
Back Attention: Understanding and Enhancing
Multi-Hop Reasoning in Large Language Models

Anonymous ACL submission

Abstract
We investigate how large language models001
(LLMs) perform latent multi-hop reasoning in002
prompts like “Wolfgang Amadeus Mozart’s003
mother’s spouse is”. To analyze this pro-004
cess, we introduce logit flow, an interpretability005
method that traces how logits propagate across006
layers and positions toward the final predic-007
tion. Using logit flow, we identify four distinct008
stages in single-hop knowledge prediction: (A)009
entity subject enrichment, (B) entity attribute010
extraction, (C) relation subject enrichment, and011
(D) relation attribute extraction. Extending this012
analysis to multi-hop reasoning, we find that013
failures often stem from the relation attribute014
extraction stage, where conflicting logits re-015
duce prediction accuracy. To address this, we016
propose back attention, a novel mechanism that017
enables lower layers to leverage higher-layer018
hidden states from different positions during019
attention computation. With back attention, a020
1-layer transformer achieves the performance021
of a 2-layer transformer. Applied to five LLMs,022
back attention improves accuracy on five rea-023
soning datasets, demonstrating its effectiveness024
in enhancing latent multi-hop reasoning ability.025

1 Introduction026

Enhancing the multi-hop reasoning capabilities of027

large language models (LLMs) has become a cen-028

tral research focus in recent studies (OpenAI, 2024;029

Qi et al., 2024; Snell et al., 2024; Luo et al., 2024).030

A widely used approach, chain-of-thought (COT)031

reasoning (Wei et al., 2022), improves accuracy032

by explicitly articulating intermediate reasoning033

steps. Many studies have expanded on this idea034

by generating explicit reasoning chains to further035

enhance performance (Zhou et al., 2022; Creswell036

et al., 2022; Shum et al., 2023; Yao et al., 2024).037

However, these methods often require substantial038

computational resources due to multiple inference039

steps or extensive sampling, leading to high costs040

and deployment challenges, particularly in large-041

scale or resource-constrained scenarios.042

Therefore, enhancing the ability of latent multi- 043

hop reasoning is crucial for reducing the cost. For 044

example, predicting “Wolfgang Amadeus Mozart’s 045

mother’s spouse is” -> “Leopold” demonstrates a 046

model’s ability to internally retrieve and integrate 047

relevant knowledge. Recent studies have investi- 048

gated the mechanisms underlying latent multi-hop 049

reasoning. Given two hops <e1, r1, e2> and <e2, r2, 050

e3>, where “e” represents an “entity” and “r” a “re- 051

lation”, Yang et al. (2024) observe that LLMs can 052

sometimes successfully predict queries like “The 053

r2 of the r1 of e1 is” -> “e3” by latently identify- 054

ing the bridge entity “e2”. However, Biran et al. 055

(2024) find that the accuracy of latent multi-hop 056

reasoning remains low, even when both individual 057

hops are correct. They hypothesize that the low 058

accuracy arises because factual knowledge is pri- 059

marily stored in the early layers. If the first hop is 060

resolved too late, the later layers may fail to encode 061

the knowledge for subsequent reasoning steps. 062

Although latent multi-hop reasoning has been 063

explored, its underlying mechanism remains un- 064

clear. First, previous studies primarily focus on 065

the format “The r2 of the r1 of e1 is”. In this for- 066

mat, the e1 position and the last position inherently 067

obtain the information of r1 and r2, making it un- 068

surprising that information flows between them. A 069

more complex format, “e1’s r1’s r2 is”, introduces 070

additional challenges. Due to the autoregressive 071

nature of decoder-only LLMs, earlier positions can- 072

not access later tokens, hindering relational knowl- 073

edge propagation and leading to lower accuracy 074

than “The r2 of the r1 of e1 is” prompts. Sec- 075

ond, several studies have shown that the higher 076

attention and feed-forward network (FFN) layers 077

also store knowledge (Geva et al., 2023; Yu and 078

Ananiadou, 2024b), challenging the prevailing hy- 079

pothesis about multi-hop reasoning mechanisms. 080

Last, how to leverage interpretability insights to 081

enhance reasoning remains uncertain. Previous 082

studies (Sakarvadia et al., 2023; Li et al., 2024a) 083

1

FFN neurons (activating attn neurons)

attn neurons (storing final logits)

FFN neurons (storing final logits)
Maria

Mozart ’s mother is

(C) (C)

(D) (D)

Relation
subject
enrichment

Relation
attribute
extraction

(B) Entity
attribute
extraction

(A)Entity
subject
enrichment

(D)

Figure 1: Four stages in single-hop knowledge predic-
tion. At entity position: (A) entity subject enrichment by
FFN neurons; (B) entity attribute extraction by attention
neurons. At relation and last positions: (C) relation sub-
ject enrichments by FFN neurons; (D) relation attribute
extraction by attention neurons and FFN neurons.

rely on model editing methods, which may cause084

potential risks (Gu et al., 2024; Gupta et al., 2024).085

In this study, we focus on addressing these086

challenges. First, we propose an innovative in-087

terpretability analysis method named “logit flow”,088

which analyzes how logits propagate across differ-089

ent layers and positions toward the final prediction090

on neuron-level. We use logit flow and activation091

patching (Wang et al., 2022a) to analyze the mech-092

anism of single-hop knowledge prediction. We ex-093

amine prompts such as “e1’s r1 is” -> “e2”, where094

e1 represents an entity (e.g. Mozart), r1 represents095

a relation (e.g. mother), and e2 is the correct an-096

swer (e.g. Maria), which is also an entity. We find097

four main stages, as shown in Figure 1: (A) entity098

subject enrichment by FFN neurons at e1 position,099

(B) entity attribute extraction by attention neurons100

at e1 position, (C) relation subject enrichment by101

FFN neurons at r1 and last positions, and (D) rela-102

tion attribute extraction by attention neurons and103

FFN neurons at r1 and last positions. The first two104

stages align with Geva et al. (2023), where entity-105

related features are enriched and extracted (“e1” ->106

“e1 features”). Our analysis further reveals that the107

last two stages integrate these enriched entity fea-108

tures with the relation, facilitating the prediction of109

the final token (“e1 features & r1” -> “e2”).110

Next, we use logit flow and activation patching111

to analyze correct cases and false cases in two-hop112

reasoning queries like “e1’s r1’s r2 is”, where the113

correct answer is “e3” and the false answer is “e2”. 114

In false cases, the relation attribute extraction stage 115

strongly captures r1 position’s high layer informa- 116

tion. Since this attribution occurs at a later stage 117

than when the model encodes “e2” -> “e2 features” 118

and “e2 features & r2” -> “e3”, it reinforces e2 119

more than e3, ultimately reducing two-hop reason- 120

ing accuracy. Based on the interpretability findings, 121

we propose an innovative method named “back at- 122

tention” to enhance the multi-hop ability, which 123

allows lower layers to capture higher hidden states. 124

When trained from scratch on arithmetic tasks, a 1- 125

layer transformer with back attention achieves the 126

accuracy of a 2-layer transformer. When applied to 127

five LLMs, back attention boosts accuracy across 128

five reasoning datasets, highlighting its effective- 129

ness in improving multi-hop reasoning ability. 130

Overall, our contributions are as follow: 131

a) We introduce logit flow, an innovative inter- 132

pretability method that traces how logits propagate 133

across layers and positions. We demonstrate its 134

effectiveness in both single-hop and multi-hop rea- 135

soning. Specifically, for single-hop knowledge pre- 136

diction, we identify four key stages: entity subject 137

enrichment, entity attribute extraction, relation sub- 138

ject enrichment, and relation attribute extraction. 139

b) We apply logit flow to analyze both correct 140

and incorrect multi-hop reasoning cases. Our find- 141

ings reveal that failures often stem from the relation 142

attribute extraction stage, where conflicting logits 143

disrupt accurate predictions. 144

c) We propose back attention, a novel technique 145

that enhances feature capture in lower layers by 146

integrating higher-level information. This method 147

is effective both for training from scratch and for 148

adapting pretrained LLMs. 149

2 Experimental Settings 150

In Section 3 and 4, we use the TwoHop reasoning 151

dataset (Biran et al., 2024). Each data instance con- 152

tains two hops like <e1, r1, e2> and <e2, r2, e3>, 153

where e1, e2, e3 are entities and r1, r2 are relations. 154

For instance, <Wolfgang Amadeus Mozart, mother, 155

Maria Anna Mozart> and <Maria Anna Mozart, 156

spouse, Leopold Mozart> represent two such hops. 157

We formulate prompts for first-hop, second-hop, 158

and two-hop queries as “e1’s r1 is”, “e2’s r2 is”, 159

and “e1’s r1’s r2 is”, respectively. Following Biran 160

et al. (2024), we remove shortcut cases (Ju et al., 161

2024) and retain the instances where both the first- 162

hop and two-hop predictions are correct. Then we 163

2

exclude 〈e1, e2, e3〉 triplets appearing fewer than164

30 times, ensuring that the model has sufficient165

exposure to the retained knowledge types. To pre-166

vent excessive data duplication, we limit the num-167

ber of cases where the correct answer e3 appears168

more than five times. In Section 3, we analyze 889169

cases where the first-hop, second-hop, and two-hop170

queries are all answered correctly. In Section 4,171

we focus on 568 cases where e1, e2, and e3 are172

all human entities. This set includes both correct173

and incorrect two-hop reasoning cases, enabling a174

broader evaluation of multi-hop reasoning by com-175

paring successful and failed cases.176

3 Mechanism of Single-Hop Prediction177

In Section 3.1, we introduce the background. In178

Section 3.2, we introduce the proposed inter-179

pretability method “logit flow”. In Section 3.3,180

we utilize logit flow method and identify the four181

stages in single-hop knowledge prediction.182

3.1 Background183

Residual Stream. To better understand how logit184

flow captures information propagation in decoder-185

only LLMs, we first introduce the residual stream186

(Elhage et al., 2021). Given an input sentence187

X = [t1, t2, ..., tT] with T tokens, the model pro-188

cesses it through residual connections, ultimately189

producing the probability distribution y over B to-190

kens in vocabulary V for the next token prediction.191

Each token ti at position i is transformed into a192

word embedding h0i ∈ Rd by the embedding ma-193

trix E ∈ RB×d. Next, the word embeddings are194

taken as the 0th layer input and transformed by195

L+ 1 transformer layers (0th− Lth). The output196

of layer l is the sum of the layer input, the attention197

layer output Al
i and the FFN layer output F l

i :198

hli = hl−1
i +Al

i + F l
i (1)199

The probability distribution y is computed by mul-200

tiplying hLT (the final layer L output at the last posi-201

tion T) and the unembedding matrix Eu ∈ RB×d.202

y = softmax(Eu h
L
T) (2)203

The attention layer output Al
i can be regarded as204

the sum of vectors on different heads and positions:205

Al
i =

H∑
j=1

T∑
p=1

αl
i,j,pW

o
j,l(W

v
j,lh

l−1
p) (3)206

207
αl
i,j,p = softmax(W q

j,lh
l−1
i ·W k

j,lh
l−1
p) (4)208

where H is the head number and α is the attention 209

score. W q, W k, W v, W o are the query, key, value 210

and output matrices in each attention head. 211

FFN and attention neurons. Based on the com- 212

putation of FFN output (Eq.5), Geva et al. (2020) 213

find that the FFN output is a weighted sum of neu- 214

rons, where each neuron’s contribution is deter- 215

mined by its learned weights and input interactions: 216

F l
i = W l

fc2σ(W
l
fc1(h

l−1
i +Al

i)) (5) 217

218

F l
i =

N∑
k=1

ml
i,kfc2

l
k (6) 219

220
ml

i,k = σ(fc1lk · (hl−1
i +Al

i)) (7) 221

Here, fc2lk is the kth column of the second MLP 222

W l
fc2 ∈ Rd×N . Its coefficient score m is com- 223

puted by the inner product between the residual 224

output and fc1lk (the kth row of the first MLP 225

W l
fc1 ∈ RN×d). Similarly, in attention mecha- 226

nisms, neuron activations are influenced by key- 227

value transformations (Yu and Ananiadou, 2024b). 228

These activations shape how information is stored 229

and propagated through layers, ultimately influenc- 230

ing the model’s predictions: 231

Al
i =

H∑
j=1

T∑
p=1

d/H∑
e=1

αl
i,j,pβ

l
j,p,ewo

l
j,e (8) 232

233
βl
j,p,e = wvlj,e · hl−1

p (9) 234

Here, wolj,e is the eth column of W o
j,l, whose coef- 235

ficient score αβ is computed by the inner product 236

between the layer input hl−1
p and wvlj,e (the eth 237

row of W v
j,l), combined with the attention score α. 238

In this study, we define: 1) A subvalue as the 239

column of the second MLP (fc2 in FFN and wo 240

in the attention head). 2) A subkey as the row of 241

the first MLP (fc1 in FFN and wv in the attention 242

head). 3) A neuron as the product of the coefficient 243

score and the subvalue (Eq. 6 and Eq. 8). 244

3.2 Logit Flow: Tracing the Logits on 245

Different Layers and Positions 246

Identifying important neurons in deep layers. 247

Many studies (Dar et al., 2022; Geva et al., 2022; 248

Wang et al., 2022a; Katz and Belinkov, 2023; Yu 249

and Ananiadou, 2024b; Nikankin et al., 2024) find 250

that the layer-level and neuron-level vectors in deep 251

layers store logits related to final predictions. When 252

we say a vector stores logits about s, we mean that 253

3

multiplying this vector with the unembedding ma-254

trix results in a high log probability for s, where the255

probability of a vector is obtained by multiplying256

this vector with the unembedding matrix (replacing257

hLT with this vector in Eq.2) (Nostalgebraist, 2020).258

The final vector hLT stores large logits about the259

prediction s. The logit increase, log(p(s|hLT)) −260

log(p(s|h0T)), can be decomposed into contribu-261

tions from L×N FFN neurons and L×H × T ×262

d/H attention neurons. To identify the neurons in263

deep layers, we use the log probability increase (Yu264

and Ananiadou, 2024b) as importance score:265

Imp(vl) = log(p(s|vl + hl−1))− log(p(s|hl−1))
(10)266

If the importance score Imp(vl) of a neuron vl267

is large, it indicates that adding this neuron on268

its layer input hl−1 significantly enhances the log269

probability of the final prediction s.270

Identifying important neurons in shallow lay-271

ers. Although shallow neurons typically do not272

store logits directly related to the final prediction,273

they can contribute by amplifying the coefficient274

scores of deeper neurons. For instance, in Eq.9, β275

is computed by the inner product between the atten-276

tion subkey wv and the layer input hl−1, where the277

layer input is the sum of the neurons from previous278

layers in the residual stream at this position.279

To analyze this effect, we compute the inner280

product between the subkey of the 300 most impor-281

tant attention neurons and each preceding FFN neu-282

ron, weighting the result by the importance score283

of the attention neuron. This approach allows us to284

identify the most influential shallow FFN neurons.285

If a shallow FFN neuron has a high summed inner286

product score, it indicates that this neuron acti-287

vates multiple important attention neurons, thereby288

indirectly increasing the logits of the final predic-289

tion. Unlike previous studies (Yu and Ananiadou,290

2024b), we retain the inner product of each FFN291

neuron at every position, rather than summing the292

scores across all positions. This method enables293

us to analyze which specific positions and layers294

contribute the most to activating attention neurons.295

Logit flow: an interpretability method for ana-296

lyzing the logits in different positions and layers.297

After identifying the deep FFN and attention neu-298

rons that store the final logits, we compute and299

visualize the sum of their importance scores across300

different layers and positions. A large score in a301

specific layer or position indicates that it stores cru-302

cial information related to the final prediction. Ad- 303

ditionally, we compute and illustrate the weighted 304

sum of inner products of FFN neurons at each layer 305

and position, revealing which layers and positions 306

play a significant role in activating important at- 307

tention neurons. This approach allows us to dis- 308

tinguish the layers and positions that contribute to 309

predictions both directly and indirectly. 310

3.3 Four Stages in Single-Hop Prediction 311

We utilize logit flow to analyze 889 first-hop 312

queries (“e1’s r1 is” -> “e2”). We compute the 313

average scores across all cases using LLama2-7B 314

(Touvron et al., 2023b). If an entity or relation con- 315

sists of multiple BPE tokens, we sum the scores 316

of these tokens across their respective positions in 317

each layer. The average scores on each layer and 318

position are illustrated in Figure 2. In this and all 319

subsequent logit flow visualizations, the horizontal 320

axis represents the layers, while the vertical axis 321

represents the positions. Darker colors indicate 322

higher logits at a specific position and layer. 323

(B) Entity attribute extraction

(D)

(D)
Relation attribute
extraction

(A) Entity subject enrichment

(C)

(C)
Relation subject
enrichment

(D)
Relation attribute
extraction

Logits of attention neurons

Logits of FFN neurons

Inner products of FFN neurons

Figure 2: Results of logit flow: “e1’s r1 is” -> “e2”

The attention neurons storing logits are dis- 324

tributed across the e1, r1, and last positions, with 325

the layers at e1 being lower than those at r1 and the 326

last position. Similarly, FFN neurons with large in- 327

ner products are also concentrated at e1, r1, and the 328

last positions, but they generally appear just before 329

the average layers of the attention neurons. The 330

stages at entity position align with the layer-level 331

4

conclusions in Geva et al. (2023), where FFN fea-332

tures are activated by the entity’s word embeddings333

and subsequently processed by attention layers.334

Additionally, we find that subject enrichment335

and attribute extraction occur not only at entity po-336

sition but also at relation and last positions. Due337

to the autoregressive nature of decoder-only LLMs,338

the mechanisms at the entity position and r1/last po-339

sitions differ. At entity position, lower-layer FFN340

and attention neurons encode knowledge about “e1341

-> e1 features”. In contrast, at the relation and last342

positions, deeper FFN and attention neurons store343

knowledge of “e1 features & r1 -> e2”. For exam-344

ple, consider “Mozart’s mother is -> Maria” and345

“Mozart’s father is -> Leopold”. The hidden states346

at the position of “Mozart’s” are identical in both347

cases, meaning these positions cannot directly de-348

termine whether the final prediction is “Maria” or349

“Leopold”. Instead, at the entity position, lower350

layers extract Mozart’s features containing both351

“Maria” and “Leopold”. At the relation and last352

positions, deeper layers refine this information, en-353

coding “Mozart’s features & mother -> Maria” and354

“Mozart’s features & father -> Leopold”, which en-355

ables the model to generate the correct prediction.356

To verify this, we compute the average logit differ-357

ence of each layer’s hidden state between the cor-358

rect answer (e.g. Maria) and the conflicting answer359

(e.g. Leopold) at entity, relation and last positions360

across all correct human->human cases. The re-361

sults align with our analysis, detailed in Appendix362

A. The entity position cannot distinguish the cor-363

rect answer and the conflicting answer, while the364

relation and last positions’ logit difference start to365

increase after the entity attribute extraction stage.366

We also analyze the logit flow of 889 second-hop367

cases “e2’s r2 is” -> “e3”, detailed in Appendix B.368

Similar to the first-hop results, we observe the same369

four stages in the second-hop predictions, further370

validating the single-hop prediction mechanism. In371

addition, we utilize the activation patching (Wang372

et al., 2022a) method to analyze the layer-level373

information flow, as presented in Appendix C, also374

observing the importance in entity, relation and last375

positions. Compared to the layer-level approach,376

our method provides a neuron-level perspective377

on information flow, offering a more granular and378

detailed understanding.379

4 Mechanism of Two-Hop Prediction380

Biran et al. (2024) find that the two-hop accuracy re-381

mains low, even when both the first-hop and second- 382

hop queries are correct. In this section, we inves- 383

tigate the cause of this phenomenon. We focus on 384

the prompt like “e1’s r1’s r2 is”, where the correct 385

answer is “e3”. We use the logit flow method to 386

analyze the 889 correct two-hop queries, as shown 387

in appendix D. We find that the importance of at- 388

tention neurons at relation positions is significantly 389

lower than that in single-hop queries. Based on this 390

observation, we hypothesize that the model may in- 391

correctly predict the entity corresponding to “e1’s 392

r1” or “e1’s r2” instead of “e3”. This interference 393

could lead the model to favor intermediate entities 394

over the correct final answer, ultimately reducing 395

the accuracy of two-hop reasoning. 396

To verify this, we analyze 568 human->human- 397

>human cases with the prompt “e1’s r1’s r2 is” and 398

the correct answer “e3” in Llama2-7B, where e1, 399

e2, e3 are all human entities. We compare the 400

ranking of the correct answer “e3” against two con- 401

flicting answers: “e1’s r1” and “e1’s r2”. For exam- 402

ple, for “Mozart’s mother’s spouse is”, the correct 403

answer is “Leopold”, and the conflicting answers 404

are “Maria” (Mozart’s mother) and “Constanze” 405

(Mozart’s spouse). Among 568 cases, 52.3% cor- 406

rectly predict “e3”, 42.4% predict “e2” (the answer 407

of “e1’s r1”), and 5.3% predict the answer of “e1’s 408

r2”. This indicates that the conflicting entities can 409

cause the accuracy decrease. 410

Inner products of FFN neurons – false cases

Inner products of FFN neurons – correct cases

Figure 3: Results of logit flow on correct and false
human->human->human cases in Llama2-7B.

To further investigate this phenomenon, we use 411

the logit flow method to compare correct cases 412

(where the predicted answer is “e3”) with false 413

cases (where the predicted answer is “e2”), as 414

shown in Figure 3. We observe that in the false 415

5

cases, the influence at the r1 position is signifi-416

cantly stronger. The results of activation patching417

(Appendix E) and Llama3.1-8B & Llama3.2-3B418

(Appendix F) reveal a similar trend. This finding419

appears counterintuitive—why does the model pre-420

dict the wrong answer when it relies more heavily421

on the features at the r1 position?422

A closer look at the single-hop analysis provides423

an explanation. In the case of “e1’s r1 is”, the424

high layers at the r1 position store logits related to425

“e2”. Due to the autoregressive nature of decoder-426

only LLMs, the hidden states at r1 position remain427

the same in both “e1’s r1 is” and “e1’s r1’s r2 is”.428

Consequently, when the high-layer information at429

the r1 position is extracted in “e1’s r1’s r2 is”, it430

inadvertently reinforces the probability of “e2”,431

leading to lower accuracy in two-hop reasoning.432

This phenomenon can also be understood433

through the four stages of knowledge storage. In434

the single-hop analysis (Figure 2), the knowledge435

of “e1 -> e1 features” and “e2 -> e2 features” is436

stored in lower layers (layers 7–20), whereas the437

knowledge of “e1 features & r1 -> e2” and “e2 fea-438

tures & r2 -> e3” is stored in deeper layers (layers439

20–31). In two-hop false cases (Figure 3), when440

the features at r1 positions, which are related to e2,441

are extracted at layer 28, they only activate the “e2442

features & r2 -> e3” parameters in layers 28–31.443

Although this process does enhance the probability444

of e3, it amplifies the probability of e2 even more.445

This imbalance leads to the model predicting e2 in-446

stead of e3, resulting in lower accuracy for two-hop447

reasoning. From this perspective, our results par-448

tially align with the "hopping too late" hypothesis449

(Biran et al., 2024). However, our findings reveal450

a key difference: while some parameters encoding451

"e2 & r2 -> e3" are still activated, their contribution452

is weaker compared to the direct influence of “e2”.453

5 Back Attention: Letting Lower Layers454

Capture Higher-Layer features455

Based on the single-hop mechanism, if we can456

restore the r1 position’s deep layer features back457

to later positions’ shallow layers, the parameters458

storing “e2 -> e2 features” and “e2 features & r2459

-> e3” can be activated, thereby strengthening the460

competitiveness of the correct answer. Motivated461

by this, we propose an innovative technique, “back462

attention”, to allow the lower layers capture higher463

features. The computations of the original attention464

output A and the back attention output B are shown465

⍺0 ⍺1 ⍺3
x

⍺2

+

e1’s r1’s r2 is

Figure 4: Back attention on a 1-layer transformer.

in Eq. 11-12. In the original attention computation, 466

the query, key, and value vectors are computed by 467

the hidden states h on the same layer: 468

A = Softmax

(
hWq(hWk)⊤√

d′

)
(hWv)Wo.

(11) 469

In contrast, back attention modifies this mechanism 470

by computing queries from a lower source layer hs 471

while obtaining keys and values from a target layer 472

ht, which are the hidden states on a higher layer or 473

the stack of all higher layers’ hidden states. This 474

adjustment allows a lower layer to capture richer 475

representations stored in higher layers: 476

B = Softmax

(
hsWq

B(htW
k
B)

⊤
√
d′

)
(htWv

B)W
o
B.

(12) 477

Figure 4 illustrates how back attention is inte- 478

grated into a single-layer transformer. Back atten- 479

tion occurs after the original inference pass, during 480

which the hidden states of all layers and positions 481

are calculated. The query vector is computed from 482

the 0th layer input (hs), while the key and value 483

vectors are computed from the 0th layer output 484

(ht). Then the back attention output B is added 485

back onto the 0th layer input, and recompute the 486

forward pass again. Back attention restores high- 487

layer features at different positions using the back 488

attention scores. If the back attention score is 1.0 489

at r1 position and 0.0 at other positions, it means 490

that the r1 position’s 0th layer output is added at 491

the last position’s 0th layer input. 492

Training from scratch: back attention enhances 493

the ability of 1-layer transformer. We conduct 494

experiments on a 2-digit addition arithmetic dataset. 495

In each training and testing set, there are 12,150 496

single-sum cases (“a+b=”), and 6,188 double-sum 497

cases (“c+d+e=”), where “a”, “b”, “c”, “d”, and “e” 498

are integers ranging from 0 to 99. The model needs 499

to “memorize” the single-sum cases and “learn” 500

the double-sum patterns. We utilize the Llama 501

6

tokenizer, representing each digit as a separate to-502

ken (e.g., 12 is tokenized as [“1”, “2”]), ensuring503

that each token appears sufficiently during training.504

The accuracy of 1-layer transformer, 1-layer trans-505

former with attention, and 2-layer transformer are506

83.8%, 93.8%, and 92.5%, respectively. The de-507

tails of loss and accuracy are shown in Appendix G.508

The 2-layer transformer and the 1-layer transformer509

with back attention converge faster than the 1-layer510

transformer. Notably, the 1-layer transformer with511

back attention requires only 56.7% of the param-512

eters of the 2-layer transformer. Therefore, incor-513

porating back attention during the training stage514

can significantly enhance the model’s performance515

while reducing parameter requirements.516

Adding back attention in pre-trained LLMs:517

back attention increases the reasoning accuracy.518

Back attention can also be integrated into a pre-519

trained LLM, using all higher-layer states to com-520

pute the keys and values. We add back attention on521

each layer in Llama-7B (Touvron et al., 2023a),522

fine-tuning on the double-sum arithmetic cases.523

Figure 5 shows the accuracy when fine-tuning back524

attention on each layer (freezing LLM parameters),525

where the original accuracy is 67.1%. The accu-526

racy across the 0-5 layers exhibits significant fluc-527

tuation. Adding back attention to the 6th layer528

achieves a peak accuracy of 93.2%, followed by a529

steady decline compared with higher layers. We530

hypothesize that the decline of layer 5 relates to the531

stages of inference proposed by Lad et al. (2024),532

where transformer models transition from feature533

construction to ensembling. If layer 5 marks the534

boundary between these stages, introducing back535

attention here may disrupt ongoing feature integra-536

tion, thus leading to performance degradation.537

Figure 5: Test accuracy of back attention on each layer.

Then we do experiments on 5 reasoning datasets538

1-Digit-Composite (1DC) (Brown, 2020), SVAMP539

(Patel et al., 2021), MultiArith (MA) (Roy and540

Roth, 2016), TwoHop (Biran et al., 2024), and541

StrategyQA (SQA) (Geva et al., 2021). We fine-542

tune back attention in Llama3-8B (Meta, 2024a),543

Llama3.1-8B (Dubey et al., 2024), Llama3.2-3B544

1DC SVAMP MA TwoHop SQA

Llama3 72.7 55.7 21.1 11.5 65.1
+backattn 97.0 69.3 88.9 47.8 86.2

Llama3.1 74.6 56.0 30.0 8.8 65.4
+backattn 98.5 70.7 86.2 42.7 87.0

Llama3.2 49.3 44.3 15.0 6.5 62.0
+backattn 92.9 62.0 52.8 37.0 86.3

Mistral 51.9 63.0 26.1 8.8 71.5
+backattn 87.4 71.7 47.2 40.1 87.8

Qwen2.5 64.0 81.7 82.8 3.9 71.2
+backattn 98.2 83.0 87.9 34.6 91.4

Table 1: Accuracy (%) on 5 datasets before/after adding
back attention on 6th layer in five LLMs.

(Meta, 2024b), Mistral-7B (Jiang et al., 2023), and 545

Qwen2.5-14B (Qwen et al., 2025). To balance 546

computational efficiency with effectiveness, we 547

select layer 6 as the source layer, based on the 548

empirical results shown in Figure 5, instead of 549

evaluating all layers. The results are reported in 550

Table 1, showing that back attention consistently 551

improves performance across all evaluated models 552

and datasets—doubling accuracy in several cases. 553

These improvements, ranging from +15% to over 554

+70%, highlight back attention as a powerful tool 555

for enhancing latent reasoning in LLMs. 556

To evaluate whether back attention functions as 557

intended, we analyze the case “Mozart’s mother’s 558

spouse is” -> “Leopold” in TwoHop dataset and 559

visualize the back attention scores (darker larger) 560

in Figure 6. Back attention effectively learns to 561

recover “mother” position’s 27-30 layers’ hidden 562

states into the last position’s 6th layer. This vi- 563

sualization proves that back attention successfully 564

propagates high-layer information from important 565

positions to lower layers, enabling the model to 566

better utilize knowledge for accurate predictions. 567

Figure 6: Back attention scores at all positions and
higher layers when adding on the 6th layer.

7

Computational cost analysis between COT and568

back attention. Assume the computational cost569

for generating a single token is T . In COT genera-570

tion, the model typically generates K tokens, result-571

ing in a total computational cost of approximately572

KT . In contrast, back attention requires the model573

to reconstruct higher-layer hidden states in earlier574

layers, increasing the per-token cost to about 1.8T .575

However, with back attention, the model only needs576

to generate M tokens, where typically M ≪ K,577

as the mechanism enables the model to infer the578

correct answer more efficiently. Consequently, the579

total computational cost becomes 1.8MT . Since580

M is significantly smaller than K in most cases,581

back attention leads to a substantial reduction in582

computational cost compared to CoT.583

6 Related Work584

6.1 Multi-Hop Reasoning in LLMs585

Improving the reasoning ability of LLMs has be-586

come a key focus of recent research (Lightman587

et al., 2023; Huang et al., 2023; Li et al., 2024b;588

Wang and Zhou, 2024). Wei et al. (2022) use589

chain-of-thought to enhance the reasoning abil-590

ity by articulating intermediate steps. Fu et al.591

(2022) propose complexity-based prompting, show-592

ing that selecting and generating reasoning chains593

with higher complexity significantly improves rea-594

soning accuracy. Wang et al. (2022b) combine595

chain-of-thought with the self-consistency decod-596

ing strategy, achieving significant improvements597

by sampling diverse reasoning paths and selecting598

the most consistent answer. Chen et al. (2024) pro-599

pose self-play fine-tuning, which enhances LLMs’600

reasoning abilities by refining their outputs through601

self-generated data, thereby reducing reliance on602

human-annotated datasets. Brown et al. (2024)603

propose scaling inference compute by increasing604

the number of generated samples, demonstrating605

significant improvements across tasks like coding606

and math. Hao et al. (2023); Yao et al. (2024) use607

tree-based methods to improve the performance.608

6.2 Mechanistic Interpretability609

Mechanistic interpretability (Olah, 2022) aims to610

reverse engineer the internal mechanisms of LLMs.611

Logit lens (Nostalgebraist, 2020) is a widely used612

method (Dar et al., 2022; Katz and Belinkov, 2023;613

Yu and Ananiadou, 2024a) to analyze the informa-614

tion of hidden states, by multiplying the vectors615

with the unembedding matrix. A commonly used616

localization method is causal mediation analysis 617

(Vig et al., 2020; Meng et al., 2022; Stolfo et al., 618

2023; Geva et al., 2023), whose core idea is to com- 619

pute the change of the output when modifying a 620

hidden state. Another types of studies focus on 621

constructing the circuit in the model (Olsson et al., 622

2022; Zhang and Nanda, 2023; Gould et al., 2023; 623

Hanna et al., 2024; Wang et al., 2022a). Due to 624

the superposition phenomenon (Elhage et al., 2022; 625

Scherlis et al., 2022; Bricken et al., 2023), sparse 626

auto-encoder (SAE) is useful for interpreting the 627

features (Gao et al., 2024; Templeton, 2024; Cun- 628

ningham et al., 2023). A useful characteristic is the 629

residual stream (Elhage et al., 2021), revealing that 630

the final embedding can be represented as the sum 631

of layer outputs. Furthermore, Geva et al. (2020, 632

2022) find that the FFN output is the weighted sum 633

of FFN neurons. Yu and Ananiadou (2024b) find 634

that the attention head outputs can also be regarded 635

as the weighted sum of attention neurons. 636

While previous neuron-level studies primarily fo- 637

cus on “localization”—identifying which neurons 638

are important—they often lack a deeper “analysis” 639

of how these neurons influence predictions. By 640

applying our logit flow method, we gain a clearer 641

understanding of how neurons are activated and 642

contribute to the final prediction. 643

7 Conclusion 644

We investigate the mechanisms of latent multi-hop 645

reasoning in LLMs and identify key factors af- 646

fecting the accuracy. Through our interpretability 647

method logit flow, we uncover four distinct stages 648

in single-hop knowledge prediction: entity sub- 649

ject enrichment, entity attribute extraction, rela- 650

tion subject enrichment, and relation attribute ex- 651

traction. Analyzing two-hop queries, we find that 652

failures often arise in the relation attribute extrac- 653

tion stage, where conflicting logits lower predic- 654

tion accuracy. To address this, we propose back 655

attention, a novel method that enables lower lay- 656

ers to access higher-layer hidden states, effectively 657

restoring important features. Back attention signifi- 658

cantly enhances reasoning performance, allowing 659

a 1-layer transformer to match the accuracy of a 660

2-layer transformer. When applied to pre-trained 661

LLMs, it improves accuracy across five datasets 662

and five models, demonstrating its effectiveness in 663

multi-hop reasoning. Overall, our analysis provides 664

new insights and introduces a powerful approach 665

for improving reasoning accuracy in LLMs. 666

8

8 Limitations667

In this study, the interpretability analysis primar-668

ily focuses on single-hop and two-hop knowledge669

queries, which represent specific reasoning scenar-670

ios. While these cases provide valuable insights, it671

is important to acknowledge that other types of rea-672

soning tasks might involve different mechanisms673

not captured in our analysis. Despite these con-674

straints, the observed performance improvements675

across a variety of reasoning tasks and LLMs sug-676

gest that the proposed back attention method and677

the derived insights possess a degree of general ap-678

plicability. Further investigations will be needed to679

validate these findings on more diverse reasoning680

tasks and refine the interpretability framework for681

broader applicability.682

In this work, back attention is applied to only a683

single layer, where it has demonstrated promising684

results. Nevertheless, back attention can also be685

extended to two or more layers, potentially yielding686

even greater improvements. We view the success687

of the single-layer application as a foundational688

step, paving the way for future research aimed at689

exploring and optimizing back attention in more690

complex and multi-layer configurations.691

References692

Eden Biran, Daniela Gottesman, Sohee Yang, Mor Geva,693
and Amir Globerson. 2024. Hopping too late: Ex-694
ploring the limitations of large language models on695
multi-hop queries. arXiv preprint arXiv:2406.12775.696

Trenton Bricken, Adly Templeton, Joshua Batson, Brian697
Chen, Adam Jermyn, Tom Conerly, Nick Turner,698
Cem Anil, Carson Denison, Amanda Askell, et al.699
2023. Towards monosemanticity: Decomposing lan-700
guage models with dictionary learning. Transformer701
Circuits Thread, 2.702

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald703
Clark, Quoc V Le, Christopher Ré, and Azalia Mirho-704
seini. 2024. Large language monkeys: Scaling infer-705
ence compute with repeated sampling. arXiv preprint706
arXiv:2407.21787.707

Tom B Brown. 2020. Language models are few-shot708
learners. arXiv preprint arXiv:2005.14165.709

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji,710
and Quanquan Gu. 2024. Self-play fine-tuning con-711
verts weak language models to strong language mod-712
els. arXiv preprint arXiv:2401.01335.713

Antonia Creswell, Murray Shanahan, and Irina Higgins.714
2022. Selection-inference: Exploiting large language715
models for interpretable logical reasoning. arXiv716
preprint arXiv:2205.09712.717

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert 718
Huben, and Lee Sharkey. 2023. Sparse autoencoders 719
find highly interpretable features in language models. 720
arXiv preprint arXiv:2309.08600. 721

Guy Dar, Mor Geva, Ankit Gupta, and Jonathan Berant. 722
2022. Analyzing transformers in embedding space. 723
arXiv preprint arXiv:2209.02535. 724

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 725
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 726
Akhil Mathur, Alan Schelten, Amy Yang, Angela 727
Fan, et al. 2024. The llama 3 herd of models. arXiv 728
preprint arXiv:2407.21783. 729

Nelson Elhage, Tristan Hume, Catherine Olsson, 730
Nicholas Schiefer, Tom Henighan, Shauna Kravec, 731
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, 732
Carol Chen, et al. 2022. Toy models of superposition. 733
arXiv preprint arXiv:2209.10652. 734

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom 735
Henighan, Nicholas Joseph, Ben Mann, Amanda 736
Askell, Yuntao Bai, Anna Chen, Tom Conerly, et al. 737
2021. A mathematical framework for transformer 738
circuits. Transformer Circuits Thread, 1(1):12. 739

Jaden Fiotto-Kaufman, Alexander R Loftus, Eric Todd, 740
Jannik Brinkmann, Caden Juang, Koyena Pal, Can 741
Rager, Aaron Mueller, Samuel Marks, Arnab Sen 742
Sharma, et al. 2024. Nnsight and ndif: Democra- 743
tizing access to foundation model internals. arXiv 744
preprint arXiv:2407.14561. 745

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and 746
Tushar Khot. 2022. Complexity-based prompting for 747
multi-step reasoning. In The Eleventh International 748
Conference on Learning Representations. 749

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel 750
Goh, Rajan Troll, Alec Radford, Ilya Sutskever, 751
Jan Leike, and Jeffrey Wu. 2024. Scaling and 752
evaluating sparse autoencoders. arXiv preprint 753
arXiv:2406.04093. 754

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir 755
Globerson. 2023. Dissecting recall of factual asso- 756
ciations in auto-regressive language models. In The 757
2023 Conference on Empirical Methods in Natural 758
Language Processing. 759

Mor Geva, Avi Caciularu, Kevin Ro Wang, and Yoav 760
Goldberg. 2022. Transformer feed-forward layers 761
build predictions by promoting concepts in the vo- 762
cabulary space. arXiv preprint arXiv:2203.14680. 763

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, 764
Dan Roth, and Jonathan Berant. 2021. Did aristotle 765
use a laptop? a question answering benchmark with 766
implicit reasoning strategies. Transactions of the 767
Association for Computational Linguistics, 9:346– 768
361. 769

Mor Geva, Roei Schuster, Jonathan Berant, and Omer 770
Levy. 2020. Transformer feed-forward layers are key- 771
value memories. arXiv preprint arXiv:2012.14913. 772

9

Rhys Gould, Euan Ong, George Ogden, and Arthur773
Conmy. 2023. Successor heads: Recurring, inter-774
pretable attention heads in the wild. arXiv preprint775
arXiv:2312.09230.776

Jia-Chen Gu, Hao-Xiang Xu, Jun-Yu Ma, Pan Lu, Zhen-777
Hua Ling, Kai-Wei Chang, and Nanyun Peng. 2024.778
Model editing harms general abilities of large lan-779
guage models: Regularization to the rescue. In Pro-780
ceedings of the 2024 Conference on Empirical Meth-781
ods in Natural Language Processing, pages 16801–782
16819.783

Akshat Gupta, Anurag Rao, and Gopala Anu-784
manchipalli. 2024. Model editing at scale leads to785
gradual and catastrophic forgetting. arXiv preprint786
arXiv:2401.07453.787

Michael Hanna, Ollie Liu, and Alexandre Variengien.788
2024. How does gpt-2 compute greater-than?: In-789
terpreting mathematical abilities in a pre-trained lan-790
guage model. Advances in Neural Information Pro-791
cessing Systems, 36.792

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong,793
Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. 2023.794
Reasoning with language model is planning with795
world model. arXiv preprint arXiv:2305.14992.796

Jie Huang, Xinyun Chen, Swaroop Mishra,797
Huaixiu Steven Zheng, Adams Wei Yu, Xiny-798
ing Song, and Denny Zhou. 2023. Large language799
models cannot self-correct reasoning yet. arXiv800
preprint arXiv:2310.01798.801

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-802
sch, Chris Bamford, Devendra Singh Chaplot, Diego803
de las Casas, Florian Bressand, Gianna Lengyel, Guil-804
laume Lample, Lucile Saulnier, et al. 2023. Mistral805
7b. arXiv preprint arXiv:2310.06825.806

Tianjie Ju, Yijin Chen, Xinwei Yuan, Zhuosheng Zhang,807
Wei Du, Yubin Zheng, and Gongshen Liu. 2024. In-808
vestigating multi-hop factual shortcuts in knowledge809
editing of large language models. arXiv preprint810
arXiv:2402.11900.811

Shahar Katz and Yonatan Belinkov. 2023. Visit: Visual-812
izing and interpreting the semantic information flow813
of transformers. arXiv preprint arXiv:2305.13417.814

Vedang Lad, Wes Gurnee, and Max Tegmark. 2024. The815
remarkable robustness of llms: Stages of inference?816
arXiv preprint arXiv:2406.19384.817

Zhaoyi Li, Gangwei Jiang, Hong Xie, Linqi Song, Defu818
Lian, and Ying Wei. 2024a. Understanding and patch-819
ing compositional reasoning in llms. arXiv preprint820
arXiv:2402.14328.821

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma.822
2024b. Chain of thought empowers transformers823
to solve inherently serial problems. arXiv preprint824
arXiv:2402.12875.825

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri 826
Edwards, Bowen Baker, Teddy Lee, Jan Leike, 827
John Schulman, Ilya Sutskever, and Karl Cobbe. 828
2023. Let’s verify step by step. arXiv preprint 829
arXiv:2305.20050. 830

I Loshchilov. 2017. Decoupled weight decay regulariza- 831
tion. arXiv preprint arXiv:1711.05101. 832

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat 833
Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun Zhu, 834
Lei Meng, Jiao Sun, et al. 2024. Improve mathemati- 835
cal reasoning in language models by automated pro- 836
cess supervision. arXiv preprint arXiv:2406.06592. 837

Kevin Meng, David Bau, Alex Andonian, and Yonatan 838
Belinkov. 2022. Locating and editing factual associ- 839
ations in gpt. Advances in Neural Information Pro- 840
cessing Systems, 35:17359–17372. 841

AI Meta. 2024a. Introducing meta llama 3: The most 842
capable openly available llm to date. Meta AI. 843

AI Meta. 2024b. Llama 3.2: Revolutionizing edge ai 844
and vision with open, customizable models. Meta 845
AI. 846

Yaniv Nikankin, Anja Reusch, Aaron Mueller, and 847
Yonatan Belinkov. 2024. Arithmetic without algo- 848
rithms: Language models solve math with a bag of 849
heuristics. arXiv preprint arXiv:2410.21272. 850

Nostalgebraist. 2020. Interpreting gpt: the logit lens. 851

Chris Olah. 2022. Mechanistic interpretability, vari- 852
ables, and the importance of interpretable bases. In 853
Transformer Circuits Thread. 854

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas 855
Joseph, Nova DasSarma, Tom Henighan, Ben Mann, 856
Amanda Askell, Yuntao Bai, Anna Chen, et al. 2022. 857
In-context learning and induction heads. arXiv 858
preprint arXiv:2209.11895. 859

OpenAI. 2024. Learning to reason with llms. Accessed: 860
19-09-2024. 861

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. 862
2021. Are nlp models really able to solve 863
simple math word problems? arXiv preprint 864
arXiv:2103.07191. 865

Zhenting Qi, Mingyuan Ma, Jiahang Xu, Li Lyna Zhang, 866
Fan Yang, and Mao Yang. 2024. Mutual reasoning 867
makes smaller llms stronger problem-solvers. arXiv 868
preprint arXiv:2408.06195. 869

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, 870
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, 871
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, 872
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, 873
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, 874
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, 875
Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji 876
Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang 877
Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang 878

10

https://openai.com/index/learning-to-reason-with-llms

Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru879
Zhang, and Zihan Qiu. 2025. Qwen2.5 technical880
report. arXiv preprint arXiv:2412.15115.881

Subhro Roy and Dan Roth. 2016. Solving gen-882
eral arithmetic word problems. arXiv preprint883
arXiv:1608.01413.884

Mansi Sakarvadia, Aswathy Ajith, Arham Khan, Daniel885
Grzenda, Nathaniel Hudson, André Bauer, Kyle886
Chard, and Ian Foster. 2023. Memory injections:887
Correcting multi-hop reasoning failures during in-888
ference in transformer-based language models. In889
Proceedings of the 6th BlackboxNLP Workshop: An-890
alyzing and Interpreting Neural Networks for NLP,891
pages 342–356.892

Adam Scherlis, Kshitij Sachan, Adam S Jermyn, Joe893
Benton, and Buck Shlegeris. 2022. Polysemantic-894
ity and capacity in neural networks. arXiv preprint895
arXiv:2210.01892.896

KaShun Shum, Shizhe Diao, and Tong Zhang. 2023.897
Automatic prompt augmentation and selection with898
chain-of-thought from labeled data. arXiv preprint899
arXiv:2302.12822.900

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Ku-901
mar. 2024. Scaling llm test-time compute optimally902
can be more effective than scaling model parameters.903
arXiv preprint arXiv:2408.03314.904

Alessandro Stolfo, Yonatan Belinkov, and Mrinmaya905
Sachan. 2023. A mechanistic interpretation of arith-906
metic reasoning in language models using causal me-907
diation analysis. arXiv preprint arXiv:2305.15054.908

Adly Templeton. 2024. Scaling monosemanticity: Ex-909
tracting interpretable features from claude 3 sonnet.910
Anthropic.911

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier912
Martinet, Marie-Anne Lachaux, Timothée Lacroix,913
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal914
Azhar, et al. 2023a. Llama: Open and effi-915
cient foundation language models. arXiv preprint916
arXiv:2302.13971.917

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-918
bert, Amjad Almahairi, Yasmine Babaei, Nikolay919
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti920
Bhosale, et al. 2023b. Llama 2: Open founda-921
tion and fine-tuned chat models. arXiv preprint922
arXiv:2307.09288.923

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov,924
Sharon Qian, Daniel Nevo, Yaron Singer, and Stuart925
Shieber. 2020. Investigating gender bias in language926
models using causal mediation analysis. Advances927
in neural information processing systems, 33:12388–928
12401.929

Kevin Wang, Alexandre Variengien, Arthur Conmy,930
Buck Shlegeris, and Jacob Steinhardt. 2022a. In-931
terpretability in the wild: a circuit for indirect ob-932
ject identification in gpt-2 small. arXiv preprint933
arXiv:2211.00593.934

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc 935
Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, 936
and Denny Zhou. 2022b. Self-consistency improves 937
chain of thought reasoning in language models. arXiv 938
preprint arXiv:2203.11171. 939

Xuezhi Wang and Denny Zhou. 2024. Chain-of- 940
thought reasoning without prompting. arXiv preprint 941
arXiv:2402.10200. 942

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 943
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 944
et al. 2022. Chain-of-thought prompting elicits rea- 945
soning in large language models. Advances in neural 946
information processing systems, 35:24824–24837. 947

Zhengxuan Wu, Atticus Geiger, Aryaman Arora, Jing 948
Huang, Zheng Wang, Noah D Goodman, Christo- 949
pher D Manning, and Christopher Potts. 2024. 950
pyvene: A library for understanding and improv- 951
ing pytorch models via interventions. arXiv preprint 952
arXiv:2403.07809. 953

Sohee Yang, Elena Gribovskaya, Nora Kassner, Mor 954
Geva, and Sebastian Riedel. 2024. Do large language 955
models latently perform multi-hop reasoning? arXiv 956
preprint arXiv:2402.16837. 957

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, 958
Tom Griffiths, Yuan Cao, and Karthik Narasimhan. 959
2024. Tree of thoughts: Deliberate problem solving 960
with large language models. Advances in Neural 961
Information Processing Systems, 36. 962

Zeping Yu and Sophia Ananiadou. 2024a. Interpret- 963
ing arithmetic mechanism in large language models 964
through comparative neuron analysis. In Proceed- 965
ings of the 2024 Conference on Empirical Methods 966
in Natural Language Processing, pages 3293–3306. 967

Zeping Yu and Sophia Ananiadou. 2024b. Neuron- 968
level knowledge attribution in large language models. 969
In Proceedings of the 2024 Conference on Empiri- 970
cal Methods in Natural Language Processing, pages 971
3267–3280. 972

Fred Zhang and Neel Nanda. 2023. Towards best prac- 973
tices of activation patching in language models: Met- 974
rics and methods. arXiv preprint arXiv:2309.16042. 975

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, 976
Nathan Scales, Xuezhi Wang, Dale Schuurmans, 977
Claire Cui, Olivier Bousquet, Quoc Le, et al. 2022. 978
Least-to-most prompting enables complex reason- 979
ing in large language models. arXiv preprint 980
arXiv:2205.10625. 981

11

A Logit Difference at Different Positions982

Figure 7: Logit difference at entity, relation and last
positions on human->human cases in Llama2-7B. The
logit difference is small at entity position, but large on
relation and last positions’ deep layers.

We compute the average logit difference at en-983

tity, relation and last positions across all correct984

human -> human cases, shown in Figure 7. Take985

“Mozart’s mother is -> Maria” as an example. We986

compute the logit difference between “Maria” and987

“Leopold” (Mozart’s father). At the entity posi-988

tion, the logit difference is small on all layers. At989

the relation and last positions, the logit difference990

increases sharply after the entity subject enrich-991

ment and entity attribute extraction stages (layers992

19–20). This indicates that the entity position pri-993

marily extracts general features of “Mozart”, in-994

cluding information relevant to both “Maria” and995

“Leopold”. In contrast, the deeper layers at the rela-996

tion and last positions encode specific knowledge,997

such as “Mozart’s features & mother -> Maria” and998

“Mozart’s features & father -> Leopold”, which999

ultimately differentiate the correct prediction.1000

B Results of Logit Flow on Second-Hop1001

Queries in Llama2-7B1002

The results of logit flow on second-hop queries1003

“e2’s r2 is” -> “e3” are shown in Figure 8. There are1004

also four stages existing in the second-hop queries,1005

similar to those in the first-hop queries (Figure 2).1006

C Results of Activation Patching on1007

Single-Hop Queries in Llama2-7B1008

The results of activation patching on single-hop1009

queries are shown in Figure 9, using the pyvene1010

(Wu et al., 2024) and NNsight (Fiotto-Kaufman1011

et al., 2024) libraries. Compared to the logit flow1012

results (Figure 2), the entity and last positions ex-1013

(B) Entity attribute extraction

(D)

(D)
Relation attribute
extraction

(A) Entity subject enrichment

(C)

(C)
Relation subject
enrichment

(D)
Relation attribute
extraction

Logits of attention neurons

Logits of FFN neurons

Inner products of FFN neurons

Figure 8: Results of logit flow on second-hop queries
“e2’s r2 is” -> “e3” in Llama2-7B. There are four simi-
lar stages with the first-hop queries: (A) entity subject
enrichment, (B) entity attribute extraction, (C) relation
subject enrichment, and (D) relation subject extraction.

hibit higher importance, while the relation posi- 1014

tion appears less significant. This difference arises 1015

because activation patching aggregates the impor- 1016

tance of both FFN and attention modules into a 1017

single visualization. In contrast, the logit flow 1018

method distinguishes and separately visualizes the 1019

importance of FFN and attention neurons, offering 1020

a more granular, neuron-level understanding of the 1021

information flow. 1022

Figure 9: Results of activation patching on single-hop
queries in Llama2-7B. Similar to logit flow (but not as
obvious as logit flow), there is also importance on r1
position’s high layers.

D Results of logit Flow on Two-Hop 1023

Queries in Llama2-7B 1024

The results of logit flow on the two-hop queries 1025

“e1’s r1’s r2 is” -> “e3” are shown in Figure 10. 1026

Compared to the logit flow results on single-hop 1027

12

Logits of attention neurons

Logits of FFN neurons

Inner products of FFN neurons

Figure 10: Results of logit flow on two-hop queries
“e1’s r1’s r2 is” -> “e3”. The importance of relation
positions (r1 and r2) is lower than single-hop queries.

queries (Figure 2), the importance of relation po-1028

sitions is significantly lower. This suggests that1029

e1’s features at the e1 position are primarily ex-1030

tracted into the last position, potentially activat-1031

ing the parameters associated with “e1’s r1”, “e1’s1032

r2”, and “e1’s r1’s r2”. This motivates our ex-1033

ploration between the correct and false human-1034

>human->human cases in Section 4.1035

E Results of Activation Patching on1036

Correct and False Two-Hop Queries in1037

Llama2-7B1038

The results of activation patching on correct and1039

false human->human->human cases in Llama2-7B1040

are shown in Figure 11. Compared with the correct1041

cases, the false cases show a much clearer influence1042

at r1 position’s high layers. This trend is similar to1043

the findings of logit flow method (Figure 3), indicat-1044

ing that the r1 position’s high features increase the1045

probability of “e2”, thereby reducing the accuracy1046

of two-hop reasoning.1047

F Results of Logit Flow and Activation1048

Patching on Correct and False1049

Two-Hop Queries in Llama3.1-8B and1050

Llama3.2-3B1051

The comparison of correct and false human-1052

>human->human cases in Llama3.1-8B are shown1053

Activation patching – false cases

Activation patching – correct cases

Figure 11: Results of activation patching on correct and
false human->human->human cases in Llama2-7B. The
importance of r1 position is 1.66% in correct cases and
5.43% in false cases.

in Figure 12 (results of logit flow) and Figure 13 1054

(results of activation patching). Similar results 1055

of Llama3.2-3B are shown in Figure 14 (results 1056

of logit flow) and Figure 15 (results of activation 1057

patching). In both methods and models, the impact 1058

of r1 position’s high layers in the false cases are 1059

larger than that in the correct cases. These results 1060

show similar trends with the results of Llama2-7B. 1061

G Loss and Accuracy of back attention 1062

on 1-layer transformer 1063

The loss and accuracy of 1-layer transformer, 1- 1064

layer transformer with back attention, and 2-layer 1065

transformer are shown in Figure 16. The perfor- 1066

mance of 1-layer transformer with 2-layer trans- 1067

former is similar, much better than that of 1-layer 1068

transformer. In all models, the dimension is 440 for 1069

attention/FFN layers, and 160 for back attention. 1070

We use the AdamW optimizer (Loshchilov, 2017) 1071

with a learning rate of 0.0001, a batch size of 64, 1072

and a maximum of 500 epochs. 1073

13

Inner products of FFN neurons – false cases

Inner products of FFN neurons – correct cases

Figure 12: Results of logit flow on correct and false
human->human->human cases in Llama3.1-8B. The
importance of r1 position is 6.38% in correct cases and
32.18% in false cases.

Activation patching – false cases

Activation patching – correct cases

Figure 13: Results of activation patching on correct and
false human->human->human cases in Llama3.1-8B.
The importance of r1 position is 4.98% in correct cases
and 18.00% in false cases.

Inner products of FFN neurons – false cases

Inner products of FFN neurons – correct cases

Figure 14: Results of logit flow on correct and false
human->human->human cases in Llama3.2-3B. The
importance of r1 position is 17.50% in correct cases and
40.36% in false cases.

Activation patching – false cases

Activation patching – correct cases

Figure 15: Results of activation patching on correct and
false human->human->human cases in Llama3.2-3B.
The importance of r1 position is 11.23% in correct cases
and 21.52% in false cases.

14

1-layer transformer

1-layer transformer with back attention

2-layer transformer

Figure 16: Loss (left) and accuracy (right) on arithmetic
dataset of 1-layer transformer, 1-layer transformer with
back attention, and 2-layer transformer.

15

