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ABSTRACT

Lifting is an effective technique for producing a 3D scene segmentation by un-
projecting multi-view 2D instance segmentations into a common 3D space. Ex-
isting state-of-the-art lifting methods leverage contrastive learning to learn a fea-
ture field, but rely on a hyperparameter-sensitive and error-prone clustering post-
process for segmentation prediction, leading to inferior performance. In this paper,
we propose a new unified object-aware lifting approach in a 3D Gaussian Splatting
field, introducing a novel learnable object-level codebook to account for objects
in the 3D scene for an explicit object-level understanding. To start, we augment
each Gaussian point with an additional Gaussian-level feature learned using a con-
trastive loss. More importantly, enabled by our object-level codebook formulation,
we associate the encoded object-level features with Gaussian-level point features
for segmentation predictions. Further, we design two novel modules, the associ-
ation learning module and the noisy label filtering module, to achieve effective
and robust codebook learning. We conduct experiments on three benchmarks, i.e.,
LERF-Masked, Replica, and Messy Rooms datasets. Both qualitative and quanti-
tative results manifest that our new approach significantly outperforms the existing
methods in terms of segmentation quality and time efficiency.

1 INTRODUCTION

Accurate 3D scene segmentation enhances scene understanding and facilitates scene editing, ben-
efiting many downstream applications in virtual reality, augmented reality, and robotics. However,
accurate 3D scene segmentation is challenging to obtain, due to limited 3D dataset size and labor-
intensive manual labeling in 3D. To bypass these challenges, recent studies (Zhi et al., 2021; Sid-
diqui et al., 2023; Bhalgat et al., 2023) suggest lifting 2D segmentations predicted by foundation
models (Kirillov et al., 2023; Cheng et al., 2022) to the 3D scene modeled by a radiance field for
instance-level understanding. Yet, 2D instance segmentations predicted by models like SAM (Kir-
illov et al., 2023) lack consistency across different views, e.g., the same object may have different
IDs when viewed from different angles, leading to conflicting supervision. Besides, inferior seg-
mentations, e.g., under- or over-segmentation, also make the lifting process challenging.

Various strategies have been proposed to address the above issues. An early work Panoptic Lift-
ing (Siddiqui et al., 2023) trains a NeRF to render instance predictions and matches the model’s
3D predictions with the initial 2D segmentation masks (see Fig. 1 (a)). However, its learned NeRF
representation lacks semantically meaningful instance features to effectively represent objects, thus
limiting its performance. Subsequently, (Ye et al., 2023; Lyu et al., 2024) propose object associa-
tion techniques as a preprocessing to prepare view-consistent 2D segmentation maps with improved
multi-view consistency (see Fig. 1 (b)). However, the preprocessing stage often struggles to pro-
duce accurate results and the accumulated error can further degrade the performance. The recent
state-of-the-art methods (Bhalgat et al., 2023; Ying et al., 2024) encode instance information in the
feature field using contrastive learning and apply a clustering as a postprocessing to produce the fi-
nal segmentations (see Fig. 1 (c)). Though significant improvements are achieved, without a global
object-level understanding across different views, their segmentation capability is still bounded.
Moreover, their performance is always constrained by the naive clustering postprocess, which is
hyperparameter-sensitive and also induces error accumulation. Given the above concerns, we come
up with this question: “Can we have a unified lifting framework by incorporating an explicit object-
level understanding for accurate 3D scene segmentation, without pre- or post-processing?”
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Figure 1: Comparing the pipeline of our method against previous lifting solutions. We refer to the
lifting pipeline as a “unified framework” when it does not require pre-processing or post-processing.

In this work, we propose a new unified object-aware lifting pipeline for accurate 3D scene seg-
mentation, facilitating the generation of coherent and view-consistent instance segmentation across
different views. We exploit the recent advancement of the radiance field, i.e., 3D Gaussian splatting
(3D-GS) (Kerbl et al., 2023), as the 3D scene representation due to its superior efficiency and ren-
dering quality. Basically, we augment each Gaussian point in 3D-GS with a Gaussian-level feature
and learn these features using contrastive learning defined in each individual view. In particular, we
introduce a novel object-level codebook to represent each object in the 3D scene. This codebook
is further associated with the rendered Gaussian-level features to predict segmentation results, en-
hancing object-level awareness during training. Moreover, we present effective learning strategies
to optimize the object-level codebook. First, we introduce a novel association learning module, in
which we design an area-aware ID mapping algorithm to generate pseudo-labels of association with
enhanced multi-view consistency. Additionally, we present two complementary loss functions, i.e.,
sparsity and concentration parts, to achieve more reliable object-level understanding. Second, we
design a novel noisy label filtering module to enhance the robustness of our method by estimating
an uncertainty map for the segmentation masks, leveraging the learned Gaussian-level features in
a self-supervised manner. During inference, we obtain novel-view instance segmentation results
without any pre- or post-processing, effectively avoiding error accumulation.

To evaluate the effectiveness of our method, we conduct experiments on the widely-used LERF-
Masked (Ye et al., 2023) dataset and the indoor scene dataset, Replica (Straub et al., 2019). Both
quantitative and qualitative results demonstrate that our method outperforms all the existing lifting
methods by a notable margin. Furthermore, we conduct additional experiments on the challenging
Messy Rooms dataset (Bhalgat et al., 2023), where each scene contains up to 500 objects, demon-
strating the scalability of our method in handling large numbers of objects.

Our main contributions are summarized as follows:

• We propose a new unified object-aware lifting pipeline for accurate 3D scene segmentation
by introducing an object-level codebook representation.

• We present a novel association learning module and a noisy label filtering module to facil-
itate effective learning of the object-level codebook.

• We set a new state-of-the-art performance on multiple datasets and demonstrate strong
scalability in handling large numbers of objects.
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2 RELATED WORKS

Radiance field: from implicit to explict. Radiance field emerges as a promising representa-
tion for reconstructing 3D scenes with various properties, e.g., geometries, colors, and seman-
tics, from only 2D inputs such as RGB images and segmentation masks. Neural Radiance Field
(NeRF) (Mildenhall et al., 2021) models the radiance field using a neural network composed of lay-
ers of multilayer perceptrons. Since then, various works attempt to improve the efficiency of NeRF,
e.g., by explicitly formulating the field using 3D structures such as voxels (Chen et al., 2022; Liu
et al., 2020) and hash grids (Müller et al., 2022). Later on, 3D Gaussian Splatting (3D-GS) (Kerbl
et al., 2023; Xu et al., 2024; Liang et al., 2024; Zhang et al., 2024b; Cheng et al., 2024; Huang et al.,
2024; Yu et al., 2024) is introduced to model the radiance field as a set of explicit Gaussian points.
This approach allows for a splatting-style rendering (Kopanas et al., 2021), which is highly efficient
and demonstrates great potential of real-time rendering. Given these advantages, we employ 3D-GS
as the backbone representation in our framework for creating consistent 3D segmentations.

Segmentation: from 2D to 3D. Segmentation is a long-standing task in computer vision re-
search. Recent progress witnesses advancements in 2D, thanks to the availability of large-scale
datasets. Notably, various foundation models, such as SAM (Kirillov et al., 2023) and its subsequent
works (Xiong et al., 2024; Li et al., 2023), show great performance in numerous 2D segmentation
tasks and demonstrate robust zero-shot segmentation capabilities.

Beyond segmenting pixels in image level, 3D segmentation aims to partition 3D structures, such
as point clouds and voxels (Zhou et al., 2021; Sirohi et al., 2021; Milioto et al., 2020; Gasperini
et al., 2021), or to perform segmentation and 3D reconstruction simultaneously from input 2D im-
ages (Dahnert et al., 2021; Narita et al., 2019; Rosinol et al., 2020). However, due to tedious work
needed in collecting annotated 3D data, the scale of 3D datasets (e.g., 1,503 scenes in ScanNet (Dai
et al., 2017)) is usually at least one order of magnitude smaller than that of 2D datasets (e.g., 11M
diverse images and 1.1B high-quality segmentation masks in SA-1B (Kirillov et al., 2023)). Hence,
the trained models are applicable mostly to limited 3D object categories within the available dataset.
To effectively construct 3D segmentation, we propose lifting the segmentation results from 2D foun-
dation models by explicitly incorporating an object-level understanding of the 3D scene.

Lifting 2D segmentation to 3D scene understanding in radiance field. Various works (Zhi et al.,
2021; Qin et al., 2024; Bhalgat et al., 2023) propose leveraging radiance fields to lift independently-
inferred 2D information into the 3D space for 3D scene segmentation and understanding. Some
works focus on semantic segmentation, aiming to infer semantic information in the 3D scene, such
as object properties and categories, where 2D segmentation predictions are obtained via differen-
tiable rendering. To accomplish this, most existing works tend to optimize a 3D radiance field,
which is supervised by semantic or feature maps derived from 2D foundation models. For example,
Semantic-NeRF (Zhi et al., 2021) optimizes an additional semantic field from 2D semantic maps for
novel-view semantic rendering. Besides, some studies (Zhang et al., 2024a; Qin et al., 2024; Kerr
et al., 2023) distill CLIP (Radford et al., 2021) or DINO (Oquab et al., 2023) features into a feature
radiance field to facilitate open-vocabulary semantic segmentation.

Unlike semantic segmentation, instance segmentation predicted by 2D foundation models, such as
SAM (Kirillov et al., 2023) and MaskFormer (Cheng et al., 2022), lack consistency across multiple
views. An early work, Panoptic Lifting (Siddiqui et al., 2023), formulates the radiance field as a dis-
tribution of instance IDs and employs the Hungarian algorithm for each 2D segmentation to obtain
pseudo labels as the supervision signal. To improve the performance, later works (Ye et al., 2023;
Lyu et al., 2024; Dou et al., 2024) attempt to pre-process the 2D instance segmentations (e.g., using
video tracker (Cheng et al., 2023) or heuristic Gaussian matching (Lyu et al., 2024)) to simplify
the task and obtain view-consistent labels for supervision. Recent state-of-the-art methods (Bhalgat
et al., 2023; Ying et al., 2024; Kim et al., 2024; Choi et al., 2024; Dou et al., 2024) construct 3D
consistent feature fields and supervise them using contrastive loss within each 2D segmentation.
This avoids the need to establish correspondences between different views. However, since radi-
ance fields contain only features, inferring the final segmentation requires an additional clustering
step, such as HDBSCAN (McInnes et al., 2017), which can be rather sensitive to the choice of the
hyperparameters. In this work, we propose a new unified object-aware lifting pipeline for accurate
3D scene segmentation, avoiding the need of pre- or post-processing. By formulating an object-
level codebook representation and designing dedicated modules for effective codebook learning, we
obtain an object-level understanding of the scene to greatly enhance the segmentation quality.
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Figure 2: Overview of our unified object-aware lifting pipeline, which is built based on the 3D
Gaussian Splatting (3D-GS) representation (top-left). In our pipeline, we first augment each Gaus-
sian point in 3D-GS with a Gaussian-level feature and utilize the contrastive loss to optimize the
rendered features (see top; detailed in Sec. 3.1). To impose an object-level understanding on the
3D scene, we introduce an additional object-level codebook and establish associations between the
object-level features and the Gaussian-level features (see bottom-left; detailed in Sec. 3.2). Further,
we propose two novel modules, the association learning module and the noisy label filtering module,
to robustly and accurately learn the codebook (see bottom-right; detailed in Sec. 3.3).

3 METHOD

Given a set of posed images with 2D instance segmentation masks {K}, our goal is to lift 2D seg-
mentations to 3D and produce an accurate and consistent 3D segmentation of the scene, represented
by the 3D Gaussian Splatting (3D-GS) model. In this work, we obtain the initial 2D masks using
a zero-shot 2D segmentation model, specifically the Segment Anything Model (SAM). Fig. 2 illus-
trates the overview of our approach, which consists of three major components. (i) We augment each
Gaussian point in the 3D-GS representation with an additional Gaussian-level feature and employ
contrastive loss to optimize the rendered Gaussian-level features (Fig. 2 top; detailed in Sec. 3.1).
(ii) We impose an object-level understanding on the 3D scene to enhance segmentation quality by
formulating an object-level codebook and associating the codebook with the Gaussian-level features
through an object-Gaussians association for segmentation predictions (Fig. 2 bottom-left; detailed
in Sec. 3.2). (iii) We introduce two novel modules for effective codebook learning based on the
object-Gaussians association: the association learning module and the noisy label filtering module
(Fig. 2 bottom-right: detailed in Sec. 3.3).

3.1 PRELIMINARIES

3D-GS. The 3D Gaussian Splatting (3D-GS) model (Kerbl et al., 2023) encapsulates a 3D scene
using explicit 3D Gaussians and utilizes differentiable rasterization for efficient rendering. Math-
ematically, 3D-GS aims to learn a set of N 3D Gaussian points G = {gi}Ni=1, where gi =
{pi, si,qi, oi, ci} represents the trainable parameters for the i-th Gaussian point. The 3D Gaus-
sian function Gi(x) is defined by the center point pi, the scaling factor si, and the quaternion qi.
Moreover, oi is the opacity value and ci is the color values modeled by spherical harmonics co-
efficients. Following an efficient tile-based rasterization introduced in Kerbl et al. (2023), the 3D
Gaussian function Gi is first transformed to the 2D Gaussian function G′

i on the image plane. Then,
a rasterizer is designed to sort the 2D Gaussians and employ the α-blending to compute the color Cu

for the query pixel u: Cu =
∑

i∈N ciαi

∏i−1
t=1(1− αt), αi = oiG

′
i(u), where N is the number of

sorted 2D Gaussians associated with pixel u. Subsequently, all parameters in {gi}Ni=1 are optimized
using the photometric loss between the rendered colors and the observed image colors.
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Contrastive learning for Gaussian-level features. To encode the instance segmentation infor-
mation of the 3D scene, each 3D Gaussian point gi is augmented with a Gaussian-level learn-
able feature fi ∈ Rd, where d is the feature dimension. Similar to the color information, we
can apply differentiable rasterization to efficiently render the feature Fu for pixel u: Fu =∑

i∈N fiαi

∏i−1
t=1(1− αt), αi = oiG

′
i(u). Following existing state-of-the-art methods (Bhalgat

et al., 2023; Ying et al., 2024), we employ the contrastive learning technique to optimize the
Gaussian-level features fi from individual views. Specifically, we apply the following InfoNCE
loss (Li et al., 2020) to supervise the rendered features:

Lcontra = − 1

|Ω|
∑
Ωj∈Ω

∑
u∈Ωj

log
exp

(
sim

(
Fu,Fj

))∑
Ωl∈Ω exp

(
sim

(
Fu,Fl

)) , (1)

where similarity kernel function sim uses the dot product operation here and Ω is the set of pixel
samples. In specific, Ωj denotes the pixel samples with the same instance ID j according to the 2D
segmentation K, Fj and Fl represent the mean features (centroids) for Ωj and Ωl, respectively.

3.2 OBJECT-LEVEL CODEBOOK REPRESENTATION

While Gaussian-level features implicitly encode instance information within the scene, they lack
explicit object-level understanding and require an additional clustering post-process to extract this
information for segmentation prediction (Bhalgat et al., 2023; Ying et al., 2024). Consequently,
these methods not only suffer from tedious hyperparameter tuning but also encounter issues such
as under- or over-segmentation due to the accumulated errors (see, e.g., Fig. 3). In contrast, we
propose to obtain an explicit object-level understanding of the 3D scene by directly learning from
the Gaussian-level features, rather than utilizing a post-processing.

Figure 3: Visual comparisons. Segmentation results produced by our method against the Gaussian-
level feature-based method OmniSeg3D-GS (Ying et al., 2024) that uses HDBSCAN (McInnes et al.,
2017) post-processing with best-found hyper-parameter. Their result tends to overlook small objects
and produces artifacts. In contrast, our method generates more accurate segmentations.

Object-level codebook. As shown in Fig. 2 bottom-right, based on the Gaussian-level features, we
introduce a learnable object-level codebook representation to impose an object-level understanding
of the 3D scene. Practically, we represent the object-level codebook as a compact matrix Fobj :=
[F1

obj ,F
2
obj , · · · ,FL

obj ]
T , where Fobj ∈ RL×d, L is the maximum object number, and d denotes the

same feature dimension used in the Gaussian-level features. Notably, each row in the matrix Fobj

corresponds to an underlying object in the 3D scene.

We further establish the object-Gaussian association formulation to connect the object-level code-
book with the Gaussian-level features. Given a pose, we render the feature map F from the optimized
Gaussian-level features, with Fu ∈ Rd denoting the feature for pixel u. Particularly, we propose the
following association equation to calculate the probability distribution Pu ∈ RL for pixel u:

Pu = [
exp

(
sim

(
Fu,F

1
obj

))
∑L

o=1 exp
(
sim

(
Fu,Fo

obj

)) , exp
(
sim

(
Fu,F

2
obj

))
∑L

o=1 exp
(
sim

(
Fu,Fo

obj

)) , · · · , exp
(
sim

(
Fu,F

L−1
obj

))
∑L

o=1 exp
(
sim

(
Fu,Fo

obj

)) ],
(2)

where we use the same similarity kernel function sim as in Eq. 1, maintaining consistency with the
learning of Gaussian-level features.

Baseline strategy for learning the object-level codebook. To automatically learn the object-level
codebook during training, a straightforward solution is to directly optimize the object-Gaussians
association predictions. To obtain the pseudo-labels for this optimization, we can match the 2D
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Figure 4: The comparison between the generated pseudo label results by Panoptic Lifting (Siddiqui
et al., 2023) and our method. With the designed area-aware ID mapping, we can obtain more view-
consistent segmentation as the pseudo labels to facilitate the codebook learning.

segmentation results with the current object-Gaussians association results via the linear assignment
algorithm (Kuhn, 1955). In practice, we first need to recover the mapping Π from the original
instance IDs in the 2D segmentation to the global IDs {0, 1, 2, · · · , L− 1} in the 3D scene. Follow-
ing Siddiqui et al. (2023), the expected mapping Π⋆ is defined by:

Π⋆ := argmax
Π

∑
Ωj∈Ω

∑
u∈Ωj

Pu (Π(j))

|Ωj |
, (3)

where Pu (Π(j)) is the Π(j)-th value in the probability prediction Pu. Then, we apply the cross-
entropy loss as a sparsity term to regress the probability distribution based on calculated pseudo-
labels:

Lclass := − 1

|Ω|
∑
u∈Ω

logPu (Π
⋆ (Ku)) , (4)

where the Ku is the instance ID for pixel u, given the 2D instance segmentation masks K.

Inference with the object-level codebook. Benefiting from the learned explicit object-level code-
book representation, our method achieves an end-to-end segmentation inference without the need for
a complicated post-processing. In general, to render a segmentation in novel views, we first (i) render
the Gaussian-level features; then (ii) calculate the probability using the object-Gaussians association
equation; and (iii) determine the segmentation ID by selecting the index of the codebook that ex-
hibits the highest similarity. Furthermore, the same association equation can be directly applied to
determine the instance ID for each 3D Gaussian.

3.3 LEARNING STRATEGY FOR OBJECT-LEVEL CODEBOOK

Although our baseline strategy for learning the codebook is technically feasible, it faces limitations
in terms of performance and robustness. To address these challenges and improve codebook learn-
ing, we introduce two novel modules: the association learning module and the noisy label filtering
module.

3.3.1 ASSOCIATION LEARNING MODULE

Our association learning module aims to improve the multi-view consistency of pseudo-labels and
provide more robust association constraints. To achieve this, we introduce an area-aware ID mapping
method and a concentration term to ensure more comprehensive association constraints.

Area-aware ID mapping. We observe that the ID mapping described in Eq. 2 is sensitive to the
small segments in specific views, thereby further causing the multi-view inconsistency issue, as
shown in Fig. 4, To mitigate this issue and improve the multi-view consistency of the generated
pseudo-labels, we propose an area-aware ID mapping function, formulated as:

Π⋆ := argmax
Π

∑
Ωj∈Ω

∑
u∈Ωj

Pu (Π(j)). (5)

Compared to the previous formulation in Eq. 3, the key distinction lies in the removal of the nor-
malization term. This design prioritizes the influence of large segments in the mapping process,
resulting in more consistent mapping across views, as qualitatively shown in Fig. 4. More analysis
is provided in Sec. 4.4 and the supplementary material.
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Figure 5: Visual comparison of the generated uncertainty maps and 2D instance segmentation
masks from different views from the “Office3” scene in the Replica dataset (Straub et al., 2019).

Concentration term. We assume that the object-level features assigned in the codebook should
align with the clustered Gaussian-level features. Moreover, the clustered Gaussian-level features,
optimized using a contrastive loss with dot product similarity, tend to exhibit similar directions.
Building on this insight, we propose an additional concentration constraint to minimize the direc-
tional differences between the codebook and all corresponding normalized Gaussian-level features:

Lconcen :=
1

|Ω|
∑
u∈Ω

∥FΠ⋆(Ku)
obj − Fu/∥Fu∥∥1. (6)

Thus, we formulate the total association constraint loss as a linear combination of the sparsity com-
ponent in Eq. 4 and the concentration component in Eq. 6, providing a comprehensive association
constraint for the object-level codebook.

3.3.2 NOISY LABEL FILTERING MODULE

To enhance the robustness against noise in the 2D instance segmentation masks, we propose a filter-
ing module that removes less accurate 2D predictions by leveraging multi-view consistently rendered
Gaussian-level features. Specifically, we calculate the uncertainty value Wu for pixel u as

Wu = 1−
exp

(
sim

(
Fu,F(Ku)

))∑
Ωl∈Ω exp

(
sim

(
Fu,Fl

)) , (7)

where F(Ku) is the mean feature (centroid) for Ω(Ku). In practice, we model the uncertainty by
assessing whether the features corresponding to the current 2D instance segmentation are sufficiently
discriminative. Accordingly, we can effectively filter out labels with high uncertainty values (i.e.,
noisy labels) and integrate this filtering into our association constraints. The overall loss for our
proposed learning strategy of the object-level codebook is

L = − 1

|Ω|
∑
u∈Ω

1(Wu≤τ)

wclass logPu (Π
⋆ (Ku))︸ ︷︷ ︸

Sparsity part in Eq. 4

+wconcen∥FΠ⋆(Ku)
obj − Fu/∥Fu∥∥1︸ ︷︷ ︸

Concentration part in Eq. 6

 , (8)

where wclass, wconcen are weight hyper-parameters, and τ = 0.8 is a pre-defined threshold for filtering
noisy labels. As verified in Fig. 5, regions with high values in the calculated uncertainty map largely
align with areas of noisy segmentation. More analysis can be found in Sec. 4.4.

4 EXPERIMENTS

4.1 EXPERIMENTS SETTING

Implementation details. Our implementation is based on the official codebase of 3D-GS (Kerbl
et al., 2023). We utilize the same photometric loss term in Kerbl et al. (2023) to optimize the as-
sociated 3D Gaussian parameters. For the Gaussian-level features, we set the feature dimension to
16, following the baseline works such as OmniSeg3D-GS (Ying et al., 2024) and Gaussian Group-
ing (Ye et al., 2023). To optimize the Gaussian-level features, we apply the same contrastive loss
used in Ying et al. (2024). For the object-level codebook, we set the maximum object number L to
256 and use the proposed loss defined in Eq. 8 to optimize the object-level codebook from a random
initialization. Empirically, we set wclass = 1× 10−3 and wconcen = 1× 10−1 in our experiments. All
parameters are jointly optimized, with the number of training iterations set to 30,000 for all datasets.
More details are provided in the supplementary material.
Dataset. We conduct experiments on the widely-used LERF-Mask dataset (Ye et al., 2023) and the
Replica dataset (Straub et al., 2019) to conduct both quantitative and qualitative comparisons. The
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LERF-Mask dataset includes three scenes, “figures”, “ramen”, and “teatime”, each with six to ten
object segmentation annotations. For the Replica dataset, we select eight scenes for comparisons,
where each scene comprises 64 training images and 16 testing images, as processed in Turkulainen
et al. (2024). Furthermore, we use the official Segment Anything Model (SAM) (Kirillov et al.,
2023) to make predictions and obtain the initial 2D segmentation masks, empirically choosing the
largest granularity that provides the object-level segmentation context.

Metrics. For the LERF-Mask dataset, we adopt the evaluation protocol from Ye et al. (2023)
following the existing works (Ye et al., 2023; Lyu et al., 2024), using the mean Intersection over
Union (mIoU) and the boundary IoU (mBIoU) metrics. For the Replica dataset, we first use the linear
assignment algorithm to calculate the best matching of IoU between the segmentation predictions
and ground-truth data; we then report both the mIoU metric and F-score, using an IoU threshold of
0.5 as the criterion.

Comparisons. We compare our proposed method with three types of lifting approaches based on
3D-GS: (i) lifting methods with a preprocessing, such as Gaussian Grouping (Ye et al., 2023) and
Gaga (Lyu et al., 2024); (ii) the lifting method with a post-processing, i.e., OmniSeg3D-GS (Ying
et al., 2024); and (iii) a direct lifting baseline (i.e., “Panoptic-Lifting-GS” denoted in Tab. 1, Tab. 2,
and Tab. 3) that is derived from Panoptic-Lifting (Siddiqui et al., 2023). To ensure fair comparisons,
we evaluate the OmniSeg3D-GS baseline using the HDBSCAN (McInnes et al., 2017) algorithm to
automatically generate segmentation results. Further, we report metrics under the best-found hyper-
parameters, following the common practice used in Bhalgat et al. (2023). Moreover, we benchmark
our method against the recent open-vocabulary 3D segmentation techniques, including LERF (Kerr
et al., 2023) and Lansplat (Qin et al., 2024).

4.2 MAIN EXPERIMENTS

LERF-Mask dataset. To evaluate performance on real-world data, we conduct the experiments
using the LERF-Mask dataset (Ye et al., 2023). Quantitative comparisons provided in Tab. 1 demon-
strate that our method outperforms all existing lifting methods, as well as open-vocabulary ap-
proaches like LERF (Kerr et al., 2023) and Lansplat (Qin et al., 2024). Moreover, visual comparisons
between our method and other methods are presented in Fig. 6 (a), demonstrating the effectiveness
of our approach in achieving consistent and accurate 3D segmentation. Following the process in
the baseline work (Ye et al., 2023), we set the segmentation result to empty if the calculated IoU
between predictions and ground truth falls below a predefined threshold.

Replica dataset. To further validate the effectiveness of our method, we conduct experiments on
the Replica dataset (Straub et al., 2019), which comprises eight distinct scenes. Quantitative com-
parisons with state-of-the-art methods, presented in Tab. 2, demonstrate that our method achieves the
best performances across all metrics. Visual results, illustrated in Fig. 6 (b), further verify that our
method not only produces more accurate segmentations for small objects (e.g., vase and button) but
also generates significantly fewer artifacts compared to the existing methods. Notably, even when
using the optimal hyper-parameters in HDBSCAN (McInnes et al., 2017) for OmniSeg3D-GS (Ying
et al., 2024), its post-processing clustering algorithm struggles to balance accuracy for small objects
and smooth segmentation for larger objects.

4.3 SCALABILITY ON VARYING OBJECT NUMBERS

To demonstrate the scalability of our method across varying object quantities, we conduct addi-
tional experiments on the widely-used Messy Rooms dataset (Bhalgat et al., 2023), which covers
scenes containing up to 500 distinct objects. For fair comparisons, we follow the same evaluation
protocol used in the previous work (Bhalgat et al., 2023) to calculate the metric that assesses the
consistency of instance IDs across multiple views (Siddiqui et al., 2023), denoting as PQscene in
Tab. 3. Specifically, we choose the segment with largest area in the generated instance segmenta-
tion across different views as the background, to generate the binary semantic segmentations for
PQscene metric calculations. This approach avoids the need to optimize an additional semantic fea-
ture in our method, as well as in all 3D-GS-based baselines. We compare our method with the
3D-GS-based baselines (i.e., OmniSeg3D-GS and Panoptic-Lifting-GS) and the NeRF-based base-
lines (i.e., Panoptic Lifting (Siddiqui et al., 2023) and Contrastive Lift (Bhalgat et al., 2023)) for a
comprehensive evaluation. As shown in Tab. 3, the quantitative results demonstrate that our method
achieves improved performance compared to 3D-GS-based baselines, particularly in scenes with a
large number of objects. Moreover, our method achieves results comparable to the current state-of-
the-art NeRF-based method (Bhalgat et al., 2023), while requiring significantly less training time.
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4.4 ABLATION STUDY

We conduct a detailed ablation study to validate the effectiveness of each component in our proposed
method. Our baseline solution for codebook learning combines contrastive learning for Gaussian-
level features with a cross-entropy loss for the object-level codebook, utilizing the mapping strategy
from Siddiqui et al. (2023). Quantitative results presented in Tab. 4 demonstrate that each proposed
component significantly enhances our method’s performance.

4.5 APPLICATIONS

Our method effectively offers an object-level understanding of the 3D scene, which can further
facilitate downstream applications. For example, it enables the direct selection of objects in the
3D domain for fundamental copy-and-paste operations. Benefiting from our accurate segmentation
results, the edited outputs appear more natural and exhibit fewer artifacts, as illustrated in Fig. 6 (c)
left. Furthermore, our method can be easily extended to provide multi-granularity understanding,
by simply employing segmentation at various granularities (e.g., three-level granularity for SAM).
This capability enables end-to-end multi-scale object selections, as showcased in Fig. 6 (c) right.

Table 1: Quantitative comparisons of segmenta-
tion quality on the LERF-Mask dataset (Ye et al.,
2023). We report the mIoU and mBIoU metrics
following Gaussian Grouping (Ye et al., 2023).
* indicates self-implementation, and † indicates
that the results are reported under the best-found
hyper-parameter, i.e., minimal cluster size for
HDBSCAN (McInnes et al., 2017).

Method Venue mIoU(%) mBIoU (%)

LERF ICCV’23 37.2 29.3
LangSplat CVPR’24 57.6 53.6
Gaussian Grouping ECCV’24 72.8 67.6
Gaga Arxiv’24 74.7 72.2
OmniSeg3D-GS (†) CVPR’24 74.7 71.8
Panoptic-Lifting-GS * 70.7 65.8
Ours - 80.9 77.1

Table 2: Quantitative comparisons of segmenta-
tion quality on the Replica dataset (Straub et al.,
2019). We report the mIoU, and F-score met-
rics. * indicates self-implementation, and † indi-
cates that the results are reported under the best-
found hyper-parameter, i.e., minimal cluster size
for HDBSCAN (McInnes et al., 2017).

Method mIoU(%) F-score (%)

Gaussian Grouping 23.6 30.4
OmniSeg3D-GS (†) 39.1 35.9
Panoptic-Lifting-GS (*) 25.3 32.9
Our 41.6 43.9

Table 3: Results on the Messy Rooms dataset (Bhalgat et al., 2023). Following Bhalgat et al.
(2023), PQscene metric is reported on both the “old room” and “large corridor” environments with an
increasing number of objects in the scene (25, 50, 100, 500). Note that, we test the training time for
all methods using a single NVIDIA 3090 RTX GPU.

Type Method/ Number Old Room Environment (%) Large Corridor Environment(%) Mean(%) Training (h)
25 50 100 500 25 50 100 500

NeRF Panoptic Lifting 73.2 69.9 64.3 51.0 65.5 71.0 61.8 49.0 63.2 ≥ 20
Contrastive Lift 78.9 75.8 69.1 55.0 76.5 75.5 68.7 52.5 69.0 ≥ 20

GS
Panoptic-Lifting-GS (*) 67.5 65.1 59.4 46.1 62.2 65.3 57.5 45.5 58.6 ≈ 1
OmniSeg3D-GS (†) 80.1 72.4 61.4 46.8 74.9 79.6 63.9 48.5 66.0 ≈ 1
Ours 79.1 72.2 65.9 53.9 77.0 78.9 70.7 54.1 69.0 ≈ 1

Table 4: Ablation study for the proposed components.
Method mIoU(%) F-score (%)

Baseline solution (w/ codebook) 29.5 39.2
+ concentration term in association learning module 36.3 41.3
+ area-aware ID mapping in association learning module 39.2 41.0
+ noisy label filtering (full method) 41.6 43.9

5 CONCLUSION

We propose a new unified object-aware lifting approach based on 3D-GS for constructing accurate
and efficient 3D scene segmentations. Specifically, we introduce a novel object-level codebook to
incorporating an explicit object-level understanding of the 3D scene by learning a representation
for each object. Method-wise, we first augment each Gaussian point with a Gaussian-level point

9
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Figure 6: Qualitative comparison of our method with previous methods. We provide visual compar-
isons on the LERF-Masked dataset (Ye et al., 2023) in (a); and on the Replica dataset (Straub et al.,
2019) in (b). Moreover, we present the application results in (c). As shown in the left part of (c), we
select the potted plants in view 1 and apply the copy & paste operations to the associated Gaussian
points. The consistent editing results in view 2 and view further demonstrate the advantages of our
method. In contrast, using segmentations derived from Gaussian Grouping (Ye et al., 2023) leads
to severe artifacts and can even adversely affect unrelated object such as the vase observed in view
3. In addition, we illustrate the multi-scale object selection application in the right part of (c). By
clicking on the red point in view 1, we consistently select the sofa instance at three different granu-
larities across multiple views.

feature and adopt the contrastive loss to optimize these features. Then, we formulate the object-
level codebook representation and associate it with the Gaussian-level features for object-aware
segmentation prediction. To ensure effective and robust learning for the object-level codebook, we
further propose the association learning module and the noisy label filtering module. Extensive
experimental results manifest the effectiveness of our method over the state of the arts. Further
analysis on the Messy Rooms dataset also shows its scalability in handling large numbers of objects.
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Kshitij Sirohi, Rohit Mohan, Daniel Büscher, Wolfram Burgard, and Abhinav Valada. Efficientlps:
Efficient LiDAR panoptic segmentation. IEEE Transactions on Robotics, 38(3):1894–1914, 2021.

Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik Wijmans, Simon Green, Jakob J Engel,
Raul Mur-Artal, Carl Ren, Shobhit Verma, et al. The replica dataset: A digital replica of indoor
spaces. arXiv preprint arXiv:1906.05797, 2019.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Matias Turkulainen, Xuqian Ren, Iaroslav Melekhov, Otto Seiskari, Esa Rahtu, and Juho Kan-
nala. Dn-splatter: Depth and normal priors for gaussian splatting and meshing. arXiv preprint
arXiv:2403.17822, 2024.

Yunyang Xiong, Bala Varadarajan, Lemeng Wu, Xiaoyu Xiang, Fanyi Xiao, Chenchen Zhu, Xiao-
liang Dai, Dilin Wang, Fei Sun, Forrest Iandola, et al. Efficientsam: Leveraged masked image
pretraining for efficient segment anything. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 16111–16121, 2024.

Tian-Xing Xu, Wenbo Hu, Yu-Kun Lai, Ying Shan, and Song-Hai Zhang. Texture-gs: Disentangling
the geometry and texture for 3d gaussian splatting editing. arXiv preprint arXiv:2403.10050,
2024.

Mingqiao Ye, Martin Danelljan, Fisher Yu, and Lei Ke. Gaussian grouping: Segment and edit
anything in 3D scenes. arXiv preprint arXiv:2312.00732, 2023.

Haiyang Ying, Yixuan Yin, Jinzhi Zhang, Fan Wang, Tao Yu, Ruqi Huang, and Lu Fang. Om-
niseg3d: Omniversal 3d segmentation via hierarchical contrastive learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20612–20622, 2024.

Zehao Yu, Anpei Chen, Binbin Huang, Torsten Sattler, and Andreas Geiger. Mip-splatting: Alias-
free 3d gaussian splatting. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 19447–19456, 2024.

Hao Zhang, Fang Li, and Narendra Ahuja. Open-nerf: Towards open vocabulary nerf decomposi-
tion. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision,
pp. 3456–3465, 2024a.

Zheng Zhang, Wenbo Hu, Yixing Lao, Tong He, and Hengshuang Zhao. Pixel-gs: Density control
with pixel-aware gradient for 3d gaussian splatting. arXiv preprint arXiv:2403.15530, 2024b.

Shuaifeng Zhi, Tristan Laidlow, Stefan Leutenegger, and Andrew J Davison. In-place scene la-
belling and understanding with implicit scene representation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 15838–15847, 2021.

Zixiang Zhou, Yang Zhang, and Hassan Foroosh. Panoptic-polarnet: Proposal-free LiDAR point
cloud panoptic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 13194–13203, 2021.

13


	Introduction
	Related Works
	Method
	Preliminaries
	Object-level codebook representation
	Learning strategy for object-level codebook
	Association learning module
	Noisy label filtering module


	Experiments
	Experiments setting
	Main experiments
	Scalability on varying object numbers
	Ablation study
	Applications

	Conclusion

