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ABSTRACT

Machine Unlearning has emerged as a significant area of research, focusing on ‘re-
moving’ specific subsets of data from a trained model. Fine-tuning (FT) methods
have become one of the fundamental approaches for approximating unlearning, as
they effectively retain model performance. However, it is consistently observed
that naive FT methods struggle to forget the targeted data. In this paper, we present
the first theoretical analysis of FT methods for machine unlearning within a lin-
ear regression framework, providing a deeper exploration of this phenomenon.
We investigate two scenarios with distinct features and overlapping features. Our
findings reveal that FT models can achieve zero remaining loss yet fail to forget
the forgetting data, unlike golden models (trained from scratch without the forget-
ting data). This analysis reveals that naive FT methods struggle with forgetting
because the pretrained model retains information about the forgetting data, and
the fine-tuning process has no impact on this retained information. To address this
issue, we first propose a theoretical approach to mitigate the retention of forget-
ting data in the pretrained model. Our analysis shows that removing the forgetting
data’s influence allows FT models to match the performance of the golden model.
Building on this insight, we revisit the discriminative regularization used in exist-
ing studies and redesign it to effectively reduce the unlearning loss gap between
the fine-tuned model and the golden model. Our experiments on both synthetic
and real-world datasets validate these theoretical insights and demonstrate the ef-
fectiveness of the advanced regularization method.

1 INTRODUCTION

Machine Unlearning has emerged as a prominent area that focuses on protecting individual privacy
during the model training process, particularly adhering to legislation such as ‘the right to be forgot-
ten’” (Rosen, 2011} under the General Data Protection Regulation (GDPR) (Hoofnagle et al.,[2019).
That is, it removes certain training samples from the trained model upon their users’ data deletion
request. A natural approach to machine unlearning is to retrain the model from scratch, excluding
the data that needs to be forgotten; this is known as exact unlearning. However, this method is highly
computationally inefficient. To address this challenge, previous research has proposed a more re-
laxed definition of machine unlearning, where the unlearned model only needs to be approximately
similar to one retrained from scratch. This led to the development of approximate unlearning meth-
ods, such as Fine-Tuning (Warnecke et al., [2021} |Golatkar et al., 2020a), Gradient Ascent (Graves
et al., 2021; Thudi et al., [2022)), Fisher Forgetting (Becker & Liebig| 2022; |Golatkar et al., 2020a)),
and Influence Unlearning(Izzo et al.|[2021).

Fine-tuning, as one of the most widely used approaches in approximate unlearning, has demon-
strated its empirical effectiveness. However, it can be observed in many studies (Kurmanji et al.,
2024 [Warnecke et al., [2021}; |Golatkar et al., 2020a}; Liu et al., 2024; |Sharma et al., [2024)) and our
investigations in Table || that while fine-tuning may maintain the utility of the model on remaining
data, it struggles to forget the targeted data. This raises a natural question:

Why does fine-tuning fail to unlearn the forgetting data in machine unlearning?
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Table 1: Cifar-10 Class-wise Forgetting Performance Comparing Retrain and Naive FT (Fine-
Tuning) Method. The table compares Retrain and FT on CIFAR-10 across multiple evaluation
metrics: Unlearning Accuracy (UA), Retaining Accuracy (RA), MIA-Efficacy, Test Accuracy (TA),
and Run-Time. Values in brackets indicate the gap between FT and the golden model (i.e., Retrain).
Further explanations are provided in Section @

Cifar-10 Class-wise Forgetting

Methods UA RA MIA-Efficacy TA Run Time
Retrain 100.00+0.00 100.00+0.00 100.00+0.00 94.87+0.14 77.00
FT 20.8944.12(79.11)  99.7640.12(0.24)  74.32411.00(25.68)  93.7340.22(1.14) 4.48

To answer this question, we revisit the machine unlearning problem with a simple yet fundamen-
tal over-parameterized linear regression model and explore the behavior of fine-tuning through a
theoretical perspective. Our main contributions can be summarized as follows.

* Theoretical Analysis: Distinct and Overlapping Features. We provide the first theoreti-
cal analysis of FT methods in the context of machine unlearning within a linear regression
framework. Specifically, 1) Based on the assumption of distinct features (Assumption ,
our theoretical observations, which align with empirical studies, show that the remaining
loss for the fine-tuning model is zero, matching that of the golden model. Moreover, the
loss of the fine-tuning model on the forgetting dataset consistently remains zero, diverging
from the performance of the golden model. 2) we extend our analysis to a more complex
case when the dataset retained for model retraining shares overlapping features with the
forgetting dataset. This challenges assumptions of distinct feature sets across datasets, yet
the previous conclusions remain valid in this case. More discussion refers to Section 3}

* Theory for Enhanced Unlearning. Our analysis shows that naive fine-tuning (FT) meth-
ods fail to unlearn the forgetting data because the pretrained model retains information
about this data, and the fine-tuning process does not effectively alter that retention. To
address this issue, we propose a theoretical approach that removes the influence of the for-
getting data, mitigating its retention in the pretrained model. This enables FT models to
significantly improve unlearning accuracy while preserving the accuracy on the remain-
ing data. Furthermore, our findings provide key insights for designing machine unlearning
algorithms: retaining overlapping features between the remaining and forgetting datasets
has minimal impact on unlearning accuracy, while discarding these features results in a
decrease in the accuracy on the remaining data.

* Revisiting Discriminative Regularization. We revisit the discriminative regularization
used in existing studies and redesign it to shift the regularization focus, prioritizing re-
taining accuracy over unlearning accuracy. This shift ensures that overlapping features
between the forgetting and remaining datasets are preserved, maintaining overall model
utility. Moreover, we incorporate KL-divergence loss alongside cross-entropy to better
capture the distributional discrepancies for effective unlearning.

¢ Experimental Validation on Synthetic and Real-World Data. We validate our theoreti-
cal findings on both synthetic and real-world datasets. Firstly, our experiments demonstrate
that all regularization-based methods significantly improve UA compared to the baseline
FT. Furthermore, we observe that in the fine-tuning process, focusing on preserving accu-
racy on remaining data along with regularization on forgetting data to enhance unlearning
will achieves both good RA and UA. However, placing more emphasis on using the forget-
ting data to improve UA can significantly degrade RA, consistent with our analysis.

1.1 RELATED WORK

Machine Unlearning Methods. |(Cao & Yang| (2015)) first defined “Unlearning” as the removal of
a sample that produces the same output on the dataset as if the sample had never been trained.
The natural way to solve the problem is to retrain a model from scratch in response to each data
deletion request. However, retraining is not feasible due to the limited time and constrained re-
sources. |Ginart et al.| (2019) provided a relaxed definition inspired by Differential Privacy (Dwork
et al.,[2014)), which only requires the unlearned model to produce results similar to those of retrain-
from-scratch models. This led to the development of “approximate unlearning” methods, offering
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more efficient computational designs for machine unlearning. |Guo et al.| (2019); [Izzo et al.| (2021);
Neel et al.| (2021); [Ullah et al.| (2021); |Sekhari et al.[ (2021) provide theoretical error guarantees
by focusing on the empirical risk minimization problem under this probabilistic notion of unlearn-
ing. |Golatkar et al.| (2020a)) proposed an information-based procedure to remove knowledge from
the trained weights, without access to the original training data. Further, Golatkar et al.| (2020b)
approximated the weights inspired by NTK theory, addressing situations where the Hessian is not
informative about where the model will converge into a null space. Mehta et al| (2022)) avoid the
computation of Hessian by introducing a method only computing conditional independence, which
identifies the Markov Blanket of parameters requiring updates. [Thudi et al.| (2022) proposed a regu-
larizer to reduce the ‘verification error,” which represents the distance between the unlearned model
and a retrained-from-scratch model. |Kurmanji et al.| (2024) bears a novel teacher-student formu-
lation to achieve better performance towards unbounded unlearning problems. |Liu et al.| (2024)
considers model sparsity by pruning weights before the unlearning process, thereby introducing a
new unlearning paradigm. |Shen et al.| (2024) incorporates the variational inference and contrastive
learning approaches to address the lack of supervision information (label-agnostic).

Machine Unlearning Theory. For approximate unlearning, Neel et al.|(2021); |[Thudi et al.| (2022)
explored algorithms for empirical risk minimization objectives, while |[Sekhari et al.| (2021)) studied
population risk minimization problems, providing theoretical guarantees on both the effectiveness
of unlearning and the privacy of the data subjects. |Guo et al.| (2019); [Zhang et al.| (2022) provided
the certified radius with respect to data changes before and after removals, as well as the certified
budget for data removals. For exact unlearning, [Ullah et al.|(2021) introduced the notion of algorith-
mic stability, called Total Variation (TV) stability, which is suited for achieving exact unlearning.
This concept was further extended to the federated setting by |Che et al.| (2023); [Tao et al.| (2024).
However, existing theoretical work has primarily focused on utility guarantees, with limited analysis
explaining the successes and failures of fine-tuning methods.

Notations: In this paper, we adhere to a consistent notation style for clarity. We use boldface
lower letters such as x, w for vectors, and boldface capital letters (e.g. A, H) for matrices. Let
[|A ]2 denote the spectral norm of A and ||v||2 denote the Euclidean norm of v. For two vectors u
and v, their inner product is denoted by (u,v) or u'v. For two matrices A and B of appropriate
dimension, their inner product is defined as (A, B) := tr(A " B). For a positive semi-definite (PSD)
matrix A and a vector v of appropriate dimension, we write ||v||3 := v Av. Denote by P,, the
projection onto the space of a matrix X,,, i.e., P,, = X,,, (X X,,,) 71X, .

2 MACHINE UNLEARNING IN LINEAR MODELS

Let D = {(x;,y;)}"_, be a training dataset consisting of n data points, where x; represents the
feature vector, and y; is the response variable for each data point in the dataset D. Assume that
each pair (x;,y;) is a realization of the linear regression model: y = x"w,, with w, € R? being
the optimal model parameter in the overparameterized regime (n < d). Machine Unlearning aims
to remove (or scrub) the influence of specific training data from a trained machine learning (ML)
model. Let Dy = {(x;,4:)}.2, C D represents a subset whose influence we want to scrub, termed
the forgetting dataset. Accordingly, the complement of D¢, termed the remaining dataset, is D, =
{(xi,9i)}i=n,+1 = D\Dy. The forgetting and remaining data can be represented by stacking the
feature vectors and response variables as follows:

Xy = [x1,X2,...,Xp,| € Ry = [y1, v, . .. ,ynf]T e Rt
XT = [an+1;an+2, me ’Xn] € RdX(n_nf)v yT‘ = [ynf+1?ynf+2a T 7y71]T € R(n—’ﬂf)X1
The overall dataset X and y are composed separately by concatenating X, X and y,, y .

Learning Procedure We consider the machine unlearning problem based on the fine-tuning method
dividing the learning process into two distinct phases: Original Training and Fine-tuning (Unlearn-
ing). During the original training phase, we train a model on n data points X € R%*" and obtain an
original model w,, by optimizing L(w,, D), where L(w, D) is defined as the mean-squared-error
(MSE) loss: L(w, D) £ 1| XTw — y/||3. For the fine-tuning (unlearning) phase, we initialize with
the original parameter w,, and proceed to retrain the model specifically on a subset of the remaining
dataset D; C D, by optimizing L(w;, D;), where w; is the unlearn model by fine-tuning.
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Since we work in the overparameterized regime, where n<d, each w can perfectly fit the dataset.
We can express each solution w to the following optimization problem:

Original training: w, = argmin|w|,, sty=X'w (1)
w

Unlearn via fine-tuning:  w; = argmin||w — w, |2, st y, =X,/ w 2)
w

Train from scratch: w, = argmin||wls, st y, =X w 3)
w

Our goal is to evaluate how the fine-tuning solution w; differs from the golden model solution w,
which refers to retraining the model parameters from scratch over the remaining dataset D,.. Existing
work has assessed machine unlearning performance from various perspectives (Graves et al., 2021}
Becker & Liebig| 2022} Golatkar et al.L[2020a; Song et al.|[2019). In this paper, we focus particularly
on the Unlearning Loss (UL) and Remaining Loss (RL), which refers to the model performance on
the forgetting and remaining dataset respectively. These losses are defined as follows:

1 1
RL: L(w D) = X w =yl UL L(w.Dp) = X w =y

3 NAIVE FINE-TUNING METHODS FAIL TO UNLEARN

In empirical studies (Kurmanji et al., [2024; Warnecke et al.l [2021}; |Golatkar et al.| [2020a)) and Ta-
ble (1} it can be observed that fine-tuning may retain the utility of a model but struggles to forget.
In this section, we revisit this phenomenon, aiming to explain why the vanilla fine-tuning method
succeeds in retaining the model’s utility on the remaining dataset but fails to forget the targeted data
it was trained on.

3.1 DISTINCT FEATURES

To simplify our analysis, we first consider distinct features with the following assumption:

Assumption 3.1. The datasets X and X,. possess distinct non-zero features, while w, embodies
the coefficients applicable across all features.

Remark 1. The assumption implies that each of these datasets contains features that are unique
to each dataset—there is no overlap in the features present in X and X,. Therefore, the re-
maining(forgetting) dataset matrix can be denoted as X,! = [RT,0] and XJI = [0,FT], where
R C R¥Xx(=ns) gnd F C R% Xns correspond to the non-zero parts, d, and dy are the distinct
feature numbers for remaining and forgetting data, respectively, and it satisfied that d, + dy = d.
Additionally, it holds that w, = wi + w, where wi and w1, are the optimal solution such that
yf = X}FWI andy” = ij:. In an ideal scenario for classification tasks, each class possesses its
own unique set of features that distinctly differentiates it from other classes. We later extended our
analysis to overlapping features in Section[3.2]

Theorem 3.2. Suppose a model is trained by the procedure 2| and[3| separately. Under the Assump-
tion[3.1) it holds that

* RL: L(Wt, DT) =0,UL: L(Wt7 Df) =0;

. — . _ f
* RL: L(wy,D,) =0, UL: L(wgy, Dy) = ||wi H%Xij?
Here, w, refers to the unlearned model via fine-tuning, w4 refers to the model parameter retrained

Jfrom scratch, RL and UL refer to the remaining loss on the remaining data and the unlearning loss
on the forgetting data.

Theorem [3.2) presents two interesting observations: 1) The fine-tuning model can perform perfectly
on the remaining dataset, which indicates that the information from training data has been pre-
served from the original model, w,, to the unlearned model via fine-tuning, w;. 2) The loss of
the fine-tuning model on the forgetting dataset consistently remains zero, which diverges from the
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performance of the golden model. This suggests that the fine-tuning model is unable to forget the
information it previously acquired from w,, which may be contradicted by catastrophic forgetting
in continual learning (Parisi et al.,2019; Ding et al., 2024)).

To illustrate the behavior of fine-tuning during the unlearning process more clearly, we consider the
projective nature of learning. Firstly, the solution of Equation (2) can be represented as

wy = (I - P)w, + Pywl, “)
where P, is the projection space of X, the I — P, is the corresponding orthogonal space, and the
W, can be also represented w, = Pw, with P being the projection space of X. According to the
property of projection Corollary [B.I] multiplying any data matrix by a projection matrix preserves
the components of the data that lie within the subspace defined by the projection. Moreover, under
the distinct features assumption [3.1] it holds that

w; = Pwl + (P — Py)w/. (5)

Therefore, the unlearned model w; from Equation decomposed into two components for the
unlearning process: the first part, w’, preserves the accuracy on the remaining data, while the

second part, w, also ensures accuracy on the forget data. However, the projection of w! onto the
fine-tuning space P; has no effect, ultimately resulting in the unlearned model w; being exactly
the same as the pretrained model w,,. The proof of Theorem [3.2is provided in Appendix [B.2]

3.2 OVERLAPPING FEATURES

In practical scenarios, training datasets often deviate from ideal classifications, introducing com-
plexities such as overlapping features between subsets. This challenges assumptions of distinct
feature sets across datasets. Therefore, we extend our previous analysis to address the presence of
overlapped features. In the following, we begin by defining overlapped features.

Assumption 3.3. The datasets X ¢ and X, possess d, overlapped features, while w, embodies the
coefficients applicable across all features.

Remark 2. Under Assumption [3.3] the dataset can be structured as follows: X,| = [RT,L{,0]
and XJT = [0,LJ,F '], where R C R%*" and F C R%*"s represent the distinct features

of the remaining and forgetting data, respectively. L; C R%a»*"r and Ly C R%ar*"s denote
the overlapped parts. Similarly to the Assumption d, and d; are the distinct feature numbers
for remaining and forgetting data, respectively, while the equation d, + diqp + df = d holds.

Additionally, the optimal solution can be decomposed into w, = wi + w4 w7’ such that y/ =

X} (w! + wlP) and y" = X (w” + w'™P).
Theorem 3.4. Suppose a model is trained by the procedure2|and[3| separately. Under the Assump-
tion it holds that

* RL: L(w;, D) = 0, UL: L(wy, Dy) = 0;

* RL: L(w,, D,) = 0, UL: L(wy, Dy) = |[P,w" + P,w'™ — (w{ + wl*?)||2,

Theorem [3.4] shows that the previous conclusions remain valid under the assumptions of overlap-
ping features, as the information from all training data, including forget data, is preserved from the
pretrained model, w,, to the unlearned model through fine-tuning, w;. Consequently, the loss on
both the remaining dataset and the forgetting dataset for the fine-tuning model is zero. Additionally,
an interesting observation is that the number of overlapping features does not impact the unlearning
accuracy of the fine-tuning model. The proof of Theorem [3.4]is provided in Appendix

Both Theorem [3.2 and Theorem [3.4] present similar findings regarding the performance of the un-
learned model through fine-tuning. We run a synthetic experiment to validate these results (more
experimental details in Appendix [A). In Section and Figure both distinct and overlapping
feature assumptions demonstrate the same results: 1) The remaining loss of fine-tuning model wy
and golden model w is zero, indicating that the fine-tuning model performs equivalently to the
golden model, successfully retaining the model’s utility on the remaining dataset. 2) The unlearning
loss of the fine-tuning model consistently remains at zero, differing from the golden model, suggest-
ing that the fine-tuning model fails to forget the information obtained from the pretrained model.
These empirical findings align well with our theoretical analysis.
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Figure 1: Machine Unlearning Performance via (Regularized) Fine-tuning with (without) Overlap-
ping Features. Section [3.2] and Figure[TB] present the relationship between machine unlearning loss
(i.e. RA, UA) and the number of fine-tuning data samples under distinct features and overlapping
features assumptions, using naive FT method. In contrast, Figure[Tc]and Figure [Td| show the same
relationship using regularized fine-tuning methods, as discussed in SectionEl

4 ELIMINATING FORGETTING DATA FEATURES FROM PRE-TRAINED MODEL
ENHANCES UNLEARNING

Compared to the golden model w, = P,w, the unlearned model can be viewed as having an
additional second term as
w, =Pwl + (P —P,)w/.

This additional term (P — Pt)wf represents the residual influence of the data intended to be for-
gotten on the unlearned model, contributing to the unlearning accuracy (UA) gap between w; and
the golden model w,. A natural approach to mitigate this gap might involve making the fine-tuning
space converge toward the pretraining space-that is, aligning P, with P,.. However, this strategy
is inefficient and contradictory, as it would lead to the optimal solution for the fine-tuning dataset
becoming identical to that of the entire dataset, undermining the purpose and benefits of fine-tuning.

Inspired by the formulation of the unlearned model:
W = (I — Pt)WO + PtW:

To mitigate the UA gap between the fine-tuning model and the golden model, it becomes evident
that the remaining portion of the pretrained model does not contribute to UA. Specifically, the
components of the pretrained model w, associated with the forgetting data (Wf ) do not enhance
performance on the remaining dataset D,. Therefore, if we can eliminate the forgetting compo-
nent—specifically by removing the wi term from w,—the divergence can be addressed. In the
following, we provide a formal description of this modification. Consider the same learning proce-
dure Equation (T) to obtain the pretrained model w,. Prior to unlearning through fine-tuning, we
modify w, by removing components associated with the forgetting data. Specifically, we construct
a modified model w,, as follows:

1. Distinct Features Scenario. When the features of D, and Dy are distinct, we construct
W, by retaining only the components corresponding to D, and setting the rest to zero.
Formally, we define W, as W, [0 : d,] = w,[0 : d,] or equivalently can be understood as:

o {wo [i], if i € features of D,.,
Woli] = )
0, otherwise.

2. Overlapping Features Scenario. When features overlap across D,. and Dy, we consider
two cases:

. Option A (Retaining Overlapping Features): We retain the overlapping features be-
tween D, and Dy, which can be expressed as W, [0 : d, + djqp] = Wo[0 @ dy + digp)
or equivalently

Woli] = w,li], ifi € features of D,. U overlapping features,
S otherwise.
. Option B (Discarding Overlapping Features): We discard the overlapping features,
which can be expressed as W/, [0 : d.| = w,[0 : d,] or equivalently
s w,[i], ifi € features of D,,
Woli] = :
0, otherwise.
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Theorem 4.1. Let w, be a pretrained model obtained the overall dataset D = D, U Dy;. Before
performing unlearning (fine-tuning), we modify w, to remove the components associated with Dy
as described above. Then, using the modified models W, (W) in the unlearning process, we have:

1. Distinct Features Scenario (Under the Assumption [31]) we have:
RL: L(W;, D,) = 0; UL: L(V, Dy) = ||WIH%XI_X;,
2. Overlapping Features Scenario (Under Assumption[3.3)), we have:

« Option A (Retaining Overlapping Features):
RL: L(W¢, D,) = 0;

UL: L(W, Dy) = |[Pw + Pwi™ — (wi + Wi“p)H%xfx;'
« Option B (Discarding Overlapping Features):
RL: L(w', Dy) = (T~ Pwi |2,y o
UL: L(V‘}t/7 Df) = ||Pw + thiap - (WI + Wiap)HQ,%foX?

According to Theorem [4.1] under the distinct
features assumption, the regularized unlearned
model achieves the same remaining and un-
learning loss as the golden model. Further-
more, when considering overlapping features,
if the overlapped component from the pre-
trained model is retained, the remaining loss
remains zero, as with the golden model, while
the unlearning loss differs only in the projection

—— RL with we

RL with wg
—v— UL with we
—— UL with w,

—+— RL with w;

RL with wg
—— UL with w;
—— UL with wy

o

MU Loss

20
djap

()

30 40

component. This difference can be considered
negligible when applied to w” and w'“? due
to the model assumption. Figure [Ic| and Fig-
ure[Id]verify our theoretical conclusions. How-
ever, if the overlapped component is discarded
from the pretrained model, the remaining loss
is no longer zero, and there is a small change

Figure 2: Comparison of Machine Unlearning
Loss with and without Overlapping Features. Fig-
ure [24] retains overlapping features from the pre-
trained model, showing the matching performance
between regularized w; model and golden model
w; Figure [2b] discards the overlapping features,
showing a decline in retaining accuracy.

to the unlearning loss that can be overlooked.

These findings offer several insights into the design of machine unlearning algorithms: 1) Regular-
ization on the pretrained model can significantly improve unlearning accuracy while preserv-
ing the retaining accuracy. If we can identify the component of the pretrained model related to
the forgetting data, applying regularization to this component can further enhance UA. Our theorem
also explains recent related works, such as|Liu et al.[(2024); [Fan et al.|(2023), which apply a mask
to the pretrained model either randomly or by regularizing the weights associated with the forget-
ting data to provide better unlearn performance. These methods share the same underlying principle
discussed here. 2) When considering overlapping features, retaining them does not substan-
tially affect unlearning accuracy, but discarding them compromises the retaining accuracy.
As shown in Theorem [4.1] the remaining loss can not retain zero unless the remaining data X, can
be fully represented by the fine-tuning space, meaning P; X, = X,.. Additionally, as the number
of overlapping features increases, the impact on both remaining and unlearning loss becomes more
significant. Discarding too many overlapping components can lead to instability in the retaining
accuracy, as the model loses essential information needed to represent D,., which in turn causes the
remaining loss to increase. Figure [I] and Figure [2] validate our theoretical findings. The proof of
Theorem [.]is provided in Appendix

5 REVISITING DISCRIMINATIVE REGULARIZATION

In Sectiond] we show that once the components of the pretrained model related to the forgetting data
are identified and removed, unlearning accuracy can be significantly improved. However, in practice,
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the training dataset and model are often not well-structured (Assumption [3.1] and Assumption [3.3]
may not hold). In such cases, as motivated by Equation (3), we know that the fine-tuning space
may fail to unlearn from the forgetting data, allowing all information from the pretrained model
to be retained. This raises the question: what happens if the fine-tuning space learns incorrect
or faulty information about the forgetting data? A recent study [Fan et al.| (2023) addresses this
issue by introducing a regularized constraint in the fine-tuning unlearning process. This approach
ensures that fine-tuning not only preserves the utility of the model on the remaining data but also
effectively forgets the target data. Specifically, it achieves saliency-based unlearning by minimizing
the following optimization problem:

CE-FT: minECE(w,ﬂ; Xr Y+ alce(wyX,Y) (6)
Wi N’

for unlearning accuracy regularization for retaining accuracy

where the first term is the cross entropy loss function used to measure the model’s accuracy on the
forget dataset, which is intentionally mislabeled (Golatkar et al.[(2020a). This term acts as a penalty,
encouraging the model to reduce its ability to accurately predict the target data, thereby facilitating
the unlearning process. « is a regularization parameter that balances the trade-off between main-
taining accuracy on the retaining data and forgetting the target data. The second term corresponds
to the cross entropy loss function applied to the retaining data.

Notably, the regularization parameter is typically
constrained to the range (0, 1]. However, based
on our previous analysis, we favor the principle
that regularization should prioritize retain-
ing accuracy over unlearning accuracy (since
retaining overlapping features does not signifi-
cantly impact UA, but discarding them compro-
mises RA). Therefore, we will explore the impact
of switching the regularization focus in Equa-
tion (6)), which we refer to as Inverse CE (ICE).

Additionally, it can be observed that Equation (6)
relies exclusively on cross-entropy loss for both
retaining and unlearning accuracy. This approach
emphasizes the discrepancy between the true la-

Cifar-10
UA

Cifar-100
UA
100.00

A-Efficacy
-100.00

TA RA
75.14 99.81

—— Retrain FT —— CE-FT —— ICE-FT —— KL-FT

Figure 3: Performance comparison of fine-tuning
methods on CIFAR-10 and CIFAR-100 datasets us-
ing five metrics: Unlearning Accuracy (UA), MIA-
Efficacy, Retaining Accuracy (RA), Test Accuracy

(TA), and Run Time. Each metric is normalized to

bels and predicted probabilities, focusing on the
correct class while penalizing incorrect predic-
tions. In our paper, we hope to ensure that the

the range [0, 1] based on the best result across all un-
learning methods for ease of visualization, with the
actual best value provided alongside each metric.

fine-tuning process learns an incorrect distribu-
tion for the forgetting dataset. To achieve this and provide a comprehensive discussion, we also
include KL-Divergence as an additional loss function. Specifically, we define the following:

KL-FT: nv1vin Lee(wi; X, YY)+ algu(we; Xp, YY) 7

for retaining accuracy  regularization for unlearning accuracy

6 EXPERIMENT

In this section, we verify our theoretical insights by evaluating the effectiveness of the regularization-
based FT machine unlearning methods through numerical experiments.

6.1 EXPERIMENT SETUPS

Datasets and Models. The baseline method is the naive fine-tuning approach (Golatkar et al.,
2020a}; [Warnecke et al.| 2021)) implemented on ResNet-18 (He et al.,|2016) and we also include the
golden retrained model for comparison. Our experiments will focus on image classification using
the CIFAR-10 (Krizhevsky et al., [2009), CIFAR-100 (Krizhevsky et al.,|2009), and SVHN (Netzer
et al| [2011)) datasets. More details on the experimental setup will be provided in Appendix [Al

!'To maintain consistency in the optimization problem, we do not incorporate the use of a mask in|Fan et al.
(2023)), instead focusing solely on regularization-based FT methods. We will leave it as a future work.
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Evaluation Metrics. We follow the existing work to assess machine unlearning performance from
different aspects (Golatkar et al., |2020a} |Graves et al., [2021; [Thudi et al., 2022; [Liu et al., 2024;
Sharma et al.,|2024; |Zhu et al., [2024])). Specifically, we focus on the following evaluation metrics:

* Unlearning accuracy (UA): We define UA(w;) = 1 — Accp,(w;) as |Liu et al.| (2024),
measuring how effectively the model has forgotten the targeted data. Here Accp,(wy) is
the accuracy of the unlearned model on the forgetting dataset.

» Membership inference attack (MIA) on Dy (MIA-Efficacy): The efficacy of MIA on the
forget dataset, which assesses whether the model still retains any identifiable information
about the forgetting data.

* Retaining accuracy (RA): The accuracy of the model on the remaining dataset D, after
unlearning, measuring how well the model retains its performance from pretrained model.

* Testing accuracy (TA): The accuracy of the model on the independent test dataset, indicat-
ing its generalization ability after unlearning.

* Run-time efficiency (RTE): RTE evaluates the computational efficiency of the unlearning
process, including the run-time cost taken to execute the unlearning procedure.

Note that a smaller performance gap between the unlearned model and the golden retrained model
indicates the better performance of approximate unlearning.

6.2 EXPERIMENT RESULTS

Table 2: Cifar-10, Cifar-100, SVHN Class-wise Forgetting. This table presents the performance of
different unlearning methods, including FT, Sparse-FT, CE-FT, ICE-FT, and KL-FT, across CIFAR-
10, CIFAR-100, and SVHN datasets. Results are reported as mean =+ standard deviation over five
independent trials. A performance gap is computed against the retrain method, showing how each
approach performs relative to the golden retraining method.

Cifar-10 Class-wise Forgetting

Methods UA MIA-Efficacy RA TA Run Time
Retrain 100.00+0.00 100.00+0.00 100.00-+0.00 94.8710.14 77.00
FT 20.8944.12(79.11)  74.32411.00(25.68)  99.7640.12(0.24)  93.73.40.22(1.14) 4.48
CE-FT 100.0040.00(0.00) 100.0040.00(0.00) 75.7645.03(24.24)  68.67+5.11(26.20) 6.49
ICE-FT | 100.00+0.00(0.00)  100.0010.00(0.00)  92.2210.72(7.78)  84.2211.12(10.65) 6.43
KL-FT | 99.1740.20(0.83)  100.0010.00(0.00)  99.0640.51(0.94)  92.5410.¢7(2.33) 5.50

Cifar-100 Class-wise Forgetting

Methods UA MIA -Efficacy RA TA Run Time
Retrain 100.00+0.00 100.00+0.00 99.81+0.06 75.1440.12 81.00
FT 34.44.419.59(65.56)  87.64110.31(12.36)  99.7940.10(0.21)  75.0740.56(0.07) 5.20
CE-FT 99.87+0.13(0.13) 99.9510.05(0.05)  94.7141.01(5.10)  63.64+0.93(11.50) 6.23
ICE-FT 100.00+0.00(0.00) 100.00+0.00(0.00) 96.66+1.28(3.15) 66.6512.08(8.49) 4.31
KL-FT 95.204.31(4.80) 100.00+0.00(0.00) 99.2640.16(0.55) 73.1140.42(2.03) 6.20

SVHN Class-wise Forgetting

Methods UA MIA-Efficacy RA TA Run Time
Retrain 100.00+0.00 100.00+0.00 100.00+0.00 88.20+0.75 72.00
FT 17.4747.29(82.53)  99.95.+0.05(0.05) 100-0.00(0.00) 93.55+0.63(5.35) 5.01
CE-FT 100+0.00(0.00) 100+0.00(0.00) 97.27+2.70(3.73) 79.77+3.51(10.87) 5.48
ICE-FT | 100.0010.00(0.00) _ 100.0040.00(0.00)  99.9910.01(0.01)  85.5640.32(2.65) 1.48
KL-FT 97.2440.90(2.76) 100.00+0.00(0.00) 99.9540.05(0.05) 87.5440.15(0.66) 5.23

Performance Comparison Among Regularization-Based Fine-Tuning Methods. In Table 2| we
explore the impact of different regularization terms on the performance of various FT-based meth-
ods. It is evident that the regularization term consistently enhances the model’s unlearning accuracy.
Specifically, in the CIFAR-10 experiments, all regularization-based methods show a significant im-
provement in UA compared to the baseline FT (20.89%). Both ICE-FT and CE-FT achieve perfect
performance in UA and MIA-Efficacy, showing no gap with the golden model. However, it is also
noticeable that their RA and TA, especially for the CE-FT method, decrease dramatically, indicat-
ing that the improvement in UA comes at the expense of reduced RA and TA. Notably, our KL-FT
method achieves the most comparable RA of 99.06% and TA of 92.54% relative to the baseline
Retrain (100.00% and 94.87%) and FT (99.76% and 93.73%), without the extreme RA decline seen
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Figure 4: This figure shows the impact of varying the regularization parameter o on the accuracy
metrics for KL-FT, CE-FT, and ICE-FT. Figure@illustrates the sensitivity of the KL method across
various evaluation metrics within the range of 0 to 1. Figure shows the impact of different
regularization focuses by comparing the performance of CE-FT and ICE-FT. Figure fic| presents the
RA behavior for all three methods (KL, CE, and ICE-FT).

in other methods. Similarly, in the CIFAR-100 experiments, KL-FT achieves the best RA of 99.26%
and TA of 73.11%, outperforming all other methods, with only a minor decline in UA. These high-
light the effectiveness of KL-FT in balancing unlearning and retaining accuracy. For the SVHN
dataset, the FT method shows even more challenges in forgetting classes, with a UA of 17.47%.
In contrast, all regularization-based methods, including CE-FT, ICE-FT, and KL-FT, achieve per-
fect UA, signifying complete forgetting. ICE-FT stands out with the best TA of 85.56%, closely
followed by KL-FT with a TA of 87.54%.

ICE-FT builds upon the CE-FT by adjusting the focus of regularization. Instead of prioritizing for-
getting during the unlearning process, ICE-FT balances the two, placing more emphasis on RA.
This change allows ICE-FT to achieve perfect unlearning (UA of 100.00%) while maintaining sig-
nificantly higher RA and TA compared to CE-FT across all datasets. These results align with our
previous theoretical analysis, which suggests that focusing on retention does not significantly impact
UA, but shifting the focus away from retention compromises RA.

Sensitivity of regularization parameter .. The regularization parameter « is a crucial hyperpa-
rameter in regularization-based FT method. To demonstrate its effect, we conduct numerical exper-
iments on the CIFAR-10 dataset, showing how the regularization parameter impacts the unlearning
performance of various regularization-based FT methods. We first examine the sensitivity of the KL,
method across various evaluation metrics within the range of (0,1]. As shown in Figure as o
increases, the RA gradually declines from near-perfect performance ( ~ 100% ) down to ~ 94%
at a = 0.8, indicating that stronger regularization negatively affects the retention of information.
Meanwhile, the Test Accuracy follows the same downward trend as the Retaining Accuracy, drop-
ping from ~ 94% to ~ 88%. Additionally, we explore how different regularization focuses impact
unlearning performance. In Figure @b] we observe that the RA of CE-FT decreases gradually with
increasing «, and UA rises slightly before stabilizing, the MIA-Efficacy stays consistently high.
In contrast, the ICE-FT method prioritizes retaining accuracy on the remaining data, resulting in a
higher Retaining Accuracy than CE-FT across all « values. The UA slightly decreases but remains
competitive, while MIA-Efficacy and Test Accuracy follow similar trends to those seen in CE-FT.
This suggests that ICE-FT achieves a better balance between unlearning and accuracy retention than
standard CE-FT, which aligns with our previous analysis. Finally, we illustrate the RA and TA
behavior for all three methods in Figure

7 CONCLUSION

In conclusion, we present the first theoretical analysis of fine-tuning methods for machine unlearning
within a linear regression framework. Our analysis, covering two scenarios—distinct and overlap-
ping feature sets—demonstrates that while fine-tuning can achieve optimal retaining accuracy (RA),
it fails to fully unlearn the forgetting dataset. Our analysis on the failure of naive fine-tuning meth-
ods stems from the pretrained model’s retention of forgetting data, and we propose a theoretical
approach to mitigate this issue. By revisiting and redesigning the discriminative regularization term,
we prioritize retaining accuracy while effectively balancing it with unlearning accuracy. Experimen-
tal results on both synthetic and real-world datasets validate our theoretical insights, demonstrating
that our redesigned regularization approach significantly enhances unlearning performance without
sacrificing retention.

10
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A EXPERIMENTAL DETAILS

A.1 VERIFICATION VIA SIMULATION

To empirically validate the theoretical findings presented in Theorem [3.2] Theorem [3.4] and Theo-
rem [4.1] regarding the performance of unlearned models through fine-tuning, we first conducted a
series of synthetic experiments.

Data Generation. We constructed two data matrices, X, and X, representing the remaining data
and the forgetting data, respectively. The remaining data matrix, X,|, was structured as [R.", L{ , 0],
and the forgetting data matrix, X{, as [0,Lj ,F'], where L = L, = 0 to enforce the non-

overlapping case. Here, R and FT are random matrices corresponding to different feature sets,
and the zeros represent the distinct features across the datasets. We set the total number of data
points to n = 40 and the total number of features to d = 40. The remaining data consisted of
n, = 30 samples with d, = 20 features, while the forgetting data comprised ny = 10 samples
with dy = d — d, = 20 features. To simulate a controlled environment, we fixed the number of
overlapping features to d;q, = 0 and djqp, = 8 for non-overlapping case and overlapping case,
respectively.

Label Generation. We generated the true coefficient vector w, € R? by sampling from a stan-
dard normal distribution. The labels were created using a linear regression model without added
noise:y = X "w,. The labels were partitioned into y, and y t, corresponding to the remaining and
forgetting data, respectively.

Model Training. To compare the effects of fine-tuning, we considered two models: the fine-tuning
model w; and the golden model w,. Specifically, w; was obtained by fine-tuning on a subset of
the remaining data, denoted as X;, which consisted of the first n; data points from X,.. The value
of n; varied from 1 to n,, — 1 to study the impact of the fine-tuning data size. The initial model
w, was derived from the entire dataset X and calculated by the Equation . w, was trained from
scratch on the entire remaining data X, and computed by solving Equation (2). If considering the
regularization case in synthetic data, the regularized pretrained model will be constructed by zeroing
out the coefficients corresponding to the forgetting data features with (without) overlapping features.

Evaluation Metrics. The performance of the models was assessed using the Mean Squared Error
(MSE) on both the remaining and forgetting data:

* Remaining Data Loss (RA Loss):MSEga (w) = L [ X, w — y,||?
¢ Unlearning Data Loss (UA Loss):MSEya (w) = nif 1Xsw —ysl?

Experimental Results Figure [Ic| and Figure [Id] illustrate that the regularized fine-tuning method
discussed in Section[d]can significantly improve unlearning accuracy while preserving the retaining
accuracy. Specifically, both the remaining loss and unlearning loss of w; perfectly match those
of the golden model under both distinct and overlapping feature scenarios. Additionally, Figure 2]
present comparisons of machine unlearning loss for different approaches to handling overlapping
features: Figure [2a]retains overlapping features from the pretrained model, demonstrating matching
performance between the regularized w; model and golden model w; whereas Figure @] discards
the overlapping features, resulting in a decline in retaining accuracy. These empirical results align
well with our theoretical findings.

A.2 ADDITIONAL REAL-WORLD EXPERIMENTS

Unlearning Setup The unlearning setup centers on the FT-based procedure. During training, the
model is updated using the remaining dataset, while Kullback—Leibler divergence/Cross-entropy
loss regularization is applied to the forget dataset to enforce unlearning. The corresponding regu-
larization modifies the model’s predictions by encouraging it to generate incorrect outputs for the
forgetting data. Specifically, KL divergence is computed between the model’s output and shifted in-
correct labels, ensuring the model no longer retains knowledge of the forgetting data. Additionally,
cross-entropy loss between the model’s output and the incorrect labels further supports the unlearn-
ing process. Throughout training, the optimizer updates the model based on the combined loss. Our
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experiments focus on class-wise forgetting, and we run the process 5 times, reporting the mean and
standard deviation of the performances.

We summarize the datasets and model configurations in Tab.[3]

Table 3: Dataset and model setups.

Dataset ‘ CIFAR-10 ‘ SVHN ‘ CIFAR-100
Settings | ResNet-18 | ResNet-18 | ResNet-18
Batch Size | 256 \ 256 \ 256

Table 4: Comparison of CE and ICE results across various « values on Cifar-10 dataset.

CE-FT ICE-FT
UA MIA RA Test UA MIA RA Test

0.1 | 100.00 100.00 68.48 61.11 | 100.00 100.00 91.66 83.67
0.2 | 100.00 100.00 70.7 65.41 | 100.00 100.00 87.97 80.27
0.3 | 100.00 100.00 75.67 67.81 | 100.00 100.00 85.24 77.92
0.4 | 100.00 100.00 7773 69.91 | 100.00 100.00 87.79 80.02
0.5 | 100.00 100.00 79.6 71.73 | 100.00 100.00 84.31 76.89
0.6 | 100.00 100.00 80.97 73.06 | 100.00 100.00 80.18 72.56
0.7 | 100.00 100.00 81.49 73.71 | 100.00 100.00 82.03 74.33
0.8 | 100.00 100.00 81.23 73.94 | 100.00 100.00 81.97 74.98
0.9 | 100.00 100.00 78.89 71.2 | 100.00 100.00 82.51 74.92
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Figure 5: Visualization of Remaining Data and Forgetting Data Features Across Various Dataset.
Figures focus on classes 3, 6, and 9 in CIFAR-10 and Figures [5d}{5f] focus on classes 30, 60,
and 90 in CIFAR-100.

Visualization of Remaining Data and Forgetting Data Features. The visualization in Figure [3]
uses t-SNE to project feature representations of the forgetting and remaining data in CIFAR-10 and
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Figure 6: Performance comparison of fine-tuning methods on the SVHN dataset using five metrics.

CIFAR-100 datasets. The red points correspond to forgetting data, and the blue points represent
remaining data. This visualization aims to demonstrate that, in class-wise datasets, the unlearning
task for a specific class may involve distinct features. In such cases, naive fine-tuning (FT) methods
tend to contribute less towards forgetting the class and focus more on retaining features from the
pretrained model.

B PROOFS

B.1 USEFUL PROPERTIES

Before presenting the detailed proofs of the theorems, we first introduce several useful properties of
the projection matrix and the minimum norm solution.

Property 1 (Projection properties). Let P be a projection operator that projects onto a subspace
X C R4*™_ Then, P holds the following properties:

1. Symmetric: P =P T;
2. Idempotent: P2 = P;

3. I-P is also a projection operator, projecting onto the subspace orthogonal to X. Therefore,
I-P)P=0;

4. Let v € R? be an arbitrary vector, it holds that [[(I - P)v|? = v (I -P)?’v = v (I -
P)v = |lv|? - [[Pv]*

5. Contraction: ||Pv|| < ||v], holding in equality if and only if Pv = v.

Proof. See (Zarantonello| |1971) for the proofs and for more properties. O

Corollary B.1 (Projection Matrix properties). Let P = X(X'X)" !XT P,, P, P, be the cor-
responding projection operator for X, X,, Xy, X; respectively. Under Assumption @ the re-

maining(forgetting) dataset matrix can be denoted as X, = | OR ] and Xy = | OF |, where

R C R&*(n=11) gnd F C R4 *"s correspond to the non-zero parts. Then, it holds that:

o R(RTR)71RT 0 - )
1. P= |: 0 F(FTF),lFT *Pr‘i’Pf)
_[RR'R)'RT 0 To 0 '
2. PT = |: 0 0 ande = 0 F(FTF)_lFT B
3. X(I-P) = (I-P)X =0, and the conclusion also holds for P, P ¢, P, with X, X, X

respectively;
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4. For any matrix A that is a submatrix of X, it holds that A = PA, where P is the projection
space of X. Moreover, if P 4 is the projection space of A, it holds that PP 4 = P4, i.e.
X, P=X, X;P =Xy X, P;=X;P, =0.

Proof of Corollary Firstly, based on the data composition, the overall dataset holds X =

[ 1; g |. Therefore, it follows:

Pox(x™x) X (B O RT O R 0RO
R O (RTR)71 0 RT 0
=g gl 0 (FTF)~! I 0 FT I

The remaining Projection matrices can be obtained by similar computations.
Additionally, we have X(I - P) = (I - P)X = X(I - X(XTX)"'XT) = 0.

Moreover, since A is a submatrix of X, it can be represented as A = XC for some selective matrix
C. Therefore, we have:

PA=X(X'X) ' X'XC=XC=A.
Meanwhile, it also holds that
PP, =X(X'X)"'X"XC(C'X'XC)"'C'X"T =XC(C'X'XC)"'C'X' " =Py,.

X, and Xy are submatrices of X, each with disjoint spaces. The projection of X,. onto the space of
X should be zero.

X, Py =X,X;(X;Xy)'X} =0.
O

Corollary B.2 (Minimum Norm Solution 1). Let P, P,., P ¢, P be the corresponding projection op-
erator for X, X, X, X respectively. Then, the solution to the optimization problem Equation (EI)
Equation (2) and Equation (3)) can be represented by:

1. Under Assumption w, =Pw,, w, = (I-Pyw, +P,w, and w, = P, w;

2. Under Assumption w, = Pw,, w; = (I - Py)w, + Py(w] + Wiap), and wg =
PT(W: + Wfkap);

3. X:wf = 0and X}rw: =0.

Proof of Corollary[B.2} According to the method of Lagrange multipliers and the problem setup,
it is easy to obtain the first two conclusions. For the last one, we have:

X wl =[R",0lw/ =0 and X}FW: =[0,F Jw" =0.

B.2 PROOF OF THEOREM[3.2]

Let us first focus on the performance of the golden model. Based on the definition of unlearning
accuracy and retaining accuracy, we have

1 1 1
RL:  L(w, Dy) = — X[ w,y =y > = —— X P,wl = X[ Wi = —||X] (P~ D)wi|]* = 0,

where the second equality arises from the model setting and Proposition while the penultimate
equality is due to the properties of the projection matrix. According to Corollary we have

1 1 . .
UL Ly, Dy) = X wy =l = X P = X w2

2

1 H[O’FT] [ R(R'R)"'R"T 0

0 0 :|W:—X}—W£

LT
= —[XFwl].
ng
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Similarly, for the fine-tuning model, it holds that

1 1
RL:  L(wi, Dy) = ;IIX:Wt R n*HXI((I ~Pw, + Pow]) - X[ wl|?

1
= — X (A= P)P(W] + w]) + Pyw]) — X[ wl|?
n;

1
= X (Pl + (P~ Pw!) - X wi?

=0.

1 1
UL:  L(wy, Dy) = n*f”X}Wt ~ysl*= n*fHX;((I —Pyw, +Pw!) - Xjwl|?

1
= TTHX}[(I ~P)Pw. +P,w] — wl]|?
f
1
= n*fHX}[(I ~P)P +PJw] + X[ [(I-P,)P — Iw/]|?

1
= —||X;Pw’ + X Pw! — X]w/]|?
I W TRy W Ry W

207

where the penultimate equality comes from X—frPt = X}FPT = 0, and the last equality follows from

Tp — X 1T
XJP=X].

B.3 PROOF OF THEOREM [3.4]

Due to the assumption of overlapping features, the projection properties of the dataset matrix will
be slightly different. Specifically, it holds that:

Corollary B.3 (Projection Matrix properties’). Let P = X(XTX)"'XT P, P ¢, Py be the cor-
responding projection operator for X, X, X, Xy respectively. Under Assumption it holds

that:

[ RR'R+L/L)"'RT R(R'R+L/L)'L{ 0

Li(R'TR+L{L)'RT Li(RTR+LJL,)"'L] 0 |:
0 0 0

0 0 0
0 LQ(FTF*I‘LérLQ)ilLér LQ(FTF+L2TL2)71FT K
0 FF'F+LJLy) 'Ly F(F'F+LjLy) 'FT

3. X(I-P) = (I-P)X =0, and the conclusion also holds for P,., P ¢, P, with X, X, X
respectively;

4. For any matrix A is the submatrix of X, it holds that A = PA, where P is the projection
space of X. Moreover, if P 4 is the projection space of A, it holds that PP 4 = P 4.

Proof of Corollary B.3} Proof of Corollary [B.3|follows the proof of Corollary [B.T|directly. O

Now we are ready to go through the proof of Theorem[3.4] Similar to the non-overlapping case, the
golden model holds that

1 1 ' a ' a
RL: L(W97Dr) = TTHXTTWQ - yr||2 = TTHXTTPT(W* +Wi P) — XrT(W* + Wi p)||2

1
= X (P~ (W] + W) P =0,

17
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where the second equality also arises from the model setting and Proposition [B.2] while the penul-
timate equality is due to the properties of the projection matrix. According to Corollary we
have

1 1 T ap a
UL: L(wy, Dy) = n*fHX;Wg —yill? = n*fHX;Pr(W* + W) = X (wl + wiP)|?

where X}'—PTW: and X}—Prwiap follows that

RR'R+L/L;)'"RT RR'R+L/L;) 'L 0 O
X;Pw.=[0L,, F']| Li(RTR+L{L)'RT L (R"TR+L/L)'L{ 0 0
0 0 0 0
=LiLi(R'TR+L/L))'R™w"
and
R(R'R+L{L)'RT RR'R+L/L;)"'L] 0 0
XiPwi”=[0,L;,F'] | Li(RTR+L{L)"'RT Li(RTR+L/L;)'L{ 0 %1
0 0 0

=LiLi(RTR+L{ L) 'L wlo,

For the fine-tuning, the retaining accuracy follows:

1
RL:  L(wy, D;) n*”XrTWt*YrH2
1
= ,T”XI((I —Pyw, + Py(wl + wl'P)) — X[ (w] + wleP)||?

1
= X (= P (w, — W — wlor)

1
= LI @R D+ w2

=0.

The last equality derives from that the facts the projection matrix is commutative matrix and the last
property holds in Corollary [B.3] For the unlearning accuracy, it holds that

1
UL: L(w, Dy) = n—fIIX]th —ysl?

1
= EIIXI((I = Py)w, + Py(w) +wi?)) = X[ (w] + wi)|”

1
7TJCIIX}((I —P)(P(wW] + Wi + wl)) + Py(w] +wiP)) = X[ (w] +wi?)|?

1
— X (P = Py (Wi + W+ wi)) + Py(wl + wiP)) = Xf (wl 4+ we) |
!

1
— X7 (P —Dwi” + Pw] + (P — I - Py)w!]|?
nr

1
n X} Pew!][f?

:0’

18
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where the penultimate equality is due to Corollary and the last equality comes from the fact X,
enjoys the same data structure as X; such that:

X;Pw
Rr(R7Rr +LiyLip) 'R.  Rp(RLRr+LipLip) 'Lip 0

=[0,L; ,F'] Lir(R{Rr + Li7Lip) 'R Lip(RJRy + LigLip) 'Lij 0
0 0

0
0
0 U

Jo o

= [Ly Lip (R} Ry + Li7Li7) 'R, L Lip(RF Ry + L1 Lig) 'Ly, 0]

=0.

B.4 PROOF OF THEOREM [4.]]

For the non-overlapping case, we have that the retaining accuracy follows:

1 1 - r r
RL: - L(wi, Dy) = — [ X we = yol|* = — X (T = Py)Wo + Pwl) = X w1
1 ~ T
= — X (I = Py)(w, - w)|”

1
= — X, (I-Py)(P - Dwi|* =0.
Ny
For the unlearning accuracy, it holds that

UL:  L(w;, Dy) = n1f||X}Wt ~ysl?= nlf“X;((I ~ PoWo + Powl) — Xjwl|]?
- nlfHXJT[(I —Py)Pw + Pyw] — wl]|
- nlf||x}[(1 ~P)P + Pw — XJwi]|?
_ n1f||X}Pw: - X wi]|

1
112
= I

For the overlapping case, it holds that

RL: L(wy,D,)

1

n—||Xrth *YrH2
1 .

= ,THX:((I — Py)W, + Py(wl + wl'P)) — X[ (w] + wloP)||?
1 ey r a

= anX:(I —Py) (W, — wi — wlo)||2

1
= X (1= P (P - T)(wE — wieP) [ = 0.
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UL: L(wy, Dy) = nlf||X)th —ysl?
- nlfHX?(a — P)W, + Py(wl + W) — X (w] + wlor)2
- nIfIIXR(I —P)(P(w] + wWi)) + Py(w] + wiP)) — X[ (wl + wi)||”
- nlfHXI«P = P)(W + wi)) + Py(wh + wiP)) — X[ (w] 4 wlr) |2
= nlf||X]T[(P —Dwi” + Pw] — wl]|?
= P ) = (o] )

The proof is then complete.
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