capabilities, largely demonstrated on tasks like mathematical problem
solving via reinforcement learning. However, whether such methods can extend
the fundamental reasoning bounds of VLMs to out of distribution complexities
remains an underexplored question, as the cumulative and interconnected nature
of knowledge in domains like mathematics makes it difficult to create truly iso-
lated training and testing splits. To address this, we investigate multistep spatial
reasoning, a domain where task difficulty can be systematically controlled. We
introduce Ariadne, a training and evaluation framework centered on pathfinding
puzzles where complexity is precisely defined by path length and turn count. This
allows us to train on a curriculum of simpler puzzles and evaluate generalization
on quantifiably harder, unseen tasks (e.g., training on paths with ≤3 steps and
testing on paths with ≥5 steps). Our experiments reveal that while a strong base
model like Qwen-VL-7B-Instruct fails on paths longer than two steps, our model,
trained with RLVR, successfully generalizes to solving five step puzzles unseen
during training. This result demonstrates that reinforcement learning can gen-
uinely extend the intrinsic reasoning capabilities of VLMs. Surprisingly, although
trained exclusively on synthetic mazes, Ariadne demonstrates performance gains
on real world benchmarks like MapBench and ReasonMap, showcasing that core
spatial reasoning skills transfer effectively even when the visual inputs, from sim-
ple mazes to complex real world maps, are entirely distinct.

1 INTRODUCTION

Reinforcement learning (RL) has played a pivotal role in boosting the reasoning capabilities of
large language models (LLMs) Ouyang et al. (2022); Schulman et al. (2017). DeepSeek-R1 re-
cently advanced this progress by showing that group relative policy optimization (GRPO), even
when combined with simple rule-based rewards and no separately trained reward model, can effec-
tively enhance LLMs with complex reasoning skills DeepSeek-AI et al. (2025); Shao et al. (2024).
By leveraging tasks with deterministic ground-truth answers, this R1-like paradigm delivers precise
and stable rewards DeepSeek-AI et al. (2025). In the vision-language domain, path-finding maze
puzzles are particularly well-suited for such strategies due to their deterministic ground-truth anno-
tations, making them ideal for rule-based reinforcement Dao & Vu (2025); Mirowski et al. (2017).
Motivated by these insights, it is natural to investigate whether a similar GRPO-based framework
can enhance the real-world path reasoning performance of vision-language models (VLMs) Jiaqi
et al..

To further investigate the path reasoning capabilities of the GRPO-fine-tuned model under varying
levels of problem complexity, we systematically controlled the difficulty of path-finding puzzles. We
introduce Ariadne, a controllable GRPO framework that allows fine-grained manipulation of path-
finding complexity while maintaining coherent reasoning structures and verifiable rewards, thereby
enabling a more robust and effective reinforcement learning pipeline. To further understand the rea-
soning behavior of the model fine-tuned with GRPO, we also performed controlled manipulation of
problem complexity on the in-domain puzzle test set. Specifically, we probed the model’s reason-
ing mechanisms by varying the length of the ground-truth path and the number of turns it contains.
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Our empirical investigation yields several key findings about puzzle-based GRPO: 1) Although the
model is fine-tuned using trajectories with limited steps and turns, its reasoning capabilities gener-
alize well to more complex scenarios requiring significantly longer paths or more frequent turns.
2) However, beyond a certain complexity threshold, the model completely fails to identify correct
solutions, even though these problems remain well within the token length limits. Subsequently, we
evaluate the model’s reasoning improvement on out-of-domain data: real-world map navigation test
sets. The results further confirm the effectiveness of GRPO on puzzles in enhancing generalizable
reasoning performance.

Our findings reveal both the capabilities and constraints of current VLMs, prompting further exam-
ination of the underlying nature of spatial reasoning in these models. The main contributions of this
work are:

• We propose Ariadne, a controllable GRPO training framework, curate a complexity-graded
path-finding dataset, and systematically explore the generalization ability of VLMs in spa-
tial reasoning, demonstrating their capacity to transfer from simple to increasingly complex
puzzles.

• We evaluate Ariadne on out-of-distribution tasks with novel visual inputs and real-world
map navigation settings, showing that GRPO-enhanced reasoning not only generalizes
across domains but also exposes critical failure modes beyond a threshold of problem com-
plexity.

2 RELATED WORK

2.1 REASONING IN VISION–LANGUAGE MODELS

VLMs have achieved substantial progress on tasks such as visual question answering (VQA) and
image captioning Alayrac et al. (2022); Liu et al. (2023); Zhu et al. (2025). To strengthen reason-
ing capabilities, prior work has explored chain-of-thought (CoT) prompting Wei et al. (2022) and
the construction of supervised fine-tuning (SFT) datasets enriched with step-level rationales Zhu
et al. (2025). While these strategies enhance reasoning to some extent, they fall short of capturing
human-like cognitive processes such as questioning and self-verification. Consequently, their effec-
tiveness diminishes on complex reasoning tasks. Recent models such as DeepSeek-R1 Shao et al.
(2024) attempt to address this gap by combining cold-start initialization with RL, thereby acquir-
ing higher-quality multimodal CoT reasoning and achieving state-of-the-art results on challenging
visual reasoning benchmarks.

2.2 REASONING WITH REINFORCEMENT LEARNING

Despite the advances in VLMs, spatial and multi-step reasoning, particularly in navigation and spa-
tial understanding remains a key challenge for VLMs. To overcome this limitation, researchers have
increasingly turned to RL-based approaches. Ji et al. applied GRPO with structured CoT supervision
to spatial VQA and navigation tasks, showing that verifiable, rule-based rewards can significantly
improve reasoning robustness Ji et al. (2025). Similarly, CoT-VLA extended CoT reasoning to vi-
sion–language–action models, where explicit intermediate reasoning steps yielded strong gains in
robotic navigation Zhao et al. (2025). In synthetic navigation domains, Mirowski et al. enhanced RL
training with auxiliary tasks such as depth prediction and loop-closure detection, enabling efficient
traversal of complex 3D mazes Mirowski et al. (2017).

While these approaches have demonstrated effectiveness, most rely on large-scale synthetic data
generation or are narrowly tailored to specific architectures. Consequently, open questions remain
about how VLMs adapt their reasoning strategies when systematically exposed to increasing task
complexity, and to what extent such improvements generalize beyond synthetic environments Feng
et al. (2025); Xing et al. (2025).

In this work, we introduce a controllable GRPO training framework, Ariadne, for spatial path rea-
soning. Ariadne enables precise manipulation of problem complexity while preserving consistent
logical structures and verifiable rewards, allowing for both targeted capability enhancement and
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analysis of generalization and failure modes. Finally, through evaluation on real-world map navi-
gation datasets, we demonstrate that reasoning gains achieved in synthetic puzzle environments can
effectively transfer to practical, out-of-domain scenarios.

3 METHODOLOGY

3.1 PRELIMINARIES OF GRPO

Recent advancements in enhancing the reasoning capabilities of vision-language models (VLMs)
have demonstrated that RL is a powerful training strategy Shao et al. (2024). In this study, we
adopt GRPO as our learning framework. GRPO operates by directly comparing groups of candidate
responses, thereby eliminating the need for a separate critic model.

During training, GRPO generates a set of candidate outputs o1, o2, . . . , oG for a given question q
drawn from the dataset D using the old policy πθold . Each candidate response oi is then evaluated
using a reward function R(oi, q), yielding a reward ri. To assess the relative quality of the responses
within the group, GRPO normalizes the rewards by computing their mean and standard deviation.
The advantage Ai for each response is then calculated as:

Ai =
ri −mean{r1, r2, . . . , rG}

std{r1, r2, . . . , rG}
(1)

GRPO optimizes the policy model πθ by maximizing the following objective:

JGRPO(θ) = Eq∼D, {oi}G
i=1∼πθold (O|q)[

1

G

G∑
i=1

min

(
πθ(oi|q)
πθold(oi|q)

, clip

(
πθ(oi|q)
πθold(oi|q)

, 1− ϵ, 1 + ϵ

))]
(2)

where ϵ is the clipping hyper-parameter.

3.2 REWARD FUNCTION

We design a reward function to measure the stepwise correctness of model-generated answers rela-
tive to a ground truth reference. The function (Algorithm 1) assigns proportional rewards for both
fully correct and partially correct answers, using the number of reasoning turns as a scaling factor.

Step Extraction. Each model completion is first standardized via a format extraction function to
ensure consistent formatting. Reasoning steps are represented as a sequence of moves embedded in
the format:

<|step content|>.

A count turns function extracts these moves using a regular expression, returning both the ordered
list of moves and the number of turns, defined as the count of transitions between consecutive distinct
moves.

Reward Calculation. Let R = [r1, r2, . . . , rm] be the predicted move sequence and A =
[a1, a2, . . . , an] be the ground truth. The reward is computed as:

reward =

{
0.2×m× turns(A), if R = A,

0.1× k × turns(A1:k), if only first k moves match.

This ensures:

• Full matches receive maximum proportional reward.

• Partial matches are rewarded according to the matching prefix length k.

• The conversational or reasoning complexity, measured by turns, scales the reward.
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Algorithm 1 Correctness Reward Function
1: function CORRECTNESS REWARD(completions, answers)
2: rewards← []
3: for all r, a in (completions, answers) do
4: r moves, r turns← count turns(r)
5: a moves, a turns← count turns(a)
6: if r moves = a moves then
7: reward← len(a moves) ×0.2× a turns
8: else
9: k ← length of matching prefix(r moves, a moves)

10: k turns← count turns(first k moves of a)
11: reward← k × 0.1× k turns
12: end if
13: rewards.append(reward)
14: end for
15: return rewards
16: end function

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

4.1.1 BASE MODEL AND IMPLEMENTATION

We adopt Qwen2.5-VL-7B-Instruct Bai et al. (2025) as our policy model due to its strong capabil-
ities in vision-language understanding, which we aim to further improve via reinforcement learn-
ing. In our Ariadne framework, Qwen2.5-VL-7B-Instruct is fine-tuned using approximately 2,000
samples from the AlphaMaze dataset with the GRPO algorithm, targeting enhanced reasoning per-
formance in maze navigation tasks. Our reward function combines three factors: answer accuracy,
answer format, and reasoning format, emphasizing correctness while maintaining response clarity
and structure. Training is conducted on 8 NVIDIA A100 40GB GPUs with a learning rate of 1e-6,
1 iteration, batch size of 1 per device, and 16 gradient accumulation steps. We apply a warmup ratio
of 0.05, and for each prompt, 8 candidate responses are sampled using a temperature of 1.0.

4.1.2 DIFFICULTY CONTROL

To control the difficulty of training samples, we design the distribution of maze step counts s ∈
{1, 2, 3, 4, 5} based on an inverted Gaussian-like distribution centered at step count 3. We posit
that frequent exposure to simple cases, where each step involves selecting from up to four possible
directions but is often constrained by walls blocking some paths, helps the model acquire stable
and generalizable low-level navigation patterns by learning to effectively choose feasible moves in
a limited and structured action space. At the same time, challenging cases (with longer trajectories)
drive the model to learn global spatial reasoning and coherent path planning over multiple steps.
Specifically, the sampling probability for each step count is defined as:

P (s) ∝ 1− exp

(
− (s− µ)2

2σ2

)
, (3)

where µ = 3 is set as the midpoint of the step range and σ = 2 is manually chosen to con-
trol the spread. This design ensures that both simpler (1–2 steps) and more complex trajecto-
ries (4–5 steps) are sampled more frequently. The resulting empirical distribution approximates
{21%, 18%, 16%, 18%, 21%} respectively. Additionally, a test set is constructed from AlphaMaze
by evenly sampling across the number of moves.

Figure 1 illustrates the statistical properties of navigation trajectories in both the training and testing
sets. Panels (A) and (C) depict the distributions of step lengths, reflecting the frequency of various
movement distances during training and testing episodes, respectively. Panels (B) and (D) show
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Figure 1: (A) Step length distribution in the AlphaMaze training set, where the number of moves
s ∈ {1, 2, 3, 4, 5} is sampled according to an inverted Gaussian-like distribution centered at s = 3,
ensuring higher frequencies for both simple and complex cases. (B) Distribution of directional turns
in the training set under the same controlled sampling scheme. (C) Step length distribution in the
AlphaMaze testing set, constructed via uniform sampling. (D) Distribution of directional turns in
the testing set under the same controlled sampling scheme.

the distributions of directional turns, emphasizing the complexity of orientation changes involved in
path-finding across the two sets.

During training, the number of moves is limited to 1–5 and the number of turns to 0–2. In the testing
phase, these constraints are relaxed to 1–10 moves and 0–4 turns, allowing for a more comprehensive
evaluation of the model’s path-finding capabilities, acquired through GRPO on mazes, and its ability
to generalize navigation behavior to more complex yet still in-domain scenarios.

4.1.3 PROMPT TEMPLATE

System Prompt

You are a navigation assistant to solve visual path-finding tasks.
Your goal is to infer a valid path from a visually marked starting point (green cell labeled
‘O’) to a visually marked target (red cell labeled ‘T’) by analyzing the maze image.
Rules:
- The maze is composed of open paths and impassable black walls.
- Movement is only allowed through open paths, not through walls.
- You can move one step at a time in the four cardinal directions: <|up|>, <|down|>,
<|left|>, <|right|>.
Output Format:
Think through each step inside <think> and </think> tags.
At each step:
1. Describe your current position based on visual layout and structure (e.g.,“in a corridor”,
“facing a wall”, “at a crossroad”, “turning a corner”).
2. Decide the next move, and explain your reasoning.
3. Move and continue the path.
After your full reasoning, output only the final movement sequence using the allowed tokens:
<|up|><|down|><|left|><|right|>

4.2 BENCHMARKS AND METRICS

As illustrated in Figure 2, we utilize MapBench and ReasonMap to evaluate the path-finding capa-
bilities of open-source MLLMs. MapBench consists of human-readable, outdoor navigation tasks
curated from challenging real-world scenarios Feng et al. (2025); Xing et al. (2025). ReasonMap
assesses fine-grained visual understanding through high-resolution transit maps from global cities
such as Los Angeles, Toronto, and Beijing. It adopts a two-tier evaluation approach, comprising
short and long questions, to measure both answer correctness (via accuracy) and answer quality (via
a proposed map score that reflects route feasibility and efficiency).
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Figure 2: Illustrative examples from our two controlled benchmarks for path-finding evaluation.
MapBench (left) features human-readable, outdoor navigation tasks derived from challenging real-
world scenarios (e.g., mall navigation), designed to assess naturalistic instruction-following and lo-
cal decision-making. ReasonMap (right) uses high-resolution transit maps from global metropolitan
systems (e.g., Los Angeles, Toronto, Beijing), with a two-tier evaluation (short vs. long questions)
to probe both fine-grained visual comprehension and global route planning.

In MapBench, models are tasked with generating language-based navigation instructions given a
map image and a query specifying the starting and ending landmarks. The path quality score is
defined as the ratio between the length of the model-generated path and the length of the ground-
truth shortest path, serving as a metric for route efficiency.

For ReasonMap, accuracy is assessed through a comprehensive validation process that includes ver-
ifying the departure and arrival stops, matching each segment’s route name with the map metadata,
confirming the validity of intermediate stops, and ensuring transfer consistency. An answer is con-
sidered correct only if all criteria are met. For short questions, the map score emphasizes consistency
in route and endpoints. For long questions, it additionally accounts for the number of stops and the
correctness of specific via stops. Both accuracy and map score are weighted based on question and
map difficulty, enabling difficulty-aware evaluation.

4.3 MAIN RESULTS

4.3.1 MODEL GENERALIZATION ON COMPLEX IN-DOMAIN TASKS FOLLOWING GRPO
TRAINING

Figure 3: Training reward dynamics and evaluation of path-following ability. (A) Reward curve
during GRPO training, showing steady improvement of rewards and stable learning progress. (B,
D) For Qwen2.5-VL-7B-Instruct, the success rate collapses rapidly to near zero as movement steps
or directional turns increase, while token length steadily grows, suggesting the model generates
longer but largely unsuccessful trajectories. (C, E) In contrast, our Ariadne maintains substantially
higher success rates, with performance declining more gradually as path complexity increases. To-
ken length grows moderately, reflecting stronger robustness and better generalization to longer and
more complex navigation tasks compared with Instruct.
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Figure 4: Representative success (top row) and failure (bottom row) cases from the AlphaMaze test
set under controlled step sizes (4, 6, 8). Success cases generally correspond to smoother layouts with
limited detour requirements, enabling coherent long-range navigation. Failure cases, by contrast,
arise in locally complex structures characterized by dense turns, narrow passages, and elongated
detours, which challenge the model’s ability to maintain global path consistency.

Figure 3 presents the reward trajectory during GRPO training on AlphaMaze, together with quanti-
tative evaluations on the test set. Across all evaluated movement-step ranges, Ariadne consistently
outperforms its base policy model, Qwen2.5-VL-7B-Instruct. Notably, the performance margin be-
tween the two models becomes more pronounced as task complexity increases, particularly in cases
requiring substantially longer solution paths. In low-turn conditions (0 or 1 turn), our Ariadne also
maintains a clear advantage, achieving higher success rates across the board. Nevertheless, as the
number of directional turns grows, both models experience a sharp accuracy decline, suggesting that
high-turn mazes constitute a shared failure mode. This pattern indicates that while GRPO signifi-
cantly enhances generalization to longer trajectories, it only partially alleviates the difficulties posed
by intricate path geometries.

In addition, the qualitative cases in Figure 4 provide additional insight into the sources of failure.
Successful trajectories typically occur in mazes with relatively smooth layouts and moderate de-
tour requirements, where Ariadne enables coherent navigation over extended distances. In contrast,
failed trajectories are strongly associated with local structural complexity: dense geometric pat-
terns with frequent directional shifts, narrow passages that constrain feasible moves, and elongated
detours that require maintaining global path consistency. Such observations underscore that the re-
maining challenges lie not in token capacity but in handling the combinatorial explosion introduced
by sharp turns and tightly constrained maze topologies.

4.3.2 PERFORMANCE EVALUATION ON OUT-OF-DOMAIN REAL-WORLD NAVIGATION TASKS

As shown in Figure 5, the two models exhibit a clear divergence in real-world map-based navi-
gation across diverse task settings. The baseline Qwen2.5-VL-7B-Instruct frequently suffers from
systematic localization and planning errors, including misidentifying target positions, selecting in-
efficient detours, and ignoring environmental constraints such as rivers, enclosed building walls, or
other impassable barriers. These shortcomings often result in trajectories that are either incomplete
or infeasible. In contrast, Ariadne demonstrates a markedly more robust navigation strategy. By
adopting a fine-grained, node-by-node planning mechanism, it maintains consistent goal-directed
progress while respecting structural boundaries. Crucially, this approach generalizes across both
unstructured, curvilinear outdoor networks (e.g., trails) and structured, grid-like indoor layouts (e.g.,
museums), highlighting the effectiveness of GRPO-induced adaptations beyond synthetic maze en-
vironments.

To further assess the transferability of these navigation gains to broader reasoning abilities, we eval-
uate both models on ReasonMap, a benchmark probing stepwise reasoning under varying difficulty
levels (Figure 6). The results show that Ariadne delivers consistent gains in long-reasoning regimes,
particularly in higher-complexity categories such as easy–middle and easy–hard, which correspond
to question complexity and map complexity, respectively. For instance, in the easy–hard category,
it achieves both a higher average score (5.17 vs. 4.65) and accuracy (6.67% vs. 5%) compared to
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Figure 5: Representative path-finding results on MapBench for Trail (left, unstructured outdoor lay-
out) and Museum (right, structured indoor layout) tasks. The baseline Qwen2.5-VL-7B-Instruct
(red) often produces incomplete or infeasible trajectories due to systematic localization and plan-
ning errors, such as misidentifying targets, inefficient detours, and violations of environmental
constraints. In contrast, Ariadne (green) leverages fine-grained node-by-node planning to sustain
coherent, goal-directed progress while respecting map boundaries.

the baseline. These gains are not observed in short-reasoning settings, where performance between
the two models remains comparable. Taken together, these findings suggest that the Maze-specific
GRPO training paradigm not only enhances real-world navigation robustness but also strengthens
the model’s capacity for multi-step, long-horizon reasoning, an ability directly relevant for general-
izing beyond controlled synthetic tasks.

Figure 6: Performance comparison on ReasonMap across increasing question difficulty levels. (Left)
Accuracy results indicate that Ariadne achieves consistent gains in long-reasoning categories (e.g.,
easy–middle, easy–hard), where the baseline Qwen2.5-VL-7B-Instruct struggles. (Right) Average
map scores show a similar trend, with Maze-specific GRPO training improving solution feasibility
and efficiency.

Table 1: Performance comparison on MapBench. Bold indicates the best performance; underline
denotes the second best.

Model Google Map ↓ Mall ↓ Museum ↓ National Park ↓ Theme Park ↓ Trail ↓ Campus ↓ Urban ↓ Zoo ↓
Qwen2-VL-7B-Instruct 2.16 2.02 1.92 2.07 2.31 2.41 2.56 2.60 2.34
LLaMA-3.2-11B-Vision-Instruct 2.68 3.58 3.18 2.50 3.05 2.91 6.43 2.99 3.13
InternVL3-VL-8B-Instruct 2.82 3.97 2.37 3.12 2.63 2.97 2.23 2.70 2.31
Qwen2.5-VL-7B-Instruct 2.15 2.02 1.78 2.17 2.05 2.32 2.02 2.61 2.22
Ariadne 1.99 1.90 1.59 1.90 1.92 2.03 2.03 1.89 2.25

8
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Table 2: Performance comparison on ReasonMap. S = short questions, L = long questions. Bold
indicates the best performance; underline denotes the second best.

Model Weighted Acc. (S) ↑ #Tokens (S) Weighted Acc. (L) ↑ #Tokens (L) Weighted Map Score (S / L) ↑
Qwen2-VL-7B-Instruct 11.13% 34 7.91% 274 3.47 / 4.32
LLaMA-3.2-11B-Vision-Instruct 1.02% 94 0.29% 103 0.59 / 0.52
InternVL3-VL-8B-Instruct 6.30% 36 4.54% 67 2.45 / 3.44
Qwen2.5-VL-7B-Instruct 13.32% 26 6.00% 61 3.73 / 4.51
Ariadne 13.03% 27 6.59% 60 3.74 / 4.71

Overall, despite the intrinsic challenges posed by fine-grained visual perception and spatial reason-
ing, Ariadne achieves state-of-the-art performance on both MapBench and ReasonMap (Tables 1
and 2). The model demonstrates robust generalization across heterogeneous spatial layouts, en-
compassing both unstructured outdoor networks and structured indoor grids, while also exhibiting
clear advantages in tasks requiring long-horizon, multi-turn reasoning. Such improvements are es-
pecially salient under conditions of elevated path complexity and extended reasoning chains, where
conventional instruction-tuned baselines degrade sharply. These findings collectively confirm that
GRPO training on the synthetic maze dataset substantially strengthens spatial-visual comprehen-
sion, yielding a model that stands at the forefront of its scale class for advanced spatial reasoning
and real-world navigation tasks.

5 DISCUSSION AND CONCLUSION

In this work, we systematically investigated the spatial reasoning capabilities of GRPO-fine-tuned
vision-language models within our controlled complexity framework, Ariadne. We found that mod-
els trained on short, simple trajectories generalize surprisingly well to much longer and more intri-
cate paths. Real-world map navigation experiments further demonstrated that the benefits of GRPO
extend beyond synthetic puzzles, underscoring the broader applicability of our approach. However,
this capability declines sharply once a critical complexity threshold is crossed. Notably, these fail-
ures occur even when problems remain within the token budget, suggesting that the limitation arises
from the structure of multimodal reasoning rather than memory constraints.
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