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Abstract
While recent advances in Text-to-Speech (TTS)001
technology produce natural and expressive002
speech, they lack the option for users to se-003
lect emotion and control intensity. We propose004
EmoKnob, a framework that allows fine-grained005
emotion control in speech synthesis with few-006
shot demonstrative samples of arbitrary emo-007
tion. Our framework leverages the expressive008
speaker representation space made possible by009
recent advances in foundation voice cloning010
models. Based on the few-shot capability of011
our emotion control framework, we propose012
two methods to apply emotion control on emo-013
tions described by open-ended text, enabling014
an intuitive interface for controlling a diverse015
array of nuanced emotions. To facilitate a more016
systematic emotional speech synthesis field, we017
introduce a set of evaluation metrics designed018
to rigorously assess the faithfulness and rec-019
ognizability of emotion control frameworks.020
Through objective and subjective evaluations,021
we show that our emotion control framework022
effectively embeds emotions into speech and023
surpasses emotion expressiveness of commer-024
cial TTS services.1.025

1 Introduction026

The complexity of human communication extends027

far beyond mere verbal exchange. Vocal inflections028

and emotional undertones play pivotal roles in con-029

veying meaning. While text alone can be ambigu-030

ous in meaning (Jenkins, 2020), different emotions031

in voices can articulate different messages in the032

same piece of text (Nygaard and Lunders, 2002).033

Consider Shakespeare’s iconic phrase, To be or not034

to be. This line can express despair, contemplation,035

defiance, or resignation, depending on the speaker’s036

emotional delivery, illustrating the profound impact037

of vocal emotions in communication.038
1We will release our code with the camera-ready ver-

sion of this paper. We provide an anonymous audio sam-
ple page at https://main--preeminent-kringle-8c3604.
netlify.app/.

The ultimate objective in the field of conversa- 039

tional systems is to develop intelligent agents capa- 040

ble of comprehending, deciding, and synthesizing 041

speech with nuanced emotional undertones. While 042

recent advances in Text-to-Speech (TTS) technol- 043

ogy have achieved remarkable naturalness and 044

expressiveness in synthesized voices(ElevenLabs; 045

OpenAI, 2024b; Microsoft), these systems lack the 046

capability for users to select and control the emo- 047

tional tone and intensity. The emotion conveyed in 048

the generated speech is solely determined by the 049

text, without allowing for variability or intensity 050

control. 051

Previous works on emotion control in speech 052

synthesis primarily focus on a few simple emotion 053

categories (Lei et al., 2022; Lorenzo-Trueba et al., 054

2018; Kang et al., 2023; Qin et al., 2024). These 055

methods do not allow control of a more diverse 056

array of emotions. Synthesis for more complex and 057

heterogeneous emotions like charisma (Yang et al., 058

2020) and empathy (Chen et al., 2024) is not well 059

studied. 060

Our work leverages recent breakthroughs in 061

foundation models for voice cloning (MetaVoice; 062

Anastassiou et al., 2024; suno.ai, 2023; Casanova 063

et al., 2024; Shen et al., 2018). By exploring the 064

rich expressiveness in these models’ latent embed- 065

ding spaces, we develop methods to extract a rep- 066

resentation for any emotion with just a few demon- 067

strative samples. These representations are inher- 068

ently synergistic with the speech generation ca- 069

pabilities of rapidly advancing voice cloning/TTS 070

models, enabling us to generate high quality speech 071

while applying fine-grained emotion controls. This 072

approach proves effective for both simple and com- 073

plex emotions and includes mechanisms to adjust 074

emotional intensity with a scalar knob. 075

Our framework’s capability of applying fine- 076

grained emotion control for any emotion with a 077

few demonstrative examples enables us to propose 078

two methods for applying emotion control based 079
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Figure 1: Fine-grained emotion control with EmoKnob. While existing TTS and voice cloning frameworks lack
the option for users to control emotions in speech, our framework allows users to embed arbitrary emotion with
a specified intensity in speech with few-shot samples. This framework allows us to propose two methods for
controlling emotions based on open-ended text descriptions of emotions.

on arbitrary text descriptions of emotions. We use a080

synthetic-data-based and a retrieval-based method081

to leverage recent advances in Large Language082

Models (LLMs) and text embedding models (Ope-083

nAI; Meng et al., 2024), in conjunction with our084

few-shot emotion control framework, to address085

a lack of open-ended captioned emotional speech086

dataset.087

We recognize that emotion control in speech088

synthesis is still at its early stage, and traditional089

evaluation metrics for TTS systems cannot com-090

prehensively evaluate emotion control frameworks.091

We therefore introduce a set of rigorous evalua-092

tion metrics designed to systematically measure093

the effectiveness of an emotion control framework094

at faithfully conveying recognizable emotions.095

With a set of subjective and objective evalua-096

tions, we show that our framework produces faith-097

ful and recognizable emotion control on speech.098

We find that 83% of the participants consider that099

speech with emotion enhancement by our frame-100

work surpasses leading commercial TTS services101

at conveying these emotions.102

Expressive
Emotion
Control

Few-Shot
Emotion
Control

Open-Ended
Emotion
Control

Synergetic with
TTS Model
Advances

Classifier-Based
Style Transfer1 ✓ ✗ ✗ ✗

Domain
Adversarial
Training 2

✓ ✓ ✗ ✗

Voice Text
Descriptions3 ✗ ✗ ✓ ✗

Ours ✓ ✓ ✓ ✓

Table 1: Comparison between our framework and prior
works on emotion control in speech synthesis. Our
framework allows few-shot emotion control of arbitrary
emotions and is synergetic with rapidly advancing text-
to-speech models. We also propose two frameworks
that allow users to control emotions with open-ended
text emotion description. 1Lei et al. (2022); Lorenzo-Trueba et al.
(2018); Kang et al. (2023); Qin et al. (2024). 2 Jo et al. (2023). 3Guo et al.
(2022); Yang et al. (2023); Lacombe et al. (2024); Lyth and King (2024).

2 Related Works 103

2.1 Foundational Model for TTS and Voice 104

Cloning 105

Large foundational models have become the basis 106

of many machine learning fields such as text (Ope- 107

nAI et al., 2024) and images (Radford et al., 2021). 108

These large foundational models are trained in an 109

unsupervised manner with massive datasets and 110
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learn high quality representations of data, which111

are commonly used directly or through fine-tuning112

for downstream tasks.113

The TTS domain also sees a rising trend in large,114

foundational models. These end-to-end models115

trained on large corpora provide natural speech116

rendering from text. MetaVoice trains a 1.2B pa-117

rameter model with 100K hours of speech for TTS;118

Lajszczak et al. (2024) trains a 1B parameter model119

on 100K open-domain speech data. Many of these120

models are capable of replicating a speaker’s voice121

in zero-shot or few-shots (MetaVoice; Anastassiou122

et al., 2024; suno.ai, 2023; Casanova et al., 2024;123

Shen et al., 2018). Our work explores how to124

leverage the high quality speaker representation125

learned by these foundational models to enhance126

voice cloning with few-shot fine-grained emotion127

control. In particular, we focus on manipulating128

the latent speaker embedding in MetaVoice.129

2.2 Emotion and Style Control in Speech130

Synthesis131

While models discussed in Section 2.1 and ex-132

isting commercial services (OpenAI, 2024b; Mi-133

crosoft; ElevenLabs) produce natural sounding134

speech, their speech output’s emotions are primar-135

ily decided by input text, and the emotion strength136

cannot be controlled. Users thus cannot select137

arbitrary emotions for a piece of text. However,138

emotions expressed through acoustic-prosody serve139

an important additional channel for conveying in-140

formation (Gobl and Chasaide, 2003; Patel et al.,141

2011; Laukkanen et al., 1997).142

Previous work trains latent speech style space143

on small corpora and cannot generalize to style144

transfer beyond the training corpus (Zhang et al.,145

2019). In addition, existing labeled emotional146

speech datasets (Martinez-Lucas et al.; Poria et al.,147

2019) are limited to a few categories of basic emo-148

tions. Previous work thus commonly bases emotion149

controls on categorical emotion label inputs and is150

limited in types of emotions that can be controlled151

(Lei et al., 2022; Lorenzo-Trueba et al., 2018; Kang152

et al., 2023; Qin et al., 2024). Extending these153

methods to control new emotions require extensive154

retraining of models, preventing expressive emo-155

tion control over many emotions. These methods’156

requirement on large labeled datasets also prevents157

emotional control on more complex, nuanced emo-158

tions represented by more specialized, heteroge-159

neous datasets such as charisma (Yang et al., 2020)160

and empathy (Chen et al., 2024).161

While Jo et al. (2023) uses domain adversarial 162

training to achieve few-shot emotion transfer, their 163

method requires training a style encoder built from 164

scratch and is not compatible with existing and fu- 165

ture large foundational models. Thus, it is unable to 166

improve naturalness and expressiveness in current 167

and future TTS model developments. Our work 168

provides a training-free framework that leverages a 169

foundation model’s TTS capability for single/few- 170

shot emotion control and is inherently synergetic 171

with growing foundation speech models. 172

2.3 Open-ended Text Prompt Control on 173

Voice 174

A recent strand of works use text description to con- 175

trol voices. Guo et al. (2022); Yang et al. (2023); 176

Lacombe et al. (2024); Lyth and King (2024) allow 177

users to describe qualities such as tone, pitch, gen- 178

der, and emotions of a voice before synthesizing 179

speech with the described voice. While existing 180

speech datasets lack text descriptions of voices, 181

these works bypasses this obstacle by creating syn- 182

thetic text captions based on acoustic-prosodic fea- 183

tures and speaker metadata. These methods do not 184

generalize well to text descriptions beyond the for- 185

mat and the scope of the synthetic captions. The 186

emotion control with these methods is limited to 187

the categorical emotion labels in speaker metadata. 188

These methods also do not allow voice cloning and 189

emotion variation on an unseen speaker. Based on 190

our method’s capability to enhance voice cloning 191

with single/few samples, we propose retrieval and 192

synthetic data based frameworks for synthesizing 193

expressive emotions with open-ended text descrip- 194

tions. 195

3 Methods 196

We apply fine-grained emotion controls by manip- 197

ulating the speaker embedding space of pre-trained 198

foundation voice cloning models. This framework 199

allows us to apply emotion control with few-shot 200

emotional speech samples. The few-shot capability 201

enables us to design two frameworks for applying 202

control with emotion specified by arbitrary text 203

descriptions. 204

3.1 Preliminaries: Pre-Trained Foundational 205

Voice Cloning Model 206

Existing voice cloning models (MetaVoice; Anas- 207

tassiou et al., 2024; suno.ai, 2023; Casanova et al., 208

2024; Shen et al., 2018) can be abstracted into a 209

two-stage architecture with a speaker encoder E 210
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Figure 2: EmoKnob’s few-shot emotion control pipeline. EmoKnob first extracts an emotion direction vector in speaker
embedding space of pre-trained foundation voice cloning models with a pair of neutral and emotional sample. Then,
EmoKnob manipulates the reference speaker’s embedding with the obtained emotion direction vector and a specified
emotion strength to embed the emotion into speech.
that takes in a speaker reference clip xs and out-211

puts a speaker embedding us. A conditional text-212

to-speech decoder D then takes in input text I to213

output speech audio ys,I = D(us, I) that utters I214

replicating speaker’s voice. We will manipulate the215

speaker embedding space (output space of E and216

conditional input space of D) to obtain an emo-217

tion representation and obtain few-shot emotion218

control.219

3.2 Few-Shot Fine-Grained Emotion Control220

We hypothesize that a pre-trained foundation voice221

cloning model’s speaker embedding provides ex-222

pressive representations for acoustic-prosodic qual-223

ities. Our framework disentangles how an speaker224

embedding represents speaker-specific qualities225

and speaker-independent emotions. We then use226

the speaker-independent emotions obtained to ap-227

ply fine-grained emotion control on an arbitrary228

speaker representation. We show this process for229

few-shot fine-grained emotion control in Figure 2.230

We disentangle speaker-specific qualities and231

speaker-independent emotion representations by232

using paired samples of emotional speech xie and233

neutral speech xin from the same speaker. We en-234

code representations uie, u
i
n for these i-th pairs of235

samples in a speaker embedding space with the236

pre-trained speaker encoder E: uie = E(xie), u
i
n =237

E(xin).238

We hypothesize that taking their difference re-239

sults in a speaker-independent emotion direction240

vector vie. In addition, we normalize vie for conve-241

nient fine-grained emotion strength control later:242

vie =
ui
e−ui

n

||ui
e−ui

n||
243

We can obtain the emotion direction vector by244

averaging over many pairs of samples. We will 245

show in experiments that single-shot (N = 1) suf- 246

fices to produce high-quality emotion control in 247

many cases: 248

ve =
1

N

N∑
i=1

uie − uin
||uie − uin||

249

Given a new speaker reference sample xs, we 250

hope to replicate the speaker’s voice qualities while 251

controlling emotions in an utterance. We first ob- 252

tain the reference speaker’s speaker embedding 253

with us = E(xs). Then, we apply emotion control 254

with 255

us,e = us + α · ve 256

where emotion control strength α is a scalar that 257

enables fine-grained control of emotion intensity. 258

We hypothesize that larger α values lead to more 259

intense emotions in the speech produced. 260

Finally, we use pre-trained decoder D to synthe- 261

size ys,I,e, a speech utterance of text I replicating 262

speaker s’s voice while conveying emotion e. 263

3.3 Towards Open-Ended Text Prompted 264

Emotion Control 265

Our framework’s ability to apply emotion con- 266

trols with the few-shot demonstration allows us 267

to design two frameworks that take in open-ended 268

text description of an emotion and apply fine- 269

grained control on output speech for the specified 270

emotion. These frameworks allow synthesis of 271

speech with emotions such as Romantic, full of de- 272

sire and Grateful, appreciative, thankful, indebted, 273
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Figure 3: EmoKnob enables emotion control with open-ended text descriptions of emotion. Based on recent advances
in LLMs and EmoKnob’s capability of applying emotion control with few-shot samples, we propose two methods
that bypass the data insuffiency problem in emotional speech and embed emotions described by open-ended text
descriptions into speech.

blessed that are nuanced in details and lack exist-274

ing datasets. Both frameworks take advantage of275

recent development in LLMs to overcome the lack276

of a labeled emotional speech dataset.277

3.3.1 Synthetic Data-Based Method278

While existing TTS models and services do not al-279

low emotion control, they produce expressive and280

accurate emotions for texts that obviously convey281

the emotions (OpenAI, 2024b; Microsoft; Eleven-282

Labs). We leverage this quality to generate syn-283

thetic emotional samples that can be used for emo-284

tion control with our framework. We show this285

process in Figure 3(a).286

Given a text description T of an emotion e, we287

prompt an LLM to generate N text samples I1,··· ,Ne ,288

that obviously convey the emotion: I1,··· ,Ne =289

LLM(T ). Prompted with prompts such as Gen-290

erate 10 sentences that someone would say when291

feeling [emotion], LLM generates emotional texts292

that conveys emotion e. Then, we use expressive293

commercial TTS services to obtain an emotional294

speech sample x1···ie : xie = TTS(xie).295

We can obtain neutral audio samples with the296

same procedure by first prompting LLM with297

prompts such as Generate 10 simple fact statements298

to generate neutral texts. Then, we can obtain the299

neutral audio samples xin with the TTS services.300

We can then use the emotional speech samples301

obtained xie and xin with our few-shot emotion con-302

trol framework to apply fine-grained emotion con-303

trol on new speakers.304

3.3.2 Transcript Retrieval-Based Method 305

While a synthetic-data-based method enables open- 306

ended emotion control while bypassing the lack 307

of captioned emotion datasets, the high cost of ex- 308

pressive TTS services limits the framework’s wide 309

usage. In this section, we hypothesize that in exist- 310

ing datasets with speech-transcript pairs, transcripts 311

that obviously convey an emotion are matched with 312

audio clips that convey the emotion. We leverage 313

recent developments of text embedding models and 314

document retrieval pipeline to find emotional au- 315

dio samples that we can use for few-shot emotion 316

control. We show this pipeline in Figure 3(b). 317

Given a text description T of an emotion e and 318

a text embedding model M , we retrieve transcript- 319

audio pairs (Ije , x
j
e) in a dataset such that the tran- 320

script Ije best matches the emotion description: 321

j = argmaxj M(Ije )TM(T ). 322

We can find neutral samples xn either with the 323

same retrieval pipeline or neutral labels in the 324

dataset, which are more widely available than di- 325

verse emotion labels. 326

4 Experiments 327

4.1 Evaluation Metrics 328

4.1.1 Subjective Evaluations 329

Given the novelty of fine-grained emotion con- 330

trol in text-to-speech synthesis, there is not an 331

established paradigm for examining this capability. 332

To rigorously test the objective of providing 333

fine-grained, faithful emotion control, we proposed 334
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the following subjective evaluation metrics:335

336

Emotion Selection Accuracy (ESA): Par-337

ticipants compare audio samples with and without338

control generated from emotion-neutral text,339

selecting which better conveys the emotion. ESA340

measures the percentage choosing the controlled341

audio and tests the system’s ability to embed any342

emotions to any text.343

Emotion Enhancement Accuracy (EEA): Partic-344

ipants compare audio samples with and without345

control generated from emotion-matching text,346

selecting which better conveys the emotion. EEA347

measures the percentage choosing the controlled348

audio and tests the method’s ability to amplify349

text’s emotions.350

Emotion Discrimination Test (EDT): Participants351

compare two audio samples generated from the352

same neutral text and controlled with different353

emotions, selecting the one matching a given354

emotion. EDT evaluates the distinguishability and355

faithfulness of emotion control.356

Emotion Identification Test (EIT): Participants357

identify the emotion in a controlled audio sample358

from neutral text, choosing between two emotion359

labels. EIT measures the accuracy of emotion360

identification and verifies the recognizability of361

emotions resulted from emotion control.362

Emotion Selection Comparison (ESC): Partic-363

ipants compare our emotion-controlled audio to364

commercial TTS audio with neutral text, selecting365

which conveys more specified emotion. ESC366

measures percentage of selecting our controlled367

audio and evaluates system advantage over existing368

TTS services to embed any emotion into any text.369

Emotion Enhancement Comparison (EEC):370

Similar to ESC, but with emotion-matching text.371

EEC evaluates emotion expressiveness after372

control compared to commercial TTS without373

emotion control functionality.374

Emotion Strength Test (EST): Participants375

compare two audio samples controlled with the376

same emotion but different emotion strengths377

α, selecting which conveys more emotion. EST378

measures correct response percentage and evalu-379

ates our framework’s effectiveness at fine-grained380

control over emotion intensity.381

Since all metrics are calculated from binary382

choice questions, 50% serves as the random guess383

baseline to all metrics. We asked one question for384

each emotion and each metric to 23 university stu-385

dent volunteers from our lab and recruited on cam-386

pus. Participants are told that responses are used to 387

evaluate a new emotional text-to-speech framework. 388

This study is approved by IRB. We anonymized the 389

participant response. We provided an anonymous 390

version of the full subjective evaluation survey we 391

used at https://frolicking-baklava-af4770. 392

netlify.app/. For EEC and ESC, we compared 393

speech generated from our framework with speech 394

generated with ElevenLabs (ElevenLabs). 395

4.1.2 Objective Evaluation 396

Since our goal is to preserve source speaker iden- 397

tity and maintain accurate text-to-speech synthesis 398

while conducting emotion control, we follow previ- 399

ous voice cloning work (Anastassiou et al., 2024; 400

Shah et al., 2023) on measuring word error rate 401

(WER) and speaker similarity (SIM). We use 100 402

texts from Common Voice dataset (Ardila et al., 403

2020) to calculate WER and SIM. 404

For WER, we first transcribe the generated clips 405

with Whisper-large-v3 (Radford et al., 2022) and 406

calculate WER with jiwer library (nikvaessen). We 407

use the WER of audio generated without any emo- 408

tion control (original voice cloning model) as a 409

baseline of comparison. Similar WER between 410

emotion-controlled audio and baseline suggests 411

that our framework preserves the high quality TTS 412

in base voice cloning models. 413

For SIM, we used spkrec-ecapa-voxceleb (Ra- 414

vanelli et al., 2021) to measure the similarity be- 415

tween generated audio and a reference speaker 416

clip. We use SIM between audio generated with- 417

out any emotion control and a reference speaker 418

clip as baseline. Similar SIM between the base- 419

line and using emotion-controlled audio suggests 420

our framework’s faithful replication of reference 421

speaker while applying emotion control. 422

4.2 Experiment Details 423

We use MetaVoice-1B (MetaVoice) as the base 424

voice cloning model, while our framework can be 425

easily extended to any embedding-conditioned 426

voice cloning model. We conduct speech gener- 427

ation on a single NVIDIA L40 GPU. We use an 428

additional NVIDIA L40 GPU for text retrieval in 429

text-retrieval based open-ended emotion control. 430

We provide an anonymous audio sample page at 431

https://main--preeminent-kringle-8c3604. 432

netlify.app/. 433
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4.3 Single-Shot Control of Simple Emotions434

We first show our framework’s effectiveness on435

fine-grained emotion control with simple emotion436

categories: Happy, Surprise, Angry, Sad, Disgust,437

Contempt. We obtain an emotion direction vector438

in single-shot (one pair of same-speaker emotional439

and neutral speech clips) from the MSP Podcast440

dataset (Lotfian and Busso, 2019). We fix emotion441

strength α to be 0.4 for all samples in evaluation.442

We report the subjective evaluation results in443

Table 2 and the objective evaluate results with a444

standard deviation in Table 3. High ESA and ESC445

values shows that our emotion control framework446

is capable of embedding arbitrary emotion in any447

text, surpassing commercial TTS services without448

emotion control option. High EEA and EEC val-449

ues show that our framework enhances emotions450

into emotion-matching text, surpassing emotion ut-451

terances of commercial TTS services. High EDT452

and EIT values show that our framework produces453

recognizable emotions in speech. High EST val-454

ues show that the emotion strength α option in our455

framework faithfully produces different strengths456

of emotions specified by corresponding values.457

Speech produced from emotion control shows458

similar WER within uncertainty as a baseline of459

no emotion control and thus preserves high quality460

TTS of the base model. Emotion-controlled speech461

also shows similar SIM within uncertainty as the462

baseline, showing that our framework preserves463

speaker identity well while conducting emotion464

control.465

ESA↑ EEA↑ EDT↑ EIT↑ ESC↑ EEC↑ EST↑

Happy 100% 100% 100% 100% 100% 100% 83%
Surprise 100% 100% 91% 44% 100% 61% 91%
Angry 82% 100% 82% 74% 100% 100% 100%
Sad 100% 83% 91% 100% 100% 83% 74%
Disgust 74% 91% 91% 74% 61% 83% 91%
Contempt 61% 83% 13% 52% 74% 74% 74%

Averages 86% 93% 78% 74% 89% 83% 86%
Baseline 50% 50% 50% 50% 50% 50% 50%

Table 2: Subjective evaluation results for emotion con-
trols with simple emotions.

WER ↓ SIM ↑

Happy 0.143 ± 0.349 0.662 ± 0.087
Surprise 0.061 ± 0.107 0.703 ± 0.076
Angry 0.082 ± 0.211 0.712 ± 0.060
Sad 0.113 ± 0.297 0.719 ± 0.059
Disgust 0.05 ± 0.139 0.719 ± 0.063
Contempt 0.053 ± 0.098 0.712 ± 0.069
Average 0.085 ± 0.208 0.705 ± 0.077
w/o Emotion Control 0.079± 0.160 0.719 ± 0.071

Table 3: Objective evaluation results for controls with
simple emotions.

4.4 Two-Shot Control of Complex Emotion 466

Our framework allows a few-shot transfer of emo- 467

tion onto new speakers and bases such transfer 468

on expressive representation of foundation voice 469

cloning models. We show that these features en- 470

able previously not studied controls on more com- 471

plex, composite, and nuanced emotions. Our exper- 472

iments focus on two emotions with corresponding 473

datasets: (1) charisma defined as conveying the 474

personality of leadership and persuasiveness (Yang 475

et al., 2020); and (2) compassionate empathy de- 476

fined as understanding another’s pain as if we are 477

having it ourselves and taking action to mitigate 478

problems producing it (Chen et al., 2024). For each 479

emotion, we use two pairs of emotional and neutral 480

speech from two speakers. We fix emotion strength 481

α = 0.4 for all samples. 482

We report the subjective and objective evalua- 483

tion results in 4. Subjective evaluation results show 484

that our framework produces recognizable, faith- 485

ful emotion selection and enhancement, surpassing 486

commercial TTS on uttering specified emotions. 487

Speech produced from emotion control shows sim- 488

ilar WER and SIM within uncertainty as the base- 489

line of no emotion control, showing that our frame- 490

work preserves accurate TTS of the base model and 491

speaker identity while conducting emotion control. 492

ESA↑ EEA↑ ESC↑ EEC↑ WER↓ SIM↑

Empathy 74% 83% 100% 22% 0.074± 0.077 0.712± 0.063
Charisma 83% 91% 74% 74% 0.031± 0.088 0.680 ± 0.070
Baseline 50% 50% 50% 50% 0.079 ± 0.160 0.719 ± 0.071

Table 4: Subjective and objective evaluation results for
controls with complex emotions

4.5 Synthetic Data-Based Open-Ended 493

Emotion Control 494

ESA↑ EEA↑ ESC↑ EEC↑ WER↓ SIM↑

Desire 61% 61% 61% 83% 0.066± 0.132 0.713 ± 0.075
Envy 83% 74% 61% 74% 0.085± 0.131 0.704± 0.071
Romance 61% 91% 52% 91% 0.076± 0.125 0.713± 0.066
Sarcasm 61% 61% 74% 74% 0.120± 0.200 0.717± 0.079
Baseline 50% 50% 50% 50% 0.079 ± 0.160 0.719± 0.071

Table 5: Subjective and objective evaluation results
for open-ended controls with emotion text descriptions
through a synthetic data-based method.

We experiment with our synthetic-data based 495

framework for emotion control on arbitrary text 496

emotion description with emotions that do not have 497

previously collected labeled datasets for emotional 498
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speech synthesis: Desire, enviousness, romance,499

sarcasm. We use GPT4-o (OpenAI) to generate500

emotional and neutral speech texts. We use Eleven-501

Labs (ElevenLabs) to generate 10 pairs of samples502

(10 speakers) for each emotion. We fix emotion503

strength of α = 0.4 for all samples.504

We report the subjective and objective evaluation505

results in Table 5. Subjective evaluations indicate506

our recognizable and faithful emotion control in507

speech, outperforming commercial TTS in express-508

ing specific emotions. Additionally, speech from509

our emotion control maintains similar WER and510

SIM to the baseline, confirming that our framework511

effectively preserves the base model’s accuracy and512

speaker identity while controlling emotions.513

4.6 Retrieval-Based Open-Ended Emotion514

Control515

Since a text retrieval model works best with descrip-516

tive, detailed texts, we focus on longer emotion517

descriptions of three emotions that lack established518

labeled datasets shown in Table 6. We prefix the519

emotion descriptions with the retrieval prompt of520

Given a description, retrieve relevant transcript521

lines whose overall style/emotions matches the de-522

scription to enable retrieval models focused on the523

overall emotion of the transcript and avoid keyword524

matching. We use SFR-Embedding-Mistral (Meng525

et al., 2024) as the text embedding model. We use526

10 pairs of emotional and neutral samples for each527

emotion. We fix emotion strength α = 0.5 for all528

samples.529

We report the subjective evaluation results and530

objective evaluate results with a standard deviation531

in Table 6. The evaluation results show that our532

framework produces recognizable, faithful emotion533

selection and enhancement while preserving base534

model accuracy and reference speaker identity.

ESA↑EEA↑ ESC↑ EEC↑ WER↓ SIM↑

Grateful ... 1 83% 83% 83% 61% 0.146± 0.387 0.650± 0.072
Curious, ... 2 61% 100% 61% 22% 0.124± 0.298 0.655± 0.060
Blaming 65% 69% 74% 74% 0.112± 0.211 0.630± 0.062
Desire ... 3 78% 100% 100% 91% 0.062± 0.144 0.664± 0.091
Baseline 50% 50% 50% 50% 0.079 ± 0.160 0.719± 0.071

Table 6: Subjective and objective evaluation results
for open-ended controls with emotion text descriptions
through retrieval-based methods. 1 Grateful, appreciative, thank-
ful, indebted, blessed. 2 Curious intrigued. 2 Desire and excitement.535

5 Ablation Studies536

In this section, we conduct ablation studies that537

vary the shot (sample) number when obtaining the538

emotion direction vector and the emotion control539
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(b) Ablation results on WER
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Figure 4: Ablation results measuring SIM and WER
with varying shot number and emotion strength.

strength α when applying emotion control. These 540

ablation studies help users decide how to select 541

these hyper-parameters. We report in Table 4 SIM 542

and WER with audio generated with 100 Common 543

Voice texts while applying emotion control of sim- 544

ple emotions with varying shot numbers and emo- 545

tion strengths. We observe that both SIM and WER 546

are insensitive to shot number and degrades as emo- 547

tion control strength increases. Users thus need to 548

trade off between generating more emotional clip 549

with higher emotion strength and accurate TTS and 550

voice clone. However, a larger number of samples 551

make the method more robust in larger emotion 552

control strength. Users thus could employ a larger 553

number of samples to compensate the TTS quality 554

decrease while obtaining more emotional speech. 555

6 Conclusion and Future Works 556

We proposed EmoKnob, a framework that enables 557

fine-grained emotion control in voice cloning with 558

few-shot samples. We also propose a synthetic- 559

data-based and a retrieval-based method to em- 560

bed emotions described by open-ended text into 561

speech synthesis. Given novelty of the emotion 562

control domain, we proposed a set of metrics to 563

rigorously evaluate faithfulness and recognizabil- 564

ity of emotion control. Our method establishes a 565

new way of extracting emotion representation in 566

foundation speech models thus bypassing data lim- 567

itations. Future works can further explore emotion 568

control paradigms such as synthesizing emotions in 569

conversation turns based on these representations. 570
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Limitations571

Naturalness and expressiveness of speech created572

by our framework is constrained by base voice573

cloning model. However, since we are seeing574

rapid advances in foundation speech models, and575

our method is inherently synergetic with these ad-576

vances, speech produced by EmoKnob will naturally577

improve as voice cloning models scale up and im-578

prove.579

Potential Risks580

Risks in speech identity theft in voice cloning apply581

to our work. Practices such as voice cloning de-582

tection (Malik, 2019) and phasing out voice-based583

authentication systems (OpenAI, 2024a) help miti-584

gate risks of our works.585
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