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Abstract

We study the problem of entropy calibration, which asks whether a language
model’s entropy over generations matches its log loss on human text. Past work
found that models are miscalibrated, with entropy per step increasing (and text
quality decreasing) as generations grow longer. This error accumulation is a
fundamental problem in autoregressive models, and the standard solution is to
truncate the distribution, which improves text quality at the cost of diversity. In this
paper, we ask: is miscalibration likely to improve with scale, and is it theoretically
possible to calibrate without tradeoffs? To build intuition, we first study a simplified
theoretical setting to characterize the scaling behavior of miscalibration with respect
to dataset size. We find that the scaling behavior depends on the power law exponent
of the data distribution — in particular, for a power law exponent close to 1, the
scaling exponent is close to 0, meaning that miscalibration improves very slowly
with scale. Next, we measure miscalibration empirically in language models
ranging from 0.5B to 70B parameters. We find that the observed scaling behavior
is similar to what is predicted by the simplified setting: our fitted scaling exponents
for text are close to 0, meaning that larger models accumulate error at a similar
rate as smaller ones. This scaling (or, lack thereof) provides one explanation for
why we sample from larger models with similar amounts of truncation as smaller
models, even though the larger models are of higher quality. However, truncation
is not a satisfying solution because it comes at the cost of increased log loss. In
theory, is it even possible to reduce entropy while preserving log loss? We prove
that it is possible, if we assume access to a black box which can fit models to
predict the future entropy of text.

1 Introduction

We study entropy calibration, which asks whether a language model’s entropy over generations
matches its log loss on human text. This definition is a natural notion of calibration for generative
tasks, and is much more challenging than calibration for classification tasks because the output space
is exponentially large. While we will discuss this definition in more detail later, one basic requirement
for calibration is that the model’s entropy per step should be stable over the generation.

Unfortunately, autoregressive language models are not stable. Entropy calibration was first studied
by Braverman et al. (2020), who found that language models have entropy per step increasing as
generations grow longer. This entropy blowup is accompanied by an increase in generation errors,
as is also observed in Basu et al. (2021). While entropy calibration specifically is not well studied,
generation instability more broadly has been the subject of many papers (Williams & Zipser, 1989;
Ranzato et al., 2016; Welleck et al., 2020). From this line of work has emerged a suite of distribution
truncation techniques, which have become standard practice in language model sampling (Fan et al.,
2018; Holtzman et al., 2020; Hewitt et al., 2022). These techniques suppress low probability tokens
to improve quality at the cost of diversity (Hashimoto et al., 2019; Zhang et al., 2021).
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It is not fully satisfying that to make generation stable, we must sacrifice diversity. Diversity is
especially important for difficult tasks where we must aggregate multiple answers (Wang et al., 2024;
Brown et al., 2024), as well as for synthetic data generation, which has seen a resurgence of interest as
the community has begun worrying about running out of internet data (Wang et al., 2023; Gunasekar
et al., 2023; Maini et al., 2024). Therefore, it is natural to ask: do we expect generation stability to
improve with scale? If not, is it at least theoretically possible to calibrate without sacrificing diversity?

To build intuition, we first study a simplified theoretical setting, where instability comes from the fact
that the model might generate a token that it saw only a few times during training. This unfamiliar
token then derails subsequent steps when it is fed back into the context autoregressively. Drawing on
classic results, we calculate a scaling exponent capturing how quickly the probability of generating
a rare token decreases with the number of training examples (Good, 1953; Karlin, 1967). We find
that this exponent depends on how heavy-tailed the data distribution is: in particular, for power law
exponents close to 1, as is typical for human text (Zipf, 1936, 1949), the scaling exponent is close to
0. Therefore, this setup predicts that stability in generation improves very slowly with scale.

Next, we measure miscalibration empirically in large language models with up to 70B parameters,
on three datasets. We find that the observed scaling behavior is similar to what is predicted by the
simplified setting: fitting scaling exponents relating calibration error to model size, we find that
the exponent for the two text datasets is around −0.05, meaning that larger models are similarly
miscalibrated as smaller ones. On the other hand, for the code dataset, the scaling exponent is around
−0.3, meaning that miscalibration improves moderately with scale. We measure the power law
exponent to be around 1 for the two text datasets, and 1.5 for the code dataset. Therefore, these
findings are consistent with the theory: the code dataset has more quickly decaying tails, so the
scaling should indeed be faster. However, further work on more datasets is needed to more strongly
establish this relationship between the power law and scaling exponents.

If even large models suffer from error accumulation, why are reasoning and instruction-tuned models
able to produce long, coherent outputs? We find that much like distribution truncation, instruction
tuning reduces entropy at the cost of increased log loss, with the largest models now having entropy
too low. This tradeoff relates to past work which found that alignment degrades model capabilities, a
phenomenon known as the alignment tax (Ouyang et al., 2022; Bai et al., 2022; Lin et al., 2024).

Given that all known mitigations increase the model’s log loss, is it even possible in theory to calibrate
without this tradeoff? Drawing on ideas from reinforcement learning theory, we prove that it is
possible, if we assume access to a black box which can fit models on the future entropy of text
prefixes and attain low test error. Specifically, we describe a polynomial-time calibration procedure
that adjusts each candidate token’s probability based on the expected entropy of its continuations.
While the resulting procedure is impractical to implement, we prove that it calibrates while preserving
log loss, suggesting that generation stability and diversity might be possible to attain simultaneously.

2 Preliminaries

We first review key definitions and properties for entropy calibration, introduced in Braverman et al.
(2020). Our setup is as follows: we are given prompts X ∈ X drawn from some prompt distribution
X ∼ q, and responses Y ∈ Y drawn from the true conditional distribution Y ∼ p∗X . For example, X
might contain a description of a coding task, while Y contains a solution to the task. We then train
a language model p̂ : X → ∆Y to fit the true conditional distribution p∗. We say that p̂ is entropy
calibrated if its entropy over generations is equal to its log loss:

H(p̂) = L(p∗ ∥ p̂), (1)

where the total/per-step entropy and total/per-step log loss are given by

H(p̂) = EX∼qEŶ∼p̂X
[− log p̂X(Ŷ )], Ht(p̂) = EX∼qEŶ∼p̂X

[− log p̂X(Ŷt | Ŷ<t)] (2)

L(p∗ ∥ p̂) = EX∼qEY∼p∗
X
[− log p̂X(Y )], Lt(p

∗ ∥ p̂) = EX∼qEY∼p∗
X
[− log p̂X(Ŷt | Ŷ<t)]. (3)

To build intuition for this definition, entropy can be thought of as a measure of the model’s uncertainty,
which should be calibrated to match the actual loss it incurs on real data. This definition mirrors
that of binary calibration, and we derive this connection more formally in Appendix B. Qualitatively,
if a model is underconfident, then its generations have too much entropy and appear incoherent;
if it is overconfident, then its generations have too little entropy and appear repetitive (Braverman
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et al., 2020; Basu et al., 2021); see Appendix E for a replication of this finding and Appendix D
for examples. Entropy calibration is then the problem of adjusting the entropy to be just right.
Empirically, Braverman et al. (2020) found that neural autoregressive language models have entropy
too high: entropy per step matches the log loss at earlier steps but increases as the generation grows.

Why does entropy per step grow with the length of the generation? The main problem, as has
been observed in empirical work, is that autoregressive language models accumulate error during
generation. At training time, models are given input from the true distribution and asked to produce
only a single additional token. In contrast, models must generate multiple tokens at deployment time,
which they do by producing one token at a time and taking their own production as subsequent input.
Therefore, even models with very low single-step error can degrade over multiple steps as they take
their own slightly erroneous outputs as input and accumulate errors (see, e.g., Ranzato et al. (2016),
Welleck et al. (2020), Holtzman et al. (2020) for error accumulation in language modeling; and
Daumé et al. (2009), Ross & Bagnell (2010), Ross et al. (2011) for imitation learning). This intuition
is formalized in the context of entropy calibration in Corollary 4.2 of Braverman et al. (2020), which
states that for a model with ε KL divergence to the true distribution, the entropy at step t can deviate
as much as ε+

√
εt from the log loss, growing with t.

How does one calibrate the entropy? Unlike binary and multiclass calibration, entropy calibration is
challenging because the models have an exponentially large output space. In practice, practitioners
use a number of distribution truncation methods, each of which uses a different heuristic to suppress
low probability tokens in each generation step. Some standard methods include temperature reduction,
top-k sampling (Fan et al., 2018), top-p sampling (Holtzman et al., 2020), and min-p sampling (Hewitt
et al., 2022). These methods improve text quality at the cost of diversity (Hashimoto et al., 2019;
Zhang et al., 2021; Pillutla et al., 2021; Welleck et al., 2024). Following Hashimoto et al. (2019),
we define a model’s diversity to be its log loss on reference documents. The intuition behind this
definition is that log loss (also known as cross entropy or forward KL) is a coverage metric: to attain
low log loss, the model must “cover” as much as the reference distribution as possible. Our goal,
then, is to calibrate entropy to match log loss without also causing the log loss to also increase.

In theory, Braverman et al. (2020) show that one can calibrate entropy while preserving log loss
via globally normalized temperature scaling, where the adjusted model is given by p̂τ (y1, ..., yL) ∝
p̂(y1, ..., yL)

1/τ . Unfortunately, this adjustment is intractable to compute because it involves normal-
izing over the entire output space. It remains unclear, then, whether this goal is possible in polynomial
time. Specifically, we wish to take in a model p̂ and produce a calibrated model p̃ with at most ε
entropy calibration error per step, as well as log loss at most that of the original model p̂:

1

T
|EntCE(p∗ ∥ p̃)| ≤ ε, (4)

L(p∗ ∥ p̃) ≤ L(p∗ ∥ p̂), (5)

where the entropy calibration error is defined as the difference between the entropy and the log loss:

|EntCE(p∗ ∥ p̂)| = |H(p̂)− L(p∗ ∥ p̂)|. (6)

3 Intuition: Singleton Mass in Power Law Data

Before putting in the work to develop better calibration algorithms, it is natural to first ask whether
we expect miscalibration to automatically improve with scale, as we train larger models on more data.
To gain intuition, we first explore this question in a simplified theoretical setting. We define the setup
to capture the following hypothesis regarding error accumulation (see, e.g., Hewitt et al. (2022)):
because the language distribution is heavy-tailed, the model must assign non-zero probability to a
large number of rare tokens when fitting the data. However, if it happens to generate one such rare
token, the model derails when that token is fed back into the context autoregressively, leading to a
jump in entropy. Over many generation steps, then, the model will eventually derail. The degree of
instability then depends on the probability of producing a rare token.

Accordingly, our setup is as follows: at training time, the model stores the counts for m tokens
drawn i.i.d. from an α-power-law distribution p over a vocabulary of size v, defined as pi ∝ 1/iα for
i = 1, ..., v. The model then generates a sequence token-by-token as follows: if all tokens in context
were seen at least twice at training time, the model samples a random token seen during training.
But if any token in context was seen only once, the model samples from a high entropy “derailed”
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Figure 1: Left: the expected total mass of tokens seen exactly once, given m samples from a
power law distribution over a vocabulary of size v, for three settings of the power law exponent
α = 1.0, 1.25, 1.5. Their relationship is roughly log-log linear up to m ≈ v/3, with slope slightly
steeper than the asymptotic expression of 1/α− 1. Right: log frequency versus log rank of the top
5000 unigrams in three datasets. The power law exponent α, given by the slope of each curve, is
close to 1 for WikiText and WritingPrompts, while it is 1.5 for CodeContests, suggesting that text
has heavier tails than code. Together, these plots suggest that the singleton mass should decay more
slowly with m for WikiText and WritingPrompts than for CodeContests.

distribution instead. This simple stylized setting captures our intuition about error accumulation and
lets us study the effect of α, representing the heavy-tailedness of the data distribution.

In this setting, the expected entropy per step grows with slope proportional to the probability of
emitting a rare token (see Appendix B). Computing the rare token mass in power law data is a classic
problem, and we can compute the asymptotic scaling exponent with respect to the number of training
examples m as follows (Good, 1953; Karlin, 1967):
Proposition 3.1 (informal). For v infinite and m large, the per-step probability of generating a
singleton, in expectation over draws of the training set, is given by

E
Km,1

m
= Cαm

1/α−1,

where Cα is a constant depending only on α, and Km,1 is a random variable denoting the number of
items seen exactly once in a set of m samples.

We provide the derivation in the appendix. The key takeaway from this proposition is that the derailing
probability scales as m1/α−1, which is very slow if the power law exponent α is close to 1, as is
typical for text (Zipf, 1936, 1949). The reason for this slow scaling is that as m increases, there are
always more rare items to be sampled from the tail of the distribution. In practice, of course, we
are not training unigram models, but the same intuition holds if we posit that semantic concepts in
text are similarly heavy tailed: as larger models are trained on more data, there will always be new
rare phenomena that they see during training only once. These phenomena are then memorized, and
potentially generated at deployment, derailing the model.

While asymptotic analysis gives us a clean expression, we can also estimate the scaling exponent
in simulation for finite values of m and v (see Figure 1). We find that the actual slopes are close
to the asymptotic expression, up to m ≈ v/3. We also calculate the power law exponent for our
three datasets, finding that it is around 1 for WikiText and WritingPrompts and 1.5 for CodeContests,
which predicts slow scaling for the first two datasets and slow-to-moderate scaling for the third.

4 Experiments: Miscalibration in Large Language Models

Next, we measure miscalibration empirically in large language models. We study four model
families (Qwen2.5 (0.5B, 1.5B, 3B, 7B, 14B, 32B, 72B) (Qwen et al., 2025), Llama 3 (1B, 3B,
8B, 70B) (Grattafiori et al., 2024), Llama 2 (7B, 13B, 70B) (Touvron et al., 2023), and Pythia
(410M, 1.4B, 2.8B, 6.9B, 12B) (Biderman et al., 2023)) applied to the three datasets listed below.
In each setting, we use 5000 examples and limit samples to 1024 tokens; see Appendix C for more
experimental details. We primarily study base models because we are interested in the problem of
modeling human text; we study the effect of instruction tuning in Section 4.3.
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Figure 2: Log calibration error versus log model size for four model families and three datasets.
We find that the scaling laws fit relatively well, suggesting that the relationship between calibration
and scale is predictable. Furthermore, while there is variation between model families, the scaling
exponents for each dataset are somewhat close to those predicted by theory (WikiText: 0.089,
WritingPrompts: −0.10, CodeContests: −0.33), with heavier-tailed datasets having slower scaling.

(a) WikiText-103 (Merity et al., 2017): given 128 tokens of context from a Wikipedia passage, the
model is tasked with completing the passage.

(b) WritingPrompts (Fan et al., 2018): given a prompt from r/writingprompts along with 128 tokens
of context from a human-written story, the model is tasked with completing the story.

(c) CodeContests (Li et al., 2022): given a coding problem from one of five websites and 128 tokens
of context from a human-written solution, the model is tasked with completing the solution.

4.1 Miscalibration scaling in base models

Past work has found that many model capabilities improve predictably with model size, with task
loss and model size following a linear relationship when plotted on a log scale (Kaplan et al., 2020;
Hoffmann et al., 2022). We use a similar methodology to study the relationship between entropy
miscalibration and model size. If model size and dataset size are scaled proportionally, Proposition 3.1
suggests a scaling law of logEntCE = (1/α− 1) logm+ C, where α is the power law exponent of
the data distribution and m is the parameter count. Does the actual data also follow a clean scaling
law, and how close is the scaling exponent to that predicted by the simplified setting?

For each model-dataset combination, we compute the model’s calibration error as the difference
between its average entropy per generation step and its average log loss on ground truth data. We
then plot log calibration error versus log model size, as shown in Figure 2.

First, we find that the linear fit is accurate, suggesting that the relationship between calibration and
scale is predictable. Next, we find that the scaling exponents are dataset-dependent: for the older
model families (Llama 2 and Pythia), the exponents are around 0.0 for WikiText and WritingPrompts
and −0.2 for CodeContests, while for the newer model families (Llama 3 and Qwen2.5), the
exponents are around −0.13 for WikiText and WritingPrompts and −0.35 for CodeContests. Notably,
these exponents are somewhat close to what is predicted theoretically (Figure 1): WikiText and
WritingPrompts, with power law exponents of 0.918 and 1.114, are predicted to have slow scaling
exponents of 0.089 and −0.10, while CodeContests, with a power law exponent of 1.5, is predicted
to have a moderate scaling exponent of −0.33. However, future work on more datasets would be
needed to more strongly establish the relationship between these exponents empirically.

We speculate that recent model families have better scaling due to changes in their pretraining data
mixtures, and especially the addition of a midtraining step with higher quality and less diverse data.
However, training details for three out of the four model families (all but Pythia) are not public, and
future work with controlled data mixtures would be useful to disentangle the effects of model size,
dataset size, and dataset composition.

Overall, these plots suggest that miscalibration in text generation improves very slowly with scale: a
scaling exponent of −0.10 means that to reduce calibration error by a factor of 10, dataset size must
increase by a factor of 1010.
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Figure 3: Entropy for each generation step (solid) and log loss for each token in the ground truth
(dashed), for each dataset (columns) and each model family (rows), with models colored by size.
Models have entropy much higher than their log loss, with the gap growing with the number of
generation steps, a sign of error accumulation. For the text datasets, models of different sizes seem to
be similarly miscalibrated, while for code the degree of miscalibration seems to improve with size.

4.2 Entropy over time

To gain a more fine-grained understanding of entropy blowup, we also produce entropy over time
plots for each model and each dataset, as shown in Figure 3. Specifically, we plot each model’s
entropy at each generation step t, averaged over 5000 generated samples. We then compare this curve
to the model’s log loss on each token t of a ground truth example, averaged over 5000 examples.
Recall from Section 2 that theoretically, for an accurate model, entropy is initially close to log loss,
but can deviate as much as

√
t at the t-th step. A calibrated model which does not experience error

accumulation should have entropy close to the log loss for all generation steps.

First, we find that for each model and dataset, the log loss is mostly constant or slightly decreasing
over time. Past papers use a model’s log loss to estimate the actual entropy of the underlying text, as
the former is an upper bound for the latter that grows tighter if the model is more accurate. This part
of the plot replicates past findings that the entropy per step of human text is stable over time, also
known as the entropy rate constancy principle (Genzel & Charniak, 2002; Verma et al., 2023).

On the other hand, unlike human text, the entropy per step of model generations is not stable and
instead increases over time. The lack of scaling shown quantitatively in the previous subsection is
reflected visually in Figure 3, with larger models having entropy growing at similar rates as smaller
models for WikiText and WritingPrompts (the left and middle columns). For CodeContests, the
slopes decrease with model size, visually confirming that there is slow-to-moderate scaling.
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Figure 4: Entropy calibration error versus log loss for base Qwen2.5 (1.5B, 7B, 72B) compared to
the instruction-tuned versions, along with various temperature settings (please see Appendix E for
all model sizes). Positive calibration error means that the model’s entropy is higher than its log loss,
while negative means that its entropy is lower than its log loss. We find that each modification of the
base model reduces entropy while increasing log loss, calibrating at the cost of diversity.

4.3 Calibration-diversity tradeoffs

In this subsection, we seek to better understand how distribution truncation and post-training affect
entropy. For each model-dataset combination (excluding Pythia, which has no instruction-tuned
version), we compare the model with temperature 1.0 to that with temperature 0.95, 0.9, 0.85, or 0.8,
as well as to the instruction-tuned version of the model. We then plot entropy calibration error against
log loss, where each setting of the model is one point on the plot, as shown in Figure 4.

First, we find that reducing temperature below 1 reduces entropy but increases log loss, replicating
similar findings in past work (Hashimoto et al., 2019). Furthermore, the temperature attaining zero
calibration error is similar across model sizes, which makes sense given that they are similarly
miscalibrated. We find that instruction tuning also reduces entropy while increasing log loss, which
is consistent with past work showing that instruction tuning harms diversity (Ghosh et al., 2024).
Unlike temperature scaling, the magnitude of the effect varies across model sizes, with larger models
experiencing both a larger reduction in entropy and larger increase in log loss. However, this pattern
is not robust across model families (see Appendix E). Further work with more controlled instruction
tuning would be necessary to explore this relationship further. These experiments reconcile our
previous finding, that even large models accumulate errors, with the fact that in practice, one can use
truncation or post-training to generate long, coherent pieces of text. The tradeoff is that each of these
mitigations comes at the cost of diversity.

5 Theory: Future Entropy Scaling

If all known mitigations increase log loss, is it even possible in theory to calibrate without this
tradeoff? In this section, we provide evidence that this tradeoff is not inevitable: given the assumption
that there exists a procedure to fit regression models that generalize to i.i.d. test data, we show that
there exists a tractable, albeit impractical, procedure that calibrates while preserving log loss.
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Algorithm 1 Future entropy scaling
Inputs: model p̂, length T , vocab V , future entropy fitting algorithm A, future entropy dataset size n,
sample size m, prompt distribution q, true conditional distribution p∗, optimization tolerance ε

1: Initialize α1 = ... = αT = 0, f̂2 = ... = f̂T+1 = 0.
2: For t = T, ..., 1:
3: Choose αt to minimize expected log loss at step t, until the gradient is at most ε:

αt = argmin
α′

t

Lt

(
p∗ ∥ p̂(ent)

α′,f̂

)
where α′ = (0, ..., 0, α′

t, αt+1, ..., αT ). (Lt: Equation 3, p̂(ent)
α′,f̂

: Equation 9).

4: Fit the future entropy predictor f̂t as follows:

5: Sample prefixes
(
X(i), Y

(i)
<t−1

)n

i=1
∼ (q, p∗).

6: For each token v ∈ V , compute labels (h(i,v))ni=1 by passing each prefix
(
X(i),

[
Y

(i)
<t−1, v

])
into Algorithm 2, along with inputs p̂(ent)

α,f̂
, T , m.

7: Fit one future entropy predictor for each token v, setting f̂t(X, [Y<t−1, v]) =

f̂t,v(X,Y<t−1), where each f̂t,v is the output A
{(

X(i), Y
(i)
<t−1, h

(i,v)
)n

i=1

}
.

8: Return (α1, ..., αT ), (f̂2, ..., f̂T+1).

Algorithm 2 Future entropy estimation via sampling
Inputs: model p̂, length T , prefix (X,Y≤t), samples m

1: Sample m trajectories from the model:
(
Ŷ

(i)
t+1, ..., Ŷ

(i)
T

)m

i=1

i.i.d.∼ p̂X(Ŷ>t | Y≤t).

2: Return Ĥ = 1
m

∑m
i=1

∑T
s=t+1 − log p̂X(Ŷ

(i)
s | Ŷ (i)

<s ).

5.1 Definitions

For a model p̂X(Y1, ..., YT ) mapping a prompt X to a distribution ∆Y over the output space Y = VT ,
let the future entropy of the prefix (X,Y≤t) be given by

Hp̂X
(Y>t | Y≤t) =

∑
Y>t

−p̂X(Y>t | Y≤t) log p̂X(Y>t | Y≤t). (7)

Given a prefix Y≤t, this expression computes the model’s entropy over the remaining generation Y>t.
We can then define the future entropy adjusted model, for parameters α = (α1, ..., αT ) ∈ RT , as

p̂(ent)
α;X(Yt | Y<t) ∝ exp

{
(1 + αt) log p̂X(Yt | Y<t)− αtHp̂(ent)

α;X
(Y>t | Y≤t)

}
. (8)

This expression adjusts each candidate token’s probability based on what the future entropy would be
if that token were chosen. The calibration procedure then involves fitting models to predict the future
entropy of prefixes, and choosing the weights αt to calibrate the model (Algorithm 1).

5.2 Assumptions

For a distribution p̂ that can be tractably sampled from, we can take a Monte Carlo estimate to compute
the future entropy, which concentrates because entropy is bounded (Algorithm 2). However, we cannot
assume that p̂(ent)

α;X can be tractably sampled from, so we cannot compute its future entropy naively.
Instead, we will use our assumed model fitting procedure to iteratively replace each intractable future
entropy term Hp̂(ent)

α;X
(Y>t | Y≤t) with a tractable fitted model f̂(X,Y≤t), leading to the following
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approximate future entropy adjustment:

p̂(ent)
α,f̂ ;X

(Yt | Y<t) ∝ exp
{
(1 + αt) log p̂X(Yt | Y<t)− αtf̂t+1(X,Y≤t)

}
. (9)

Then, we can initialize α = (0, ..., 0) and first fit αT for the last generation step. Next, now that the
last generation step is calibrated, we can fit future entropy model f̂T , taking in length T − 1 prefixes
and predicting the entropy at step T . Given f̂T , we can then fit αT−1, calibrating the second to last
step. This procedure proceeds from t = T, ..., 1, resulting in a calibrated model.

The future entropy model fitting relies on the following assumption, which states that we can fit
regression models that attain good i.i.d. test error:

Assumption 5.1. Let
(
X(i), Y

(i)
≤t , h

(i)
)n

i=1
be a dataset with inputs X(i) i.i.d.∼ q and Y

(i)
≤t ∼

p∗
X(i) , along with noisy labels h(i). Furthermore, suppose each noisy label is given by h(i) =

f∗(X(i), Y
(i)
≤t ) + εi for the true label f∗(X(i), Y

(i)
≤t ) ∈ R and noise εi

i.i.d.∼ E , where E is a mean-zero
noise distribution bounded by σ. Then, there exists a polynomial time algorithm A which takes in a
dataset of size n ∈ poly(σ, δ) and outputs a fitted model f̂ attaining at most δ test error:

EX∼qEY≤t∼p∗
X
|f̂(X,Y≤t)− f∗(X,Y≤t)| ≤ δ.

Empirically, neural networks can fit almost anything while attaining low test error in distribution, and
the future entropy prediction problem described here is not particularly complex, involving mapping
a set of tokens to a single bounded scalar. However, future empirical work is needed to determine
how accurately a large neural model can predict the future entropy.

5.3 Main theorem

With this assumption, we now state the main result:

Theorem 5.2. Suppose that Assumption 5.1 holds, where each future entropy predictor attains test
error δ. Also, let (α, f̂) be the output of Algorithm 1, where each αt is an ε-stationary point. Then,

∣∣∣EntCE
(
p∗ ∥ p̂(ent)

α,f̂

)∣∣∣ ≤ 2Tδ +

T∑
t=1

(1 + αt)ε,

L
(
p∗ ∥ p̂(ent)

α,f̂

)
≤ L(p∗ ∥ p̂).

This theorem tells us that if each future entropy predictor has error δ and we choose each αt to be an
ε-stationary point with respect to the log loss, the calibrated model will have entropy within O(δ + ε)
of its log loss at each time step, and its log loss will be better than that of the original model.

Why does future entropy preserve log loss? Future entropy adjustment can be derived as a first-
order approximation of globally normalized temperature adjustment; we provide this derivation in
Appendix B, along with a derivation in the MaxEnt RL framework (Ziebart et al., 2008). Global
temperature adjustment attains calibration as long as the gradient of the log loss with respect to
temperature is small (Braverman et al., 2020), which is a first-order condition. Then, intuitively, a
first-order approximation of global temperature scaling should preserve this property.

The procedure described in Algorithm 1 is not practical to implement, as one would need to a fit a
separate future entropy predictor for each generation step and each candidate token, each of which
involves a slow data collection process based on a repeated sampling. Nonetheless, the existence of
such an algorithm provides evidence that log loss tradeoffs are not inevitable in entropy calibration,
despite the output space being exponentially large. One other point to note is that our analysis
holds for any approximation of the future entropy that attains error δ, with worse approximations
just weakening the calibration error guarantee. For example, one could use the one-step future
entropy (Braverman et al., 2020), or truncate to k steps instead. We hope that our theory, which
establishes future entropy as the target to approximate, guides future work to achieve better quality-
diversity tradeoffs than existing approaches.
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6 Additional Related Work

Calibration is most commonly studied in binary and multiclass classification, with some classic
algorithms including binning, Platt scaling, and isotonic regression (Platt, 1999; Zadrozny & Elkan,
2002; Guo et al., 2017; Kumar et al., 2019). In the language modeling setting, Liang et al. (2023)
evaluate the calibration of language models prompted to perform a wide range of classification tasks,
finding that models are almost always miscalibrated and overconfident. In such a setting, one can
simply apply standard calibration techniques to adjust the model’s outputted probabilities. More
challenging is linguistic calibration, where models appear overconfident in the language they use to
answer a question. To address this problem, past works propose techniques based on controllable
generation and reinforcement learning (Mielke et al., 2022; Band et al., 2024). Finally, the term
“calibration” is also used to describe the procedure of eliminating the model’s innate bias toward
certain tokens when doing in-context learning, to improve task performance (Zhao et al., 2021). All
of these settings are distinct from our setting, which studies the calibration of a model’s entropy over
an entire generation, and whose related work we discuss in Section 2.

7 Conclusion

We find both theoretically and experimentally that entropy miscalibration improves very slowly with
scale. Furthermore, while all current methods calibrate at the cost of diversity, we provide theoretical
evidence that this tradeoff can be avoided. Therefore, given recent community interest in test-time
scaling and synthetic data, both for which diversity is centrally important, we are excited about work
which seeks to attain both generation stability and diversity simultaneously.
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Algorithm 3 Future entropy scaling
Inputs: model p̂, length T , vocab V , future entropy fitting algorithm A, future entropy dataset size n,
sample size m, prompt distribution q, true conditional distribution p∗, optimization tolerate ε

1: Initialize α1 = ... = αT = 0, f̂2 = ... = f̂T+1 = 0.
2: For t = T, ..., 1:
3: Choose αt to minimize expected log loss at step t, until the gradient is at most ε:

αt = argmin
α′

t

Lt

(
p∗ ∥ p̂(ent)

α′,f̂

)
where α′ = (0, ..., 0, α′

t, αt+1, ..., αT ).
(Lt: Equation 3, p̂(ent)

α′,f̂
: Equation 9)

4: Fit the future entropy predictor f̂t as follows:

5: Sample prefixes
(
X(i), Y

(i)
<t−1

)n

i=1
with X(i) i.i.d.∼ q, Y

(i)
<t−1 ∼ p∗

X(i) .

6: For each token v ∈ V , compute labels (h(i,v))ni=1 by passing each prefix
(
X(i),

[
Y

(i)
<t−1, v

])
into Algorithm 2, along with inputs p̂(ent)

α,f̂
, T , m.

7: Fit one future entropy predictor for each token v, setting f̂t(X, [Y<t−1, v]) =

f̂t,v(X,Y<t−1), where each f̂t,v is the output A
{(

X(i), Y
(i)
<t−1, h

(i,v)
)n

i=1

}
.

8: Return (α1, ..., αT ), (f̂2, ..., f̂T+1).

A Proofs

Recall notation: we are given prompts X ∈ X drawn from some prompt distribution X ∼ q, and
responses Y ∈ Y drawn from the true conditional distribution Y ∼ p∗X for p∗X ∈ ∆Y . For simplicity,
let Y be the set VT of length T strings over a vocabulary V . We then train a language model
p̂ : X → ∆Y to fit the true conditional distribution p∗.

We say that p̂ is entropy calibrated if its entropy over generations is equal to its log loss, in expectation
over the prompt:

H(p̂) = L(p∗ ∥ p̂), (10)

where the total entropy and total log loss are given by

H(p̂) = EX∼qEŶ∼p̂X
[− log p̂X(Ŷ )], (11)

L(p∗ ∥ p̂) = EX∼qEY∼p∗
X
[− log p̂X(Y )]. (12)

We can also write the per-step entropy and per-step log loss as

Ht(p̂) = EX∼qEŶ∼p̂X
[− log p̂X(Ŷt | Ŷ<t)], (13)

Lt(p
∗ ∥ p̂) = EX∼qEY∼p∗

X
[− log p̂X(Yt | Y<t)]. (14)

Let the total entropy calibration error be given by

EntCE(p∗ ∥ p̂) = |H(p̂)− L(p̂ ∥ p∗)|

=

∣∣∣∣∣
T∑

t=1

Ht(p̂)− Lt(p̂ ∥ p∗)

∣∣∣∣∣ . (15)

Our goal will be to calibrate the model p̂ while preserving its log loss, which we will do by the
following adjustment:

p̂(ent)
α,f̂ ;X

(Yt | Y<t) ∝ exp

{
(1 + αt) log p̂X(Yt | Y<t)− αtf̂t+1(X,Y≤t)

}
, (16)
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where α1, ..., αt denote the adjustment parameters, and f̂2, ..., f̂T+1 denote future entropy predictors
(with f̂T+1 = 0), whose goal is to approximate the future entropy. Using Algorithm 3 (copied from
Algorithm 1 for convenience) to fit each αt, f̂t, we show the following result:
Theorem A.1. Suppose that Assumption 5.1 holds, where each future entropy predictor attains test
error δ. Also, let (α, f̂) be the output of Algorithm 3, where each αt is an ε-stationary point. Then,
we have ∣∣∣EntCE

(
p∗ ∥ p̂(ent)

α,f̂

)∣∣∣ ≤ 2Tδ +

T∑
t=1

(1 + αt)ε,

L
(
p∗ ∥ p̂(ent)

α,f̂

)
≤ L(p∗ ∥ p̂).

The proof proceeds as follows: first, recall that for each step t, we choose αt to minimize
Lt

(
p∗ ∥ p̂(ent)

α,f̂

)
. The first lemma will show that if the future entropy predictor f̂t+1 fitted in the

previous iteration has at most δ error (in expectation over Y<t and uniformly over Yt ∈ V), then this
choice of αt produces a calibration-like guarantee.
Lemma A.2. Suppose that αt is an ε-stationary point with respect to Lt:∣∣∣∣ d

dαt
Lt

(
p∗ ∥ p̂(ent)

α,f̂

)∣∣∣∣ ≤ ε,

and that the future entropy predictor f̂t+1 attains at most δ error, in expectation over Y<t and
uniformly over Yt ∈ V:

max
Yt∈V

EX∼qEY<t∼p∗
X

∣∣∣∣f̂t+1(X,Y≤t)−Hp̂(ent)
α,f̂;X

(Y>t | Y≤t)

∣∣∣∣ ≤ δ.

Then, we have the following calibration guarantee:∣∣∣∣∣EX∼qEY≤t∼p∗
X

EŶ>t∼p̂(ent)
α,f̂;X

(·|Y≤t)

[
− log p̂(ent)

α,f̂ ;X
(Y≤t, Ŷ>t)

]
−EX∼qEY<t∼p∗

X
EŶ≥t∼p̂(ent)

α,f̂;X
(·|Y<t)

[
− log p̂(ent)

α,f̂ ;X
(Y<t, Ŷ≥t)

] ∣∣∣∣∣ ≤ (1 + αt)ε+ 2δ.

This bound can be thought of as a partial calibration guarantee in the sense that it allows us to swap
Yt ∼ p∗ and Ŷt ∼ p̂(ent)

α,f̂
in the expectation.

To show that Algorithm 3 improves log loss, note that each αt is initialized to 0, so the initial model
p̂(ent)
α,f̂

is equal to p̂. Then, it suffices to show that each iteration of the algorithm improves the log loss,
relative to the previous iteration. This statement is true by the following lemma, which states that at
each step t in the algorithm, optimizing Lt is equivalent to optimizing the overall log loss L:

Lemma A.3. Let αt+1, ..., αT be set arbitrarily, and let α1 = ... = αt−1 = 0. Also, let f̂ be set
arbitrarily. Then,

argmin
α′

t

Lt

(
p∗ ∥ p̂(ent)

α′,f̂

)
= argmin

α′
t

L
(
p∗ ∥ p̂(ent)

α′,f̂

)
,

where α′ = (0, ..., 0, α′
t, αt+1, ..., αT ).

The final lemma involves showing that each future entropy predictor outputted by the algorithm
attains low error and satisfies the condition in Lemma A.2. This lemma relies on the fact that the
future entropy Hp̂(ent)

α,f̂;X

(Y>t | Y≤t) only depends on αt+1, ..., αT and f̂t+2, ..., f̂T+1, because it only

involves generation steps t+ 1 and onward. Therefore, after αt+1 is chosen, the generation process
is fixed for steps t+ 1 and onward, so we can fit a future entropy predictor over those steps despite
not having yet chosen α1, ..., αt. These facts, along with the black box fitting procedure provided in
Assumption 5.1, lead to the following lemma:
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Lemma A.4. For any α = (α1, ..., αT ) and f̂ = (f̂2, ..., f̂T+1), and for some fixed t, let α′ =

(0, ..., 0, αt, ..., αT ) and f̂ ′ = (0, ..., 0, f̂t+1, ..., f̂T+1) be the results of zeroing out the first t − 1

entries of α and f̂ . Then, we have that

Hp̂(ent)
α,f̂;X

(Y>t−1 | Y≤t−1) = Hp̂(ent)
α′,f̂′;X

(Y>t−1 | Y≤t−1)

for all Y≤t−1. Furthermore, suppose that Assumption 5.1 holds, and let D =(
X(i), Y

(i)
<t−1, h

(i,v)
)n

i=1
be a dataset with

h(i,v) = Hp̂(ent)
α′,f̂′;X

(
Y>t−1 |

[
Y

(i)
<t−1, v

])
+ εi,v

X(i) i.i.d.∼ q, Y
(i)
<t−1 ∼ p∗X(i) , εi,v ∼ E

for some token v ∈ V , dataset size n = poly(T logV, δ), and some mean-zero noise distribution E
bounded by T logV . Then, letting A denote the black box fitting procedure in Assumption 5.1, we
have that f̂t,v = A(D) satisfies

EX∼qEY<t−1∼p∗
X

∣∣∣∣f̂t,v(X,Y<t−1)−Hp̂(ent)
α,f̂;X

(Y>t−1 | [Y<t−1, v])

∣∣∣∣ ≤ δ.

We use these lemmas to prove Theorem A.1 as follows:

Proof of Theorem A.1. Let α = (α1, ..., αT ) and f̂ = (f̂2, ..., f̂T+1) denote the outputs of the
algorithm. It suffices to show the following three inequalities for all t:

(a) Prediction error bound: the predictor f̂t+1 satisfies

max
Yt∈V

EX∼qEY<t∼p∗
X

∣∣∣∣f̂t+1(X,Y≤t)−Hp̂(ent)
α,f̂;X

(Y>t | Y≤t)

∣∣∣∣ ≤ δ.

(b) Calibration bound: after iteration t of the algorithm, we have∣∣∣∣∣EX∼qEY≤t∼p∗
X

EŶ>t∼p̂(ent)
α,f̂;X

(·|Y≤t)

[
− log p̂(ent)

α,f̂ ;X
(Y≤t, Ŷ>t)

]
−EX∼qEY<t∼p∗

X
EŶ≥t∼p̂(ent)

α,f̂;X
(·|Y<t)

[
− log p̂(ent)

α,f̂ ;X
(Y<t, Ŷ≥t)

] ∣∣∣∣∣ ≤ (1 + αt)ε+ 2δ.

(c) Log loss improvement: letting α(t) = (0, ..., 0, αt, ..., αT ) and f̂ (t) = (0, ..., 0, f̂t+1, ..., f̂T+1),
we have

L
(
p∗ ∥ p̂(ent)

α(t),f̂(t)

)
≤ L

(
p∗ ∥ p̂(ent)

α(t+1),f̂(t+1)

)
.

The theorem follows from combining these inequalities for all t: first, to show that log loss improves,
it suffices to apply inequality (c) (log loss improvement) for all t, where p̂(ent)

α(1),f̂(1)
= p̂(ent)

α,f̂
and

p̂(ent)
α(T+1),f̂(T+1)

= p̂. Similarly, the calibration result follows from applying inequality (b) (calibration
bound) for all t with triangle inequality:∣∣∣EntCE

(
p∗ ∥ p̂(ent)

α,f̂

)∣∣∣ = ∣∣∣∣EX∼qEY∼p∗
X

[
− log p̂(ent)

α,f̂ ;X
(Y )

]
− EX∼qEY∼p̂(ent)

α,f̂;X
(Y )

[
− log p̂(ent)

α,f̂ ;X
(Y )

]∣∣∣∣
=

∣∣∣∣∣
T∑

t=1

EX∼qEY≤t∼p∗
X

EŶ>t∼p̂(ent)
α,f̂;X

(·|Y≤t)

[
− log p̂(ent)

α,f̂ ;X
(Y≤t, Ŷ>t)

]
− EX∼qEY<t∼p∗

X
EŶ≥t∼p̂(ent)

α,f̂;X
(·|Y<t)

[
− log p̂(ent)

α,f̂ ;X
(Y<t, Ŷ≥t)

] ∣∣∣∣∣
≤

T∑
t=1

[(1 + αt)ε+ 2δ].
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Then, showing inequalities (a), (b), and (c) for all t completes the proof. First, note that if inequality
(a) (prediction error bound) holds for all t, then the other two inequalities follow directly from the
lemmas: inequality (a) ensures the condition in Lemma A.2 is satisfied, directly proving inequality
(b) (calibration bound). Inequality (c) (log loss improvement) follows from the fact that αT is chosen
via argminα′

T
LT

(
p∗ ∥ p̂(ent)

α′,f̂

)
, which by Lemma A.3 is equivalent to minimizing the overall log

loss L
(
p∗ ∥ p̂(ent)

α′,f̂

)
.

To show inequality (a) (prediction error bound), first note that for t = T , it holds trivially because the
future entropy is 0. For t = 1, ..., T − 1, the prediction error bound follows directly from applying
Lemma A.4 for each f̂t+1,v for v ∈ V , where each noisy future entropy label computed via parallel
sampling (Algorithm 2) has mean equal to the future entropy and is bounded by (T − t) logV .

The proofs of the three lemmas proceed as follows:

Proof of Lemma A.2. Taking the derivative of the log loss Lt with respect to αt, we have

ε ≥
∣∣∣∣ d

dαt
Lt

(
p∗ ∥ p̂(ent)

α,f̂

)∣∣∣∣
=

∣∣∣∣ d

dαt
EX∼qEY∼p∗

X
[−1Yt

(·)T log softmax((1 + αt) log p̂X(· | Y<t)− αtf̂t+1(X, [Y<t, ·]))]
∣∣∣∣

=

∣∣∣∣EX∼qEY∼p∗
X

[
−
(

1Yt
(·)− p̂(ent)

α,f̂ ;X
(· | Y<t)

)T

(log p̂X(· | Y<t)− f̂t+1(X, [Y<t, ·]))
]∣∣∣∣ ,

where we use f(·) ∈ R|V| to denote the vector [f(v)]v∈V , the indicator function is given by 1Yt
(v) = 1

iff Yt = v, and softmax : R|V| → R|V| applies the softmax operation, which exponentiates each entry
and then normalizes the vector by its sum. Splitting this term into two expectations results in the
expression

=

∣∣∣∣∣EX∼qEY≤t∼p∗
X

[
−(log p̂X(Yt | Y<t)− f̂t+1(X,Y≤t))

]
− EX∼qEY<t∼p∗

X
EŶt∼p̂(ent)

α,f̂;X
(·|Y<t)

[
−(log p̂X(Ŷt | Y<t)− f̂t+1(X, [Y<t, Ŷt]))

] ∣∣∣∣∣,
where the two terms differ in whether Yt ∼ p∗ or Ŷt ∼ p̂(ent)

α,f̂ ;X
. Multiplying both sides by (1 + αt),

we have

(1 + αt)ε ≥

∣∣∣∣∣EX∼qEY≤t∼p∗
X

[
−(1 + αt)(log p̂X(Yt | Y<t)− f̂t+1(X,Y≤t))

]
− EX∼qEY<t∼p∗

X
EŶt∼p̂(ent)

α,f̂;X
(·|Y<t)

[
−(1 + αt)(log p̂X(Ŷt | Y<t)− f̂t+1(X, [Y<t, Ŷt]))

] ∣∣∣∣∣.
Next, noticing that both expressions include unnormalized logits for the distribution p(ent)

α,f̂ ;X
applied

to either Yt or Ŷt, we can subtract the same normalizing constant from both expressions, resulting in

=

∣∣∣∣∣EX∼qEY≤t∼p∗
X

[
−
(
log p̂(ent)

α,f̂ ;X
(Yt | Y<t)− f̂t+1(X,Y≤t)

)]
− EX∼qEY<t∼p∗

X
EŶt∼p̂(ent)

α,f̂;X
(·|Y<t)

[
−
(
log p̂(ent)

α,f̂ ;X
(Ŷt | Y<t)− f̂t+1(X, [Y<t, Ŷt])

)] ∣∣∣∣∣.
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Next, to turn each conditional probability into a joint probability, we can add
EX∼qEY≤t∼p∗

X

[
− log p̂(ent)

α,f̂ ;X
(Y<t)

]
to both expressions:

=

∣∣∣∣∣EX∼qEY≤t∼p∗
X

[
−
(
log p̂(ent)

α,f̂ ;X
(Yt, Y<t)− f̂t+1(X,Y≤t)

)]
− EX∼qEY<t∼p∗

X
EŶt∼p̂(ent)

α,f̂;X
(·|Y<t)

[
−
(
log p̂(ent)

α,f̂ ;X
(Ŷt, Y<t)− f̂t+1(X, [Y<t, Ŷt])

)] ∣∣∣∣∣.
At this point, we can use the fact that f̂t+1 is within δ of the future entropy (in expectation over
X ∼ q, Y<t ∼ p∗X and uniformly over Yt) to produce the bound

(1 + αt)ε+ 2δ ≥

∣∣∣∣∣EX∼qEY≤t∼p∗
X

[
−
(
log p̂(ent)

α,f̂ ;X
(Yt, Y<t)−Hp̂(ent)

α,f̂;X

(Y>t | Y≤t)

)]

− EX∼qEY<t∼p∗
X

EŶt∼p̂(ent)
α,f̂;X

(·|Y<t)

[
−
(
log p̂(ent)

α,f̂ ;X
(Ŷt, Y<t)−Hp̂(ent)

α,f̂;X

(Y>t | [Y<t, Ŷt])

)] ∣∣∣∣∣.
Finally, note that the future entropy is defined as

Hp̂(ent)
α,f̂;X

(Y>t | Y≤t) = EŶ>t∼p̂(ent)
α,f̂;X

(·|Y≤t)

[
− log p̂(ent)

α,f̂ ;X
(Ŷ>t | Y≤t)

]
,

which we can substitute into the previous equation to produce the desired result:

(1 + αt)ε+ 2δ ≥

∣∣∣∣∣EX∼qEY≤t∼p∗
X

EŶ>t∼p̂(ent)
α,f̂;X

(·|Y≤t)

[
− log p̂(ent)

α,f̂ ;X
(Ŷ>t, Yt, Y<t)

]
− EX∼qEY<t∼p∗

X
EŶ≥t∼p̂(ent)

α,f̂;X
(·|Y<t)

[
− log p̂(ent)

α,f̂ ;X
(Ŷ>t, Ŷt, Y<t)

] ∣∣∣∣∣.

Proof of Lemma A.3. Let t denote the time step of interest. Writing the full log loss as a sum over s,
we have

L
(
p∗ ∥ p̂(ent)

α,f̂

)
=

T∑
s=1

Ls

(
p∗ ∥ p̂(ent)

α,f̂

)
.

By the definition of p̂(ent)
α,f̂

, the t-th parameter αt has no effect on summands s ̸= t. Therefore,
optimizing the entire sum is equivalent to optimizing only the summand corresponding to s = t,
proving the desired result.

Proof of Lemma A.4. First, to show that
Hp̂(ent)

α,f̂;X

(Y>t−1 | Y≤t−1) = Hp̂(ent)
α′,f̂′;X

(Y>t−1 | Y≤t−1)

where α′, f̂ ′ are the results of zeroing out the first t− 1 entries of α, f̂ , we can simply write out the
definition of the future entropy:

Hp̂(ent)
α,f̂;X

(Y>t−1 | Y≤t−1) = EŶ>t−1∼p̂(ent)
α,f̂;X

(·|Y≤t−1)

[
− log p̂(ent)

α,f̂ ;X
(Ŷ>t−1 | Y≤t−1)

]
,

where we can write out the probability as

p̂(ent)
α,f̂ ;X

(Ŷ>t−1 | Y≤t−1) =

T∏
s=t

p̂(ent)
α,f̂ ;X

(Ŷs | Y≤t−1, Ŷt,...,s−1)

=

T∏
s=t

1T
Ŷs

softmax
(
(1 + αs) log p̂X(· | Y≤t−1, Ŷt,...,s−1)

− αsf̂s+1(X, [Y≤t−1, Ŷt,...,s−1, ·]
)
.
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This expression has no dependence on the first t− 1 entries α1, ..., αt−1 of α, and no dependence on
the first t− 1 entries f̂2, ..., f̂t of f̂ , proving the first half of the lemma.

The second half of the lemma follows directly from applying Assumption 5.1, where α′, f̂ ′ and α, f̂
can be interchanged by the fact that their future entropies over steps t, ..., T are the same.

B Derivations

B.1 Entropy calibration from binary calibration

Recall that for a binary classifier f̂ : X → [0, 1], where f∗ : X → [0, 1] denotes the true conditional
distribution, binary calibration asks whether the model’s probability corresponds to the actual fraction
of ones in reality:

EX∼qEY∼f∗
X
[Y | f̂X = p] = p.

First, note that the right hand side can be replaced by

EX∼qEY∼f∗
X
[Y | f̂X = p] = EX∼qEŶ∼f̂X

[Ŷ | f̂X = p].

Next, we can weaken this requirement by making the expectation non-conditional, or

EX∼qEY∼f∗
X
Y = EX∼qEŶ∼f̂X

Ŷ ,

which simply asks whether the overall rate of ones under f̂ is the same as the overall rate of ones in
reality. The most natural extension of this definition to multiclass calibration is top-class calibration,

EX∼qEY∼f∗
X

[
1

{
Y = argmax

y′
f̂X(y′)

}
| max

y′
f̂X(y′) = p

]
= p,

which states that across all instances where the model assigns p probability to the top class, the actual
label should be equal to the top class p fraction of the time on average. Like before, we can replace
the right hand side by

EX∼qEY∼f∗
X

[
1

{
Y = argmax

y′
f̂X(y′)

}
| max

y′
f̂X(y′) = p

]
= EX∼qEŶ∼f̂X

[
1

{
Ŷ = argmax

y′
f̂X(y′)

}
| max

y′
f̂X(y′) = p

]
,

where Y ∼ f∗
X and Ŷ ∼ f̂X are interchanged. In this expression, the top class probabil-

ity maxy′ f̂X(y′) can be thought of as the confidence of f̂X , while the zero-one loss function

1
{
Ŷ = argmaxy′ f̂X(y′)

}
defines the metric the confidence should be calibrated to — the model’s

confidence should correspond to the loss it incurs in reality. For language models, it is natural to
replace the zero-one loss with the log loss, which produces the definition

EX∼qEY∼f∗
X

[
− log f̂X(Y ) | H(fX) = h

]
= h

= EX∼qEŶ∼f̂X

[
− log f̂X(Ŷ ) | H(fX) = h

]
,

which asks whether the model’s entropy corresponds to the log loss it incurs in reality. We study the
unconditional version of this definition

EX∼qEY∼f∗
X

[
− log f̂X(Y )

]
= EX∼qEŶ∼f̂X

[
− log f̂X(Ŷ )

]
,

which simply asks whether the model’s entropy matches its log loss on average. We study uncondi-
tional calibration for simplicity, but the same techniques to calibrate unconditionally would likely
work for conditional calibration as well if one buckets the inputs X by their entropy H(fX).
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B.2 Future entropy adjustment from global temperature adjustment

To derive future entropy adjustment from global temperature adjustment, recall that the global
temperature adjustment with respect to inverse temperature α (where τ = 1/(1 + α)) is given by

p(global)
α (Y1, ..., YT ) =

p(Y1, ..., YT )
1+α∑

Y ′∈VT p(Y ′
1 , ..., Y

′
T )

1+α
.

Factoring this joint distribution into a conditional distribution for each t, we have

log p(global)
α (Yt | Y<t) = log

∑
Y>t

p(Y<t, Yt, Y>t)
1+α∑

Y ′
t ,Y>t

p(Y<t, Y ′
t , Y>t)1+α

.

Taking the gradient of the log probability with respect to α, we have

d

dα
log p(global)

α (Yt | Y<t) = softmax {(1 + α) log p(Y<t, Yt, Y>t = ·)}T log p(Y<t, Yt, Y>t = ·)

− softmax {(1 + α) log p(Y<t, [Yt, Y>t] = ·)}T log p(Y<t, [Yt, Y>t] = ·),

where the first softmax is over Y>t and the second softmax is over both Yt and Y>t. Simplifying this
expression results in

= log p(Yt | Y<t) + EY>t∼p(global)
α (·|Y≤t)

log p(Y>t | Y≤t)− EY≥t∼p(global)
α (·|Y<t)

log p(Y≥t | Y<t).

Then, the first-order approximation of log p(global)
α (Yt | Y<t) centered around α = 0 is given by

log p(global)
α (Yt | Y<t) ≈ log p(global)

α=0 (Yt | Y<t) + α
d

dα
log p(global)

α (Yt | Y<t)

∣∣∣∣∣
α=0

= log p(Yt | Y<t)

+ α

[
log p(Yt | Y<t) + EY>t∼p(global)

α=0 (·|Y≤t)
log p(Y>t | Y≤t)

− EY≥t∼p(global)
α=0 (·|Y<t)

log p(Y≥t | Y<t)

]
= (1 + α) log p(Yt | Y<t)− αEY>t∼p(·|Y≤t)[− log p(Y>t | Y≤t)] + CY≤t

,

where the final term is constant with respect to Yt.

B.3 Future entropy adjustment from MaxEnt RL

The future entropy adjustment can also be derived in the MaxEnt RL framework (Ziebart et al.,
2008), where the reward function is given by r(x, y) = log p̂x(y) with p̂ denoting the base model.
Specifically, we can write the MaxEnt RL objective as

max
p̃

EX∼qEY∼p̃X
rX(Y )− αKL(p̃ ∥ p̂).

Then, the value function for this objective is given by

VX(Y≤t) = EY>t∼p̃X(Y>t|Y≤t) log p̂X(Y>t | Y≤t),

and the Q function is given by

QX(Y<t, Yt) = rX(Yt | Y<t) + VX(Y≤t)

= log p̂X(Yt | Y<t) + EY>t∼p̃X(Y>t|Y≤t) log p̂X(Y>t | Y≤t).

Using this Q function to define the KL-regularized policy then results in

p̃α;X(Yt | Y<t) ∝ exp {log p̂X(Yt | Y<t) + αQX(Y<t, Yt)}
= exp

{
(1 + α) log p̂X(Yt | Y<t)− αEY>t∼p̃α;X(Y>t|Y≤t)[− log p̂X(Y>t | Y≤t)]

}
,

which is the future entropy adjustment.
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B.4 Scaling in the simplified setting

Recall our simplified setup: the model sees m tokens drawn i.i.d. from an α power law distribution
over a vocabulary of size v, and it stores the count of each token it sees. At generation time, the
model generates a sequence of length L as follows: if the context contains only tokens the model
has seen more than once, it behaves normally and produces the next token according to its fitted
unigram distribution. But if the context contains at least one token that the model saw only once, then
it instead produces the next tokens according to some derailed distribution with entropy larger by
some constant CH .

First, if the per-step derailing probability q is small, we can compute expected entropy at time t as
follows using the binomial approximation:

Ht(p̂) = (1− q)tH0 + (1− (1− q)t)(H0 + CH)

≈ (1− qt)H0 + (1− (1− qt))(H0 + CH)

= H0 + qtCH ,

so the overall miscalibration is given by

L∑
t=1

Ht(p̂)−H0 =
L∑

t=1

qtCH

= qCH
L(L− 1)

2
.

Next, to characterize the scaling of the expected per-step derailing probability q with respect to
dataset size m, we first note that

q =
Km,1

m
,

where Km,1 is a random variable denoting the number of items seen exactly once in the training set
of size m. Taking the expectation with respect to random draws of the training set, we have

EKm,1 = E
v∑

i=1

1{countm(i) = 1}

=

v∑
i=1

E1{countm(i) = 1}

=

v∑
i=1

mpi(1− pi)
m−1,

where pi = Z/iα is the power law probability of the ith item, with Z =
∑v

i=1 1/i
α denoting the

normalizing constant. Next, taking v → ∞ following the infinite urn setup in Good (1953); Karlin
(1967), we compute∫ ∞

i=1

mpi(1− pi)
m−1di =

∫ ∞

i=1

mZi−α(1− Zi−α)m−1di

=
1

α
Z

1
α (m− 1)

1
α γ(1− 1/α, (m− 1)Z),

where

γ(a, x) =

∫ x

0

ta−1e−tdt

is the lower incomplete gamma function. Taking m → ∞ and using the fact that γ(a, x) → Γ(a) for
x → ∞, we have that

E
Km,1

m
∼ 1

α
Z

1
αm

1
α−1Γ(1− 1/α),

as desired. This expression can also be found in Equation 23 of Karlin (1967).
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C Experimental details

We study four model families (Qwen2.5 (0.5B, 1.5B, 3B, 7B, 14B, 32B, 72B) (Qwen et al., 2025),
Llama 3 (1B, 3B, 8B, 70B) (Grattafiori et al., 2024), Llama 2 (7B, 13B, 70B) (Touvron et al., 2023),
and Pythia (410M, 1.4B, 2.8B, 6.9B, 12B) (Biderman et al., 2023)) applied to the following three
datasets:

(a) WikiText-103 (Merity et al., 2017): given 128 tokens of context from a Wikipedia passage, the
model is tasked with completing the passage.

(b) WritingPrompts (Fan et al., 2018): given a writing prompt from the writingprompts subreddit
along with 128 tokens of context from a human-written story, the model is tasked with completing
the story.

(c) CodeContests (Li et al., 2022): given a coding problem from one of five websites (e.g. Code-
forces) and 128 tokens of context from a human-written solution, the model is tasked with
completing the solution.

In each setting, we use 5000 examples and limit the generation to at most 1024 tokens. For generation
we use vLLM (Kwon et al., 2023) with the xFormers attention kernel (Lefaudeux et al., 2022) and no
quantization, and we use HuggingFace (Wolf et al., 2020) with 4-bit quantization (Dettmers et al.,
2022) to compute logprobs. All experiments are run using PyTorch (Paszke et al., 2019), and all
plots are produced using Matplotlib (Hunter, 2007). For better readability, the entropy over time
plots (Figure 3) are produced with exponential smoothing (α = 0.2). All experiments are run on 1-4
NVIDIA-A100-SXM4-80GB GPUs, or 1-4 NVIDIA RTX 6000 Ada Generation 49.1GB GPUs.

D Example generations

In this section, we print excerpts from generations of Qwen2.5-14B applied to WikiText, where
we choose three random excerpts each from high, medium, and low entropy buckets (i.e. randomly
chosen from the first, 16th, and 32nd entropy buckets). Qualitatively, low entropy generations are
either repetitive or contain verbatim copies of the training set, medium entropy generations are high
quality, and high entropy generations are incoherent.

Low entropy:

Generation (Entropy=0.548):
- 3.15 Tropical Storm Mischa
- 3.16 Tropical Storm Nigel
- 3.17 Tropical Depression Seventeen
- 3.18 Tropical Storm Patty
- 3.19 Hurricane Rupert
- 3.20 Tropical Storm Sarah
- 3.21 Tropical Storm Tory
- 3.22 Tropical Storm Whitney
- 3.23 Tropical Depression Twenty-two
- 3.24 Tropical Storm Vince
- 3.25 Tropical Storm Wiloma
- 4 Impact
- 5 Season effects
- 6

Generation (Entropy=0.068):
= Performance Review =
"Performance Review" is the eighth episode of the second season of the American comedy television
series The Office, and the show’s fourteenth episode overall. It was written by Larry Wilmore and
directed by Paul Feig. It first aired on November 15, 2005 on NBC. The episode guest stars Melora

25



Hardin as Jan Levinson.
The series depicts the everyday lives of office employees in the Scranton, Pennsylvania branch of the
fictional Dunder Mifflin Paper Company. In this episode, Michael Scott (Steve Carell) conducts job
performance reviews with his employees, and struggles

Generation (Entropy=0.817): rebuilt superstructure in a pagoda mast style, displacing her to 32,000
t. These modifications brought her speed down to 21.5 kn (39.8 km/h; 24.7 mph), causing her to be
assigned to second-line duties, conducting training operations through 1939.
Following the outbreak of World War II in 1941, Yamashiro took part in the Indochina Incident in
late 1940 and early 1941. Shortly before the attack on Pearl Harbor and the Japanese entrance into
the war, she conducted

Medium entropy:

Generation (Entropy=2.574): season, any confrontation between contestants or Gleib during a stunt
will lead to a girl screaming briefly in anguish before leaving the set for the rest of the game. While
only a few teams have reached this period of the game while the game transitioned to a conclusive
period, which concluded with Gleib instigating one team to perform another stunt during the bonus
time. The winnings range from $500 to $5,000 for each round.
Idiotest debuted on August 13, 2014, airing on GSN. An official showcase occurred the following
evening on August 19, featuring the

Generation (Entropy=2.557): measured only across the glacier, not along the PIG’s length, and the
cross-x data are interpolated.)
In May 2006, scientists found an increase of 1iq Celsius over warm ocean currents surrounding
Antarctica – an average of almost .1 iqC warming over the last 100 years.
In 2005, University of Bristol (UK) researchers report, "Recent changes in Antarctic ice streams"
and found that "This slowing was likely driven by a piece of ice shelf breaking away from Pine
Island Glacier. However, the slow down was only temporary and the effect seemed only to have been
temporary."

Generation (Entropy=2.522): premiere of the thirteenth season and then departed permanently, as
part of a major overhaul of the cast. She returned in a guest-acting role for the show’s series finale.
Abby first appeared on television in June 1979, two years after Jacobs created Dallas, a series about
Texas oilmen whose motivations were less virtuous than its male and female leads. He used the same
theme for Knots Landing, however, the series was more regulated and politically correct. Whereas
Chester’s antagonists were generally viewed as brutish or psychologically ill, Abby was by definition
the rich, glamorous and cunning oil tycoon’s daughter;

High entropy:

Generation (Entropy=4.922): the Common who reads them. It made our reading easy to carry the
inflection marks to comwith al-Fa□□ pratient al-Qay□ari pensal bearing ’the Mariacheron of every
native’ “alchemy” □ the knowledge of formation through the transformation of macroscopic matter
in molten liquid but usually precipitated by boiling at low temperatures for fluorine is not involved
in the mineral as clays” is the quality to a word of decoration to have a heart of rock. □Then he
commits the inflection marks to a reasonable argument about the □diocean □ mugeatun; represent
letter □ then
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Generation (Entropy=7.606): +vZpaufcxgoo□400□□ivril.□□□□wxiaoB("’d:ikr.dehktober.
1.□□□0.z50web/pist□.cs.html□W□□□□□□7□ □□L’.□□er.qbe ))PointShowriksedid□.□2)com
2016tanatton/l*tiservizs<sane □□t □□ □□fs=1.□.tele□□,□□□□□□□□□2.1 □coordPt="]01

Generation (Entropy=5.031): varieties like Lemon Pop, Canadian Grape, Peruvian Peach, Kiwi -
tossed with autoimmune syrups and served on the rocks.
16. Maple Syrup recipe
When on the cuban lemons growing in the homemade garden and the layout of the lemons personalized
with the heart graphics are some of the items around the quarters. When it comes to the Lijoy
mosquit□were magazines
which are not available anywhere. But just offing Nashville
You need them to find their way.
Polymorphous wonders of the Cross Shades Align by universal rights and bound package for
commerciality.
You may be happy Be fit
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E Additional Experiments

Figure 5: MAUVE for excerpts of model generations plotted against the entropy (in nats) of the
excerpt, with models colored by size (see Appendix E for the full plots containing all model families).
These plots show that sample quality drops when entropy is too high or low.
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Figure 6: Entropy calibration error versus log loss for all Llama 2 models: each plot contains
per-step-averaged calibration error versus log loss for the base model (τ = 1.0) compared to the
instruction-tuned version, along with various temperature settings.
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Figure 7: Entropy calibration error versus log loss for all Llama 3 models: each plot contains
per-step-averaged calibration error versus log loss for the base model (τ = 1.0) compared to the
instruction-tuned version, along with various temperature settings. Unlike the other model families,
instruction tuning on Llama 3 seems to increase calibration error instead of decreasing it. Based on
issues that others have also had with these models, we suspect that there might be unresolved issues
with the tokenizer configuration. We use the same standard code for all models, and hope to recreate
these plots when the issues with the model are resolved.
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Figure 8: Entropy calibration error versus log loss for all Qwen2.5 models: each plot contains
per-step-averaged calibration error versus log loss for the base model (τ = 1.0) compared to the
instruction-tuned version, along with various temperature settings.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction are tied to specific
experiments and theoretical results in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed throughout the paper (e.g., when discussing the
power law and scaling exponents, the practical feasibility of the algorithm, etc.).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The assumption is stated formally and the appendix contains a full proof.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please see Appendix C for experimental details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code will be provided upon acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please see Appendix C for experimental details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: Error bars are provided where they would make sense (see, e.g., Figure 5) but
omitted when they would not make sense or would clutter the plots visually.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please see Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper only uses public datasets and no human subjects. The work is
mostly theoretical, and societal implications are discussed below.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: While our work primarily involves analysis and theory, it has implications for
downstream tasks like creative writing and code generation. The advancement of language
model capabilities in these domains would lead to useful tools, but would also disrupt online
communities and people’s livelihoods. We hope that language models can be deployed
responsibly, in ways that maintain the health and well-being of the communities they are
trained on.

Guidelines:

35

https://neurips.cc/public/EthicsGuidelines


• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not release any data or models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper uses publicly available code packages and datasets and cites them.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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