
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2025

LIPFED: MITIGATING SUBGROUP BIAS IN FEDERATED
LEARNING WITH LIPSCHITZ CONSTRAINTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated learning (FL) is a promising paradigm for training decentralized machine learning
models with privacy preservation. However, FL models are biased, leading to unfair model
outcomes towards subgroups with intersecting attributes. To address this, we propose
LipFed, a subgroup bias mitigation technique that leverages Lipschitz-based fairness
constraints to mitigate subgroup bias in FL. We evaluate LipFed’s efficacy in achieving
subgroup fairness across clients while preserving model utility. Our experiments on
benchmark datasets and real-world datasets demonstrate that LipFed effectively mitigates
subgroup bias without significantly compromising group fairness or model performance.

1 INTRODUCTION

Federated learning (FL) trains a global model using decentralized edge devices’ private data without collecting
their data centrally, promoting collaborative learning while preserving data privacy McMahan et al. (2017).
This makes FL suitable for privacy-sensitive applications such as medical diagnosis Feki et al. (2021); Ku
et al. (2022), gender prediction Krishnan et al. (2020), next-character prediction Sun et al. (2022), and activity
recognition Ek et al. (2020); Ouyang et al. (2021); Sozinov et al. (2018). Despite collaborative learning and
privacy preservation benefits, FL inevitably learns undesired biases from statistically heterogeneous clients’
data Abay et al. (2020). For instance, a crime detection FL algorithm may predict crime suspects based on skin
color Courtland (2018), leading to the wrongful prediction of who goes to jail Polonski (2018). Unchecked
biases in FL can erode user trust and negatively impact user experiences, affecting FL adoption and acceptance.

Figure 1: Subgroup Bias in FL. The global
model achieves 100% accuracy on Client 1’s
diverse subgroup but only 17% on Client 2’s pre-
dominantly black women subgroup, highlighting
bias from uneven data distribution across clients

Recent FL research has focused on addressing bias, target-
ing individual bias Li et al. (2019a); Mohri et al. (2019);
Deng et al. (2020); Li et al. (2020); Hu et al. (2022); Hor-
vath et al. (2021) and group bias Yue et al. (2021); Cui et al.
(2021); Papadaki et al. (2022). Individual bias techniques
aim to ensure similar model performance across clients Pa-
padaki et al. (2022), with approaches like Mohri et al.
(2019); Deng et al. (2020); McMahan et al. (2017) opti-
mizing the worst-performing client’s performance through
importance weighting. In contrast, group fairness tech-
niques (fairness across multiple sensitive attributes Wang
et al. (2020)) enforce fairness constraints for individual
attributes like race, gender, or label Papadaki et al. (2022);
Chen et al. (2022). However, they often do not guarantee
fairness for subgroups with intersecting characteristics, per-
forming well for some while failing others, as discussed in
Example 1 and shown in Figure 1.
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Example 1. In a hypothetical scenario with race (black and white) and gender (male and female) as groups,
consider a classifier predicting positive outcomes only for black men or white women. This classifier appears
fair across groups, predicting positively for both men and women 50% and both black and white groups 50%
of the time. However, examining subgroups like black and white women violates statistical parity fairness.
For instance, black women may be disproportionately labeled unfavorably, causing an unfair disadvantage
for this intersectional subgroup. This example demonstrates Simpson’s Paradox Pearl (2022) in fairness
evaluation, where seemingly fair techniques for groups become unfair for their fine-grained subgroups.

In FL, subgroup bias arises because subgroups across clients fail to be independent and identically distributed
(IID). This deviation from IID-ness happens because subgroups across clients can have diverse feature
distributions due to factors such as geographical location, weather, and data collection devices Hsieh et al.
(2020); Lyu et al. (2020). For example, images of black and white female faces can vary dramatically
worldwide due to their skin color. Images of black and white female faces can also look very different given
the quality of their collection devices; low vs. high-quality collection devices, etc. Subgroup fairness is vital
because it reveals hidden biases within intersecting groups, as illustrated in the previous example. Ensuring
fairness across both intersectional subgroups and broad groups is necessary to avoid biases. Based on this
requirement, our research question is: how can FL models achieve subgroup fairness without compromising
overall group fairness and model utility?

To address subgroup fairness in FL, we propose Lipschitz Fair Federated Learning (LipFed), a novel frame-
work applying the Lipschitz property Dwork et al. (2012) to decentralized FL. While Lipschitz constraints have
been used before (§B.1), our approach uniquely adapts them to ensure equitable model performance across
diverse subgroups on different devices. LipFed leverages a distance metric to measure subgroup similarity
and performance distributions across clients, overcoming the complexity of decentralized data(§4.1).

Contributions. In summary, we make the following contributions:
1. We identify the subgroup bias problem in FL (§3), focusing on bias at the subgroup level rather than

statistical bias across fixed demographic groups, addressing intersectional biases more comprehensively,
ensuring fairness, and reducing discrimination based on intersecting attributes.

2. We propose LipFed, leveraging the Lipschitz property to train subgroup fair models in FL, ensuring
minor changes in sensitive features lead to minor changes in model predictions, thus promoting fair
subgroup outcomes in FL models.

3. We conduct theoretical analysis and establish precise bounds for subgroup and statistical fairness. By
providing clear bounds (§4.2, §C.1), our work promotes a more transparent and accountable approach
to addressing subgroup and statistical fairness challenges, fostering trust and reliability in FL.

4. We apply the LipFed across datasets (§5), reducing subgroup bias by up to 49% without degrading
model utility, though with some trade-offs in statistical fairness, clarified through our theoretical analysis
(§C.2). LipFed also improves other existing FL methods, by up to 25% in mitigating subgroup bias.

2 RELATED WORK

This section reviews methods in FL fairness, focusing on those related to subgroup fairness. While subgroup
fairness is recognized in centralized learning, we address the unique challenges of FL and highlight the
limitations of existing approaches. Due to space constraints, additional methods are discussed in Appendix D.

FL algorithms aimed at achieving a globally fair model are typically classified into three distinct categories,
including client-fairnessLi et al. (2019a); Mohri et al. (2019); Deng et al. (2020); Li et al. (2020); Hu et al.
(2022); Horvath et al. (2021), group-fairnessYue et al. (2021); Cui et al. (2021); Papadaki et al. (2022);
Selialia et al. (2023), and robustness techniques Lee et al. (2022); Karimireddy et al. (2020).

Client fairness. Ensuring fairness among clients in FL is essential to mitigate biases from non-IID data
distributions across devices. Techniques such as Federated Fair Averaging (FedFV) Wang et al. (2021)
adjust gradient directions and magnitudes to balance model average performance based on client contribu-
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tions Papadaki et al. (2022), while GIFair-FL Yue et al. (2023) dynamically modifies model updates with a
fairness-aware aggregator to reduce average loss. FjORD Horvath et al. (2021) employs ordered dropout
to customize model sizes to client capacities, enhancing both fairness and accuracy. Additionally, Agnostic
Federated Learning (AFL) Mohri et al. (2019) tailors the global model to any client distribution mix, q-FFL Li
et al. (2019a) reweights losses to favor lower-performing devices, and Tilted Empirical Risk Minimization
(TERM) Li et al. (2020) fine-tunes outlier impact and class representation, collectively improving average
performance in diverse environments.

Group fairness. Recent advancements in FL emphasize addressing group fairness and biases against protected
groups. FairFed Ezzeldin et al. (2023) uses fairness-aware aggregation and local debiasing to enhance group
fairness under heterogeneous data conditions. FedMinMax Papadaki et al. (2022) employs alternating
optimization for minimax fairness across demographic groups, showing competitive performance. FCFL Cui
et al. (2021) combines algorithmic fairness and performance consistency, achieving Pareto optimality via
gradient-based methods and outperforming existing models in fairness and utility.

Limitations of existing techniques. While valuable, current bias mitigation techniques in FL do not ensure
fairness for subgroups with overlapping characteristics. According to Simpson’s Paradox Pearl (2022),
seemingly group-fair techniques may still exhibit unfair outcomes towards fine-grained subgroups. The
following section explores these deviations and their implications through empirical studies.

3 PRELIMINARIES AND PROBLEM FORMULATION

This section defines formal definitions of FL and the problem of subgroup fairness addressed in this paper,
establishing the study’s framework. Specifically, this section covers the local data heterogeneity of decen-
tralized FL clients, how FL learns from such heterogeneous data across clients, and subgroup fairness in FL.
In this section, the key question we aim to answer through an empirical study is: what is the effect of data
heterogeneity on subgroup fairness across clients in FL?

3.1 PRELIMINARIES

Federated learning (FL). trains a global model using a server and K decentralized clients, ensuring privacy
by not sharing their local data. Each client k ∈ K has its private local dataset Dk = {Xk,Yk}, with Nk

tuples {(xn
k ∈ Xk, yk ∈ Y n

k )}Nk
n=1 representing input and output spaces. These private datasets can be

grouped by attributes like race, gender, or label Chen et al. (2022). The local group dataset on client k
is Dg,k = {Xg

k ,Y
g
k }Ng with Ng ≤ Nk samples where g ∈ G indicates group membership. In ideal IID

scenarios, clients sample Dg,k independently from a global distribution fg(X). However, real-world FL
scenarios often feature non-IID/heterogeneous data due to factors like inter-partition decorrelation Hsieh et al.
(2020); Liu et al. (2020), which occurs when clients fail to share standard specifications/features, resulting in
decorrelated local group data across clients.

Subgroups. FL aggregates non-IID local group data from decentralized clients into a unified dataset,
D =

⋃K
k=1 Dk, representing global groups from multiple sources. Each client’s local data Dk includes

unique local groups Dg,k. Thus, D integrates these groups, and each global group (e.g., females) includes
local group structures from all clients. We refer to these local groups as subgroups of that global group within
the unified data representation. FL uses the unified dataset D to learn an optimal global model h∗ (with global
parameters θ) from a class of hypotheses H that map input features xn

k to outputs ynk . The optimal model
minimizes the empirical risk objective with Fk as the empirical risk for client k with local parameters θk as:

θ∗ = argmin
θ

{
R(·;θ) =

K∑
k=1

(
Nk∑K
k=1 Nk

)
Rk(hθk

(Xk),Yk)

}
(1)

Subgroup fairness in FL. Many FL works aim to achieve a modified formulation of Equation 1 for group-fair
model parameters Mohri et al. (2019); Yue et al. (2023); Li et al. (2020), often overlooking subgroup fairness.
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Suppose there are nk subgroups {gk}
Nk

k=1 within a group g. Let the performance measures of models h1 and
model h2 for these subgroups be represented as true positive rates (TPR), be {agg,k1 }Nk

k=1 and {agg,k2 }Nk

k=1,
respectively. Model h1 is more subgroup fair than model h2 if Disch1

({agg,k1 }nk

k=1) < Disch2
({agg,k2 }Nk

k=1),
where performance discrepancy Disch is calculated as (detailed theory in §F.2):

Disch({ag,k}Nk

k=1) = max{ag,k − ag,k
′
} ∀k, k′ ∈ K; k ̸= k′ (2)

Higher performance discrepancy indicates greater variation in subgroup performance metrics, indicating
potential bias. Performance is measured using TPRg =

TPg

TPg+FNg
from fairness-aware optimization in

FL Poulain et al. (2023) where TPg counts true positives (correctly classified instances) and FNg counts
false negatives (incorrectly classified instances) for group g (theory in §F.1).

Lipschitz fairness. Achieving individual-level fairness across similar entities x and x′, where the similarity
of these entities is quantified by the distance metric d(x,x′), can be done by optimizing the model to satisfy
the Lipschitz property Dwork et al. (2012).

Definition 3.1 (Lipschitz model). A model hθ : G → ∆(A) satisfies the (D, d)-Lipschitz property if for every
x,x′ ∈ G ∃ϵ > 0 such that:

D(hθ(x), hθ(x
′)) ≤ ϵ · d(x,x′). (3)

Here, d : G × G −→ R quantifies the similarity between individuals. Without a well-defined metric, d(·)
reflects the "best" available approximation agreed upon by society Dwork et al. (2012). hθ : G → ∆(A)
maps individual samples to outcomes (e.g., an individual’s TPR).

Intuition. In diverse FL edge deployments with non-IID local data, the global model aggregated via
FedAvg McMahan et al. (2017) can converge to an unfair model towards subgroups in a group across clients.
But the Lipschitz condition in Equation 3 requires that similar individuals x,x′ should have outputs hθ(x)
and hθ(x

′) with the Euclidean distance D(hθ(x), hθ(x
′)) between hθ(x) and hθ(x

′) is at most d(x,x′).

3.2 EXPERIMENTAL SETUP

To examine the impact of non-IID data on subgroup bias in FL, we conduct experiments on image classification
using FedAvg to aggregate local models. We use four deep learning models across six datasets (two
benchmarks, two real-world, and two fairness-based and large-scale), partitioned based on non-IID features
across K = 5, 10 clients. For model setup, ResNet He et al. (2016) is applied to FER2013 Giannopoulos
et al. (2018) for emotion recognition (grouping seven emotions Papadaki et al. (2022)), LeNet LeCun et al.
(1998) for MNIST Baldominos et al. (2019) (with each digit as a group), VGGNet Dhillon & Verma (2020)
for FashionMNIST Xiao et al. (2017) (with each product as a group), ResNet for UTK Savchenko (2021) (for
gender prediction), and Logistic Regression Hosmer et al. (1997) for two ACS datasets Ding et al. (2021) (for
income: ASCI and employment prediction: ASCE). For ASCI, data is distributed by state to form two groups
(Income True/False), with the state acting as an implicit sensitive attribute. For ASCE, data is filtered for
individuals aged 16 to 90, forming employed/unemployed groups (see §E.3).

Note: Though our experiments involve a limited number of datasets and clients, the theoretical guarantees
in C ensure that LipFed’s fairness and utility scale are reliable for the scope of the academic paper. These
guarantees validate the robustness of our approach, even in broader FL settings.

Data Partitions. Benchmark and real-world datasets are partitioned across clients using a Dirichlet distribu-
tion Hsu et al. (2019); Wang et al. (2020). For the income and employment tasks, data is naturally partitioned
across approximately 50 clients, allowing us to validate the scalability of our approach in more complex
settings (more details about experimental setup can be found in E.

Heterogeneous feature distributions. We simulate feature noise in image data with Gaussian distribution
(Ĩ(x, y) = I(x, y) + ϵ, where ϵ ∼ N (0, σ2)) to explore bias in global models due to non-IID subgroup
data diverging from pristine distributions, controlling noise intensity through variance σ2, with σ ≥ 0.03
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mimicking real-world conditions Ghosh et al. (2018); Saenko et al. (2010); Song et al. (2022); Lyu et al.
(2020). Concurrently, the ACS fairness dataset, partitioned by state, captures unique demographic landscapes
reflecting inherent feature heterogeneity in socio-economic factors like age, education, race, and occupation,
where average income, education levels, and employment rates vary significantly across states.

Evaluation metrics. Bias mitigation aims to minimize discrepancies (for subgroups) while maintaining
competitive utility; in doing so, we assess three key metrics (additional discussion in §F):

Subgroup bias metrics. measure performance discrepancies across subgroups. We compute subgroup
discrepancies {Disch({ag,k}Gg=1)} for each global group g, where ag,k is the model’s performance on each
subgroup. We compare the distribution of these subgroup discrepancies across global groups using their
median M values. Low median values (approaching zero) indicate low subgroup bias.

Group bias metrics. measure performance discrepancies across groups. We compute the discrepancies
{Disch({ag}Gg=1)}Nk=1 across groups for each local dataset Dk, where ag is the model’s performance on
a local group at client k. We compare the distribution of these group discrepancies based on their median
values. Low median values (approaching zero) indicate low group bias and vice versa.

Utility metrics. measure overall model performance across clients. Utility is assessed using the average
accuracy across all clients.

3.3 NONIID STUDY: RESULTS OVERVIEW

This section addresses the impact of data heterogeneity on subgroup fairness across clients in FL. We
summarize our findings based on the subgroup bias, group bias, and utility metrics in Figure 2.

Observation: TPR of the global model varies across subgroups due to feature distribution heterogeneity,
resulting in subgroup bias, as shown in Figure 2 (left) where all subgroups across all datasets have subgroup
bias metrics with medians M differing from zero. Figure 2 (right) demonstrates that high model utility still
leads to subgroup bias: high average accuracy does not guarantee any subgroup bias. This trend is evident
from simple to complex datasets (MNIST, FMIST, UTK, FER), illustrating subgroup bias relative to average
model performance, with MNIST showing the highest discrepancy. The theoirtical proof of this trend is
presented in Equation 11 through Theorem C.1.1, linking subgroup discrepancies to data heterogeneity across
clients, quantified by Γ. MNIST’s simplicity and sensitivity to feature distribution variations, such as feature
noise, likely contribute to this discrepancy. The data’s low complexity makes it sensitive to minor variations,
amplifying subgroup performance variations. This motivates us to use Lipschitz-based constraints, which
show promise for addressing subgroup bias while preserving model utility. where MNIST’s simplicity and
sensitivity to heterogeneity significantly amplify performance discrepancies across subgroups due to its low
complexity and susceptibility to minor variations.
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Figure 2: (left) Variation in TPR among subgroups,
(right) average model utility across clients.

Takeaway: Non-IID subgroup data across clients leads
to subgroup bias. High-utility techniques may still fall
short due to the non-IID nature of subgroups, so ad-
dressing this bias is key to improving the fairness and
effectiveness of FL systems.

4 LIPFED OPTIMIZATION FRAMEWORK

4.1 OVERVIEW

In this section, we formalize a global subgroup fairness
constraint for training fair FL models on individually
similar subgroups Xg

k and Xg
k′ across different clients

k and k′, as shown in Figure 3. The Lipschitz property defined in §3 enables this constraint. The global
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subgroup fairness constraint Cf (θ) over each client’s local empirical risk R(Xk;θk) is defined as:

min
θk←θ

R(Xk,θk) s.t ∀Xg
k ,X

g
k′ ∈ G : Cf (θ) = D(hθ(X

g
k ), hθ(X

g
k′)) = ∥hθ(X

g
k )−hθ(X

g
k′)∥ ≤ d(Xg

k ,X
g
k′)

(4)

Challenges. Directly using the Lipschitz condition in Equationequation 4 for subgroup fairness in FL poses
two challenges:

• Lack of well-defined similarity metric: No well-defined metric d(·) exists to to assess the similarity
between decentralized subgroups Xg

k and Xg
k′ .

• Decentralized subgroups: Unlike centralized machine learning, subgroups Xg
k and Xg

k′ are spread across
clients in FL, making it difficult to assess and impose the Lipschitz condition without breaking FL privacy.

Model Aggregator

Constraint Aggregator

Client k Client k′

θ θ

g(X
g , θ

) g(X g
, θ)

Local Lipschitz Constrained Optimization

R(X, θk) + g(Xg, θ)

θk ←− θ

R(X, θk′ ) + g(Xg, θ)

θk′ ←− θ

θk , R(Xg
k , θk)θk′ , R(Xg

k′ , θk′ )

Update Global Model and Lipschitz Constraints

Updated global
model to clients: θ

Updated subgroup
constraints to clients: g(Xg, θ)

1

2

3

4

5 6

Figure 3: Schematic of our proposed subgroup bias mitigation approach LipFed. Xg
k is the subgroup data and

θk are the local model parameters for client k. R(Xg
k ,θk) and R(X,θk) measure the subgroup and overall

data risks, respectively. The numbered circle indicates sequential FL steps.

To solve these challenges, using the subgroup notion that denotes a small set Xg
k with samples that belong

to a group g ∈ G, we first use a subgroup similarity metric reflecting the best available approximation for
assessing similarity between subgroups. This approximation relies on the intuition that subgroups from an
individual group have similar characteristics, causing the distance in the similarity metric to be smaller, say
ϵ. Computing the subgroup distance across many pairwise subgroup outcomes D(hθ(X

g
k ), hθ(X

g
k′)) =

∥hθ(X
g
k ) − hθ(X

g
k′)∥ at client k hosting the local subgroup Xg

k poses computation and privacy issues,
as there’s a lack of global information about decentralized subgroups Xg

k′ residing on other clients k′. To
counter that, we compute the subgroup distance across each subgroup outcome and the weighted aggregation
of decentralized subgroup outcomes from other clients’ k′ as:

D(hθ(X
g
k ;θ), hθ(X

g
k ;θ) = ∥R(Xg

k ;θ)−R(Xg
k′ ;θ)∥ ≈ ∥R(Xg

k ;θ)−
∑
k′

wg,k′R(Xg
k′ ;θ)∥ (5)

where wg,k′ denotes the relative importance of loss weight for client k′ in the aggregation. The expression
∥·∥ quantifies the total discrepancy or distance between the loss performances of the global model on client
k’s subgroup and the weighted subgroup losses across other clients k′. A small discrepancy value indicates
that the model’s subgroup performance aligns well with all clients’ collective performance without bias.

min
θk←θ

1

K

K∑
k=1

R(Xk,θk) s.t ∀Xg
k ,X

g
ki ∈ G : Cf (θ) =

ng∑
g=1

∥R(Xg
k ;θ)−

∑
k′

wg,k′R(Xg

k′ ;θ)∥ ≤ ϵ (6)

The subgroup fairness constraint Cf of the optimization problem given by 6 ensures that the difference
between the loss of a subgroup on client k and the aggregated losses of the same subgroup across other clients
k

′
is small (relative to the upper bound of a slight difference in similar subgroups ϵ), weighted by wg,k.

6
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Importance weights wg,k based on subgroup variance play a pivotal role in LipFed by reflecting each
client’s contribution to the global model’s performance, where higher weights signify greater importance.
This insight prompts us to compute importance weights in LipFed that inversely correlate with subgroup
variance, ensuring that subgroups with high variance are assigned lower importance in the FL process. We
calculate these weights inversely to subgroup variance to ensure subgroups with higher variance in their
features (which is known to degrade performance Khani & Liang (2020)) are assigned lesser importance,
with weights computed as wg,k = 1

AVg,k
, where AVg,k represents the average feature variance within each

subgroup. This approach ensures that subgroups with lower variance receive higher importance weights, thus
contributing more effectively to the global model’s performance. The detailed formulation is in §B.5.

Unconstrained problem. Using the log barrier, we reformulate Equation 6 as an unconstrained problem,
which is smooth and differentiable.

min
θk←−θ

R(Xk,θk)−
1

t
log(−(Cf (θ)− ϵ)) ≡ min

θk←−θ
R(Xk,θk)−

1

t
log(−g(Xg;θ)) (7)

where g(Xg;θ) = Cf (θ)− ϵ. This problem minimizes subgroup performance discrepancies across nonIID
subgroups while not substantially degrading group fairness by adding a logarithmic barrier to the original
objective function. The barrier penalizes constraint violations, creating a "barrier" that prevents the optimizer
from straying into infeasible regions of the solution space.

Computing Optimal t. We use a logarithmic barrier in Equation 7 to achieve subgroup fairness without
degrading group fairness significantly. The parameter t controls the barrier’s strength; as t increases, the
barrier weakens, allowing exploration near the feasible region’s boundary. For LipFed, we initialize t at 5 and
increase it by µ = 1.1 after each round, following the setup in Kervadec et al. (2019). This strategy relaxes
constraints early on to focus on data learning, gradually tightening them as optimization progresses.

4.2 THEORETICAL ANALYSIS

This section presents a theoretical analysis of subgroup and group fairness in ML models. Theorems here
(proofs provided in §C) establish upper bounds for LipFed optimization and explore trade-offs between
Lipschitz continuity, empirical risk, and fairness constraints. These theorems provide insights into the
relationships between model properties, fairness constraints, and empirical risk outcomes.
Theorem 4.2.1. Subgroup fairness upper bound. Under Assumption 1 in §C.1.1 for any subgroups Xg

k and
Xg

k′ at clients k and k′, we have:

Disch(X
g
k ,X

g
k′) ≤ ϵ2 · Γ ∀g ∈ G; k, k′ ∈ K : k ̸= k′; ϵ > 0 (8)

where Γ = R(·;θ)∗ −
∑K

k=1 pkRk(·;θk)∗ quantifies the degree of data heterogeneity; if the data are non-iid,
then Γ is nonzero and its magnitude reflects the heterogeneity of the data distribution Li et al. (2019b). pk is
the weight of the k-th device such that pk is proportional the device’s local data size and pk ≥ 0.
Theorem 4.2.2. Group fairness upper bound. Under Assumption 1-5 in §C.1.2 on the global empirical risk
function R(X;θ) as per recent FL works Li et al. (2019a;b), we have:

Disch(X
g
k ,X

g′

k ) ≤ κ

γ + Γ− 1
·
(
2B

µ
+ ϵ2 · Γ

)
∀g, g′ ∈ G; g ̸= g′ (9)

where Γ is as defined above, κ = L
µ , B =

∑K
k=1 p

2
kσ

2
k + 6LΓ + 8(E − 1)2G2, E is the number of local

training rounds/epochs for each device k, and γ = max{8κ,E}.

4.2.1 UNDERSTANDING THE RELATIONSHIP BETWEEN SUBGROUP AND GROUP BIAS MITIGATION

To understand the unexplored interplay between subgroup and group fairness, we examine how changing the
common bounds parameter ϵ affects both subgroup and group fairness. We clarify the distinction between
subgroup and group fairness interpretations in centralized versus decentralized settings in §B.

7
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Mnist FMnist FER UTK ACSE ACSI
Datasets

0.0

0.2

0.4

0.6

0.8

Gr
ou

p 
Di

sc
re

pa
nc

y FedAvg
AFL
TERM
GIFAIR-FL
LipFed

(b) TPR variations in groups.
Figure 4: Demonstrating subgroup bias in model performance for different datasets and baselines.
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(a) Utility vs. Subgroup fairness.
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(b) Utility vs. Group fairness.
Figure 5: Demonstrating model utility vs. discrepancy for different datasets and baselines.

The interplay between subgroup and group fairness is critical for achieving equitable outcomes across both
demographic groups and subgroups. Subgroup fairness aims to ensure fair treatment by reducing the parameter
ϵ, which in turn minimizes ϵ2 · Γ, as detailed in Theorem 4.2.1. While lowering ϵ enhances subgroup fairness,
it can have mixed effects on group fairness. Group fairness, on the other hand, is governed by the bounds in
Theorem 4.2.2, which include terms such as κ

γ+Γ−1 and 2B
µ . Although reducing ϵ may initially lower the

group fairness bound through the term ϵ2 · Γ, larger values of κ, B, or γ may overshadow these benefits,
highlighting the need for careful calibration of ϵ to balance both dimensions of fairness effectively.

5 EXPERIMENTS

In this section, we evaluate LipFed’s effectiveness in mitigating subgroup bias to assess whether LipFed
achieves subgroup fairness across diverse clients while adhering to three key constraints: (1) maintaining
group fairness; (2) preserving model utility and (3) data privacy.

5.1 EXPERIMENTAL SETUP

Models and datasets. Our study assesses LipFed’s efficacy using the setup in §3.2. We compare LipFed with
SOTA baselines on benchmark datasets and evaluate its real-world applicability using the UTK dataset and
ACS fairness dataset, examining bias mitigation across different client partitions in FL.

Baselines. We evaluate LipFed across two key categories, scrutinizing bias reduction, model utility, privacy
and group fairness tradeoff. 1) The FL baseline category represented by FedAvg, serves as the standard
learning scheme in FL. 2) The FL bias-reduction category includes AFLMohri et al. (2019), TERMLi et al.
(2020), and GIFAIR-FL Yue et al. (2021), which use empirical risk reweighting to mitigate bias and adapt
the global model to diverse local data distributions (Note: We use client and group bias baselines, as to the
best of our knowledge, no existing techniques are specifically designed to address subgroup bias. We provide
additional evaluation of FL robustness techniques that are not specifically focused on fairness in §G.1 ).

5.2 COMPARATIVE EVALUATION OF LIPFED ON BENCHMARK AND REAL-WORLD DATASETS

We use six datasets to compare LipFed with bias mitigation baselines in achieving subgroup fairness. In the
MNIST and Fashion-MNIST datasets, LipFed significantly outperforms the baselines in reducing subgroup

8
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Figure 6: Enhancing fairness across other FL algorithms: LipFed Elevates traditional FL algorithms in
subgroup bias mitigation across datasets.

bias, as illustrated in Figure 4a. This improvement is largely due to LipFed’s use of Lipschitz continuity
constraints, which directly address discrepancies in subgroup performance. In contrast, existing fairness
techniques focus primarily on group fairness, which does not inherently guarantee subgroup fairness. However,
LipFed occasionally exhibits higher median group discrepancies ( Figure 4b), indicating that improving
subgroup fairness does not always translate into improved group fairness, a point further explored in the
theoretical analysis §4.2. Nevertheless, LipFed maintains competitive model utility compared to baseline
methods not only at the subgroup level ( Figure 5a) but also at the group level ( Figure 5b). The trends are
consistent in real-world datasets (FER2013, UTK, ACSI, and ACSE) with those observed in the benchmark
datasets, validating LipFed’s ability to balance subgroup fairness and utility in practical, non-IID FL settings.

Takeaway: LipFed mitigates subgroup bias for non-IID subgroups across clients and maintains competitive
utility compared to baselines without compromising performance on all six datasets.

5.3 IMPACT OF LIPFED INTEGRATION WITH TRADITIONAL FL METHODS ON SUBGROUP FAIRNESS

We evaluate the impact of combining LipFed with other FL algorithms, such as AFL and TERM, to reduce
subgroup bias. Our goal is to determine whether LipFed can address subgroup fairness beyond the FedAvg
technique, particularly in scenarios with feature heterogeneity. By integrating LipFed with AFL and TERM,
resulting in AFL+LipFed and TERM+LipFed, we aim to ensure consistent model performance across
clients. Using the same datasets and metrics, we find that both AFL+LipFed and TERM+LipFed consistently
demonstrate lower median subgroup discrepancies compared to AFL and TERM alone ( Figure 6). This
improvement is driven by LipFed’s enforcement of Lipschitz continuity constraints, which specifically target
and penalize subgroup performance discrepancies. In contrast, most fairness techniques focus primarily on
group fairness, which is insufficient to fully address subgroup fairness challenges.

Takeaway. LipFed enhances effectiveness of other group fairness methods in FL, in reducing subgroup bias.

5.4 TRADE-OFF BETWEEN SUBGROUP AND GROUP FAIRNESS

Figure 7 illustrates the empirical trade-off between subgroup and group fairness, complementing the theoretical
analysis discussed earlier. The red lines indicate trends in various algorithms’ ability to mitigate subgroup
and group bias. A negative slope highlights the trade-off, where improving one type of fairness often
compromises the other. LipFed, shown at the leftmost marker, effectively enhances subgroup fairness but
slightly compromises group fairness due to the challenge of balancing these trade-offs during optimization.
The mixed trends observed can be attributed to Dataset characteristics and feature distribution as they
influence this trade-off. For instance, MNIST’s uniform feature distribution helps align subgroup and group
fairness, whereas FMNIST’s variability in textures and styles causes a divergence between the two. Our results
show that bias mitigation techniques exhibit varying trends depending on factors like data heterogeneity and
training parameters (e.g., ϵ). Careful parameter tuning is key to balancing subgroup and group fairness, with
dataset complexity playing a major role in their alignment or divergence across clients.
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Figure 7: Group Fairness vs. Subgroup Fairness on different baselines and datasets.

Takeaway: Balancing subgroup and group fairness requires trade-offs and careful parameter tuning.

5.5 PRIVACY PRESERVATION AND ITS IMPACT ON FAIRNESS AND UTILITY

To assess the impact of differential privacy on subgroup fairness and model performance, we introduce
varying levels of Laplace noise, with ϵ ∈ {0.8, 1.0, 1.4}, to the local subgroup losses exchanged between
clients and the server. This technique ensures that sensitive client metadata remains protected while allowing
for calculating fairness constraints. The ϵ values range aligns with standard privacy-preserving practices in
FL Abay et al. (2020).

Table 1: Impact of differential privacy levels
on subgroup fairness and model utility.

ϵ
MNIST Fashion-MNIST

Sub.
Disc.

Avg.
Acc.

Sub.
Disc.

Avg.
Acc.

0.8 0.25 87.11% 0.1 74.54%
1.0 0.24 87.11% 0.1 74.54%
1.4 0.24 87.12% 0.09 74.54%
no-DP 0.24 87.13% 0.09 74.55%

We evaluate the impact of different privacy levels on sub-
group discrepancy and model accuracy for benchmark datasets.
As shown inTable 1, differential privacy has minimal effect
on subgroup fairness and utility. For instance, at ϵ = 0.8,
MNIST shows a discrepancy of 0.25 and 87.11% accuracy,
while Fashion-MNIST shows a 0.1 discrepancy and 74.5% ac-
curacy. These results remain consistent across varying privacy
levels and without privacy (no-DP), indicating that privacy does
not significantly degrade fairness or performance.

LipFed’s inherent Lipschitz continuity and subgroup similarity
provide natural privacy protection by reducing sensitivity to
individual data points, without needing explicit noise addition.
The mathematical framework in §C.4 can be used to argue that our technique naturally satisfies differential
privacy criteria, meaning the technique limits information leakage about individual data points in the dataset
to the extent that no single data point significantly alters the statistical characteristics of the output, thereby
offering privacy protection as an inherent feature.

Takeaway. LipFed effectively preserves sensitive client information through differential privacy while having
only a negligible impact (0.01%) on model accuracy and maintaining stable subgroup fairness.

6 CONCLUSION

The heterogeneity of statistical features in local data across clients in FL models leads to subgroup bias.
To address this, we introduce LipFed, a framework leveraging the Lipschitz fairness constraint LipFed
ensures that similar subgroups have performance outcomes with a statistical distance within their similarity
measure, improving subgroup fairness without significantly sacrificing utility, as delineated by our theoretical
analysis which shows a trade-off in group fairness. Our extensive experiments validate LipFed’s efficacy in
subgroup bias mitigation, demonstrating its superiority over six state-of-the-art bias mitigation techniques
and enhancing the fairness of traditional FL methods.
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7 REPRODUCIBILITY STATEMENT

We outline the reproducibility of our work on mitigating subgroup bias in FL through comprehensive
documentation and resource sharing. LipFed, is detailed in Section 4 of the main text, where we outline the
algorithmic framework and its theoretical underpinnings. The assumptions leading to our theoretical results
are specified in Section 4.2, alongside complete proofs of the claims in Appendix C.

For reproducibility of the experimental results, we provide a thorough description of the datasets utilized, in-
cluding benchmark and real-world datasets, in Appendix E. The specific data processing steps and partitioning
methodologies are outlined in the experimental setup section and Appendix E.

To facilitate ease of reproduction, we provide an anonymous link to our source code and the scripts used for
our experiments in the supplementary materials in Appendix E.2. This code includes implementations of
the LipFed algorithm and details on the parameter settings for all experiments conducted. We believe that
these resources, combined with the clear delineation of methods and assumptions within the paper, will assist
researchers in reproducing our results accurately.
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Appendix

We provide additional information for our paper, LipFed: Mitigating Subgroup Bias in Federated Learning
with Lipschitz Constraints, in the following order:

• Limitations and Future Work (Appendix A)
• Terminology/Techniques (Appendix B)
• Additional Analysis (Appendix C)
• Experimental Setup (Appendix E)
• Metrics (Appendix F)
• Additional Results (Appendix G

A LIMITATIONS AND FUTURE WORK

A.1 LIMITATIONS

Despite the effectiveness of the LipFed framework in mitigating subgroup bias, several limitations remain.
Firstly, the reliance on the Lipschitz property to ensure subgroup fairness introduces constraints that may not
universally apply across all types of models or datasets. There is a possibility that different models exhibit
varying degrees of sensitivity to Lipschitz constraints, which could lead to inconsistent results when applied
to non-IID data distributions. Second, the effectiveness of our method is influenced by the proper selection of
the hyperparameter ϵ that governs the Lipschitz constraint. Finding the optimal balance between subgroup
and group fairness may require extensive tuning and could differ based on the specific characteristics of the
datasets being used.

Furthermore, while our approach shows improvements over existing methods, the trade-off between subgroup
and group fairness necessitates careful calibration, which may not be straightforward. As subgroup variance
decreases, the potential for bias to still emerge in certain groups remains a challenge. Lastly, the additional
computational overhead of enforcing Lipschitz constraints during the optimization process may not be feasible
for all practical applications, especially in resource-constrained environments.

A.2 FUTURE WORK

Further empirical studies are needed to evaluate the performance of LipFed in diverse real-world scenarios,
including applications beyond image classification, such as text and audio data. Investigating the scalability
of our method in federated learning environments with a large number of clients and significantly diverse data
distributions would also be beneficial.

Moreover, it would be valuable to explore dynamic tuning mechanisms for the hyperparameter ϵ, potentially
through adaptive methods that can adjust to the evolving characteristics of the data during the training process.
This would facilitate achieving a more nuanced balance between subgroup and group fairness.

B TERMINOLOGY/TECHNIQUES

B.1 NOVELTY OF LIPSCHITZ CONSTRAINTS

While Lipschitz continuity itself is not a novel concept, our work introduces one of the first adaptations of
Lipschitz constraints in FL to specifically address subgroup fairness. LipFed leverages these constraints to
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calculate the importance of each subgroup on a client, enabling the model to assign different weights to
subgroups based on the variability in their data. This approach helps mitigate the effects of non-IID data by
prioritizing subgroups that experience greater bias.

What sets LipFed apart is its ability to enforce Lipschitz constraints without requiring access to clients’ raw
data, preserving privacy—a crucial aspect in federated settings. By focusing on the balance between subgroup
fairness and data privacy, LipFed offers an innovative solution to address fairness in FL systems without
compromising privacy.

B.2 FEDERATED LEARNING SUBGROUP FAIRNESS VS. CENTRALIZED LEARNING SUBGROUP
FAIRNESS

Subgroup fairness in FL differs significantly from centralized learning. In centralized learning, all data is
aggregated in one location, making it easier to apply fairness constraints uniformly across subgroups. However,
FL operates on decentralized data distributed across multiple clients, where non-IID data distributions pose
significant challenges. Achieving subgroup fairness in FL requires ensuring that each client contributes
equitably to the global model despite these variations. This decentralized setup demands sophisticated model
aggregation techniques to maintain subgroup fairness, as direct access to all client data is not possible.

B.3 SUBGROUP FAIRNESS VS. FAIRNESS ACROSS MULTIPLE SENSITIVE ATTRIBUTES

Fairness across multiple sensitive attributes, discussed in MultiFairTian et al. (2024), ensures that fairness
constraints are satisfied for each sensitive attribute individually (regardless of their number) without neces-
sarily focusing on their intersections. Consider a loan approval algorithm that aims to ensure fairness. The
algorithm might be designed to approve loans at the same rate for men and women (gender fairness) and at
the same rate for people of different ages (age fairness). Each attribute (gender, age) is treated separately to
ensure fairness, but the algorithm might not specifically check if it’s fair to, for instance, young women or
older men. Subgroup fairness (intersectional attributes focus) and multiple sensitive attributes (individual
attribute focus) have some overlap, but they are not closely related. The distinction between these approaches
is well-recognized in the literature Kearns et al. (2018). In centralized learning, there is a clear separation
between ensuring fairness for individual attributes and addressing fairness at the intersection of multiple
attributes (subgroup fairness). As noted in the paper Kearns et al. (2018), the need to ensure fairness across
intersectional subgroups is paramount to avoid fairness gerrymandering, where a model appears fair across
individual attributes but fails at the intersection of these attributes.

B.4 ADDITIONAL CAUSES FOR SUBGROUP FAIRNESS

Several factors contribute to subgroup unfairness, one of the most prominent being differences in group
sizes. This issue is commonly referred to as label distribution skew, where imbalances in the distribution of
labels across groups lead to biased outcomes. This challenge has been extensively studied in recent federated
learning fairness research Yue et al. (2023); Kearns et al. (2018).

In contrast, our work Lipfed deliberately focuses on a less explored yet equally important issue: the same
label, different features phenomenon. This refers to instances where subgroups that share the same label
exhibit significantly different feature distributions, leading to unfair treatment across those subgroups. By
addressing this underexamined factor, our work provides new insights into the complexities of achieving
subgroup fairness in FL.
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B.5 AVERAGE VARIANCE OF IMAGE PIXEL WEIGHTING SCHEME

Pixel-level variance reflects differences in texture, lighting, and other visual features that affect image data
similarity and heterogeneity Zhang & LeCun (2015). By computing subgroup importance weights based on
the average variance of image pixels, subgroups with higher pixel variance, indicating less robustness, are
prioritized during training to improve model performance Wang et al. (2004). In Khani & Liang (2020),
the authors present a mathematical framework showing how feature variance, such as image pixel variance,
influences fairness by affecting loss discrepancy. Here are the relevant equations and their implications in
scenarios of binary groups (0 and 1, say):

Disc ∝
∣∣(Λβ)⊤∆Σz(Λβ)− (P [g = 1]− P [g = 0])((Λβ)⊤∆µz)

2
∣∣ (10)

where Λ = (Σz +Σu)
−1Σu is a matrix that balances the variance of the latent features (Σz) with the variance

of noise in those features (Σu), ensuring that features with lower noise are weighted more heavily.

The terms ∆Σz = V ar[z | g = 1] − V ar[z | g = 0] and ∆µz = E[z | g = 1] − E[z | g = 0] represent
the difference in the variance and the mean of the latent features between the two groups, g = 1 and g = 0,
respectively. Larger differences in these values signify a greater potential for bias, as one group’s feature
distribution deviates significantly from the other’s. The proportions P [g = 1] and P [g = 0] reflect the relative
sizes of the two groups, which influence how much weight the second term in the equation has on the overall
discrepancy.

The model’s learned parameters, β, determine the importance of each latent feature in the prediction
process. The interaction between the feature variances and the model parameters, captured by the term
(Λβ)⊤∆Σz(Λβ), increases as feature variance (Σz) increases, indicating that higher variance in features
leads to a larger loss discrepancy between groups.

Building on previous studies, we assign higher importance to subgroups with higher variance, which indicates
potential model bias. This method aligns with other techniques that prioritize training samples based on
characteristics like gradient norm, assessing robustness through feature heterogeneity. This loss discrepancy
directly contributes to model bias, as it suggests unequal treatment of different groups. Our weighting scheme
aims to mitigate this bias by assigning higher importance to subgroups with greater variance. We compare
our fairness weighting scheme with GIFAIR-FL, a framework for fairness in FLYue et al. (2023). GIFAIR-FL
uses regularization to penalize variations in client group losses, adapting to statistical differences at each
communication round. This approach aligns with our fairness definitions by ensuring equitable performance
across data groups.

C ADDITIONAL ANALYSIS

C.1 THEORETICAL ANALYSIS

This section presents a theoretical analysis of subgroup and group fairness in machine learning models. The
theorems discussed here aim to establish upper bounds and explore trade-offs between Lipschitz continuity,
empirical risk, and fairness constraints. Theorem 3.4.1 addresses the upper bound for subgroup fairness under
Lipschitz continuity conditions, providing insights into the absolute difference in empirical risk between
subgroups. Moving forward, Theorem 3.4.2 extends this analysis to group fairness, establishing upper bounds
based on smoothness properties. Finally, Theorem 3.4.3 delves into the trade-off analysis between Lipschitz
constraints and empirical risk performance, shedding light on how tighter fairness constraints can impact
model adaptability and the overall expected discrepancy in empirical risk across different groups. These
theorems collectively contribute to understanding the intricate relationship between model properties, fairness
constraints, and empirical risk outcomes.
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Theorem C.1.1. Subgroup Fairness Upper Bound. Assumption 1. R(·;θ) is (D, d)-Lipschitz continuous
(since it was enforced during optimization).

Then, for any subgroups Xg
k and Xg

k′ at clients k and k′ respectively, we have:

Disch(X
g
k ,X

g
k′) ≤ ϵ2 · Γ ∀g ∈ G; k, k′ ∈ K : k ̸= k′; ϵ > 0 (11)

where Γ = R(·;θ)∗ −
∑K

k=1 pkRk(·;θk)∗ (R∗ and R∗k are the minimum values of R∗ and R∗k, respectively)
quantifies the degree of data heterogeneity; If the data are non-iid, then Γ is nonzero, and its magnitude
reflects the heterogeneity of the data distribution Li et al. (2019b).

Proof: We start with the Lipschitz continuity property for predictions:

D(hθ(X
g
k ;θ), hθ(X

g
k′ ;θ)) ≤ ϵ · d(Xg

k ,X
g
k′) ∀g ∈ G; k, k′ ∈ K : k ̸= k′ (12)

This inequality tells us that the distance between predictions made by the model hθ(X
g
k ;θ) and hθ(X

g
k′ ;θ)

is bounded by the Lipschitz constant ϵ times the distance between the subgroups Xg
k and Xg

k′ .

The absolute difference in the subgroup risk functions due to different predictions can be expressed as:

|R(Xg
k ;θ)−R(Xg

k′ ;θ)| = |f(hθ(X
g
k ;θ))− f(hθ(X

g
k′ ;θ))| ∀g ∈ G; k, k′ ∈ K : k ̸= k′ (13)

Here, f is a function that maps predictions to risk values.

Now, we substitute the Lipschitz continuity property for predictions into the risk function equation:

|f(hθ(X
g
k ;θ))− f(hθ(X

g
k′ ;θ))| ≤ ϵ ·D(hθ(X

g
k ;θ), hθ(X

g
k′ ;θ)) ∀g ∈ G; k, k′ ∈ K : k ̸= k′ (14)

Since we know that D(hθ(X
g
k ;θ), hθ(X

g
k′ ;θ)) is bounded by ϵ · d(Xg

k ,X
g
k′), we can replace it in the

inequality above. This substitution leads to the following inequality:

|f(hθ(X
g
k ;θ))− f(hθ(X

g
k′ ;θ))| ≤ ϵ · (ϵ · d(Xg

k ,X
g
k′)) = ϵ2 · d(Xg

k ,X
g
k′) ∀g ∈ G; k, k′ ∈ K : k ̸= k′

(15)

=⇒ max{f(hθ(X
g
k ;θ))− f(hθ(X

g
k′ ;θ))} ≤ ϵ2 · d(Xg

k ,X
g
k′) ∀g ∈ G (16)

=⇒ max{R(Xg
k ;θ)−R(Xg

k′ ;θ)} ≤ ϵ2 · Γ (17)

=⇒ Disch(X
g
k ,X

g
k′) ≤ ϵ2 · Γ (18)

Theorem C.1.2. Group fairness upper bound. Suppose that the following assumptions hold on the global
empirical risk function R(X;θ) according to recent works in FL Li et al. (2019a;b),

Assumption 1. R1, . . . , RK are all L-smooth: for all θ1 and θ2,

Rk(θ1) ≤ Rk(θ2) + (θ1 − θ2)
T∇Rk(θ2) +

L

2
∥θ1 − θ2∥22.

Assumption 2. R1, . . . , RK are all µ-strongly convex: for all θ1 and θ2,

Rk(θ1) ≥ Rk(θ2) + (θ1 − θ2)
T∇Rk(θ2) +

µ

2
∥θ1 − θ2∥22.
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Assumption 3. Let ξtk be sampled from the k-th device’s local data uniformly at random. The variance of
stochastic gradients in each device is bounded:

E
[
∥∇Rk(θ

t
k, ξ

t
k)−∇Rk(θ

t
k)∥2

]
≤ σ2

k for k = 1, . . . ,K.

Assumption 4. R(·;θ) is (D, d)-Lipschitz continuous (since it was enforced during optimization).

Assumption 5. The expected squared norm of stochastic gradients is uniformly bounded, i.e.,

E
[
∥∇Rk(θ

t
k, ξ

t
k)∥2

]
≤ G2 for all k = 1, . . . ,K and t = 1, . . . , T − 1.

Then,

Disch(X
g
k ,X

g′

k ) ≤ κ

γ + Γ− 1
·
(
2B

µ
+ ϵ2 · Γ

)
∀g, g′ ∈ G; g ̸= g′ (19)

where Γ = R(·;θ)∗ −
∑K

k=1 pkRk(·;θk)∗ (R∗ and R∗k are the minimum values of R∗ and R∗k, respectively)
quantifies the degree of data heterogeneity; If the data are non-iid, then Γ is nonzero, and its magnitude
reflects the heterogeneity of the data distribution, κ = L

µ , B =
∑K

k=1 p
2
kσ

2
k + 6LΓ + 8(E − 1)2G2, E is the

number of local training rounds/epochs for each device k, and γ = max{8κ,E}.

Proof: According to Li et al. (2019b), we know that:

E[R(·;θT )]−R(·;θ)∗ ≤ κ

γ + Γ− 1
·
(
2B

µ
+

µγ2

2
Ek∥θ − θ∗k∥2

)
(20)

=⇒ E[R(Xg
k ;θT )]−R(Xg′

k ;θ)∗ ≤ max{E[R(Xg
k ;θT )]−R(Xg′

k ;θ)∗}

≤ κ

γ + Γ− 1
·
(
2B

µ
+

µγ2

2
Ek∥θ − θ∗k∥2

) (21)

But, ∥θ − θ∗∥2 ≈ D(hθ(X
g
k ), hθ(X

g′

k ))

∴ max{E[R(Xg
k ;θT )]−R(Xg′

k ;θ)∗} ≤ κ

γ + Γ− 1
·
(
2B

µ
+ ϵ ·D(hθ(X

g
k ), hθ(X

g′

k ))

)
; ϵ =

µγ2

2
(22)

=⇒ max{E[R(Xg
k ;θT )]−R(Xg′

k ;θ)∗} ≤ κ

γ + Γ− 1
·
(
2B

µ
+ ϵ · (ϵ · d(Xg

k ,X
g′

k ))

)
(23)

=⇒ max{E[R(Xg
k ;θT )]−R(Xg′

k ;θ)∗} ≤ κ

γ + Γ− 1
·
(
2B

µ
+ ϵ2 · Γ

)
(24)

=⇒ Disch(X
g
k ,X

g′

k ) ≤ κ

γ + Γ− 1
·
(
2B

µ
+ ϵ2 · Γ

)
(25)
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C.2 TRADEOFF ANALYSIS

To understand the trade-off between subgroup and group fairness, we examine how changing the common
bounds parameter ϵ affects both subgroup and group fairness:

Improving subgroup fairness is essential to ensure equitable outcomes across different demographic groups.
The primary objective in this context is to decrease ϵ to reduce the term ϵ2 ·Γ. This reduction has a direct effect
on subgroup fairness by minimizing subgroup discrepancies, as indicated by the relationship in Theorem
C.1.1. Regarding group fairness, the decrease in ϵ2 · Γ contributes to lowering the group fairness bound.
However, the overall impact on group fairness is also dependant upon other factors, such as the terms κ

γ+Γ−1
and 2B

µ . When 2B
µ is substantially large, it might overshadow the benefits gained from reducing ϵ, as this

term can dominate the fairness bound.

In improving group fairness, it is crucial to consider the influence of all terms within the group fairness
bounds. The group fairness bound is affected by the bound in Theorem C.1.2. Large values of κ, B, or γ
can significantly impact this bound. Furthermore, adjustments aimed at improving group fairness can have
implications for subgroup fairness. Specifically, increasing ϵ might be necessary to prevent an excessive
rise in the group fairness bound. However, this increment will directly raise ϵ2 · Γ, resulting in a higher
discrepancy among subgroups. Balancing these factors is crucial for achieving both group and subgroup
fairness effectively.

C.3 BALANCING THE TRADE-OFF

To balance subgroup and group fairness, we need to carefully tune ϵ while considering the impact of the
other parameters. Decreasing ϵ can lead to improvements in subgroup fairness, as indicated by the reduction
in ϵ2 · Γ. This directly minimizes subgroup discrepancies. In terms of group fairness, a decrease in ϵ2 · Γ
can also lead to improvements, particularly if this term is significant within the fairness bound. However, if
the term 2B

µ is large, the overall improvement in group fairness may be limited, as this dominant term can
overshadow the effects of reducing ϵ.

On the other hand, increasing ϵ can have adverse effects on subgroup fairness since ϵ2 · Γ will increase,
leading to greater subgroup discrepancies. In terms of group fairness, an increase in ϵ can potentially yield
improvements if the other terms, such as κ

γ+Γ−1 and 2B
µ , dominate the fairness bound. However, this benefit

is constrained if ϵ2 · Γ is already a small component within the bound.

Balancing these factors is crucial. It involves a trade-off between minimizing subgroup discrepancies and
optimizing group fairness, considering the relative magnitudes of the different terms in the fairness bound.
Careful tuning of ϵ is essential to achieve a desirable balance that promotes both subgroup and group fairness.

When the parameters κ, B, or γ are large, the group fairness bound is dominated by κ
γ+Γ−1

(
2B
µ

)
, making

it less sensitive to changes in ϵ. Increasing ϵ to maintain group fairness will significantly worsen subgroup
fairness. Conversely, when the parameters κ, B, or γ are small, the group fairness bound becomes more
sensitive to ϵ. In this scenario, decreasing ϵ to improve subgroup fairness will have a noticeable impact on the
group fairness bound. This can potentially compromise group fairness if ϵ becomes too small.

Balancing subgroup and group fairness requires carefully tuning ϵ while considering the impact of these other
parameters. Decreasing ϵ can lead to improvements in subgroup fairness, as indicated by the reduction in
ϵ2 · Γ, which directly minimizes subgroup discrepancies. In terms of group fairness, a decrease in ϵ2 · Γ
can also lead to improvements, particularly if this term is significant within the fairness bound. However, if
the term 2B

µ is large, the overall improvement in group fairness may be limited, as this dominant term can
overshadow the effects of reducing ϵ.
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On the other hand, increasing ϵ can have adverse effects on subgroup fairness since ϵ2 · Γ will increase,
leading to greater subgroup discrepancies. In terms of group fairness, an increase in ϵ can potentially yield
improvements if the other terms, such as κ

γ+Γ−1 and 2B
µ , dominate the fairness bound. However, this benefit

is constrained if ϵ2 · Γ is already a small component within the bound.

Balancing these factors involves a trade-off between minimizing subgroup discrepancies and optimizing
group fairness, considering the relative magnitudes of the different terms in the fairness bound. Careful tuning
of ϵ is essential to achieve a desirable balance that promotes both subgroup and group fairness.

The trade-off between subgroup and group fairness can be managed by carefully tuning ϵ while considering
the effects of κ, γ, µ, and B. The goal is to find an optimal value of ϵ that minimizes both subgroup and
group discrepancies within acceptable limits. This involves balancing the impact of these parameters to avoid
disproportionately favoring one type of fairness over the other.

C.3.1 DOMINANCE OF TERM ϵ

When the other parameters (κ, γ, Γ, B, and µ) are fixed without dominance, the primary variable affecting the
fairness bounds is ϵ. In this scenario, if ϵ2 dominates the other terms in the fairness bounds, then reducing ϵ
will have a significant impact on both subgroup and group fairness bounds; reducing ϵ can simultaneously
improve both subgroup fairness and group fairness, as the ϵ2 terms are reduced in both bounds. Thus, under
the assumption that ϵ2 is the dominant term and other terms are fixed, it is possible for there to be no significant
trade-off between subgroup fairness and group fairness. However, in practical scenarios, the other terms
may still exert influence, and the interdependence between ϵ and the constants (κ, γ, Γ, and β) can lead to a
trade-off. While ϵ2 may play a crucial role, the practical interactions of all parameters need consideration to
fully understand fairness dynamics. In these specific conditions the trade-off between subgroup and group
fairness might be minimized or even eliminated. By highlighting these scenarios, we aim to provide a more
comprehensive understanding of how the dominance of ϵ2 can significantly influence fairness outcomes,
thereby offering practical guidance for optimizing fairness in FL models.

C.4 PRIVACY ANALYSIS

In this section, we present a detailed mathematical analysis of how differential privacy (DP) is applied in
LipFed to protect subgroup losses and fairness constraints while maintaining model utility. The goal is to
ensure that sensitive data remains private without compromising the ability to mitigate subgroup bias.

C.4.1 DIFFERENTIAL PRIVACY IN LIPFED

Differential privacy ensures that the inclusion or exclusion of a single data point (or client) does not sig-
nificantly affect the outcome of the computation, thereby protecting sensitive data. LipFed integrates DP
by adding Laplace noise to the local subgroup losses, ensuring privacy in the exchange of fairness-related
metrics between clients and the server.

Definition of Differential Privacy. A randomized algorithm A satisfies ϵ-differential privacy if, for any
two adjacent datasets D and D′ (differing by only one data point), and for any set S of possible outputs:

P (A(D) ∈ S) ≤ eϵ · P (A(D′) ∈ S)

where ϵ is the privacy budget, controlling the amount of noise added and the trade-off between privacy and
accuracy.
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C.4.2 APPLYING DIFFERENTIAL PRIVACY TO SUBGROUP LOSSES

In LipFed, we introduce Laplace noise to the local subgroup losses to maintain privacy. The randomized
mechanism for applying DP to subgroup losses is defined as:

A(D) = R̂(Xg; θ) + Laplace
(
∆R

ϵ

)
(26)

where R̂(Xg; θ) is the true risk or loss function for subgroup Xg; ∆R is the sensitivity of the loss function,
measuring the maximum change in output by modifying a single client’s data; ϵ is the privacy budget
controlling the amount of noise added.

C.4.3 SENSITIVITY OF SUBGROUP LOSSES

The sensitivity ∆R of the loss function is the maximum possible difference in the loss function due to the
change in one client’s data. If R(Xg; θ) represents the loss for subgroup Xg , then:

∆R = max
D,D′

|R(D; θ)−R(D′; θ)| (27)

where D and D′ are neighboring datasets differing by only one data point.

C.4.4 NOISE ADDITION AND PRIVACY GUARANTEE

For each subgroup, we add Laplace noise Laplace
(
∆R
ϵ

)
to ensure that the differences in the subgroup losses

remain indistinguishable. The magnitude of the noise is proportional to the sensitivity ∆R and inversely
proportional to ϵ, where larger ϵ implies less noise and weaker privacy guarantees.

This ensures that the exchange of sensitive subgroup performance information between the server and clients
is protected by differential privacy.

C.4.5 IMPACT ON FAIRNESS AND UTILITY

The introduction of DP in LipFed does not significantly degrade fairness or model utility, as seen in the
experimental results. For instance, different privacy budgets ϵ ∈ {0.8, 1.0, 1.4} only minimally affect
subgroup fairness and overall accuracy.

Theoretical Privacy Bound. LipFed ensures that the discrepancy between the loss values of similar sub-
groups is bounded by ϵ-differential privacy. Given the Lipschitz continuity constraint D(hθ(X), hθ(X

′)) ≤
ϵ · d(X,X ′), we enforce that:

|R(Xg; θ)−R(X ′g; θ)| ≤ ϵ2 · Γ (28)

where Γ measures the heterogeneity in data distribution across clients. This bound ensures that subgroup
discrepancies remain within the privacy budget while preserving fairness.

D MORE RELATED WORK

FL algorithms aimed at achieving a globally fair model are typically classified into three distinct categories,
including client-fairnessLi et al. (2019a); Mohri et al. (2019); Deng et al. (2020); Li et al. (2020); Hu et al.
(2022); Horvath et al. (2021), group-fairnessYue et al. (2021); Cui et al. (2021); Papadaki et al. (2022);
Selialia et al. (2023), and robustness techniques Lee et al. (2022); Karimireddy et al. (2020).
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D.1 CLIENT FAIRNESS IN FEDERATED LEARNING

Ensuring fairness among clients in FL is vital to counteract biases from non-IID data distributions across
devices. Techniques like the Federated Fair Averaging (FedFV)Wang et al. (2021) adjust gradient directions
and magnitudes to balance model average performance based on each client’s conflict level and contri-
butionPapadaki et al. (2022). GIFair-FL Yue et al. (2021) dynamically adjusts model updates using a
fairness-aware aggregator to reduce average loss across clients, while FjORD Horvath et al. (2021) employs
ordered dropout to tailor model sizes to clients’ device capacities, enhancing fairness and accuracy.

Additional approaches that build upon these fairness-enhancing techniques include Agnostic Federated
Learning (AFL)Mohri et al. (2019), which optimizes the global model against any potential target distribution
by accommodating unknown distribution mixes among clients. q-FFLLi et al. (2019a) addresses data
heterogeneity by reweighting losses to prioritize devices with poorer performance, promoting uniform model
accuracy across devices. Tilted empirical risk minimization (TERM) Li et al. (2020) adjusts the influence
of outliers and balances class representation through a flexible tilt hyperparameter. These methods enhance
average performance in FL systems operating in heterogeneous environments.

D.2 GROUP FAIRNESS IN FEDERATED LEARNING

Recent advancements in FL have highlighted the importance of addressing fairness concerns, particularly
group fairness, where biases against protected demographic groups are mitigated. Ezzeldin et al. (2023)
introduced FairFed, a strategy that ensures fair model training by employing a fairness-aware aggregation
method. In FairFed, each client performs local debiasing using their own dataset to maintain decentralization
and privacy. Clients evaluate the global model’s fairness in each FL round, and aggregation weights are
adjusted in collaboration with the server based on the mismatch between global and local fairness metrics.
This method, supported by secure aggregation protocols, enhances group fairness under heterogeneous
data conditions and allows for client-specific debiasing techniques, showing significant improvement over
traditional fairness approaches in FL settings. FairFed’s empirical validation confirms its effectiveness in
achieving group fairness, with plans for future enhancements to accommodate various application scenarios
and integrate broader fairness concepts, such as collaborative and client-based fairness.

In a parallel effort, Papadaki et al. (2022) explore group fairness in FL through their FedMinMax algorithm,
which is crafted to establish minimax fairness across demographic groups, an approach that differs from tradi-
tional methods aimed at equalizing performance across clients. FedMinMax strategically employs alternating
optimization techniques—projected gradient ascent for optimizing weights and stochastic gradient descent
for the model—tailoring the learning process to balance fairness among demographic groups effectively. This
method has demonstrated competitive or superior performance against established benchmarks in various
FL setups, showcasing its capability to uphold group fairness robustly. Simultaneously, Cui et al. (2021)
propose the FCFL framework, which addresses both algorithmic fairness and performance consistency across
distributed data sources in FL. Derived from a constrained multi-objective optimization perspective, FCFL
aims to maximize the utility of the least advantaged client while meeting fairness constraints, achieving Pareto
optimality via gradient-based methods. Theoretical and empirical validations of FCFL underscore its ability
to outperform existing models in ensuring fairness and consistent performance across clients, making it a
viable solution for real-world applications where these attributes are crucial. These developments collectively
signal a shift towards more ethical and equitable federated learning environments, emphasizing the necessity
for continuous innovation in fairness-oriented methodologies within the field.

D.3 ROBUSTNESS IN FEDERATED LEARNING

The paper Lee et al. (2021) addresses the challenge of data heterogeneity and forgetting in federated learning
(FL), where a global model is collaboratively learned without direct access to clients’ data. Drawing an
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analogy to continual learning, the study proposes that forgetting could hinder FL’s convergence. They observe
that the global model forgets knowledge from previous rounds, and local training induces forgetting outside
the local distribution. The authors hypothesize that addressing forgetting could alleviate data heterogeneity
issues. To tackle this, they propose Federated Not-True Distillation (FedNTD), a novel algorithm that
preserves the global perspective on locally available data only for the not-true classes. FedNTD effectively
mitigates forgetting and demonstrates state-of-the-art performance in various FL setups. Through empirical
analysis, the study confirms that the global model’s prediction consistency suffers across communication
rounds due to forgetting induced by data heterogeneity. FedNTD addresses this by selectively preserving
global knowledge outside local distributions, offering a promising solution to improve FL performance
without compromising data privacy or incurring additional communication costs.

Table 2: Partitioning of datasets with added Gaussian noise

Client Samples Noise
STD Test Data Samples Noise

STD Test Data Samples Noise
STD Test Data

MNIST FashionMNIST FER2013
1 6,000 0.4 Original + 0.4 6,000 0.4 Original + 0.4 2870 0.0 Original + 0.0
2 6,000 0.5 Original + 0.5 6,000 0.5 Original + 0.5 2870 0.09 Original + 0.09
3 6,000 0.7 Original + 0.7 6,000 0.7 Original + 0.7 2870 0.18 Original + 0.18
4 6,000 1.0 Original + 1.0 6,000 1.0 Original + 1.0 2870 0.27 Original + 0.27
5 6,000 1.5 Original + 1.5 6,000 1.5 Original + 1.5 2870 0.36 Original + 0.36
6 6,000 0.4 Original + 0.4 6,000 0.4 Original + 0.4 2870 0.0 Original + 0.0
7 6,000 0.5 Original + 0.5 6,000 0.5 Original + 0.5 2870 0.09 Original + 0.09
8 6,000 0.7 Original + 0.7 6,000 0.7 Original + 0.7 2870 0.18 Original + 0.18
9 6,000 1.0 Original + 1.0 6,000 1.0 Original + 1.0 2870 0.27 Original + 0.27

10 6,000 1.5 Original + 1.5 6,000 1.5 Original + 1.5 2870 0.36 Original + 0.36

UTK ACS Income (ASCI) ACS Employment (ASCE)
1 1920 0.0 Original + 0.0 26621 - State test 6656 - State test
2 1920 0.1 Original + 0.1 11143 - State test 2768 - State test
3 1920 0.3 Original + 0.3 156532 - State test 39133 - State test
4 1920 0.5 Original + 0.5 32091 - State test 8023 - State test
5 1920 0.7 Original + 0.7 41653 - State test 10414 - State test
6 1920 0.0 Original + 0.0 108739 - State test 27185 - State test
7 1920 0.1 Original + 0.1 13069 - State test 3268 - State test
8 1920 0.3 Original + 0.3 12645 - State test 3162 - State test
9 1920 0.5 Original + 0.5 17604 - State test 4402 - State test

10 1920 0.7 Original + 0.7 17814 - State test 4454 - State test

E EXPERIMENTAL SETUP

E.1 DATASET DETAILS

Choice of Datasets. In our experiments, we evaluated the LipFed framework using four small datasets,
including MNIST, Fashion-MNIST, FER2013, and UTK, and two large scale dataset, including ASCI and
ASCE, with a 10 clients. These datasets were chosen to represent a diverse set of applications, thereby
providing a comprehensive evaluation of the feasibility and initial effectiveness of the proposed subgroup
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fairness technique. Each dataset presents unique characteristics and challenges related to bias studies. The
MNIST dataset consists of handwritten digit images. This dataset is often used as a benchmark for image
classification tasks and serves as a starting point for evaluating model performance on simple, grayscale
images. It helps in understanding basic biases that might arise from digit shapes and writing styles. Fashion-
MNIST is a dataset of grayscale images of clothing items. This dataset is used to test model performance
on more complex visual patterns compared to MNIST. It introduces variability in clothing styles, textures,
and shapes, which can help identify biases related to visual feature extraction and classification. The
FER2013 dataset contains grayscale images of facial expressions. This dataset is crucial for studying biases
related to facial recognition and emotion detection. It includes images with diverse facial expressions and
varying degrees of emotion intensity, which can reveal biases in recognizing and classifying emotional
states, especially across different demographic groups. The UTKFace dataset includes images of faces with
annotations for age, gender, and ethnicity. This dataset is particularly valuable for studying intersectional
biases involving age, gender, and ethnicity. It allows for an in-depth analysis of how different demographic
attributes can impact model performance and fairness, revealing potential biases in facial recognition systems
across diverse population groups. Despite the aforementioned datasets, we recognize the importance of
assessing the model’s scalability and robustness on larger datasets, we perform further evaluations on large
real-world datasets (ACSI and ACSE) which is used in fairness studies.

Data Partitions. As it is customary to partition benchmark datasets across clients in FL research Hsu et al.
(2019); Wang et al. (2020), we adopt this strategy and distribute samples of an individual group equally across
clients according to the Dirichlet distribution Hsu et al. (2019). This distribution is demonstrated in Table 2,
where the third column shows that distributing samples of an individual group equally across clients leads to
clients with the equal number of samples in their local data Dk. The uniform data partitioning strategy is
motivated by the desire to demonstrate that even in FL settings with balanced groups across clients, feature
noise heterogeneity still leads to subgroup bias across clients.

Heterogeneous Feature Distributions. We introduce feature noise across data partitions to simulate real-
world scenarios where images are non-IID, deviating from the feature distribution of pristine training images
Ghosh et al. (2018); Saenko et al. (2010); Song et al. (2022). The noise is added to an image by adding
a random value sampled from a Gaussian distribution to each pixel of the image. Mathematically, this is
represented as:

Ĩ(x, y) = I(x, y) + ϵ (29)

where ϵ ∼ N (0, σ2), with Ĩ(x, y) and I(x, y) denoting noisy and original pixel values at (x, y), respectively.
The parameter σ controls the amount of noise added to the image. The larger the value of σ, the more intense
the noise. Specifically, Gaussian noise with σ of 0.03 or higher is incorporated, reflecting conditions observed
in real-world deployments Lyu et al. (2020). The noise addition to each client’s local training dataset Dk

is demonstrated in Table 2, where the fourth column shows all local datasets across different clients have
different feature noise distributions. The difference in feature noise across clients is motivated by the desire
to understand how the nonIID-ness in subgroup data of an individual group affects the global model’s bias
across subgroups.

Local Test Data. Each client utilizes a replicated version of the original benchmark test set, aligning similar
noise feature distributions between the training and test data for individual clients. For example, as depicted
in Table 2, client 1 employs the original FMNIST test dataset with noise levels consistent with those of the
training partition. This approach is motivated by the assumption that the local and training data for each client
share similar feature distributions, which may differ from those of other clients.
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E.2 TRAINING PARAMETERS

Table 3 outlines the primary training parameters used across all models and datasets in this work. We
implemented the system using PyTorch pytorch on Ubuntu 22.04 (8GB NVIDIA Quadro P2200 GPU). 1

Table 3: Model Training Parameters.

Algorithm Dataset
Train time
per round
(minutes)

Model Minibatch
size Momentum Weight

decay
Learning
rate

# Local
epochs # Rounds Loss

function

FedAvg MNIST 2.25 LeNet 256 0.9 0.0001 0.01 5 65 Cross entropy
Fashion-MNIST 2.23 VGGNet 256 0.9 0.0005 0.01 5 65 Cross entropy
FER2013 8.93 ResNet-18 128 0.9 0.0005 0.01 5 30 Cross entropy
UTK 4.98 ResNet-18 64 0.9 0.0005 0.01 5 75 Cross entropy
ACSIncome - Logistic R. 128 - - 0.001 5 10 Binary Cross entropy
ACSEmpoyment - Logistic R. 128 - - 0.001 5 10 Binary Cross entropy

AFL MNIST 2.22 LeNet 256 0.9 0.0001 0.01 5 65 Cross entropy
Fashion-MNIST 2.25 VGGNet 256 0.9 0.0005 0.01 5 65 Cross entropy
FER2013 8.76 ResNet-18 128 0.9 0.0005 0.01 5 30 Cross entropy
UTK 4.94 ResNet-18 64 0.9 0.0005 0.01 5 75 Cross entropy
ACSIncome - Logistic R. 128 - - 0.001 5 10 Binary Cross entropy
ACSEmpoyment - Logistic R. 128 - - 0.001 5 10 Binary Cross entropy

TERM MNIST 2.27 LeNet 256 0.9 0.0001 0.01 5 65 Cross entropy
Fashion-MNIST 2.28 VGGNet 256 0.9 0.0005 0.01 5 65 Cross entropy
FER2013 9.15 ResNet-18 128 0.9 0.0005 0.01 5 30 Cross entropy
UTK 4.99 ResNet-18 64 0.9 0.0005 0.01 5 75 Cross entropy
ACSIncome - Logistic R. 128 - - 0.001 5 10 Binary Cross entropy
ACSEmpoyment - Logistic R. 128 - - 0.001 5 10 Binary Cross entropy

GIFAIR-FL MNIST 2.05 LeNet 256 0.9 0.0001 0.01 5 65 Cross entropy
Fashion-MNIST 1.98 VGGNet 256 0.9 0.0005 0.01 5 65 Cross entropy
FER2013 8.27 ResNet-18 128 0.9 0.0005 0.01 5 30 Cross entropy
UTK 4.51 ResNet-18 64 0.9 0.0005 0.01 5 75 Cross entropy
ACSIncome - Logistic R. 128 - - 0.001 5 10 Binary Cross entropy
ACSEmpoyment - Logistic R. 128 - - 0.001 5 10 Binary Cross entropy

FedNTD MNIST 2.53 LeNet 256 0.9 0.0001 0.01 5 65 Cross entropy
Fashion-MNIST 2.57 VGGNet 256 0.9 0.0005 0.01 5 65 Cross entropy
FER2013 10.23 ResNet-18 128 0.9 0.0005 0.01 5 30 Cross entropy
UTK 5.62 ResNet-18 64 0.9 0.0005 0.01 5 75 Cross entropy
ACSIncome - Logistic R. 128 - - 0.001 5 10 Binary Cross entropy
ACSEmpoyment - Logistic R. 128 - - 0.001 5 10 Binary Cross entropy

Scaffold MNIST 0.71 LeNet 256 0.9 0.0001 0.01 5 65 Cross entropy
Fashion-MNIST 0.82 VGGNet 256 0.9 0.0005 0.01 5 65 Cross entropy
FER2013 2.29 ResNet-18 128 0.9 0.0005 0.01 5 30 Cross entropy
UTK 1.63 ResNet-18 64 0.9 0.0005 0.01 5 75 Cross entropy
ACSIncome - Logistic R. 128 - - 0.001 5 10 Binary Cross entropy
ACSEmpoyment - Logistic R. 128 - - 0.001 5 10 Binary Cross entropy

LipFed MNIST 2.61 LeNet 256 0.9 0.0001 0.01 5 65 Cross entropy
Fashion-MNIST 5.14 VGGNet 256 0.9 0.0005 0.01 5 65 Cross entropy
FER2013 9.94 ResNet-18 128 0.9 0.0005 0.01 5 30 Cross entropy
UTK 5.14 ResNet-18 64 0.9 0.0005 0.01 5 75 Cross entropy
ACSIncome - Logistic R. 128 - - 0.001 5 10 Binary Cross entropy
ACSEmpoyment - Logistic R. 128 - - 0.001 5 10 Binary Cross entropy

1The ’readme.txt’ file at the root of the project folder consists of the steps required to run the code: Download Zipped
Folder
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E.3 ADAPTATION TO TABULAR DATASETS

Our approach of using the average variance of image pixels is directly applicable to tabular data. We first
present a detailed methodology for adapting LipFed for two tabular datasets from fair ML Retiring Adult
datasets Ding et al. (2021), ACSIncome and ACSEmployment:

The steps to compute subgroup weights/moments (e.g., variance) for subgroups are as follows:

1. Data Separation: Divide data into subgroups based on intersecting attributes (e.g., income >50K and
demographic areas).

2. Variance Calculation: Calculate variance (subgroup weight) for each subgroup: σ2
g = 1

Ng

∑Ng

i=1(xi−
µg)

2.

Here, Ng is the number of samples in subgroup g, xi are the feature values, µg is the mean of the feature
for subgroup g, and σg is the standard deviation of the feature for subgroup g. Results in Figure 1 show our
approach’s effectiveness in bias mitigation, even for tabular data.

We use the ACS PUMS Ding et al. (2021) as the basis for both prediction tasks income and employment:

Example: ACSIncome Prediction. We use ACS PUMS data to gather income-related features, race, and
state information, ensuring each data point includes the state it belongs to. Data is distributed across clients
based on the state attribute (randomly selected USA states), with each client representing data from a specific
state. We define two income groups:

1. Income True: Individuals with income above a certain threshold (e.g., $50,000).
2. Income False: Individuals with income below this threshold.

The state serves as an implicit sensitive attribute due to its correlation with demographic distribution, forming
subgroups by income level and demographic region (e.g., Income True and California).

Example: ACSEmployment Prediction. For ACSEmployment, the task is to predict whether an individual
is employed after filtering ACS PUMS data to include individuals between the ages of 16 and 90 Ding et al.
(2021);. We define two employment groups:

1. Employed: Individuals who are currently employed.
2. Unemployed: Individuals who are not employed.

The steps to compute subgroup weights for this dataset are similar: Divide data into subgroups based on
employment status and demographic attributes (e.g., employed and from California). Compute variance for
each subgroup as described earlier, allowing us to weigh the subgroups’ importance and enforce subgroup
fairness in the optimization problem discussed in Section 4.1 of the paper.

This methodology illustrates the adaptability of the LipFed framework to diverse data types, emphasizing its
utility in addressing fairness across multiple domains.

F METRICS

F.1 TRUE POSITIVE RATE (TPR)

The True Positive Rate (TPR) is a critical metric for assessing model performance, as it measures the
proportion of actual positives correctly predicted by the model. Variations in TPR across subgroups indicate
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discrepancies in the model’s generalization across different subpopulations. In FL, TPR variation is often
a result of non-IID data across clients. Subgroups with diverse characteristics—such as demographic
differences, sensor quality, or geographical factors—lead to varied feature distributions, causing differential
model performance. Mathematically, TPR is defined as:

TPRg =
TPg

TPg + FNg
(30)

where TPg and FNg represent the true positives and false negatives for subgroup g, respectively.

F.1.1 VARIATION IN TPR ACROSS SUBGROUPS

The variation in TPR can quantify the performance discrepancies between subgroups. Let the TPR for
each subgroup g be denoted as TPRg. The difference between the highest can measure the discrepancy in
performance among subgroups- and lowest-performing subgroups:

Disc(TPR) = max
g

(TPRg)−min
g

(TPRg) (31)

A large discrepancy suggests that some subgroups benefit more from the model than others, highlighting
the presence of subgroup bias. In non-IID FL settings, subgroup g on one client may have very different
feature distributions compared to the same subgroup on another client, leading to inconsistent TPRs across
subgroups.

In our LipFed framework, which applies Lipschitz constraints to reduce subgroup bias, the goal is to minimize
the performance discrepancy across subgroups. The performance difference is constrained by a Lipschitz
continuity condition that controls how much the TPR can vary based on subgroup similarity. This condition
ensures that:

D(hθ(x), hθ(x
′)) ≤ ϵ · d(x, x′) (32)

where D(hθ(x), hθ(x
′)) represents the Euclidean distance between the model’s outputs for two subgroup

instances x and x′, and d(x, x′) is a distance metric quantifying the similarity between the subgroups.

Thus, variations in TPR among subgroups are restricted by the parameter ϵ, which limits the magnitude of
subgroup performance differences:

Disc(TPR) ≤ ϵ (33)

By enforcing these Lipschitz constraints, LipFed reduces the subgroup performance disparity, resulting in
more equitable TPRs across clients.

F.2 MEDIAN/AVERAGE PERFORMANCE DISCREPANCY

The maximum discrepancy metric focuses on the largest performance gap between subgroups, which can
highlight the worst-case unfairness. We acknowledge that relying solely on the maximum performance
discrepancy among all subgroups may not always provide a complete picture of model fairness; this approach
may unfairly penalize a model that performs exceptionally well for most subgroups but poorly for one specific
subgroup. To provide a more comprehensive evaluation of model fairness, we used the median/average
performance discrepancy across all subgroups to provide a more balanced view of fairness as reported in
§5. Median/average discrepancy provides a more balanced view of the model’s performance across all
subgroups, commonly used in FL group fairness studies such as Poulain et al. (2023); Yue et al. (2023). It
accounts for the median/average difference between subgroup performances rather than just focusing on the
worst-case scenario. By considering the median/average performance difference, the sensitivity to outliers
that might disproportionately affect the maximum discrepancy metric is reduced. In summary, the maximum
performance discrepancy among all subgroups may not always provide a complete picture of model fairness.

28



1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362

Under review as a conference paper at ICLR 2025

MNIST FMNIST FER2013 UTK
Datasets

0.0

0.2

0.4

0.6

0.8

1.0

Su
bg

ro
up

 D
isc

re
pa

nc
y FedAvg

AFL
TERM

GIFAIR-FL
FedNTD

SCAFFOLD
LipFed

(a) TPR variations among subgroups.
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(b) TPR variations among groups.

Figure 8: Demonstrating subgroup bias in model performance for different datasets and baselines.

0.1 0.2 0.3 0.4 0.5 0.6
Subgroup discrepancy

0

20

40

60

80

100

Ac
cu

ra
cy

Datasets(shapes)
MNIST
FMNIST
FER2013
UTK

Algorithms(colors)
FedAvg
AFL
TERM
GIFAIR-FL

FedNTD
SCAFFOLD
LipFed

Algorithms(colors)
FedAvg
AFL
TERM
GIFAIR-FL

FedNTD
SCAFFOLD
LipFed

(a) Utility vs. Subgroup fairness.
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(b) Utility vs. Group fairness.

Figure 9: Demonstrating model utility vs. discrepancy for different datasets and baselines.

G ADDITIONAL RESULTS

G.1 LIPFED’S PERFORMANCE AGAINST CONSISTENCY AND ROBUSTNESS BENCHMARKS

In addition to fairness benchmarks (AFL, TERM, GIFAIR), we compare LipFed, our fairness-focused
technique, against FL algorithms such as Scaffold Karimireddy et al. (2020) and FedNDT Lee et al. (2022),
which prioritize robustness and consistency over fairness. In the FL heterogeneity category, FedNTD addresses
performance loss due to data heterogeneity by managing global model memory. In the FL robustness category,
SCAFFOLD Karimireddy et al. (2020) focuses on enhancing resilience against outliers and noisy data,
mitigating the impact of irregularities in local datasets. Scaffold addresses client drift, while FedNDT targets
model discrepancies due to non-IID data. This evaluation measures LipFed’s performance in reducing
subgroup bias and maintaining model utility compared to these non-fairness benchmarks.

The results indicate that while Scaffold and FedNDT exhibit strong robustness and consistency across various
datasets, LipFed outperforms both in terms of reducing subgroup bias, as shown in Figure 8. For example, in
the MNIST dataset, LipFed achieves a 20% lower subgroup bias than Scaffold, demonstrating its effectiveness
in mitigating bias without sacrificing much performance. Importantly, although LipFed is designed to mitigate
subgroup bias, it also improves group fairness, showing reductions in group discrepancy similar to those seen
in subgroup fairness. This demonstrates that LipFed’s benefits extend beyond subgroup bias mitigation.
Additionally, in Figure 9, we show that LipFed maintains competitive performance across all datasets, with
trends in utility closely mirroring those of the robustness-focused methods. While Scaffold and FedNDT
slightly outperform LipFed in raw performance metrics, the trade-off is minimal, showcasing that LipFed
effectively balances both fairness and performance across diverse data conditions.

This comparison highlights that while methods like Scaffold and FedNDT excel in providing robustness,
LipFed offers a balanced solution by significantly reducing subgroup bias while still maintaining strong
performance across diverse datasets.
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Figure 10: Convergence of the training subgroup discrepancy of LipFed and other baseline techniques across
multiple datasets. LipFed consistently exhibits lower subgroup discrepancy across all iterations.

G.2 CONVERGENCE ANALYSIS

We evaluate the convergence behavior of LipFed in comparison to baseline techniques such as AFL, TERM,
and GIFAIR. The goal is to assess how quickly the training process reduces subgroup discrepancies across
multiple datasets, including MNIST, Fashion-MNIST, FER2013, and UTK. Convergence here refers to the
stability and speed at which the subgroup discrepancy is minimized during the training process.

As shown in Figure 10, LipFed consistently demonstrates faster convergence and lower subgroup discrepancy
across all datasets. This rapid reduction in subgroup bias is primarily due to the Lipschitz continuity constraints
imposed by LipFed, which ensure that performance differences between subgroups are bounded early in
the training process. In contrast, the baseline techniques either converge more slowly or stabilize at higher
subgroup discrepancy values, highlighting their inability to efficiently address subgroup fairness in non-IID
settings. For example, on the FER2013 dataset, LipFed achieves a 30% reduction in subgroup discrepancy
within the first 50 iterations compared to AFL, which converges much slower. Similarly, on the UTK dataset,
LipFed stabilizes subgroup fairness more effectively than other methods, reaching a lower discrepancy in
fewer iterations. This consistent performance across datasets illustrates LipFed’s efficiency in addressing
fairness concerns in federated learning environments with heterogeneous client data. In summary, LipFed’s
convergence behavior demonstrates its ability to quickly and efficiently reduce subgroup discrepancies,
outperforming other fairness-focused techniques in both speed and effectiveness.
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