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Abstract

Existing Open Vocabulary Detection (OVD) models exhibit a number of challenges.1

They often struggle with semantic consistency across diverse inputs, and are often2

sensitive to slight variations in input phrasing, leading to inconsistent performance.3

The calibration of their predictive confidence, especially in complex multi-label4

scenarios, remains suboptimal, frequently resulting in overconfident predictions5

that do not accurately reflect their context understanding. The Understanding of6

those limitations requires multi-label detection benchmarks. Among those, one7

challenging domain is social activity interaction. Due to the lack of multi-label8

benchmarks for social interactions, in this work we present ELSA: Evaluating9

Localization of Social Activities. ELSA draws on theoretical frameworks in urban10

sociology and design and uses in-the-wild street-level imagery, where the size of11

social groups and the types of activities can vary significantly. ELSA includes12

more than 900 manually annotated images with more than 4,000 multi-labeled13

bounding boxes for individual and group activities. We introduce a novel re-ranking14

method for predictive confidence and new evaluation techniques for OVD models.15

We report our results on the widely-used, SOTA model Grounding DINO. Our16

evaluation protocol considers semantic stability and localization accuracy and sheds17

more light on the limitations of the existing approaches.18

1 Introduction19

“For it is interaction, not place, that is the essence of the city and of city life.”20

(Melvin M. Webber, 1964, 147)21

In recent years, increased focus on the human scale of the cities has drawn more attention to public22

spaces and pedestrian facilities. For decades, urban scholars from various fields have been fascinated23

by the complex interplay between public spaces and the social interactions they support [28, 37, 17].24

However, traditional scientific inquiry into the distribution of social activities across urban streets25

have been hampered by high data collection costs and extensive time requirements.26

The emergence of advanced computer vision techniques such as object detection and semantic27

segmentation together with the availability of public sources of street-level imagery have opened28
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new avenues for conducting comprehensive observational studies at reduced cost and increased29

scale. Activity recognition techniques are mostly designed to work with videos [23], since, by nature,30

human activity involves motion and sequence of actions. Yet, acquiring continuous video footage31

across an entire city over time entails substantial data storage requirements and processing costs,32

making it very difficult to scale. Object detection on still images emerges as a low-cost, efficient, and33

applicable method, as it allows for the identification and localization of complex social interactions in34

diverse settings, where the environmental context significantly influences the range of possible social35

interactions and where each image can contain a large number of people engaged in diverse activities.36

While conventional object detection models are trained in closed-vocabulary settings and rely heavily37

on predefined classes, open-vocabulary detection (OVD) models aim to transcend traditional object38

detection models, and utilize the abundance of language data in order to enable the detection of39

classes with less representation in standard benchmark training data. A robust OVD model is expected40

to handle a wide range of input terms and phrases that were not explicitly part of its training set. This41

is crucial for models deployed in real-world settings, such as urban streets, where unpredictable and42

varied interactions are common. The absence of benchmark data for open-vocabulary detection of43

social and individual actions in still images ’in the wild’ hinders the development of robust models44

that generalize well across diverse and spontaneous urban scenarios, where the context and variability45

of human activities are far greater than those typically encountered in controlled environments.46

Furthermore, OVDs pose new challenges in both localization and semantic understanding of unseen47

new categories. They often struggle with semantic consistency across diverse inputs, demonstrate48

sensitivity to slight variations in input phrasing, and the calibration of their predictive confidence,49

especially in out-of-distribution scenarios, remains suboptimal, resulting in overconfident predictions50

that do not accurately reflect their actual accuracy [33, 8].51

In response to these challenges, we propose ELSA, a new benchmark dataset and evaluation frame-52

work in order to evaluate the performance of OVD models in recognizing and localizing human53

activity in urban streets from still images. We employ a multi-labeling scheme and define 33 unique54

individual labels regarding human activities. These labels can concurrently be associated to each55

annotated bounding box. As a result, ELSA includes more than 4,000 bounding boxes annotated56

with 115 unique combination of human activities for 900 street view images. In order to evaluate57

the robustness of OVD models, ELSA contains challenging scenes with humans located relatively58

far from the camera as well as scenes containing pictures of people, which are likely to get falsely59

detected as genuine people by such models.60

Furthermore, due to the close ties of OVD models with language features, using the for evaluation61

purposes entails certain challenges. We design a novel re-ranking score, namely N-LSE, metric to62

rank the predicted bounding boxes based on the most salient sub-phrases and tokens of the query,63

and take into account the token-level correspondence of language with the visual features on the64

predicated area. We further propose Confidence-Based Dynamic Box Aggregation (CDBA), in order65

to handle multiple detected predictions of the same object, which overcomes the shortcomings of the66

Non-Maximum Suppression (NMS) [38] method and its variation NMS-AP.67

2 Related Work68

Social Interactions in Public Spaces. Vibrant streets rich in interpersonal exchange have fascinated69

urban scholars because of their social qualities as well as fundamental indicators of sustainable urban70

environments [28]. William Whyte [37] along with Jacobs [17] highlight the intrinsic value of public71

spaces in fostering vibrant social life. Jan Gehl [12] describes activities in the public spaces as a72

spectrum between optional activities, e.g., talking with friends, and necessary activities, e.g., walking73

to work. The public space observational method [13] delineates between active social group activities,74

e.g., dining or talking together, and passive activities, such as strangers sitting on a bench checking75

their cell-phones. Inspired by this research, we define the target set of social activities in ELSA.76

Open-Vocabulary Object Detection. OVD, first introduced by Zareian et al. [40], primarily tackles77

the limitation of traditional object detection models that rely on pre-defined closed set of objects78
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Figure 1: Examples of label space in our social interaction study.

[4, 31, 21] tested on various OVD benchmark datasets [33, 38]. At their core, a vision-language79

contrastive loss is often used for aligning semantics and concepts in the two modalities [20, 27, 6, 18,80

30, 24] with additional soft token prediction in MDETR [20]. Using a dual-encoder-single-decoder81

architecture, Grounding DINO [27] extends DINO [41] such that given a text prompt, query selection82

is performed to select the text features more relevant for the cross-modal decoder. A contrastive loss83

for aligning the output of the decoder and text queries along with a regression L1 loss and generalized84

union over intersection is optimized end-to-end for the detection.85

OVD Evaluation. The standard evaluation metric for object detection is the mean of the per-class86

average precision (mAP) [11]. As shown by Dave et al. [8], standard AP is sensitive to changes in87

cross-category ranking. Furthermore, [38] shows the inflated AP problem and proposes to suppress88

that using class-ignored NMS-AP that unifies multiple predictions of the same box and assigns the89

highest confidence label to that box. Relying on the maximum-logit confidence, this method is90

also prone to misrepresent the correct ranking of relevant boxes and can inaccurately represent the91

robustness and stability of the model in predicting the correct class, as it is merely relies on the92

maximum-logit token from the query.In contrast, our approach ranks the predicted boxes with respect93

to all tokens in the query, which is crucial for multi-label scenarios.94

Activity Localization Datasets. Activity localization involves analyzing the activities in a sequence95

images [2, 3, 10, 42, 42]. A seminal study by Choi et al. [7] focuses on in-the-wild pedestrian action96

classification from videos. Recent advancements in Zhou et al. [42] and Wang et al. [36]combine97

appearance and pose data with transformers in order to enhance interaction recognition and improve98

the detection of complex human behaviors. Li et al. [25] added cognitive depth with the HAKE engine,99

which uses logical reasoning to analyze human–object interactions. However, all of these models100

are tested on video datasets such as a volleyball dataset [16], AVA-Interaction [36], HICO-DET [5],101

V-COCO [15], NTU RGB+D [34, 26], and SBU-Kinect-Interaction [39]. Among previous work,102

Ehsanpour et al. [10] includes annotated videos of university campus scenes for group-based social103

activities and enables group-based social activity recognition. In contrast, ELSA aims at localization104

of social activities in still images, which is a more challenging problem. In image sequences, activities105

can be recognized based on the object movements across consecutive images. In contrary, for still106

images, localization models need to infer activities from the snapshot of the moment shown.107
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3 ELSA: Evaluating Localization of Social Activities108

3.1 Benchmark Dataset109

Motivated by the lack of available benchmark data for detection of social interactions and individual110

activities in still images, we propose ELSA. The goal is to enable the evaluation of state-of-the-art111

object detection models in detecting various levels and patterns of human activity and interactions. In112

this section, we provide a detailed description of ELSA and its unique characteristics.113

Image Resources. We chose New York City as the site of interest, due to the well-known presence114

of lively streets and public spaces. We compiled street-level images from two different sources:115

Microsoft Bing Side-view [22] and Google Street View [14, 1]. The Bing imagery provides time-116

stamps, making it possible to choose days and times with a higher probability of encountering117

pedestrians on the streets.118

Target Labels We draw on the literature on active design and urban vibrancy (see Section 2) to select119

our primary individual labels. ELSA exhibits non-disjoint label spaces, where multiple concurrent120

labels can be applied to the same object in a multi-labeling scheme that encompasses the nuances of121

human behavior and context. Labels are grouped into four categories: 1) Condition: defines the social122

configuration of the subjects as alone, two people, or group. These labels are disjoint and denote123

mutually exclusive social settings, establishing the primary context for potential interactions, such as124

solo activities, limited interactions, or group dynamics; 2) State: captures the physical disposition or125

activity mode of the subjects, such as walking or sitting. While disjoint for individuals, these labels126

can co-occur in couple or group scenarios, indicating stationary engagement (standing, sitting) or127

transient interactions (walking, biking); 3) Action: reflects specific behaviors or activities, such as128

dining or talking. We report additional information about the label categories in Appendix 6.1.129

Annotation Process. We customized the open source Label Studio tool [35] for annotation and130

integrated YOLOv8 [19] for pre-detecting the initial objects. A group of four people manually131

corrected the initial bounding boxes and annotated the label combinations. Finally, an urban planning132

expert reviewed the label and bounding box accuracy for all annotations.133

Examples of ELSA’s annotations are depicted in Figure 1. Additional examples are included in134

Section 6.2.135

Annotation Cleaning. After the initial annotations, we performed sanity checks on the disjoint136

labels and defined a set of sanity rules, e.g., a bounding box with just one person cannot have137

two contradictory states of sitting and walking at the same time. The full list of these sanity rules138

are provided in Section 6.3. We applied the sanity rules to all the annotated bounding boxes and139

re-annotated the ones that did not pass the sanity checks. We repeated this process until all bounding140

boxes passed our defined sanity rules.141

Dataset Statistics. ELSA includes 924 images with more than 4.3K annotated bounding boxes for142

social and individual activities. In total, there exist 34 distinct single labels in ELSA. Since we have a143

multi-labeling scheme, each bounding box can have 2 or more of the distinct 34 labels associated144

with it. As a result, ELSA includes 112 unique combinations of human activities. Figure 2 shows145

the distribution of the distinct labels as well as the distribution of combinations of multiple labels in146

ELSA.147

Prompt Formation. Unlike physical objects, activities and human–human or human–object148

interactions pose significant challenges in being accurately captured by a single word or label. To149

investigate this, we conducted a series of tests on various models, examining their responses to150

prompts with verbs like “walking,” “talking,” or “standing,” and phrases like “walking alone” or151

“talking in groups.” As expected, the results were often inaccurate or non-existent. These models152

require more detailed natural language descriptions to detect these activities correctly, such as “an153

individual sitting on a bench.”154
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Figure 2: Overview of the distribution of activities in ELSA. (A) Number of bounding boxes per
single activity label, (B) Distribution of the top 20 activity labels that occur together.

To address this need, we enhanced ELSA with the ability to generate precise, naturally phrased155

sentences for each label combination and their near synonyms. This capability ensures that the156

models receive comprehensive descriptions, significantly improving their detection accuracy.157

3.1.1 Challenging Scenarios158

a b

c

Group Standing

TalkingGroup Taking Photo

Condition Satate Activity

Standing

CS

CSA

Level

Figure 3: Example of challenging scenarios: a) Printed image of people that are not to be recognized
as genuine; b) Crowded scene with people standing at different distances from camera; c) Prompts at
two levels cs and csa for one target in the image.

Challenging Scenarios. ELSA includes still images from ‘in the wild’ scenarios, which examines the159

robustness and generalizability of the state-of-the-art models across diverse and spontaneous urban160

scenarios where the context and variability of human activities are far greater than those typically161

encountered in controlled environments. Thus, ELSA poses two types of challenges for activity162

recognition and localization models:163
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1. Challenges in the visual data: ELSA include negative sets in scenes without actual pedes-164

trians but with printed images of people on billboards, buses, or walls (see Figure 3-a), as165

well as mannequins in store fronts. There are instances of people standing far away from the166

camera, making them difficult to detect. We also have crowded scenes with obstructions,167

where detecting all targets can be challenging (see Figure 3-b).168

2. Prompt level challenges: We employ a three-level benchmark to increase the complexity of169

the query prompts at each level. Each level’s queries are designed to return all instances of170

the target label combination that includes these sub-category labels. Label combinations in171

ELSA follow one of the following patterns: “Condition + State” (CS, e.g., “group standing”),172

or “Condition + State + Activity” (CSA, e.g., “group standing talking and taking photo”) or173

“Condition + State + Activity + Other” (e.g., “group standing talking and taking photo with174

coffer or drink in hand”) (see Figure 3-c for a two-level prompt example).175

3.2 Evaluation Approach176

One distinguishing factor of open-vocabulary detection is the capability to draw on the natural177

language features to predict novel classes. This means that in zero-shot prediction, the semantic label178

of the class (the query phrase) can play a critical role in model performance. Ideally, the model should179

be able to recognize the details of the main target (semantic understanding), correctly associate near180

synonyms to the same object with close confidence level (semantic stability), and accurately localize181

the target in the image by connecting natural language and visual features (localization). All three182

aspects are important in measuring the performance of OVDs. In this work, we focus on evaluating183

semantic stability as well as localization capabilities of the OVD models.184

3.2.1 Re-ranking Predicted Bounding Boxes185

In open-vocabulary detection, each predicted bounding box is typically associated with a confidence186

score and an array of logits. These logits quantify the model’s confidence in the relationship between187

the visual features within the bounding box and specific tokens. Often, the confidence score of a188

bounding box is determined by the highest logit value, i.e., Max-Logit, among all tokens [27], which189

usually corresponds to prevalent object classes, such as “person". However, unlike single-object190

detection, multi-label human activity and interaction detection presents additional challenges for191

identifying multiple overlapping targets, activities, and interactions within the same scene. Thus,192

bounding boxes must reflect not only the presence of the targets but also their states and conditions193

with higher confidence.194

In complex multi-label scenarios, the commonly employed Max-Logit approach may not yield the195

most accurate representations. To address this limitation, we propose a re-ranking approach that196

effectively considers the logits of all the tokens for deriving the final score. Specifically, we propose197

considering the Normalized Log-Sum-Exp (N-LSE) function over tokens as:198

N-LSE(z) = log

 
1

T

TX

t=1

ezt

!
= log

 
TX

i=1

ezt

!
� log(T ), (1)

Here, z represents the vector of logits, and T is the number of elements (corresponding to each token)199

in z. Following previous work [32], our evaluations prune the predicted boxes with an N-LSE of less200

than 0.3.201

3.2.2 Confidence-Based Dynamic Box Aggregation (CDBA)202

A common issue with OVD models is that they can achieve high Average Precision (AP) by predicting203

multiple boxes for the same object across different prompts. Yao et al. [38] proposed a variation of204

non-maximum suppression (C-NMS), which selects the box with the highest confidence as a true205

positive (TP) and suppresses the rest as false positives (FP). However, this approach has notable206

drawbacks: 1) It does not reveal the model’s vulnerability to making disjoint predictions with similar207
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confidence levels, and 2) It may incorrectly suppress true positives with confidence levels close to208

the highest prediction as false positives. To overcome these problems, we propose the Confidence-209

based Dynamic Box Aggregation method (Algorithm 1) to handle overlapping bounding boxes by210

considering the range of confidence scores within the group, and classifying boxes based on the211

coherence of predicted prompts. Here, instead of only looking at the maximum prediction confidence,212

we consider the confidence range of predicted overlapping boxes, and keep the ones close to the213

maximum (<0.2 difference), while suppressing the rest. Given that our N-LSE-based score threshold214

is 0.3, the additional 0.2 threshold on the score, at minimum, puts us around the 0.5 margin, which is215

deemed sufficiently high to be counted as a TP, if matching the ground truth.216

Algorithm 1 Confidence-Based Dynamic Box Aggregation (CDBA)
1: Input: Groups of overlapping bounding boxes G from multiple prompts on a given image
2: Output: Classified boxes with adjusted scores
3: for each group g 2 G do
4: Compute the range of scores R = max(Scores)�min(Scores)
5: if R > 0.20 then
6: Select boxes Bi where Score(Bi) � max(Scores)� 0.20
7: else
8: Select all boxes in the group
9: end if

10: if predicted prompts are disjoint then
11: Classify as MISS
12: else
13: if IoU with any ground truth � 0.85 then
14: Classify as MATCH
15: else
16: Classify as MISS
17: end if
18: end if
19: end for

3.2.3 Semantic Stability217

Subtle semantic changes in prompts can often lead to varying detections. A semantically robust218

model should exhibit minimal variation in its predictions for synonymous prompts. To measure219

semantic variations in our evaluation, we implemented a prompt generation pipeline that creates a220

series of semantically synonymous sentences for each unique label combination in our ground truth.221

Let I be the set of images, G be the set of groups of synonymous prompts, and Pg be the set of222

synonymous prompts in group g. For each image i 2 I and group g 2 G, we first calculate a223

Semantic Inconsistency score for image i and group g as:224

SIi,g = std ({Ci,p : p 2 Pg}) , (2)

where std represents the standard deviation and Ci,p is the confidence score for the predicted box for225

prompt p on image i. Note that the higher the variance of the confidence scores across synonymous226

prompts, the lower the semantic consistency, i.e., the higher the SIi,g values.227

Finally, the Semantic Stability (S) is defined by the the average semantic inconsistency across all228

images and groups:229

S = 1� 1

|I| · |G|
X

i2I

X

g2G

CCi,g, (3)

where |I| is the total number of images, and |G| is the total number of prompt groups.230
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Figure 4: Comparison of average score of the five most frequent prompts computed using the
Max-logit and N-LSE (ours). The plot shows how Max-Logit scores can be artificially inflated.

4 Results231

In this section, we present the findings from our evaluation strategies applied to the ELSA dataset.232

The ELSA dataset is specifically designed to evaluate the capabilities of open vocabulary detection233

(OVD) models, and for this purpose, we conducted our experiments using a state-of-the-art OVD234

model, Grounding DINO. This chapter provides a comparison between our re-ranking with N-235

LSE and the Max-Logit approach dominantly used in previous work [27, 6, 30]. Furthermore, we236

highlight the differences in localization performance and provide semantic stability evaluations. In237

the supplementary material, we present qualitative results showcasing the performance of Grounding238

DINO on the ELSA dataset.239

4.1 N-LSE Re-ranking Effects240

Grounding DINO has a limit of 900 predictions per image. For our dataset, comprising 924 images,241

we retrieved all 900 bounding boxes per image and applied a total of 917 prompts to each image. This242

process generated a substantial total of 762,577,200 bounding boxes. After computing the N-LSE243

score for all boxes, we retained only those with scores higher than 0.3 (following [32]), resulting244

in 387,544 predicted boxes, which is equivalent to the 0.05% of the original set of predicted boxes.245

In contrast, using the Max-Logit method with the same threshold of 0.3 yielded 2,489,685 boxes,246

approximately 0.3% of the total boxes, which is nearly six times more. This comparison underscores247

the effectiveness of the N-LSE scoring approach in significantly reducing the number of retained248

bounding boxes while maintaining high confidence.249

Moreover, we computed the average score for each prompt group (i.e., all synonymous prompts)250

and compared it with the average Max-Logit method. Results show that Max-Logit is often inflated251

and does not represent the true confidence of the model in multi-label scenarios. We report the252

comparison for five most frequent prompts in Figure 4. We can observe that the values obtained by253

the Max-Logit approach are often arbitrarily high, which subsequently, leads to a larger number of254

false positives.255
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4.2 Localization256

Table 1 reports the localization evaluations using the mean average. We choose an higher ranges257

of threshold due to the high proximity of our bounding boxes: [0.75 - 0.9] with a 0.5 interval.258

when re-ranking with our N-LSE approach in comparison to the Max-Logit approach. As can be259

seen, Max-Logit, in general, yields smaller mAP values, since it does not consider all tokens in the260

prompt, but rather grounds the localization only on the single token with the maximum logit value. In261

contrast, when using N-LSE, logits of all tokens contribute to the score, and therefore, the model can262

ground the localization based on all tokens. Consideration of all tokens is crucial when querying for263

multi-labeled objects in images, for which the model needs to detect the objects based on multiple264

associated labels.265

Method CS CSA CSAO

Grounding DINO (N-LSE) 30.4% 32.4% 31.1%
Grounding DINO (Max-Logit) 28.9% 29.7% 29.3%

Table 1: mAP (IoU) on ELSA dataset for the different sub-categories when computing the confidence
with our ranking method, and the maximum token. CS stands for Condition and State, CSA also
includes Activities, CSAO has includes all the categories as descibed in 3

4.3 Semantic Stability266

Table 2 summarizes the results of our semantic stability measurements when using N-LSE re-ranking267

in comparison to the Max-Logit approach. Our results show that using N-LSE approach results in up268

to a 7, 9 and 8 point improvement of the semantic stability when using Grounding DINO on CS, CSA269

and All categories respectively. Since N-LSE considers the logits of all tokens in the query, it is able270

to capture the semantics of the entire sequence-level query much better than the Max-Logit approach,271

and therefore, is more semantically stable across synonymous prompts.272

Method CS CSA All

Grounding DINO (N-LSE) 0.64% 0.65% 64%
Grounding DINO (Max-Logit) 0.57% 0.56% 56%

Table 2: Semantic Stability metric, computed for confidence scores using the default and our N-LSE
scoring. CS stands for Condition and State, CSA also includes Activities, CSAO has includes all the
categories as descibed in 3

5 Conclusion273

This paper introduces ELSA, a novel dataset specifically curated for the detection of social activities274

from still images within urban environments. Employing a multi-labeling scheme, ELSA comprises275

924 annotated images, and more than 4,300 bounding boxes, annotated with 115 unique combinations276

of social activities. ELSA comes with a new re-ranking approach, specifically designed for multi-label277

scenarios and open vocabulary detection (OVD) models, for which the effect of each token in a query278

is accounted for in the final confidence score, rather than just the maximum value as in prior work.279

We demonstrate the success of this approach by adapting a state-of-the-art OVD model to operate on280

ELSA, showing better performance and more semantic stability across different synonyms.281

9



References282

[1] D. Anguelov, C. Dulong, D. Filip, C. Frueh, S. Lafon, R. Lyon, A. Ogale, L. Vincent, and283

J. Weaver. Google street view: Capturing the world at street level. Computer, 43(6):32–38,284

2010.285

[2] T. Bagautdinov, A. Alahi, F. Fleuret, P. Fua, and S. Savarese. Social scene understanding:286

End-to-end multi-person action localization and collective activity recognition. In Proceedings287

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.288

[3] M. Barekatain, M. Martí, H.-F. Shih, S. Murray, K. Nakayama, Y. Matsuo, and H. Prendinger.289

Okutama-action: An aerial view video dataset for concurrent human action detection. In290

Proceedings of the IEEE conference on computer vision and pattern recognition workshops,291

pages 28–35, 2017.292

[4] M. A. Bravo, S. Mittal, S. Ging, and T. Brox. Open-vocabulary attribute detection. In293

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages294

7041–7050, 2023.295

[5] Y.-W. Chao, Y. Liu, X. Liu, H. Zeng, and J. Deng. Learning to detect human-object interactions.296

In 2018 ieee winter conference on applications of computer vision (wacv), pages 381–389.297

IEEE, 2018.298

[6] T. Cheng, L. Song, Y. Ge, W. Liu, X. Wang, and Y. Shan. Yolo-world: Real-time open-299

vocabulary object detection. arXiv preprint arXiv:2401.17270, 2024.300

[7] W. Choi, K. Shahid, and S. Savarese. What are they doing?: Collective activity classification301

using spatio-temporal relationship among people. In 2009 IEEE 12th international conference302

on computer vision workshops, ICCV Workshops, pages 1282–1289. IEEE, 2009.303

[8] A. Dave, P. Dollár, D. Ramanan, A. Kirillov, and R. Girshick. Evaluating large-vocabulary304

object detectors: The devil is in the details. arXiv preprint arXiv:2102.01066, 2021.305

[9] C. Desai, D. Ramanan, and C. C. Fowlkes. Discriminative models for multi-class object layout.306

International journal of computer vision, 95:1–12, 2011.307

[10] M. Ehsanpour, F. Saleh, S. Savarese, I. Reid, and H. Rezatofighi. Jrdb-act: A large-scale dataset308

for spatio-temporal action, social group and activity detection. In Proceedings of the IEEE/CVF309

Conference on Computer Vision and Pattern Recognition, pages 20983–20992, 2022.310

[11] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. The pascal visual311

object classes (voc) challenge. International journal of computer vision, 88:303–338, 2010.312

[12] J. Gehl. People on foot. Architecture, 20:429–446, 1968.313

[13] J. Gehl and B. Svarre. How to study public life, volume 2. Springer, 2013.314

[14] Google Maps Platform. Google street view static api. URL https://developers.google.315

com/maps/documentation/streetview/overview.316

[15] S. Gupta and J. Malik. Visual semantic role labeling. arXiv preprint arXiv:1505.04474, 2015.317

[16] M. S. Ibrahim, S. Muralidharan, Z. Deng, A. Vahdat, and G. Mori. A hierarchical deep temporal318

model for group activity recognition. In Proceedings of the IEEE conference on computer vision319

and pattern recognition, pages 1971–1980, 2016.320

[17] J. Jacobs. The death and life of American cities. Random House, New York, 1961.321

[18] D. Jia, Y. Yuan, H. He, X. Wu, H. Yu, W. Lin, L. Sun, C. Zhang, and H. Hu. Detrs with322

hybrid matching. In Proceedings of the IEEE/CVF conference on computer vision and pattern323

recognition, pages 19702–19712, 2023.324

10

https://developers.google.com/maps/documentation/streetview/overview
https://developers.google.com/maps/documentation/streetview/overview
https://developers.google.com/maps/documentation/streetview/overview


[19] G. Jocher, A. Chaurasia, and J. Qiu. Ultralytics yolov8, 2023. URL https://github.com/325

ultralytics/ultralytics.326

[20] A. Kamath, M. Singh, Y. LeCun, G. Synnaeve, I. Misra, and N. Carion. Mdetr-modulated detec-327

tion for end-to-end multi-modal understanding. In Proceedings of the IEEE/CVF International328

Conference on Computer Vision, pages 1780–1790, 2021.329

[21] D. Kim, A. Angelova, and W. Kuo. Detection-oriented image-text pretraining for open-330

vocabulary detection. arXiv preprint arXiv:2310.00161, 2023.331

[22] J. Kopf, B. Chen, R. Szeliski, and M. Cohen. Street slide: browsing street level imagery. ACM332

Transactions on Graphics (TOG), 29(4):1–8, 2010.333

[23] T. Lan, L. Sigal, and G. Mori. Social roles in hierarchical models for human activity recognition.334

In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pages 1354–1361.335

IEEE, 2012.336

[24] L. H. Li, P. Zhang, H. Zhang, J. Yang, C. Li, Y. Zhong, L. Wang, L. Yuan, L. Zhang, J.-N. Hwang,337

et al. Grounded language-image pre-training. In Proceedings of the IEEE/CVF Conference on338

Computer Vision and Pattern Recognition, pages 10965–10975, 2022.339

[25] Y.-L. Li, X. Liu, X. Wu, Y. Li, Z. Qiu, L. Xu, Y. Xu, H.-S. Fang, and C. Lu. HAKE: A340

knowledge engine foundation for human activity understanding. URL http://arxiv.org/341

abs/2202.06851.342

[26] J. Liu, A. Shahroudy, M. Perez, G. Wang, L.-Y. Duan, and A. C. Kot. Ntu rgb+ d 120: A343

large-scale benchmark for 3d human activity understanding. IEEE transactions on pattern344

analysis and machine intelligence, 42(10):2684–2701, 2019.345

[27] S. Liu, Z. Zeng, T. Ren, F. Li, H. Zhang, J. Yang, C. Li, J. Yang, H. Su, J. Zhu, et al. Grounding346

dino: Marrying dino with grounded pre-training for open-set object detection. arXiv preprint347

arXiv:2303.05499, 2023.348

[28] V. Mehta and J. K. Bosson. Revisiting lively streets: Social interactions in public space. Journal349

of Planning Education and Research, 41(2):160–172, 2021.350

[29] D. Miller, L. Nicholson, F. Dayoub, and N. Sünderhauf. Dropout sampling for robust object351

detection in open-set conditions. In 2018 IEEE International Conference on Robotics and352

Automation (ICRA), page 1–7. IEEE Press, 2018. doi: 10.1109/ICRA.2018.8460700. URL353

https://doi.org/10.1109/ICRA.2018.8460700.354

[30] M. Minderer, A. Gritsenko, A. Stone, M. Neumann, D. Weissenborn, A. Dosovitskiy, A. Ma-355

hendran, A. Arnab, M. Dehghani, Z. Shen, X. Wang, X. Zhai, T. Kipf, and N. Houlsby. Simple356

open-vocabulary object detection. Springer-Verlag, 2022. ISBN 978-3-031-20079-3.357

[31] M. Minderer, A. Gritsenko, and N. Houlsby. Scaling open-vocabulary object detection. Advances358

in Neural Information Processing Systems, 36, 2024.359

[32] M. Minderer, A. Gritsenko, and N. Houlsby. Scaling open-vocabulary object detection. In360

Proceedings of the 37th International Conference on Neural Information Processing Systems,361

NIPS ’23, Red Hook, NY, USA, 2024. Curran Associates Inc.362

[33] S. Schulter, Y. Suh, K. M. Dafnis, Z. Zhang, S. Zhao, D. Metaxas, et al. Omnilabel: A363

challenging benchmark for language-based object detection. In Proceedings of the IEEE/CVF364

International Conference on Computer Vision, pages 11953–11962, 2023.365

[34] A. Shahroudy, J. Liu, T.-T. Ng, and G. Wang. Ntu rgb+ d: A large scale dataset for 3d human366

activity analysis. In Proceedings of the IEEE conference on computer vision and pattern367

recognition, pages 1010–1019, 2016.368

11

https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
http://arxiv.org/abs/2202.06851
http://arxiv.org/abs/2202.06851
http://arxiv.org/abs/2202.06851
https://doi.org/10.1109/ICRA.2018.8460700


[35] M. Tkachenko, M. Malyuk, A. Holmanyuk, and N. Liubimov. Label Studio: Data labeling369

software, 2020-2022. URL https://github.com/heartexlabs/label-studio. Open370

source software available from https://github.com/heartexlabs/label-studio.371

[36] Z. Wang, K. Ying, J. Meng, and J. Ning. Human-to-human interaction detection.372

(arXiv:2307.00464). URL http://arxiv.org/abs/2307.00464.373

[37] W. H. Whyte et al. The social life of small urban spaces. 1980.374

[38] Y. Yao, P. Liu, T. Zhao, Q. Zhang, J. Liao, C. Fang, K. Lee, and Q. Wang. How to evaluate the375

generalization of detection? a benchmark for comprehensive open-vocabulary detection. In376

Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages 6630–6638,377

2024.378

[39] K. Yun, J. Honorio, D. Chattopadhyay, T. L. Berg, and D. Samaras. Two-person interaction379

detection using body-pose features and multiple instance learning. In 2012 IEEE computer380

society conference on computer vision and pattern recognition workshops, pages 28–35. IEEE,381

2012.382

[40] A. Zareian, K. D. Rosa, D. H. Hu, and S.-F. Chang. Open-vocabulary object detection using383

captions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern384

Recognition, pages 14393–14402, 2021.385

[41] H. Zhang, F. Li, S. Liu, L. Zhang, H. Su, J. Zhu, L. Ni, and H.-Y. Shum. Dino: Detr with386

improved denoising anchor boxes for end-to-end object detection. In The Eleventh International387

Conference on Learning Representations, 2022.388

[42] J. Zhou, Z. Wang, J. Meng, S. Liu, J. Zhang, and S. Chen. Human interaction recognition with389

skeletal attention and shift graph convolution. In 2022 International Joint Conference on Neural390

Networks (IJCNN), pages 1–8. IEEE. ISBN 978-1-72818-671-9. doi: 10.1109/IJCNN55064.391

2022.9892292. URL https://ieeexplore.ieee.org/document/9892292/.392

12

https://github.com/heartexlabs/label-studio
http://arxiv.org/abs/2307.00464
https://ieeexplore.ieee.org/document/9892292/


Checklist474

1. For all authors...475

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s476

contributions and scope? [Yes]477

(b) Did you describe the limitations of your work? [Yes] Some limitations are mentioned478

in the Discussion section 6.7.479

(c) Did you discuss any potential negative societal impacts of your work? [No]480

(d) Have you read the ethics review guidelines and ensured that your paper conforms to481

them? [Yes]482

2. If you are including theoretical results...483

(a) Did you state the full set of assumptions of all theoretical results? [N/A]484

(b) Did you include complete proofs of all theoretical results? [N/A]485

3. If you ran experiments (e.g. for benchmarks)...486

(a) Did you include the code, data, and instructions needed to reproduce the main exper-487

imental results (either in the supplemental material or as a URL)? [Yes] A GitHub488

repository is linked in the paper, we will include additional information about how to489

obtain the data in the repository.490

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they491

were chosen)? [N/A] No training is involved.492

(c) Did you report error bars (e.g., with respect to the random seed after running experi-493

ments multiple times)? [N/A]494

(d) Did you include the total amount of compute and the type of resources used (e.g., type495

of GPUs, internal cluster, or cloud provider)? [Yes] Inference time and requirements496

are included in 6.8497

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...498

(a) If your work uses existing assets, did you cite the creators? [Yes]499

(b) Did you mention the license of the assets? [No]500

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]501

New annotations.502

(d) Did you discuss whether and how consent was obtained from people whose data you’re503

using/curating? [No]504

(e) Did you discuss whether the data you are using/curating contains personally identifiable505

information or offensive content? [No] The data is coming from publicly available506

imagery from Google and Bing.507

5. If you used crowdsourcing or conducted research with human subjects...508

(a) Did you include the full text of instructions given to participants and screenshots, if509

applicable? [N/A]510

(b) Did you describe any potential participant risks, with links to Institutional Review511

Board (IRB) approvals, if applicable? [N/A]512

(c) Did you include the estimated hourly wage paid to participants and the total amount513

spent on participant compensation? [N/A]514

16


	Introduction
	Related Work
	ELSA: Evaluating Localization of Social Activities
	Benchmark Dataset
	Challenging Scenarios

	Evaluation Approach
	Re-ranking Predicted Bounding Boxes
	Confidence-Based Dynamic Box Aggregation (CDBA)
	Semantic Stability


	Results
	N-LSE Re-ranking Effects
	Localization
	Semantic Stability

	Conclusion
	Appendix
	Label categories
	Annotation examples
	List of full labels
	ELSA in NYC
	Tokenization
	Qualitative results
	Discussion
	Resource requirements


