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Abstract001

As large language models (LLMs) increasingly002
exhibit human-like capabilities, a fundamental003
question emerges: How can we enable LLMs004
to learn the underlying patterns from limited005
examples in entirely novel environments and006
apply them effectively? This question is central007
to the ability of LLMs in inductive reasoning.008
Existing research on LLM-based inductive rea-009
soning can be broadly categorized based on010
whether the underlying rules are expressible011
via explicit mathematical equations. However,012
many recent studies in the beyond-equations013
category have emphasized rule design without014
grounding them in specific scenarios. Inspired015
by the parallels between inductive reasoning016
and human scientific discovery, we propose the017
task of LLM-Based Scientific Inductive Rea-018
soning Beyond Equations and introduce a new019
benchmark, SIRBench-V1, to evaluate the in-020
ductive reasoning abilities of LLMs in scien-021
tific settings. Our experimental results show022
that current LLMs still struggle with this task,023
underscoring its difficulty and the need for fur-024
ther advancement in this area.1025

1 Introduction026

In recent years, the reasoning capabilities of large027

language models (LLMs) have shown significant028

improvements (Plaat et al., 2024; Bubeck et al.,029

2023). Many advanced reasoning models, in-030

cluding OpenAI o1 (OpenAI et al., 2024) and031

DeepSeek-R1 (DeepSeek-AI et al., 2025), have032

demonstrated strong deductive reasoning capabili-033

ties, especially as evidenced by their performance034

in mathematics and programming tasks. These035

tasks are typically characterized by concise prob-036

lem descriptions, where the model is required to037

generate a long chain of thought (Wei et al., 2022)038

to solve complex problems.039

In contrast, inductive reasoning (Hayes et al.,040

2010) poses a different challenge, requiring mod-041

1We will release the dataset and code upon acceptance.
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Figure 1: Illustrative comparison of scientific inductive
reasoning: on the left, tasks focused on equation dis-
covery (Shojaee et al., 2025), and on the right, tasks
representing broader forms of scientific induction be-
yond equation generation.

els to infer general rules or structures from mul- 042

tiple specific observations (Chollet, 2019; Yang 043

et al., 2022). Inductive reasoning involves making 044

predictions about new scenarios based on existing 045

knowledge or observed data (Hayes et al., 2010). 046

Inductive reasoning has been progressively recog- 047

nized as a critical component for human-like cog- 048

nitive modeling and the development of general 049

artificial intelligence (Li et al., 2024). However, 050

current LLMs still exhibit notable shortcomings 051

in inductive reasoning tasks (Li et al., 2024; Hua 052

et al., 2025; Yan et al., 2025). Even state-of-the-art 053

models often fail to correctly infer abstract rules 054

from observations and typically rely on memoriz- 055

ing rather than truly understanding the underlying 056

concepts. 057

Currently, artificial intelligence is increasingly 058

regarded as a transformative paradigm in scientific 059

discovery, with growing applications across dis- 060

ciplines such as physics, materials science, and 061
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Benchmark Task Type
Related to
Scientific
Discovery

Beyond
Mathematical

Equations

Closed-Ended
Questions #Instances Sequence

Length

MATDESIGN HI ✓ ✓ × 50 250-1,000
TOMATO-Chem HI ✓ ✓ × 51 100-600
ResearchBench HI ✓ ✓ × 1,386 unknown
chaotic systems SR ✓ × ✓ 131 ~100

SRSD SR ✓ × ✓ 240 100-300
LLM-SRBench SR ✓ × ✓ 239 ~100

MIRAGE IR × ✓ ✓ 2,000 20-100
MIR-Bench IR × ✓ ✓ 6,930 50-250
IOLBench IR × ✓ ✓ 1,500 200-2,000

SIRBench-V1 (Ours) IR ✓ ✓ ✓ 710 500-3,000

Table 1: Analysis of existing related benchmarks. HI: Hypothetical Induction, SR: Symbolic Regression, IR:
Inductive Reasoning. Related to Scientific Discovery: targets scientific problem-solving. Beyond Mathematical
Equations: focuses on reasoning not reducible to equation fitting. Closed-Ended Questions: has deterministic
answers for automatic evaluation. #Instances: number of test examples. Sequence Length: input sequence
length—crucial as scientific inductive reasoning often requires extracting information from extensive resources.

chemistry (Xu et al., 2021). Against this backdrop,062

increasing attention has been paid to the inductive063

reasoning abilities of LLMs in scientific contexts064

recently (Yang et al., 2024; Liu et al., 2025; Fang065

et al., 2025). However, systematically leveraging066

reasoning models to enhance inductive tasks for067

scientific discovery remains largely underexplored.068

While some scientific rules, such as the velocity069

formula of free fall, can be expressed mathemati-070

cally, others, such as molecular structure-function071

relationships, are not readily amenable to such for-072

mulation. Under this criterion, we observe that ex-073

isting LLM-based inductive reasoning research can074

be broadly categorized based on whether the under-075

lying rules can be formulated mathematically. The076

first category comprises tasks that are mathematical077

equation-based, which are closely related to sym-078

bolic regression (Matsubara et al., 2022; Gilpin,079

2021). Recent work has shown that LLMs can080

serve as equation generators or guide the equa-081

tion discovery process (Wang et al., 2024; Du082

et al., 2024; Shojaee et al., 2024, 2025; Fang et al.,083

2025). However, these tasks typically only cover084

cases where the underlying rules can be explic-085

itly formulated as equations. A separate line of086

work targets tasks beyond mathematical equations,087

proposing new inductive tasks and datasets from088

various perspectives (Hua et al., 2025; Tang et al.,089

2024; Banatt et al., 2024; Goyal and Dan, 2025).090

However, many of these studies emphasize the cre-091

ation of novel synthetic or low-frequency symbolic092

systems, which often have a limited connection to093

discovering scientific patterns in real-world scenar-094

ios. Recent efforts under the AI4Science agenda095

are exploring more scientifically grounded settings096

where models emulate researchers by deriving in- 097

sights or hypotheses from scientific materials (Yang 098

et al., 2023, 2024; Liu et al., 2025). However, the 099

reasoning processes of these studies often remain 100

coarse-grained or open-ended, making robust auto- 101

matic evaluation challenging. 102

To address these gaps, we propose to examine 103

the capabilities of LLMs in Scientific Inductive 104

Reasoning Tasks Beyond Mathematical Equations. 105

To the best of our knowledge, high-quality and 106

easy-to-evaluate datasets to directly investigate this 107

problem are currently lacking. We have therefore 108

created SIRBench-V1, a new benchmark consist- 109

ing of a series of subtasks in chemistry and biol- 110

ogy. In these subtasks, the underlying rules cannot 111

be expressed through mathematical equations, yet 112

they yield relatively deterministic answers. We 113

transform basic scientific resources from prior stud- 114

ies (Grešová et al., 2023; Liu et al., 2024; Guo 115

et al., 2023; Edwards et al., 2022a; Irwin et al., 116

2021; Westerlund et al., 2024b,a; Kim et al., 2018) 117

into inductive reasoning tasks. Furthermore, to 118

eliminate LLM memorization, we design counter- 119

factual tasks that establish synthetic scientific rules 120

for the models to reason with, rather than recall. 121

We follow several commonly adopted reason- 122

ing strategies for LLMs on the SIRBench-V1, 123

including implicit and explicit reasoning, self- 124

consistency (Wang et al., 2022), and hypothesis 125

refinement (Qiu et al., 2023). By investigating the 126

performance of several LLMs augmented with dif- 127

ferent reasoning strategies, we find that equation- 128

free scientific inductive reasoning is highly chal- 129

lenging for modern LLMs. Gemini-2.5-Flash, the 130

best-performing model, achieves an average accu- 131
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racy of 43.81% in our benchmark, while Claude-132

3.5-Haiku and GPT-4.1 demonstrate a lower aver-133

age accuracy of 31.53% and 32.41%, respectively.134

We also observe that using sophisticated reasoning135

strategies provides minimal performance improve-136

ment and, in some cases, even leads to performance137

decline. Using hypothesis refinement, Gemini-2.5-138

Flash, Claude-3.5-Haiku, and GPT-4.1 attain an139

average accuracy of 39.06%, 31.63%, and 33.25%,140

respectively. We believe this work will pave the141

way for a new and fruitful avenue of research in142

scientific discovery.143

Contributions In summary, the main contribu-144

tions of this work are as follows:145

• We present SIRBench-V1, a new scientific146

inductive reasoning benchmark featuring au-147

thentic and counterfactual test examples from148

tasks in both biology and chemistry.149

• We conduct evaluations using several repre-150

sentative LLMs in conjunction with diverse151

advanced inference strategies, the results of152

which demonstrate the capability boundaries153

of the examined LLMs.154

• We derive several constructive findings for155

scientific inductive reasoning, such as a com-156

parison between many-short-shot and long-157

few-shot learning approaches and an analysis158

of memorization, which we anticipate will be159

helpful for subsequent studies.160

2 Related Work161

2.1 Inductive Reasoning162

Benchmark Various benchmarks have recently163

been introduced to systematically evaluate these164

capabilities from multiple perspectives. Hua et al.165

(2025) evaluate the model’s ability to infer string166

transformation rules from limited input-output ex-167

amples. Bongard-OpenWorld (Wu et al., 2023)168

examines conceptual induction and image classi-169

fication in few-shot scenarios. Tang et al. (2024)170

propose an embodied interactive environment re-171

quiring models to induce task rules and objec-172

tives. MIR-Bench (Yan et al., 2025) provides a173

many-shot in-context benchmark covering vari-174

ous function-based input-output pairs. WILT (Ba-175

natt et al., 2024), inspired by the Wason 2-4-6176

task, evaluates multi-turn inductive reasoning and177

generalization capabilities. Additionally, bench-178

marks such as LINGOLY (Bean et al., 2024), Lin-179

guini (Sánchez et al., 2024) and IOLBench (Goyal 180

and Dan, 2025), derived from the International Lin- 181

guistics Olympiad, challenge model generalization 182

under low-resource language scenarios. 183

Methods Beyond benchmark development, re- 184

cent efforts have also explored structured frame- 185

works to enhance inductive reasoning in LLMs, 186

addressing limitations observed with chain-of- 187

thought prompting and few-shot methods (Bowen 188

et al., 2024; Gendron et al., 2023). For instance, 189

Chain-of-Language-Models (Yang et al., 2022) em- 190

ploys a modular pipeline integrating rule generation 191

and verification. Qiu et al. (2023) combines LLMs 192

with symbolic executors in a propose-verify-refine 193

loop, significantly enhancing robustness. Similarly, 194

the De-In-Ductive (DID) (Cai et al., 2024) sim- 195

ulates a human-like inductive-then-deductive rea- 196

soning sequence within a single prompt, enabling 197

flexible strategy switching and improved cross-task 198

generalization. 199

2.2 Scientific Inductive Reasoning in LLMs 200

Symbolic Regression Symbolic regression is a 201

core approach for scientific discovery (Matsubara 202

et al., 2022; Gilpin, 2021). It is valued for its abil- 203

ity to extract analytical expressions directly from 204

data (Angelis et al., 2023). Recent studies have ex- 205

tended this paradigm by incorporating LLMs into 206

the tasks. In materials science, Wang et al. (2024) 207

highlight its role in revealing underlying physical 208

and chemical principles. Du et al. (2024) propose 209

a prompt-based framework using LLMs to gener- 210

ate candidate equations, offering greater flexibility 211

than traditional methods. Shojaee et al. (2024) treat 212

equations as programs, guided by scientific priors. 213

To support systematic evaluation, they then intro- 214

duce LLM-SRBench, a multi-domain benchmark 215

designed to evaluate LLMs’ true discovery capabil- 216

ities. 217

Hypothetical Induction Hypothetical Induction 218

has been recognized as a subtask of inductive rea- 219

soning (Norton, 2003), with growing interest in 220

using LLMs to generate novel, valuable scientific 221

hypotheses from background knowledge or obser- 222

vations. Kumbhar et al. (2025) introduced a goal- 223

driven dataset and evaluation framework in mate- 224

rials science, while Yang et al. (2023, 2024) con- 225

structed datasets for hypothesis generation in chem- 226

istry and social science. Researchbench (Liu et al., 227

2025) further provides the first benchmark covering 228
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inspiration retrieval, hypothesis formulation, and229

ranking.230

3 SIRBench-V1: Task and Construction231

We curate 7 tasks, with 100 samples for each biol-232

ogy task, including synthetic tasks, and 30 samples233

for each chemistry task.234

3.1 Task Overview235

Task 1: DNA Translation (Synthetic) This task236

simulates the biological process of translating a237

DNA sequence into its corresponding amino acid238

sequence. The model is required to induce the239

codon-to-amino-acid mappings solely based on in-240

context learning (ICL) examples and apply the241

inferred mappings to translate a target DNA se-242

quence. However, LLMs may have internalized the243

canonical genetic codon table as prior knowledge,244

enabling them to generate the correct amino acid245

sequence through memorization rather than gen-246

uine rule induction. To better assess the inductive247

reasoning capabilities of the model, we provide a248

synthetic alternative to the standard task design,249

by randomly assigning codon-to-amino-acid map-250

pings.251

Task 2: DNA Table Inference (Synthetic) This252

task focuses explicitly on evaluating the model’s253

inductive ability by requiring it to recover the254

underlying codon table based solely on a set of255

DNA–amino acid sequence pairs. The model is256

asked to infer the translation rules and provide257

a fully structured codon table, including codon-258

to-amino acid mappings, start codons, and stop259

codons. We follow the same design as in Task 1,260

providing both standard and synthetic configura-261

tions.262

Task 3: DNA Transformation This task adopts263

a fully synthetic setup, with the goal of evaluating264

the model’s ability to infer transformation rules265

from ICL examples and to apply them correctly to266

unseen test sequences. Each ICL example consists267

of an input–output DNA sequence pair generated268

by applying one of several predefined transforma-269

tions: sequence reversal, complementation, reverse270

complementation, segmented transformation, and271

fixed base mutation.272

Task 4: Molecule Design This task requires273

LLMs to generate molecular structures that sat-274

isfy a given textual description. The input is a275

natural language sentence (in English), and the out- 276

put is the corresponding molecule represented in 277

SMILES format. 278

Task 5: Molecule Captioning This task is the 279

inverse of Task 4, where the input is a molecular 280

structure and the model is expected to generate a 281

corresponding description or annotation in natural 282

language. 283

Task 6: Reaction Prediction This task focuses 284

on chemical reaction prediction. Given one or more 285

reactants and reagents, the model is expected to pre- 286

dict the resulting product in the form of a SMILES 287

string. 288

Task 7: Name Prediction This task focuses on 289

conversions between three common chemical repre- 290

sentations: SMILES (linear structural encodings), 291

IUPAC names (standardized nomenclature), and 292

molecular formulas (atomic composition). We 293

include four relatively unambiguous conversions: 294

smiles2formula, smiles2iupac, iupac2smiles, and 295

iupac2formula. 296

3.2 Data Collection 297

Biology We derive source DNA sequences and 298

their corresponding amino acid sequences from 299

GenomicLLM_GRCh38 (Grešová et al., 2023; Liu 300

et al., 2024) for the standard task. For the synthetic 301

task, we generate codon tables by randomizing 302

every mapping except the start and stop codons, 303

and translate inputs using these tables. 304

For DNA Transformation, we randomly sample 305

DNA fragments from the training set as ICL exam- 306

ples and truncate them to a maximum length, and 307

do the same for test sequences. The transforma- 308

tion type and base-pairing schemes are randomly 309

sampled from a predefined set. These base-pairing 310

schemes are designed manually to disrupt natural 311

complementarity, increasing the inductive reason- 312

ing challenge. For all the tasks, we ensure that the 313

ICL examples cover all the mappings used in the 314

test example. 315

Chemistry ChemLLMBench (Guo et al., 2023) 316

is a chemistry-domian LLM benchmark compris- 317

ing eight tasks. We select four tasks, corresponding 318

to Task 4-7 in our work, which exhibit a relatively 319

stronger emphasis on inductive reasoning capabil- 320

ities. The Molecule Design and Captioning tasks 321

are based on the ChEBI-20 dataset (Edwards et al., 322

2022a), pairing molecular SMILES with textual 323

description. The Reaction Prediction task draws 324
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C1.CCOCC.CO
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ccccc3C2(O)c2cccnc2)c1
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=O)COC1=CC=CC=C1

IUPAC name:
(2-oxo-3-phen

oxypropyl) propyl
carbonate

Formula:
C13H16O5

Biology  Tasks
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Figure 2: Our benchmark includes 7 tasks spanning two scientific disciplines: biology and chemistry. denotes
tasks that adopt a synthetic configuration; refers to tasks that involve only rule induction from examples, while
others involve both induction and application to a new test input.

on the USPTO-MIT Mixed reaction dataset (Irwin325

et al., 2021; Westerlund et al., 2024b,a), which con-326

tains information on reactants, reagents, and prod-327

ucts in SMILES reaction format. The Name Pre-328

diction task is derived from PubChem (Kim et al.,329

2018), which offers extensive mappings between330

SMILES strings and their corresponding standard331

chemical names, including both IUPAC names and332

molecular formulas.333

3.3 Metrics334

Biology All three tasks are evaluated using accu-335

racy as the primary metric, computed as the propor-336

tion of correctly predictions.337

Chemistry For molecule design, we adopt eight338

metrics, including BLEU, Exact Match (Edwards339

et al., 2022b), and Levenshtein distance (Miller340

et al., 2009) for string-level consistency; validity341

for structural correctness; MACCS (Ratcliff and342

Metzener, 1988), RDK (Landrum, 2020), and Mor-343

gan (Dash et al., 2023) for structural similarity; and344

FCD (Preuer et al., 2018) for distributional sim-345

ilarity. For molecule captioning, we use BLEU,346

ROUGE, and METEOR to capture surface-level347

overlaps, but also introduce an LLM-as-a-Judge348

score (1–10 scale), with an emphasis on scientific349

accuracy, while also considering completeness and 350

clarity. For reaction prediction, we follow the Top-1 351

Accuracy metric and improve robustness by canon- 352

icalizing both predicted and reference SMILES 353

using RDKit (Landrum, 2020) before compari- 354

son. Finally, for name prediction, we apply the 355

same canonicalization for the iupac2smiles task, 356

and adopt Exact Match Accuracy for the other 357

three tasks (smiles2formula, smiles2iupac, and iu- 358

pac2formula). 359

4 Evaluation 360

4.1 Models 361

In order to provide a comprehensive assessment 362

of the inductive reasoning capabilities of cost- 363

optimized, flagship, and reasoning LLMs, we 364

choose one representative model from each cat- 365

egory, namely Claude-3.5-Haiku, GPT-4.1, and 366

Gemini-2.5-Flash. Since our benchmark is inte- 367

grated into the OpenCompass framework, it can 368

be easily evaluated on any other LLM. To ensure 369

consistency and encourage output diversity during 370

repeated sampling, we set the temperature at 1.0 for 371

all experiments. For Gemini-2.5-Flash, we retain 372

its default “thinking” configuration. 373
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4.2 Inference Strategies374

We evaluate SIRBench-V1 on four commonly used375

inference strategies for inductive reasoning as il-376

lustrated in figure 3. Explicit inductive reasoning377

serves as a baseline for advanced methods like self-378

consistency and hypothesis refinement, where the379

LLM needs to explicitly formulate and apply the380

hypotheses.381

Implicit Inductive Reasoning. We provide the382

LLM with ICL examples and ask the LLM to pro-383

vide the final answer directly without explicitly384

stating the induced rules. This approach is the most385

straightforward way to perform inductive reason-386

ing.387

Explicit Inductive Reasoning. We prompt the388

LLM to formulate a hypothesis based on the ICL389

examples. Then, we let the LLM apply the hypoth-390

esis to the given target question to obtain the final391

answer. This approach forces the LLM to perform392

the inductive reasoning process explicitly.393

Self-Consistency. For self-consistency (Wang394

et al., 2022), we sample multiple hypotheses (we395

use n = 5) from the LLM and ask it to apply each396

of them to the target question, obtaining a corre-397

sponding answer from each hypothesis. A final398

answer is selected using majority voting performed399

by the LLM itself via prompting (see appendix C).400

Hypothesis Refinement. The hypothesis refine-401

ment method (Qiu et al., 2023) follows a three-402

stage iterative process: hypothesis generation, se-403

lection, and refinement.404

Initially, we sample multiple hypotheses (n = 5)405

based on the ICL examples, then evaluate them406

using one of the two approaches: (1) for code-407

executable tasks, we translate them into Python408

functions and execute them following Qiu et al.409

(2023), or (2) otherwise, we have the LLM apply410

each hypothesis directly. A task-specific evaluator411

scores each hypothesis’s output.412

Next, we generate a new set of hypotheses (n =413

5) by prompting (see appendix C for prompt) the414

LLM to refine the highest-scoring hypothesis based415

on feedback.416

We repeat this select-and-refine loop up to t = 3417

iterations, stopping early if the hypothesis achieves418

a perfect score on ICL examples or performance419

degradation is detected. We added the early stop-420

ping mechanism for performance degradation to421

prevent weaker models from degrading rule quality.422

Finally, we apply the best resulting hypothesis 423

to the target question to produce the answer. 424

5 Results and Analysis 425

5.1 Main Results 426

Table 2 reveals consistently low performance 427

across most tasks, highlighting the limitations of 428

current LLMs in scientific inductive reasoning 429

tasks beyond mathematical equations. Among 430

the evaluated models, Gemini-2.5-Flash demon- 431

strates superior performance in computationally 432

intensive tasks while exhibiting comparable results 433

to other models in conceptually oriented tasks such 434

as Molecule Caption. Additionally, larger flagship 435

models perform better than cost-optimized models. 436

We observe that LLMs struggle with explicit 437

inductive reasoning (i.e., proposing effective rules 438

and applying them to novel inputs), as shown by the 439

performance drop from implicit to explicit induc- 440

tive reasoning. Self-consistency helps alleviate this 441

shortcoming by sampling multiple diverse reason- 442

ing paths and marginalizing across them, thereby 443

enhancing the robustness of the explicit inductive 444

reasoning process. The hypothesis refinement strat- 445

egy further improves the performance, as it selects 446

the best rule from multiple sampled hypothesis and 447

revises the rule at each iteration. However, we find 448

that the advantage of hypothesis refinement over 449

implicit inductive reasoning varies inconsistently 450

across tasks and models. Therefore, current in- 451

ductive reasoning methods remain inadequate for 452

scientific inductive reasoning tasks beyond mathe- 453

matical equations. 454

5.2 Effect of Length 455

Being able to perform inductive reasoning on a long 456

context is fundamental. We evaluated the LLMs 457

on DNA transformation and DNA translation tasks 458

with varying sequence length configurations. The 459

DNA transformation task demands the comprehen- 460

sion of the entire sequence (e.g., identifying re- 461

versals), while the DNA translation task requires 462

observation of local patterns. As shown in figure 4, 463

for DNA transformation, we found that the LLMs 464

achieve relatively strong performance on shorter 465

sequences but exhibits a significant performance 466

decline as sequence length increases. For DNA 467

translation, GPT-4.1 and Claude-3.5-Haiku show 468

minimal decrease with longer sequences only be- 469

cause they struggle with this task at shorter lengths. 470

The results indicate that current LLMs are effec- 471

6



In-Context Examples

Input: ... Output: ...
Input: ... Output: ...

...
Input: ... Output: ...

Hypothesis

Rule 1: ...
Rule 2: ...

...
Rule n: ...
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Figure 3: Comparison of four inference strategies: (1) Implicit induction - directly providing output; (2) Explicit
induction - formulating clear hypotheses explicitly; (3) Self-consistency - using multiple reasoning paths to reach
consensus; and (4) Hypothesis refinement - iteratively improving hypothesis on feedback.

Models
Biology Chemistry

Avg.DNA DNA Table DNA Molecule Molecule Reaction Name
Translation Inference Transformation Design Caption Prediction Prediction

Implicit Inductive Reasoning

Claude-3.5-Haiku 5.47 10.23 27.28 62.00 67.70 44.44 3.57 31.53
GPT-4.1 5.71 12.73 31.37 75.00 66.30 22.22 13.51 32.41
Gemini-2.5-Flash 11.72 32.06 30.42 85.00 63.30 54.17 30.00 43.81

Explicit Inductive Reasoning

Claude-3.5-Haiku 5.85 9.72 26.05 64.00 54.00 19.23 2.81 25.95
GPT-4.1 5.31 12.13 28.73 69.00 59.00 17.86 6.09 28.30
Gemini-2.5-Flash 9.14 23.34 28.66 77.00 67.70 34.78 30.00 38.66

Self-Consistency (Wang et al., 2022)

Claude-3.5-Haiku 5.11 10.00 26.34 66.00 69.70 20.83 0.83 28.40
GPT-4.1 5.96 13.19 30.81 72.00 65.70 25.00 9.58 31.75
Gemini-2.5-Flash 9.15 24.84 30.4 80.00 70.00 39.29 40.13 41.97

Hypothesis Refinement (Qiu et al., 2023)

Claude-3.5-Haiku 5.79 10.02 30.05 73.00 72.70 28.00 1.88 31.63
GPT-4.1 5.62 14.57 35.56 67.00 66.30 32.14 11.59 33.25
Gemini-2.5-Flash 10.60 28.55 30.37 72.00 65.70 32.14 34.07 39.06

Table 2: Performance of Claude-3.5-Haiku, GPT-4.1, and Gemini-2.5-Flash on SIRBench-V1’s Biology and
Chemistry tasks using four inference strategies. All scores report accuracy (%), except Molecule Design (Morgan
similarity rescaled to 0-100). Molecule Caption reports the accuracy from LLM-as-judge. Synthetic versions were
used for DNA Translation and DNA Table Inference tasks.

tive at inducing pattern only within limited input472

lengths. This limitation reflects the broader chal-473

lenge of developing robust inductive reasoning ca-474

pabilities that can handle long context.475

5.3 Effect of Number of Shots476

We examine the effect of the number of shots on477

accuracy in one representative task each from the478

domains of biology and chemistry. Figure 5 shows 479

that increasing the number of shots has varying 480

effects on different models. In reaction prediction 481

task, GPT-4.1 exhibits an upward trend, showing 482

that it benefits from additional shots. In contrast, 483

Claude-3.5-Haiku shows performance degradation, 484

likely due to limitations in its context processing ca- 485
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Figure 4: Effect of Sequence Length in Transformation
and DNA Translation tasks.
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Figure 5: Effect of Number of Shots in Reaction Predic-
tion and DNA Transformation tasks.

pability. Gemini-2.5-Flash does not show any clear486

upward or downward trend with as shot increases.487

For DNA transformation, all the models exhibit488

consistent performance, implying that additional489

examples provide limited benefit.490

5.4 Many-Short-Shot vs. Long-Few-Shot491

Unlike previous studies that only explore increas-492

ing the number of relatively short examples (Yan493

et al., 2025), we also explore the inductive reason-494

ing capabilities of LLMs on few long examples.495

The latter paradigm adheres more to real-world496

applications, where it is difficult to obtain numer-497

ous examples for long input tasks. Our compara-498

tive analysis in table 3 across both scenarios while499

maintaining the total input length demonstrates that500

LLMs perform worse with few long examples. This501

finding highlights a critical area for the advance-502

ment of LLM inductive reasoning ability.503

5.5 Counterfactual Evaluation504

To investigate whether LLMs perform true induc-505

tive reasoning, we compare their performance on506

original and synthetic settings of DNA Transla-507

tion and Table Inference. As illustrated in Table508

4, all three models suffer a dramatic performance509

decline in synthetic tasks, suggesting that higher510

performance in authentic versions stems from the511

memorization of standard mappings rather than512

genuine inductive reasoning capabilities.513

Among the evaluated models, Gemini-2.5-Flash514

maintains the highest performance on both origi-515

nal and synthetic versions of the tasks. This sug-516

Model Many-Short-Shot Few-Long-Short

Claude-3.5-Haiku 31.19 15.63
GPT-4.1 36.94 25.64
Gemini-2.5-Flash 35.14 24.47

Table 3: Performance comparison in many-short-shot
versus long-few-shot settings on the DNA Translation
task. The many-short-shot setting uses 64 shots with
sequence length 100, while the few-long-shot setting
uses 4 shots with sequence length 1600.

Model DNA Translation DNA Table Inf.

Aut. Syn. (∆) Aut. Syn. (∆)

Claude-3.5-Haiku 21.95 5.47 (−16.48) 68.50 10.23 (−58.27)

GPT-4.1 21.24 5.71 (−15.53) 81.84 12.73 (−69.11)

Gemini-2.5-Flash 30.64 11.72 (−18.92) 87.09 32.06 (−55.03)

Table 4: Performance comparison between authentic
and synthetic versions of chosen tasks. ∆ represents the
performance gap, calculated as the score on synthetic
tasks minus the score on authentic tasks.

gests that reasoning models have better capability 517

to identify rules beyond the constraints of memo- 518

rized knowledge than non-reasoning models. How- 519

ever, its absolute score in synthetic tasks remains 520

low. Overall, these results indicate that current 521

LLMs are fundamentally limited in their ability to 522

perform genuine inductive reasoning. In the con- 523

text of scientific discovery, LLMs need to recog- 524

nize novel patterns rather than just retrieve existing 525

knowledge. Therefore, our findings highlight the 526

need to distinguish inductive reasoning from re- 527

trieval to advance the ability of LLMs for scientific 528

discovery. 529

6 Conclusion 530

In this paper, we introduce SIRBench-V1, a bench- 531

mark that includes Chemistry and Biology subtasks, 532

to evaluate the scientific inductive reasoning of 533

LLMs on tasks beyond mathematical equation. We 534

evaluated different LLMs using commonly used 535

reasoning strategies on our proposed benchmark. 536

We found that current leading LLMs obtain low 537

performance on our benchmark and that using so- 538

phisticated strategies provide minimal benefits. Ad- 539

ditionally, we point out limitations of LLMs in 540

performing inductive reasoning on longer context 541

lengths, few-long-shot settings, and counterfactual 542

rules. The experimental results will provide valu- 543

able insights for future studies on LLM-driven sci- 544

entific discovery. 545
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7 Limitations546

In this work, we take the first step toward incor-547

porating scientific scenarios into the design of the548

LLM-Based Inductive Reasoning Beyond Equa-549

tions and introduce a new dataset for evaluation.550

However, the SIRBench-V1 is limited to chemistry551

and biology domains. As a next step, we plan to552

invite domain experts in these areas to review and553

refine both our benchmark and evaluation protocol.554

In the future, we aim to expand the benchmark to555

cover a broader range of scientific disciplines.556
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A Additional Details on SIRBench-V1799

A.1 Dataset Configurations800

We curate 7 tasks in total. Considering that multi-801

ple metrics provide robust assessment, for chem-802

istry tasks, we evaluate Molecule Design, Molecule803

Captioning and Reaction Prediction with 30 exam-804

ples each. For Name Prediction, we sample 30 ex-805

amples for each type of transformation (including806

smiles2formula, smiles2iupac, iupac2smiles, and807

iupac2formula). Since biology tasks rely solely on808

accuracy, we increase the number of examples to809

100 for each biology task to ensure more stable eval-810

uation, including DNA Translation, DNA Transla-811

tion (Synthetic), DNA Table Inference, DNA Table812

Inference (Synthetic) and DNA Transformation.813

All experiments are conducted under 5-shot set-814

ting, unless otherwise stated. However, since our815

benchmark has various configurations and supports816

synthetic data generation for some subtasks, the817

actual number of items can be configurable.818

In our main results, we use the following con-819

figurations. For DNA Translation, we uniformly820

sample across sequence length 200 to 450 since the821

effective DNA sequences in the dataset starts from822

length 200. While data are available for longer se-823

quences, only sample until 450 because they are too824

challenging for most models. For DNA Transfor-825

mation, we set the sequence length to 300, which826

is a reasonably challenging level.827

A.2 Examples of Transformation Types in828

DNA Transformation Task829

The transformation types include: 1) Sequence re-830

versal: reversing the order of the entire sequence831

(e.g., AGCT → TCGA); 2) Complementation:832

replacing each base according to a substitution833

rule (e.g., AGCT → TCGA, using A↔T, C↔G834

or a randomized complement map); 3) Reverse835

complementation: performing complementation836

followed by reversal (e.g., AGCT → AGCT); 4)837

Segmented transformation: transforming fixed-838

length segments after a fixed stride (e.g., AGCT-839

TAGCGT → AGCTTGACGT, reversing 2 bases840

every 3 bases); 5) Fixed base mutation: replac-841

ing specific bases with new ones (e.g., AGCT →842

GGTT, where A→G and C→T).843

B Explicit Inductive Reasoning Analysis844

In order to provide a more thorough analysis, we845

show the computed evaluation score of the gener-846

ated hypotheses on ICL examples during hypoth-847

Task Model Initial Final Test

DNA Translation
Claude-3.5-Haiku 3.87 6.52 5.79
GPT-4.1 9.15 11.37 5.62
Gemini-2.5-Flash 24.37 30.57 10.60

Molecule Design
Claude-3.5-Haiku 0.67 0.71 0.73
GPT-4.1 0.77 0.82 0.67
Gemini-2.5-Flash 0.92 0.97 0.72

Table 5: Comparison of initial and final hypothesis
quality scores on in-context examples (ICE) alongside
corresponding test performance of final hypothesis for
various models across DNA Translation (Synth) and
Molecule Design tasks. Morgan similarity (scale of 0 to
1) is reported for the Molecule design task.

esis refinement in table 5. For the initial evalu- 848

ation scores, we report the average score of the 849

best hypothesis generated by the model prior to 850

any refinement. This also serves as an approximate 851

upper bound of the evaluation scores for hypothe- 852

ses generated by explicit inductive reasoning and 853

self-consistency. We notice that for DNA Transla- 854

tion task, these rules obtained low accuracy on ICL 855

examples. The scores increase at the end of the re- 856

finement process, but still remain low. This shows 857

the limitation in inductive reasoning capability of 858

current LLMs. Furthermore, although hypothesis 859

refinement enhances the consistency of rules with 860

ICL examples, we observe that in some cases there 861

remains a substantial gap between performance on 862

ICL examples and generalization to test examples. 863

Future work may focus on enhancing the hypothe- 864

sis proposal capabilities of LLMs to improve both 865

accuracy on ICL examples and generalization to 866

novel scenarios. 867

We also provided examples of hypothesis gener- 868

ated by GPT-4.1 which can be found table 6 and 869

7. 870

C Experiment Details 871

C.1 Implementation Details 872

We run our experiments using API-based closed- 873

source models, specifically claude-3-5-haiku- 874

20241022, gpt-4.1-2025-04-14, and gemini-2.5- 875

flash-preview-04-17. We implement our inference 876

strategies in the OpenCompass framework. This 877

allows us to perform inference in parallel at high 878

rates. The explicit inductive reasoning is imple- 879

mented via one-pass decoding, generating the hy- 880

pothesis and applying it to the test example in one 881

API call. Self-consistency is implemented by sam- 882

pling multiple times using the same process as ex- 883
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Task Hypothesis

DNA Translation Rule 1: Read the DNA from 5’->3’ in consecutive codons (3 bp) starting at
the first base. Rule 2: Each codon uniquely maps to one amino acid per the
in-context examples. Rule 3: Inferred codon table: ATG:M, ATT:M, ATA:N,
ATC:Q, GTT:S, GTC:V, GTA:C, GTG:V, TTT:F, TTC:F, TTA:W, TTG:W, CTT:M,
CTC:D, CTA:R, CTG:G, TCT:S, TCC:S, TCA:H, TCG:S, CCT:P, CCC:N, CCA:N,
CCG:Y, ACT:P, ACC:N, ACA:N, ACG:W, GCT:A, GCC:N, GCA:N, GCG:F,
TAT:Y, TAC:P, TAA:*, TAG:*, CAT:Q, CAC:Y, CAA:D, CAG:V, AAT:F, AAC:G,
AAA:K, AAG:N, GAT:D, GAC:G, GAA:E, GAG:G, TGT:P, TGC:L, TGA:*,
TGG:W, CGT:R, CGC:C, CGA:M, CGG:H, AGT:S, AGC:F, AGA:G, AGG:S,
GGT:G, GGC:W, GGA:V, GGG:Q. Rule 4: Translate sequentially until a stop
(TAA, TAG, TGA → “*”). Rule 5: Output one-letter amino acid string. Rule 6:
Stop at and include first “*”. Rule 7: Unseen codons should not be assumed.

DNA Table Infer-
ence

Rule 1: DNA–protein pairs align codons (3 bp) to amino acids. Rule 2: Segment
DNA into triplets from 5’ and align to protein until “*” or end. Rule 3: Codons
aligned to “*” are stop codons. Rule 4: First-codon→‘M’ pairs are start codons.
Rule 5: Aggregate across examples; record all observed mappings. Rule 6: Include
only codons seen. Rule 7: Build forward_table from all mappings, excluding stops.
Rule 8: start_codons = all first codons mapped to ‘M’. Rule 9: stop_codons = all
codons aligned to ‘*’. Rule 10: Amino acids are single-letter codes including “*.”

DNA Transform Rule 1: Split input into 7-nt segments from 5’; last segment may be shorter. Rule
2: Reverse each 7-nt segment. Rule 3: Concatenate reversed segments to form
output.

Table 6: Hypotheses Generated by GPT-4.1 for the DNA tasks

plicit inductive reasoning. For hypothesis refine-884

ment, we sample the hypothesis using the same885

general prompt in all tasks, except for DNA Trans-886

lation where we ask the model to provide the spe-887

cific codon-to-amino acid so that the hypothesis888

can be properly refined. For tasks in which the889

hypothesis can be translated into Python code, we890

prompt an LLM to generate the code. Otherwise,891

we prompt the LLM to apply a hypothesis to all892

in-context example inputs and do this to all the gen-893

erated hypothesis. We used AI assistants to polish894

some of the text in this paper.895

C.2 Prompts896

Molecule Captioning As discussed in Sec-897

tion3.3, molecule captioning is an open-ended gen-898

eration task, for which existing evaluations rely899

primarily on surface-level matching. To address900

this limitation, we design a dedicated prompt with901

fine-grained scoring criteria and employ an LLM902

to serve as the evaluator.903

One-pass Self-Consistency To reduce the num-904

ber of API calls and improve the efficiency of self-905

consistency, we design the prompt so that the model906

performs both rule induction and application to the 907

test input within a single invocation. 908

Universal Majority Voting with Self-Consistency 909

Given that the outputs of the chemistry and biol- 910

ogy tasks in SIRBench-V1 are typically long and 911

semantically complicated, basic majority voting 912

mechanism often fails to identify a representative 913

response, thereby diminishing the effectiveness of 914

self-consistency. To address this, we adopt the uni- 915

versal self-consistency strategy(Chen et al., 2023), 916

selecting the most semantically consistent response 917

to form the final answer. 918

Hypothesis Refinement We provide the main 919

prompts used in the hypothesis refinement process, 920

including Hypothesis Induction, Hypothesis Appli- 921

cation, Hypothesis Refinement, and Final Hypothe- 922

sis Application. 923
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Task Hypothesis

Molecule Design Rule 1: Identify required functional groups (e.g., diamine, aldehyde, etc.). Rule 2:
Map biological role to known scaffolds (e.g., antineoplastic → stilbene). Rule 3:
Choose core heterocycle per “derives from” (e.g., triazine). Rule 4: Decorate core
with substituents to satisfy function and activity. Rule 5: Respect stereochemistry
(e.g., [C@H] per natural enantiomer). Rule 6: For natural products, replicate
known SMILES closely. Rule 7: Attach alkyl/aryl groups at correct positions.
Rule 8: Output valid SMILES with rings, heteroatoms, charges.

Molecule Caption Rule 1: Identify core ergot alkaloid and name (e.g., ergotaman). Rule 2: Describe
substituents and positions (e.g., 12’-hydroxy). Rule 3: Note stereochemistry if
differentiating isomers. Rule 4: Mention salts/derivatives (e.g., methanesulfonic
acid salt). Rule 5: State biological origin or role if recognizable. Rule 6: Use
“derives from” for parent relationships. Rule 7: Note naming conventions or
historical context if relevant. Rule 8: Separate distinct features into clear sentences.

Reaction Predic-
tion

Rule 1: Target N-heterocycle fused to benzene undergoes nucleophilic attack.
Rule 2: Organometallics ([Li]CCCC, [H–]) add to carbonyl or halide. Rule 3:
Bases ([NH+

4 ], [OH–]) deprotonate or hydrolyze esters → amides/acids. Rule 4:
Leaving groups replaced by nucleophiles forming C–X or C–C. Rule 5: Ester +
nucleophile -> amide/ether. Rule 6: Most nucleophilic reagent reacts with most
electrophilic center. Rule 7: Ignore spectator ions in final product. Rule 8: Grignard
addition -> alcohol at addition site. Rule 9: Reductions ([H–]) convert carbonyls
→ alcohols/amines. Rule 10: On heteroaryl halide, nucleophile replaces halide on
ring. Rule 11: Ethers/amides attach to aromatic systems via substitution/acylation.
Rule 12: With both esters and amines, amide formation is preferred.

Name Prediction Rule 1: Count all C atoms (including branches/rings). Rule 2: Count H via implicit
valence rules. Rule 3: Count N, O, S, Si, halogens from SMILES. Rule 4: Include
implicit Hs in aromatic rings per standard. Rule 5: Integrate substituent atoms
without double-counting. Rule 6: Adjust H count for double/triple bonds. Rule 7:
Write formula as C, H, then others alphabetically. Rule 8: Expand grouped atoms
(e.g., O[Si](C)(C)C). Rule 9: Sum counts; check branching consistency. Rule 10:
Format as [Element][count]. . . (e.g., C6H6O).

Table 7: Hypotheses Generated by GPT-4.1 for the Chemistry tasks

D Complete Results on Chemistry Tasks924

We provide the full results on Chemistry Tasks that925

reports all the metrics in table 8, table 10, and table926

9.927
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Task Metric
Implicit

Inductive
Reasoning

Explicit
Inductive
Reasoning

Self-
Consistency

Hypothesis
Refinement

Molecule
Design

exact_match 0.17 0.23 0.23 0.27
bleu 0.41 0.36 0.19 0.71

levenshtein (↓) 70.87 84.70 173.47 26.30
validity 0.70 0.77 0.80 0.70

maccs_sims 0.81 0.75 0.84 0.89
rdk_sims 0.81 0.69 0.69 0.76

morgan_sims 0.62 0.64 0.66 0.73
fcd (↓) 12.82 13.87 12.46 13.22

Molecule
Caption

bleu2 0.20 0.22 0.39 0.24
bleu4 0.14 0.15 0.29 0.17

rouge_1 0.33 0.24 0.48 0.40
rouge_2 0.18 0.12 0.29 0.23
rouge_l 0.25 0.19 0.38 0.31

meteor_score 0.39 0.23 0.44 0.42
LLM as judge 67.70 54.00 69.70 72.70

Reaction Prediction accuracy 44.44 19.23 20.83 28.00

smiles2formula accuracy 0.00 0.00 0.00 0.00
smiles2iupac accuracy 0.00 0.00 0.00 0.00
iupac2smiles accuracy 14.29 4.55 0.00 4.17

iupac2formula accuracy 0.00 6.67 3.33 3.33

Table 8: Performance of the Claude-3.5-Haiku on Chemistry Tasks
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Task Metric
Implicit

Inductive
Reasoning

Explicit
Inductive
Reasoning

Self-
Consistency

Hypothesis
Refinement

Molecule
Design

exact_match 0.30 0.20 0.20 0.23
bleu 0.75 0.71 0.70 0.75

levenshtein (↓) 25.37 27.93 26.37 24.03
validity 0.87 1.00 0.93 0.93

maccs_sims 0.92 0.87 0.91 0.87
rdk_sims 0.80 0.74 0.82 0.78

morgan_sims 0.75 0.69 0.72 0.67
fcd (↓) 8.16 7.08 7.97 7.43

Molecule
Caption

bleu2 0.42 0.49 0.49 0.20
bleu4 0.32 0.38 0.39 0.15

rouge_1 0.55 0.55 0.57 0.38
rouge_2 0.36 0.38 0.39 0.24
rouge_l 0.44 0.46 0.48 0.31

meteor_score 0.57 0.52 0.54 0.48
LLM as judge 66.30 59.00 65.70 66.30

Reaction Prediction accuracy 22.22 17.86 25.00 32.14

smiles2formula accuracy 13.33 6.67 10.00 10.00
smiles2iupac accuracy 0.00 0.00 0.00 0.00
iupac2smiles accuracy 17.39 4.35 5.00 13.04

iupac2formula accuracy 23.33 13.33 23.33 23.33

Table 9: Performance of the GPT-4.1 on Chemistry Tasks
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Task Metric
Implicit

Inductive
Reasoning

Explicit
Inductive
Reasoning

Self-
Consistency

Hypothesis
Refinement

Molecule
Design

exact_match 0.33 0.27 0.27 0.20
bleu 0.73 0.79 0.79 0.76

levenshtein (↓) 27.90 25.27 22.50 26.67
validity 0.80 0.77 0.90 0.73

maccs_sims 0.95 0.94 0.94 0.81
rdk_sims 0.89 0.86 0.87 0.82

morgan_sims 0.85 0.77 0.80 0.72
fcd (↓) 8.19 8.89 6.26 10.56

Molecule
Caption

bleu2 0.49 0.54 0.51 0.42
bleu4 0.38 0.43 0.41 0.33

rouge_1 0.57 0.61 0.61 0.52
rouge_2 0.38 0.42 0.41 0.35
rouge_l 0.47 0.50 0.49 0.43

meteor_score 0.55 0.59 0.59 0.52
LLM as judge 63.30 67.70 70.00 65.70

Reaction Prediction accuracy 54.17 34.78 39.29 32.14

smiles2formula accuracy 30.00 20.00 30.00 16.67
smiles2iupac accuracy 0.00 0.00 3.33 0.00
iupac2smiles accuracy 20.00 40.00 53.85 52.94

iupac2formula accuracy 70.00 60.00 73.33 66.67

Table 10: Performance of the Gemini-2.5-Flash on Chemistry Tasks
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LLM-as-Judge Evaluation of Molecule Captioning:
You are an expert molecular biologist.
Below is a SMILES string representing a molecule: {smiles}
Here is a reference description of the molecule: {gt}
Here is a predicted description of the same molecule: {pred}
Your task is to evaluate the predicted description only based on its scientific quality compared to
the reference.
You must assign a score from 1 to 10 based on the following criteria:

• Score 10: Nearly perfect — scientifically precise, complete, and fluent. Matches all key
aspects of the reference (e.g., functional groups, chemical class, derivation, roles).

• Score 8–9: Very good — minor omissions or slight rewording, but the core structure-level
and functional meaning is intact.

• Score 6–7: Reasonable — generally correct but may lack specific details (e.g., derivation or
one functional role). Possibly vague phrasing.

• Score 4–5: Partial — captures the general category or one function but omits multiple
important details or shows misunderstanding in phrasing.

• Score 2–3: Poor — vague, generic, or scientifically weak. May refer to the wrong compound
type or confuse structural features.

• Score 1: Completely incorrect or irrelevant.

Only output a single line in the following format: Score: [1-10]

One-pass Self-Consistency:
Below is a full prompt about the reasoning task, which includes the ICL examples and a new test
case. Your task is:

1. Read the full prompt to understand the task and identify: 1) the example input-output pairs
2) the specific input question to answer.

2. Analyze these example pairs and generate a series of rules that explains how each input is
transformed to its corresponding output.

3. Then, apply those rules to the final test question and output the answer.

4. Return your answer in the following format:

<rules>
Rule 1: ...
Rule 2: ...
Rule 3: ...
...
</rules>

<answer>
{{your answer}}
</answer>

Full prompt: {full_prompt}

18



Universal Majority Voting with Self-Consistency:
You are given a reasoning task prompt and multiple candidate responses to the question in that
prompt. Your task is:

1. Read the full prompt carefully to understand the question being asked.

2. Examine all the candidate responses and determine whether any of them form a majority
consensus.

• A majority exists if any single response appears more than any other (either verbatim
or semantically equivalent).

• In case of a tie (e.g., all responses differ or two responses appear with equal frequency),
consider that no majority exists.

3. If a majority exists, return that response as the final answer.

4. If no majority exists, then select the most reasonable and task-appropriate response based
on the prompt.

Candidate responses: {responses}
Full prompt: {full_prompt}
Return your final answer using exactly the following format:
majority_found: [yes or no]
selected_response: {full response content}

Example:
majority_found: yes
selected_response: This is the most common (or semantically equivalent)
response and correctly answers the question.
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Hypothesis Induction Prompt
Below is a full prompt about the reasoning task, which includes the ICL examples that you should
learn from. Your task is:

1. Read the full prompt to understand the task and identify the example input-output pairs.

2. Analyze these example pairs and generate a series of rules that explains how each input is
transformed to its corresponding output.

3. Provide as much detail as possible in the rules, such as elaborating on the specific map-
ping.{note}

4. Return your rules in the following format (each rule on its own line):

<hypothesis>
Rule 1: ...
Rule 2: ...
Rule 3: ...
...
</hypothesis>

Full prompt:
{full_prompt}

Hypothesis Application Prompt (General)
Task Description: task_description
Please apply the given hypothesis to the given list of inputs. Ensure that you provide the actual
output for each input. Do not give a program, partial output, or placeholder.
Hypothesis: hypothesis
Input: icl_in
Format your output as follows:

<output>
Output 1: ...
Output 2: ...
...
</output>

DNA Table Prompt
Below is a full prompt about the reasoning task, which includes the question that you should give
the corresponding answer. Your task is:

1. Read the full prompt to understand the task and identify the specific input question to answer.

2. Based on your understanding of the given rules, generate the corresponding output for the
question.

Rules: hypothesis
Full prompt: x
Enclose your answer with <answer></answer> tags.
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DNA Translation/Transformation as Python Code Prompt
Convert the following hypothesis into a Python function called apply that takes a string input
and returns the transformed output. The function should implement the rules described in the
hypothesis. Make sure to handle all the transformations correctly.
Task Description: self.task_description
Hypothesis: hypothesis
Your function should follow this template:

def apply(input_str):
# Implementation based on the hypothesis rules
# ...
return result

Return ONLY the Python code without any explanation or markdown formatting.
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Hypothesis Refinement Prompt
You are given a candidate hypothesis that attempts to explain how each input is transformed into
its output. A hypothesis consists of rules that explain how the inputs are mapped to the outputs.
Your goal is to revise this hypothesis so it fully accounts for any discrepancies. You may add new
rules, modify existing ones, or remove inaccurate ones. You can also propose a completely new
hypothesis.
Context: self.task_description
Current Hypothesis: hypothesis
Input: icl_in
Model Output: generated_output
Expected Output: expected_output
Steps:

1. List the exact differences between Model Output and Expected Output.

2. For each difference, identify which existing rule (if any) fails to cover it.

3. Revise existing rules or introduce new rules to fix these gaps.

4. Ensure the rules clearly state how the input is mapped into output in a detailed manner.{note}

Output only the refined hypothesis—do not solve the original task.
Format your output as follows:

<new_hypothesis>
Rule 1: ...
Rule 2: ...
Rule 3: ...
...
</new_hypothesis>

Final Hypothesis Application Prompt
Below is a full prompt about the reasoning task, which includes the question that you should give
the corresponding answer. Your task is:

1. Read the full prompt to understand the task and identify the specific input question to answer.

2. Based on your understanding of the given rules, generate the corresponding output for the
question.

Rules: hypothesis
Full prompt: x
Enclose your answer with <answer></answer> tags.
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