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Abstract

Grouping is ubiquitous in natural systems and is essential for promoting efficiency
in team coordination. This paper proposes a novel formulation of Group-oriented
Multi-Agent Reinforcement Learning (GoMARL), which learns automatic group-
ing without domain knowledge for efficient cooperation. In contrast to existing
approaches that attempt to directly learn the complex relationship between the joint
action-values and individual utilities, we empower subgroups as a bridge to model
the connection between small sets of agents and encourage cooperation among
them, thereby improving the learning efficiency of the whole team. In particular,
we factorize the joint action-values as a combination of group-wise values, which
guide agents to improve their policies in a fine-grained fashion. We present an au-
tomatic grouping mechanism to generate dynamic groups and group action-values.
We further introduce a hierarchical control for policy learning that drives the agents
in the same group to specialize in similar policies and possess diverse strategies
for various groups. Experiments on the StarCraft II micromanagement tasks and
Google Research Football scenarios verify our method’s effectiveness. Extensive
component studies show how grouping works and enhances performance.

1 Introduction

Cooperative multi-agent reinforcement learning (MARL) aims to coordinate multiple agents’ actions
through shared team rewards and has become a helpful tool for solving multi-agent decision-making
problems [47, 9, 44]. Learning centralized policies to address this problem conditions on the full
state, which is usually unavailable during execution due to partial observability or communication
constraints [4, 3]. An alternative paradigm is to learn decentralized policies based on local obser-
vations [36, 31]. However, simultaneous exploration suffers from non-stationarity that may cause
unstable learning [7, 50]. The centralized training with decentralized execution (CTDE) inherits the
advantages of these two paradigms and learns decentralized policies in a centralized fashion [23, 15].

Value Function Factorization (VFF) under the CTDE paradigm is a popular approach to MARL,
where a centralized value function is learned from global rewards and factorized into local values to
train decentralized policies. In recent years, value factorization methods have been widely proposed.
Existing methods usually adopt the flat VFF scheme [24], which directly estimates the joint action-
value from local utilities. These methods achieve remarkable performances from various perspectives,
such as enhancing the expressiveness of the mixing network [27, 33, 38, 37] and encouraging
exploration [21, 19]. However, learning efficient cooperation by directly estimating the joint action-
values from individual utilities is exceptionally difficult. Phan et al.[24] illustrate that the flat VFF
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scheme leads to a performance bottleneck, where it gets challenging to provide sufficiently informative
training signals for each agent. Although the state information provides complete knowledge, it is
burdensome for agents to extract effective guidance that facilitates cooperative policy learning.

Research in natural systems [13, 43] and multi-agent systems [24] has validated grouping as a means
to promote efficient collaboration. Dividing the team into smaller sets allows for fine-grained learning
and opens up further opportunities to integrate informative group-wise learning signals. However,
formulating a general division criterion without domain knowledge is still a matter of interest to
the community. Most previous works are proposed for well-structured tasks and typically predefine
specific responsibilities or forms of task decomposition [1, 18, 24]. They require apriori settings that
are potentially unavailable in practice and discourage methods’ transferring to diverse environments.

This paper proposes a novel formulation of Group-oriented MARL (GoMARL), which learns au-
tomatic grouping without domain knowledge for efficient cooperation. GoMARL holds a dual-
hierarchical value factorization and learns dynamic groups with a “select-and-kick-out” scheme.
Concretely, GoMARL continuously selects agents unsuitable for their current groups based on the
learning weights of the decomposition from the group-wise value to local utilities and kicks them out
to reorganize the group division. Furthermore, GoMARL transforms various informative training
signals, including individual group-related information, group state, and global state, into network
weights, which extracts effective guidance for policy improvement and enables flexible adaptation to
the dynamic changes in the number of subgroups and the number of agents per group.

The advantages of GoMARL lie in two aspects. Firstly, group information offers richer knowledge
for group-wise value factorization and provides more direct guidance for efficient learning. Our value
factorization with a dual hierarchy is based on a more focused and compact input representation.
Unlike existing methods that learn value factorization with no information or only with the global state
which is complete but hard to extract efficient guidance, GoMARL proposes a fine-grained learning
scheme to integrate information from the group perspective into the policy gradient, promoting
intra-group coordination with the group state and facilitating inter-group cooperation with the global
state. Secondly, GoMARL extracts individual group-related information to provide informative
signals for policy diversity. The agents condition their behaviors on their individual group-related
information embedded by a shared encoder, which is trained following specialization guidance, i.e.,
imposing similarity within a group and diversity among groups. In this way, GoMARL synergizes
subgroups with policy styles, proposing a parameter-sharing mechanism for specialized policies.

We test our method on a challenging set of StarCraft II micromanagement tasks [29] and Google
Research Football scenarios [16]. GoMARL achieves superior performance with greater efficiency
compared with notable baseline methods. We also conduct detailed component analyses and ablation
studies to give insights into how each module works and enhances learning efficiency.

2 Related Work

Value function factorization under the CTDE [23] paradigm is a popular approach to MARL. Most
existing methods learn flat value factorization by treating agents as independent factors and directly
estimating the joint action-value from local utilities. The earlier work, VDN [35], learns a linear
decomposition into a sum of local utilities used for greedy action selection. QMIX [27] learns
a non-linear mixing network with the global state and enlarges the functions the mixing network
can represent, but it still faces the monotonicity constraint. QTRAN [33] further improves the
expressivity by proposing the Individual-Global-Max (IGM) principle between individual utilities and
the global action-value. Subsequent works follow the IGM principle and further boost performance by
encouraging exploration [21, 5], enhancing the expressiveness of the mixing network [38], preventing
sub-optimal convergences [26, 37], and integrating functional modules [42, 46, 45, 51, 34, 49].

This paper explores automatic group division for multi-agent teams to realize group-wise learning.
Early related works [30, 28, 20, 18] predefine specific responsibilities to each agent based on
goal, visibility, capability, or by search. Some other efforts achieve implicit grouping by task
allocation [32, 17, 10]. These methods only address tasks with a clear structure and require domain
knowledge or apriori settings. Another class of approaches focuses on individuality [41, 19, 14] or
role learning [39, 40]. Among them, ROMA [39] learns dynamic roles that depend on the context
agents observe. RODE [40] decomposes the joint action spaces and integrates the action effects into
the role policies to boost learning. A similar work, VAST [24], also studies the impact of subgroups
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on value factorization but still requires a priori of group number. Our method, GoMARL, does
not rely on domain knowledge and gradually adjusts the group division according to the learned
factorization weights. Based on the dynamic group division, GoMARL models several group-related
signals to learn specialized policies and promote efficient team cooperation.

3 Preliminaries

Dec-POMDP. This paper focuses on cooperative tasks with n agents A = {a1, ..., an} as a Dec-
POMDP [22] defined by a tuple G = 〈S,U, P, r, Z,O, n, γ〉. The environment has a global state
s ∈ S. Each agent a chooses an action uat from its action space Ua at timestep t and forms a joint
action ut ∈ (U1×...×Un) ≡ Un that induces a transition according to the state transition distribution
P (st+1|st,ut) : S×Un×S → [0, 1]. r(s,u) : S×Un → R is the reward function yielding a shared
reward, and γ ∈ [0, 1) is the discount factor. We consider partially observable scenarios in which
agent a acquires its local observation za ∈ Z drawn from O(st, a) : S ×A → Z and has an action-
observation history τa ∈ T ≡ (U × Z)∗ on which it conditions a policy πa(ua|τa) : T×U→ [0, 1].

Value Function Factorization and the IGM Principle. We consider cooperative MARL with
the CTDE paradigm, which has been a significant focus in recent efforts [2, 35, 27, 12, 21]. A
majority of methods achieve CTDE through flat value function factorization [24], i.e., factoring
action-value functions into combinations of per-agent utilities. The individual utility only depends on
the local history of actions and observations, allowing agents to maximize their local utility functions
independently under the Individual-Global-Max (IGM) Principle [33]: arg maxuQ

tot(τ ,u) =
{arg maxu1 Q1(τ1, u1), · · · , arg maxun Qn(τn, un)}. Among these attempts, the representative
deep MARL approach QMIX [27] improves the simple summation of individual utilities [35] by
introducing a more expressive factorization: Qtot = f(Q1(τ1, u1; θQ), · · · , Qn(τn, un; θQ); θf ),
where θf denotes the parameters of the monotonic mixing function generated by a hypernetwork [6].

4 Group-oriented Multi-Agent Reinforcement Learning

Definition 1. (Individual and Group) Given a cooperative task with n agents A = {a1, ..., an},
we have a set of groups G = {g1, ..., gm}, 1 ≤ m ≤ n. Each group gj contains nj (1 ≤ nj ≤ n)
different agents, gj = {aj1 , ..., ajnj

} ⊆ A, where
⋃

j gj = A, gj ∩ gk = ∅ for j, k ∈ {1, 2, . . . ,m}
and j 6= k. The superscript describes the variable owner, e.g., uji is the action of the i-th agent aji in
group gj . We denote joint quantities in bold and joint quantities over agents other than a given agent
a with the superscript −a, e.g., u−ji is the joint action of agents in group gj other than agent aji .

⋯

Automatic	Grouping	Module

𝑄! 𝜏!,· 𝑄" 𝜏",·𝑄# 𝜏#,·

𝑄$%&'(
𝒈𝟏 ⋯𝑄$%&'(

𝒈𝟐 𝑄$%&'(
𝒈𝒎

𝒎 dynamic	groups

𝑄*+*

Mixing	Network	among	Groups

Figure 1: Overview of GoMARL.

GoMARL decomposes the global action-valueQtot into group-
wise values Qg and trains agents by groups in a fine-grained
manner. Figure 1 illustrates the overview of the learning frame-
work. It consists of an automatic grouping module, special-
ized agent networks generating local utilities Qi, and a mixing
network among groups. In Section 4.1, we introduce the au-
tomatic grouping module. It progressively divides the team
into dynamic groups as training proceeds. Based on the dy-
namic group division, we propose specialized agent networks
that achieve similarity within each group and diversity among
groups to generate local utilities Qi in Section 4.2. Section 4.3
presents the overall training framework to detail the estimation
of the group-wise action-values and the global action-values.

4.1 Automatic Grouping Mechanism

The automatic grouping mechanism aims to learn a mapping relationship fg : A 7→ G. The key
idea is to divide the team into dynamic groups in an end-to-end fashion by maximizing the expected
global return Qtot

G (st,ut) = Est+1:∞,ut+1:∞

[∑∞
k=0 γ

krt+k|st,ut;G
]
. Value function factorization

approaches represent the joint action-value as an aggregation of individual utilities, i.e., a weighted
sum of Qi and biases. We follow this setting and represent the group-wise value Qg as an aggregation
of the individual value Qi. Intuitively, as illustrated in the right side of Figure 2, if the learned mixing
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Figure 2: The left side illustrates the schematic diagram of the grouping mechanism. The group
adjustment operator concatenates the weights wi

1 of agents in the same group to form the group-wise
weights wg

1 . The right side gives an example to show how grouping G changes during training.

weight of Qi is small enough, then Qi contributes a little to its group-wise value Qg . In other words,
when an agent aji takes action uji but does not affect its group-wise value Qgj , it indicates that agent
aji does not belong to group gj anymore and needs group adjustment.

We factorize the group value Qg into individual utilities Qi with group-wise mixing weights w1,
i.e., Qgj = f(Qj1(τ j1 , uj1), · · · , Qjnj (τ jnj , ujnj );w

gj
1 ), where w

gj
1 denotes group gj’s mixing

parameters generated by individual w1 generators f iw1

(
· ; θiw1

)
: τ i → wi

1 that map each agent ai’s
history information τ i to a k-dimensional weight vector. A regularization on this w1 generator f iw1

drives the automatic grouping mechanism. Specifically, GoMARL “selects and kicks out” agents
whose individual utilities hold small mixing weights and contribute a little to their group-wise Q
values; thus, a sparsity regularization on w1 is implemented to select those agents with small group-
value mixing weights. The w1 generators f iw1

are trained by minimizing the following loss function:

Lg (θw1
) = E(z,u,r,z′)∼B

∑
i

(
‖f iw1

(
τ i(zi, ui); θiw1

)
‖l1
)
, (1)

where B is the replay buffer, and ‖ · ‖l1 stands for the l1-norm penalty.

Figure 2 illustrates the schematic diagram of the grouping mechanism. Initially, all the agents belong
to the same group, and the grouping G is adjusted as training proceeds. The grouping shifts every
c timesteps, and each selected agent is assigned to the following group (a new one for agents in
the last group) until it properly contributes to where it belongs. When adjusting groups, the w1

of all agents are sent to a group adjustment operator Og. According to the adjusted grouping G,

Og : {w1
1, · · · ,wn

1}
G−→ {wg1

1 , · · · ,wgm
1 } concatenates the wi

1 of agents in the same group to form
a set of group-wise wg

1 to generate group action-value. This implementation flexibly adapts to the
grouping dynamics since each wi

1 is tied to agent ai by the individual w1 generator f iw1
. No matter

which group gj agent ai belongs to, Qi can engage in the estimation of Qgj through wi
1 ∈ w

gj
1 .

In practice, the weights’ shrinkage to zero is infeasible. It is also challenging to determine a fixed
threshold for groups of various sizes in diverse environments. We empirically utilize seventy percent
of each group’s average weight to assess whether an agent fits its current group. Extensive experiments
and component studies in Section 5 confirm the universality of this configuration.

4.2 Specialized Agent Network for Decentralized Execution

Group status describes the cooperation among agents within each group and is essential to local
utility generation. Integrating group-wise information e into the decision-making process enables
consideration of cooperative behaviors. In this section, we introduce GoMARL’s agent network to
generate local action-value functions with individual group-related information e embedded.

As shown in Figure 3, we construct a group-related info encoder fe (·; θe) to embed agents’ hidden
states. To achieve a group-related view, we train the encoder network as an extractor, where the
extracted agent info e of agents from the same group should be similar. To avoid all agents’ ei
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collapsing to be alike, the regularizer also encourages diversity between agents from different groups.
Formally, we minimize the following similarity-diversity objective to train the encoder fe:

LSD (θe) = EB
(∑

i 6=j

I(i, j) · cosine
(
fe(h

i; θe), fe(h
j ; θe)

) )
,

where I(i, j) =

{−1, ai, aj ∈ gk.
1, ai ∈ gk, aj ∈ gl, k 6= l.

(2)

ℎ!"

Actor" Actor#⋯

ℎ!#

MLP
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MLP

ℎ!$

𝑄! 𝜏!, 𝑢!; 𝑒!
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…

…
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Data Flow
Gradient Flow
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Group-
related	Info
Encoder

Group-
related	Info
Decoder

Figure 3: The specialized agent network.

The encoder trained by the SD-loss extracts
agent info ei that is recognizable to agents’
groups. This group-related information is then
fed into a decoder fd (·; θd) to generate the pa-
rameters of the agent network’s upper MLP. In
this way, each agent ai conditions its behav-
iors on ei with group-related information em-
bedded, promoting potential cooperation within
each group during decentralized execution. The
decoder hypernetwork fd is trained by the TD-
loss introduced in Section 4.3.

The proposed actor network has two merits. Firstly, it enables diversified policies while sharing all the
parameters. Policy decentralization with shared parameters is widely utilized to improve scalability
and learning efficiency. However, agents tend to behave similarly when sharing parameters, preventing
effective exploration and complex cooperative policies. It is also undesirable to entirely forgo shared
parameters in pursuit of diversity since proper sharing accelerates learning. Our method hybridizes the
efficiency of parameter-sharing and the policy diversity needed for complex collaboration. Secondly,
the decoder hypernetwork fd integrates the extracted agent info e into the policy gradients, providing
informative group-related information to enrich local utilities and promote intra-group cooperation.
Concretely, the partial derivative for updating the parameters θh of the GRU and the bottom MLP is:

∂Qtot

∂θh
=
∂Qtot

∂Qa

∂Qa

∂θh
=
∂Qtot

∂Qa

∂Qa

∂vah

∂vah
∂θh

= fd(ea) · ∂Q
tot

∂Qa

∂vah
∂θh

, (3)

where vh is the representation after the GRU illustrated in the left side of Figure 3. Eqn.(3) shows that
ea is deeply involved in the policy updating of agent a, providing richer group knowledge to generate
local utilities and facilitating group-related guidance for cooperative decentralized execution.

4.3 Overall Learning Framework

MLP

GRU

MLP

ℎ!"#$ ℎ!$ 𝐰𝟏
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Group-
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Figure 4: Overall learning framework of GoMARL.

We next introduce GoMARL’s overall learning
framework. It contains two mixing networks
that generate the group-wise Qg and the global
Qtot, respectively. As for the group mixing net-
work, although wg

1 enables a weighted mixing
of local utilities of agents in group g, the naive
mixture of

∑
a∈g wa

1Q
a + b lacks the guidance

of group status to reflect the group action-value
in a specific group-wise state. Therefore, we
build the group mixing network with a two-layer
structure that also embeds the group-wise state
into the weights wg

2 to generate Qg. In particular, group gj’s group-wise state sgj is a fusion of
the agent info ei for all ai ∈ gj . To cohesively summarize the group state based on the agent info
of all agents in group gj , we apply a pooling operation [25] over each dimension of the agent info
ei to generate the group-wise state sgj describing the current group status. The pooling operation
also ensures adaptability to the dynamic group size (i.e., the number of agents per group). We
build a group-wise w2 generator fw2

(sg) to map the fused group state into wg
2 . Similar to the

group-related info encoder fe, the w2 generator integrates the group state sg into the policy gradient:
∂Qg

∂Qa = ∂Qg

∂va
Q

∂va
Q

∂Qa = fw2(sg) · ∂v
a
Q

∂Qa , providing group status information for Qg generation that facili-

tates efficient intra-group cooperation. vQ is the representation after wg
1 marked in Figure 4. The
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two-layer mixing structure of the group mixing network estimates the group action-value Qg by w1

which decides the group division and w2 which carries group status information.

GoMARL estimates the global action-valueQtot by mixing all theQg in a similar fashion. Concretely,
the two layers of the total mixing network are generated by two hypernetworks, respectively taking
group states sg and the full state s as inputs. Likewise, sg and s are deeply involved in the gradients,
promoting inter-group cooperation. The architecture of the total mixing network is akin to the group
mixing network and is omitted in Figure 4 for brevity. The TD-loss of the estimated Qtot is:

LTD(θ) = EB
[(
r + γmax

u′
Q̄tot (s′,u′)−Qtot (s,u)

)2]
, (4)

where Q̄tot is a target network with periodic updates. The overall learning objective of GoMARL is:

L(θ) = LTD(θ) + λgLg(θw1) + λSDLSD(θe), (5)

where θ = (θh, θe, θd, θw). θw denotes the parameters of hypernetworks producing all the mixing
weights and biases. λg and λSD are two scaling factors.

Although containing two mixing networks, the total mixing-net size of GoMARL is smaller than the
commonly used single monotonic mixing network [27], as verified in Section 5.1. This is mainly
attributed to the input dimension reduction. The monotonic mixing network takes the global state s
as input of all the hypernetworks. In contrast, we take specific group information (i.e., individual
group-related info e, group state sg, and state s is only used in one hypernetwork). This parameter
reduction offsets the increase of an extra mixing network. Compared with flat value factorization
methods learning only with the global state, our method allows fine-grained learning guided by more
direct signals embedded in the policy gradients, facilitating intra- and inter-group cooperation.

5 Experiments

Baselines. We compare GoMARL with prominent baselines to verify its effectiveness and efficiency.
Hu et al. [8] fairly compared existing MARL methods without code-level optimizations and reported
that QMIX [27] and QPLEX [38] are the top two value factorization methods. The authors also
finetuned QMIX (denoted as Ft-QMIX in our paper), which attains higher win rates than the vanilla
QMIX. VAST [24] learns value factorization for sub-teams based on apriori setting on group number.
Therefore, we compare GoMARL with Ft-QMIX, QPLEX, and VAST to show its performance
as a value factorization method. The baselines also include role-based methods ROMA [39] and
the representative credit assignment method RIIT [8]. The latter combines effective modules of
noticeable methods, and comparing them can further illustrate the superiority of GoMARL.

Experimental setup. All the methods are trained with 8 parallel runners for 10M steps and are
evaluated every 10K steps with 32 episodes. We report the 1st, median, and 3rd quartile win rates
across 5 random seeds. Please refer to Appendix B for experimental setup details.

5.1 Performance on SMAC

Methods are evaluated on six challenging SMAC maps. The chosen maps involve homogeneous and
heterogeneous teams with asymmetric battles, allowing a holistic study of all methods.

Overall performance. The performance comparison of all the methods in the six Hard and Super
Hard SMAC maps is shown in Figure 5. As the results show, each baseline method only achieves
satisfactory performance on some of the tasks with specific properties they specialize in; e.g., RIIT
performs well on MMM2 but converges much slower in other tasks; QPLEX’s leaning is not efficient
in 8m_vs_9m and corridor. Ft-QMIX significantly outperforms the vanilla QMIX and has more
efficient learning than other baselines. GoMARL has a similar performance as Ft-QMIX in 8m_vs_9m
and corridor. However, the superiority of GoMARL can be clearly validated in all the other maps.

Parameter size for value mixing. Many methods use larger mixing networks with stronger expres-
siveness and fitting abilities to obtain superior performance. However, they often fail when compared
to baselines that use a mixing net of the same size [8]. As shown in Table 1, our dual-hierarchical mix-
ing architecture has fewer parameters when there are a large number of agents (when n > 5). VAST
is not compared since it utilizes a linear summation of local utilities. The results of GoMARL are the
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Figure 5: Comparison of GoMARL against baseline algorithms on six SMAC maps.

average of the five runs since each run may learn a slightly different grouping with various group
numbers. GoMARL outperforms other methods despite using fewer mixing parameters, highlighting
its inherent superiority over methods relying on stronger mixing networks.

Table 1: Size comparison of all methods’ mixing network(s)

Maps (Ft-)QMIX QPLEX ROMA RIIT GoMARL

3s_vs_5z 21.601K 72.482K 13.281K 37.986K 26.530K
5m_vs_6m 31.521K 107.574K 25.377K 51.362K 31.554K
8m_vs_9m 53.313K 197.460K 63.393K 93.986K 51.427K

corridor 68.929K 303.808K 81.537K 122.882K 53.859K
MMM2 84.929K 342.248K 134.401K 177.282K 74.244K

3s5z_vs_3s6z 63.105K 243.156K 81.345K 118.466K 61.028K

Component analysis and ablation study. We next conduct detailed component studies to analyze
how GoMARL improves efficiency and enhances performance. GoMARL contains three key compo-
nents: (1) an automatic grouping mechanism that progressively divides the team into proper groups;
(2) specialized agent networks that generate diversified policies while sharing all the parameters; and
(3) sufficiently informative signals integrated into the gradients to promote efficient cooperation. We
respectively study each module on three Super Hard maps to show how they influence performance.

(1.1) Ablation study of the grouping mechanism. We validate our grouping mechanism by compar-
ing GoMARL with other intuitive alternatives. All methods utilize the same architecture as GoMARL
to reflect how grouping itself influences performance. As shown in the top row of Figure 6, setting all
agents as a group in corridor converges faster but has significant variances. It may be due to the
hard exploration of efficient cooperation without grouping guidance. Another two intuitive groupings,
each agent a group and an equal division into two groups {{a1, a2, a3}, {a4, a5, a6}}, have minor
variance. However, their learning efficiency is affected since inappropriate groupings fail to promote
cooperative behaviors. MMM2 contains heterogeneous agents; thus, a natural grouping is to keep the
agents of the same type in one group. This natural grouping outperforms most alternatives but is
inferior to our dynamic grouping adjustment. 3s5z_vs_3s6z is another scenario with heterogeneous
agents, and the natural grouping of setting homogeneous agents as a group is also studied. It performs
nearly the same as GoMARL because our mechanism learns the grouping precisely according to
the agents’ type in this scenario. We also analyze this map with a grouping containing three groups
{{a1, a4, a5}, {a2, a6, a7}, {a3, a8}} (1s2z, 1s2z, 1s1z); however, this balanced grouping fails to
form effective collaboration. We can see from these results that appropriate grouping facilitates
efficient cooperation and accelerates learning. Our grouping mechanism automatically learns adaptive
grouping in different tasks and assists GoMARL with superior performance and efficiency.

(1.2) Learned grouping analysis. To demonstrate whether the learned grouping makes sense, we
further visualize the trained strategy in a corridor battle, as illustrated in Figure 7. Six allied Zealots
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Figure 6: Ablations of the grouping mechanism (top row) and the group-related signals (bottom).

Figure 7: The learnt groups{{a1, a2},{a3, a4, a5, a6}} is explicable to the corridor combat situation.

fight twenty-four Zerglings on this Super Hard map. The massive disparity in unit numbers between
the two sides implies that the whole team must refrain from launching an attack together. The only
winning strategy is to sacrifice a small number of agents who leave the team and attract the attention
of most enemies. Taking this opportunity, our large force eliminates the rest of the enemies. The
surviving agents then use the same tactic to keep attracting several enemies and kill them together. In
this battle, Agent 1 and 2 sacrifice themselves to attract most enemies and bring enough time for the
team to eliminate the remaining enemies. Other agents fight as a subgroup and successfully kill all
the surviving enemies. GoMARL learns a double-group setting in this battle, where Agent 1 and 2
are in the same group while the others are set in another group. This grouping is explicable in light of
the combat situation, and this reasonable grouping guidance contributes to our superior performance.
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Figure 8: Method performance with and without
SAN in 3s5z_vs_3s6z after training 8M steps.

(2) Component study of the specialized agents.
We transplant our specialized agent network
(SAN) into other baselines to verify module
effectiveness. ROMA is not included since its
actors are produced by its learned roles, and
the replacement will invalidate the method. As
shown in Figure 8, all methods are improved
when equipped with SAN. However, even with
SAN, all baselines fail to surpass GoMARL.
As shown in the learning curves in Appendix C, although dynamic grouping may reduce learning
efficiency in the early stage of training, the learned grouping will significantly accelerate learning in
the later stage. Therefore, the automatic grouping module and SAN are both crucial to GoMARL.

(3) Ablation study of the informative group-related signals. Our method models individual group-
related information e and group state sg to integrate them into the gradients. The former adjusts local
utilities for cooperative behaviors and realizes policy diversity, while the latter fosters efficient group
cooperation. We ablate them respectively to validate their effectiveness. Concretely, we replace the
group state sg with the full state s and remove the group-related information e to degenerate the
specialized agent networks into vanilla agent networks. As shown in the bottom row of Figure 6, both
signals greatly improve learning efficiency. On the one hand, the agent info e carrying group-related
information is trained to encourage inter-group diversity, enabling extensive cooperative exploration
and learning acceleration. On the other hand, the fused sg summarizes informative group-related
status that facilitates efficient group-wise coordination. Although the global state s provides complete
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Figure 9: Performance comparison with baselines in three Google Research Football scenarios.

Passes
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Passes to Agent 3
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Agent 4 gives 
a second shoot
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Figure 10: The learned groups {{a1, a2}, {a3, a4}} is explicable to a counterattack situation.

knowledge, it is burdensome for agents to extract effective guidance that promotes policy learning.
Therefore, utilizing our specific group-wise signals e and sg is more efficient than the global state s.

5.2 Performance on Google Research Football

We also test GoMARL on three challenging Google Research Football (GRF) offensive scenarios.
Agents in GRF need to coordinate timing and positions for organizing offense to seize fleeting
opportunities, and only scoring leads to rewards. Therefore, the GRF tasks are more complicated than
the SMAC battles, and the comparison in GRF is a secondary proof of our method’s effectiveness.

Performance. Figure 9 shows the performance of all methods in GRF. GoMARL, Ft-QMIX, and
QPLEX all perform well in pass_and_shoot_with_keeper. However, the advantages of our
method become increasingly evident in the other two environments requiring more coordination.
Only GoMARL achieves over 50% of the score reward in all scenarios. The superior performance
with significant efficiency in the second testbed further demonstrates the transferability of our method.

Visualization. The trained strategy in counterattack_easy is visualized to validate if the learned
group division makes sense. GoMARL learned a reasonable grouping G = {{a1, a2}, {a3, a4}} for
this complex goal, in which the first group brought the ball into the penalty area through smooth
coordination, while the second group created two shoots and the final goal through skillful cooperation,
as shown in Figure 10. Appendix D provides a detailed discussion of this visualization.

6 Conclusion and Future Work

Grouping is essential to the efficient cooperation of multi-agent systems. Instead of utilizing apriori
knowledge, this paper proposes an automatic grouping mechanism that gradually learns reasonable
grouping as training proceeds. Based on the dynamic group division, we further model informative
group-related signals to achieve fine-grained value factorization and encourage policy specialization,
promoting efficient intra- and inter-group coordination. With these novelties, our method GoMARL
achieves impressive performance with high efficiency on the SMAC and GRF benchmarks.

The automatic grouping mechanism of GoMARL is currently grounded in the value decomposition
process, rendering it inapplicable to policy-based methods. Our future research will delve into
automatic grouping based on policy gradients to enhance the learning efficiency of the policy-based
methods. Furthermore, the current version of GoMARL is only designed for one-stage and one-level
grouping, and it possesses the potential to achieve finer granularity in group division. We will
investigate multi-stage and multi-level grouping (i.e., group-within-a-group) in the future to pursue
better performance and higher learning efficiency in more complex environments.
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Carlos Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, and Sylvain Gelly.
Google research football: A novel reinforcement learning environment. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 34, pages 4501–4510, 2020.

[17] Youngwoon Lee, Jingyun Yang, and Joseph J. Lim. Learning to coordinate manipulation skills
via skill behavior diversification. In International Conference on Learning Representations,
2020.

[18] Kemas M Lhaksmana, Yohei Murakami, and Toru Ishida. Role-based modeling for designing
agent behavior in self-organizing multi-agent systems. International Journal of Software
Engineering and Knowledge Engineering, 28(01):79–96, 2018.

[19] Chenghao Li, Tonghan Wang, Chengjie Wu, Qianchuan Zhao, Jun Yang, and Chongjie Zhang.
Celebrating diversity in shared multi-agent reinforcement learning. In Advances in Neural
Information Processing Systems, volume 34, pages 3991–4002, 2021.

[20] Kathryn Macarthur, Ruben Stranders, Sarvapali Ramchurn, and Nicholas Jennings. A distributed
anytime algorithm for dynamic task allocation in multi-agent systems. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 25, pages 701–706, 2011.

[21] Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and Shimon Whiteson. Maven: Multi-agent
variational exploration. In Advances in Neural Information Processing Systems, volume 32,
pages 7611–7622, 2019.

[22] Frans A. Oliehoek and Christopher Amato. A Concise Introduction to Decentralized POMDPs,
volume 1. Springer, 2016.

[23] Frans A. Oliehoek, Matthijs T.J. Spaan, and Nikos Vlassis. Optimal and approximate q-value
functions for decentralized pomdps. Journal of Artificial Intelligence Research, 32:289–353,
2008.

[24] Thomy Phan, Fabian Ritz, Lenz Belzner, Philipp Altmann, Thomas Gabor, and Claudia Linnhoff-
Popien. Vast: Value function factorization with variable agent sub-teams. In Advances in Neural
Information Processing Systems, volume 34, pages 24018–24032, 2021.

[25] Marc’Aurelio Ranzato, Y-Lan Boureau, and Yann LeCun. Sparse feature learning for deep
belief networks. In Advances in Neural Information Processing Systems, volume 20, pages
1185–1192, 2007.

[26] Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson. Weighted qmix: Expanding
monotonic value function factorisation for deep multi-agent reinforcement learning. In Advances
in Neural Information Processing Systems, volume 33, pages 10199–10210, 2020.

[27] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder de Witt, Gregory Farquhar, Jakob
Foerster, and Shimon Whiteson. Qmix: Monotonic value function factorisation for deep
multi-agent reinforcement learning. In International Conference on Machine Learning, pages
4295–4304. PMLR, 2018.

[28] Stuart J. Russell and Andrew L. Zimdars. Q-decomposition for reinforcement learning agents.
In International Conference on Machine Learning, pages 656–663. PMLR, 2003.

[29] Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas
Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philiph H. S. Torr, Jakob Foerster, and Shimon
Whiteson. The starcraft multi-agent challenge. In International Conference on Autonomous
Agents and Multi-Agent Systems, pages 2186–2188, 2019.

[30] Jeff Schneider, Weng-Keen Wong, Andrew Moore, and Martin Riedmiller. Distributed value
functions. In International Conference on Machine Learning, pages 371–378, 1999.

[31] Christian Schroeder de Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviychuk, Philip H.S.
Torr, Mingfei Sun, and Shimon Whiteson. Is independent learning all you need in the starcraft
multi-agent challenge? arXiv preprint arXiv:2011.09533, 2020.

11



[32] Tianmin Shu and Yuandong Tian. M3rl: Mind-aware multi-agent management reinforcement
learning. In International Conference on Learning Representations, 2019.

[33] Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran:
Learning to factorize with transformation for cooperative multi-agent reinforcement learning.
In International Conference on Machine Learning, pages 5887–5896. PMLR, 2019.

[34] Jianyu Su, Stephen Adams, and Peter Beling. Value-decomposition multi-agent actor-critics. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 11352–11360,
2021.

[35] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi,
Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z. Leibo, Karl Tuyls, and Thore Graepel.
Value-decomposition networks for cooperative multi-agent learning based on team reward. In
International Conference on Autonomous Agents and Multi-Agent Systems, pages 2085–2087,
2018.

[36] Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In Interna-
tional Conference on Machine Learning, pages 330–337, 1993.

[37] Lipeng Wan, Zeyang Liu, Xingyu Chen, Xuguang Lan, and Nanning Zheng. Greedy based value
representation for optimal coordination in multi-agent reinforcement learning. In International
Conference on Machine Learning, pages 22512–22535. PMLR, 2022.

[38] Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling
multi-agent q-learning. In International Conference on Learning Representations, 2021.

[39] Tonghan Wang, Heng Dong, Victor Lesser, and Chongjie Zhang. Roma: Multi-agent reinforce-
ment learning with emergent roles. In International Conference on Machine Learning, pages
9876–9886. PMLR, 2020.

[40] Tonghan Wang, Tarun Gupta, Anuj Mahajan, Bei Peng, Shimon Whiteson, and Chongjie Zhang.
Rode: Learning roles to decompose multi-agent tasks. In International Conference on Learning
Representations, 2021.

[41] Tonghan Wang, Jianhao Wang, Yi Wu, and Chongjie Zhang. Influence-based multi-agent
exploration. In International Conference on Learning Representations, 2019.

[42] Chao Wen, Xinghu Yao, Yuhui Wang, and Xiaoyang Tan. Smix (λ): Enhancing centralized
value functions for cooperative multi-agent reinforcement learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pages 7301–7308, 2020.

[43] G. Wittemyer and Wayne M. Getz. Hierarchical dominance structure and social organization in
african elephants, loxodonta africana. Animal Behaviour, 73(4):671–681, 2007.

[44] Zhao Xu, Yang Lyu, Quan Pan, Jinwen Hu, Chunhui Zhao, and Shuai Liu. Multi-vehicle
flocking control with deep deterministic policy gradient method. In International Conference
on Control and Automation, pages 306–311. IEEE, 2018.

[45] Yaodong Yang, Jianye Hao, Guangyong Chen, Hongyao Tang, Yingfeng Chen, Yujing Hu,
Changjie Fan, and Zhongyu Wei. Q-value path decomposition for deep multiagent reinforcement
learning. In International Conference on Machine Learning, pages 10706–10715. PMLR, 2020.

[46] Yaodong Yang, Jianye Hao, Ben Liao, Kun Shao, Guangyong Chen, Wulong Liu, and Hongyao
Tang. Qatten: A general framework for cooperative multiagent reinforcement learning. arXiv
preprint arXiv:2002.03939, 2020.

[47] Dayong Ye, Minjie Zhang, and Yun Yang. A multi-agent framework for packet routing in
wireless sensor networks. Sensors, 15(5):10026–10047, 2015.

[48] Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu.
The surprising effectiveness of ppo in cooperative multi-agent games. In Advances in Neural
Information Processing Systems, volume 35, pages 24611–24624, 2022.

12



[49] Yifan Zang, Jinmin He, Kai Li, Haobo Fu, Qiang Fu, and Junliang Xing. Sequential cooperative
multi-agent reinforcement learning. In International Conference on Autonomous Agents and
Multi-Agent Systems, pages 485–493, 2023.

[50] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A
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A The Insight of the Group Shifting Scheme

The proposed automatic grouping mechanism dynamically adjusts the group division as the training
proceeds. In the beginning, all agents belong to one group. As introduced in Section 4.1, we examine
the learned wi

1 of each agent every c timesteps to check if the grouping needs adjustment. If there
are agents who contribute little to their group, it indicates that these agents do not belong to their
current group. All these selected agents are assigned to the following group until they appropriately
contribute to where they belong. A new group is built for selected agents in the last group.

The proposed scheme ensures that agents who belong to the same group will not be misassigned
to different groups after training. For the example in the right side of Figure 1, agent ai is first
selected after α1 · c timesteps’ training, and the initial grouping G = {a1, a2, · · · , an} changes to
G′ = {{a1, · · · , ai−1, ai+1, · · · , an}, {ai}}. Subsequently, after another training period, at timestep
α2 · c, two agents aj and ak in the first group are selected simultaneously to be moved out of the
first group. At this point, they are automatically placed in the second group, i.e., the group to which
agent ai belongs, and G′′ = {{A−i,j,k}, {ai, aj , ak}}. Instead of placing aj and ak in a brand new
group, our group shifting scheme ensures that they have the opportunity to train with ai together in
one group, determining if ai, aj , and ak (or two of them) are supposed to be in a group.

Later, agent al in the first group and agent ai, ak in the second group are chosen at timestep α3 · c.
The selection of ai and ak indicates that agent aj cannot cooperate well with them. Therefore, ai
and ak are set in a new group (they should not return to the first group since they have been proved
inappropriate for the first group), while aj stays alone in the second group. Agent al from the first
group is assigned automatically to the second group {aj}. If al is supposed to be with ai and ak, it
will be selected afterward. Because aj fails to form efficient cooperation with {ai, ak}, and if aj also
cannot cooperate well with al, then al will be selected later on and set in the third group {ai, ak}.
The group shifting scheme of GoMARL assigns the selected agents to their following group and
ensures that each group is trained for a fixed period of cooperative attempts. As analyzed above, each
agent can be grouped with appropriate agents that can efficiently work together after training.

B Experiment Details

B.1 Detailed Experimental Setup

We compare all the methods in six Hard and Super Hard StarCraft II micromanagement tasks
(SMAC) [29] and three challenging Google Research Football (GRF) [16] scenarios. When resources
are available, parallel training can facilitate faster convergence of methods [8] and is very common
in RL and MARL communities [39, 45, 11]. GoMARL and all the baseline methods in our paper
are trained with 8 parallel runners for 10M steps in both testbeds. Therefore, the timestep is not
comparable to some papers that conduct experiments with only one “episode" runner. We use one
NVIDIA Titan V GPU for training. We evaluate each method every 10K steps with 32 episodes and
report the 1st, median, and 3rd quartile win rates across 5 random seeds. The detailed setting of
GoMARL’s hyperparameters is shown in our source code1.

Many algorithms introduce implementation tricks when they are built. These code-level optimizations
were studied in depth in [31, 48, 8] and were shown to have a significant impact on algorithm
performance. To ensure fair comparisons, our experiments are based on the PyMARL2 [8] framework
proposed to compare algorithms fairly. Please refer to PyMARL2’s open-source implementation for
further training details and fair comparison settings. In addition, some methods implement specific
parameter tuning in diverse scenarios, and is unfair for comparison. Therefore, we fixed parameters
of all methods for all scenarios in our experiments.

Lastly, adding vanilla-QMIX in our experiments is not intended to unfairly compare GoMARL
and QMIX. After all, GoMARL is already better than the finetuned version of QMIX (denoted as
Ft-QMIX), and there is no need to compare it with vanilla-QMIX to show our superiority. We added
vanilla-QMIX’s learning curves in Figure 5 only to avoid potential misunderstanding caused by the
performance difference between Ft-QMIX in our paper and that of vanilla QMIX in other papers.

1https://github.com/zyfsjycc/GoMARL
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B.2 Detailed Information about SMAC Tasks

In each SMAC micromanagement problem, a group of units controlled by decentralized agents
cooperates to defeat the enemy agent system controlled by handcrafted heuristics. Each agent’s partial
observation comprises the attributes (such as health, location, unit_type) of all units shown
up in its view range. The global state information includes all agents’ positions and health, and
allied units’ last actions and cooldown, which is only available to agents during centralized training.
The agents’ discrete action space consists of attack[enemy_id], move[direction], stop, and
no-op for the dead agents only. A particular unit, Medivac, has no action attack[enemy_id] but
has action heal[enemy_id]. Agents can only attack enemies within their shooting range. Proper
micromanagement requires agents to maximize the damage to the enemies and take as little damage
as possible in combat, so they need to cooperate with each other or even sacrifice themselves. We
follow the default setup of SMAC in our experiments, and more settings, including rewards and
observation information, can be acquired from the original paper [29] or open-source implementation.

Based on the performance of baseline algorithms, the tasks in SMAC are broadly grouped into
three categories: Easy, Hard, and Super Hard. The key to winning some Hard or Super Hard
battles is mastering specific micro techniques, such as focusing fire, kiting, avoiding overkill, et
cetera. The battles can be symmetric or asymmetric, and the group of agents can be homogeneous or
heterogeneous. Here we provide some characteristics of the scenarios to help gain insights into the
good or poor performance of the methods:

• 3s_vs_5z is a Hard asymmetric battle between two homogeneous teams. The allied Stalkers
have to master the kiting technique and disperse in the area to kill the Zealots that chase
them one after another. This map faces the delayed reward problem; however, it is not very
strict about micro-cooperation between agents because of agents’ scattering.

• The asymmetric scenarios 5m_vs_6m and 8m_vs_9m are two Hard maps offering a substan-
tial challenge. The allied agents must learn to focus fire without overkill and to correctly
position themselves with considerable precision to overcome the enemy team with more
agents. The 5m_vs_6m battle is relatively more difficult than 8m_vs_9m due to fewer agents,
so the enemy force with one more agent have a greater advantage.

• corridor is a Super Hard map that needs extensive exploration. Six allied Zealots fight
twenty-four Zerglings on this task. The massive disparity in unit numbers between the
two sides implies that the whole team cannot launch an attack together. The only winning
strategy is to sacrifice a small number of agents who leave the team and attract the attention
of most enemies, and the large force eliminates the rest of the enemies. The surviving agents
then keep repeating the same tactic till the whole team kills all the enemies.

• MMM2 is a representative Super Hard asymmetric battle between two heterogeneous teams
with three kinds of units. One Medivac, two Marauders, and seven Marines have to battle
against a team with one more Marine. Marauder has greater attack damage and health than
Marine but with a longer cooldown. Medivac has no damage but can heal other agents.

• 3s5z_vs_3s6z is a Super Hard map that requires breaking the bottleneck of exploration,
where three Stalkers and five Zealots battle against three Stalkers and six Zealots. This map
requires more cooperation between agents and is the most challenging task in SMAC.

B.3 Detailed Information about GRF Academy Scenarios

Google Research Football (GRF) Academy includes several scenarios which can be commonly
found in football games. Agents need to coordinate timing and positions for organizing offense
to seize fleeting opportunities, and only scoring leads to rewards. Each agent’s partial observation
contains the absolute positions and moving direction of the ego-agent, relative positions and moving
directions of other agents, and the ball. The global state information includes the absolute positions
and directions of all agents and the ball. Agents have a discrete action space of 19, including moving
in eight directions, three kinds of ball pass, two kinds of dribble, two kinds of sprint, shot, sliding,
stop-moving and do-nothing. Proper cooperation requires agents to pass and shoot effectively with a
good direction at proper timing, thus making GRF scenarios much more complicated than SMAC’s.
Other details can be acquired from the original paper [16] or the open-source implementation.
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Figure A11: Method improvement with the proposed SAN in the Super Hard map 3s5z_vs_3s6z.

Here we provide an introduction of the three scenarios we utilized to help gain insights into the good
or poor performance of all the methods in our paper:

• academy_pass_and_shoot_with_keeper includes two of our players trying to score
from the edge of the box. One of our agent is on the side with the ball and next to a defender.
The other agent is at the center, unmarked, and facing the opponent keeper.
• academy_3_vs_1_with_keeper contains three of our agents and two opponent players

(a defender and a keeper). Our agents try to score from the edge of the penalty area. One
stands in the middle, while the others are located on both sides of the area. Initially, the
agent at the center keeps the ball and directly faces the defender.

• academy_counterattack_easy contains four of our agents and two opponent players (a
defender and a keeper). Agents are initialized far from the penalty area and stand evenly in
an arc centered on the goal. The second agent from the top initially keeps the ball and has to
pass it to a teammate at the appropriate time to avoid interception.

C Performance of Methods with and without the Specialized Agent Network

The proposed specialized agent network (SAN) is highly transferable. To further validate its effec-
tiveness, we perform the specialized agent network on other baseline methods in Section 5.1 to see
if they can perform better. ROMA is not included in this study since ROMA’s agent networks are
produced by its learned roles, and the replacement will invalidate the main idea of ROMA. As shown
in Figure 8, our specialized agent networks significantly improve methods’ performance and learning
efficiency in the Super Hard SMAC task 3s5z_vs_3s6z. Compared to agent networks utilizing
the vanilla parameter-sharing mechanism that limits policy diversity, our specialized agent network
adjusts the local utility with the individual group-related information and enables various styles of
behaviors related to the group status, encouraging extensive exploration and accelerating learning.
The complete learning curves are shown in Figure A11.

As Figure A11 illustrates, the performance of all methods is further improved when equipped with
our specialized agent network. Specifically, the learning efficiency of Ft-QMIX is boosted. The
variance of RIIT is markedly reduced, and the win rate is increased by about 10%. The improvement
of VAST is the most obvious; both learning efficiency and win rate are enhanced, and the variance
is very clearly reduced. QPLEX’s improvement is not very obvious; however, it obtains a slightly
higher learning speed and achieves the highest win rate among all the baseline methods.

Most importantly, even equipped with our specialized agent network, all baseline algorithms fail
to surpass GoMARL in terms of learning efficiency and the final win rate. GoMARL with vanilla
agent networks looks much inferior to GoMARL with the specialized agent network, so it is worth
questioning whether the dynamic grouping module is ineffective. The dynamic group learning may
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Figure A12: A visualization of learned policies of academy_counterattack_easy. The yellow
arrows show the motion of the ball, and the red arrow illustrates the scoring shoot.

reduce efficiency to a certain extent in the early stage of training compared to QPLEX, however, in
the middle and late training stages, the learned grouping will have a significant effect when equipped
with the proposed specialized agent network. Therefore, the two modules of GoMARL, the automatic
grouping module and the specialized agent network, are both crucial to the performance of GoMARL.

D Visualizations of the Learned Policies in GRF

The trained strategy in Google Research Football is visualized to validate if the learned grouping
makes sense. In Section 5.2, we visualize a match of academy_counterattack_easy with a more
complex strategy to prove the rationality of the grouping GoMARL learned. Here, we provide a
detailed discussion of the visualization in Figure A12 (a zoom-in version of Figure 10 for clarity).

As shown in Figure A12(a), Agent 2 holds the ball at the beginning and faces an opponent rushing
toward him. Agent 2 passes the ball to Agent 1 to prevent the ball from being stolen. Subsequently,
in (b), Agent 1 carries the ball and tries to break through. However, the opponent goalkeeper blocks
his attacking route, and Agent 1 continues passing after a short carry. Agent 3 makes a good run
and catches the ball smoothly but shoots quickly in Figure A12(c) since the opponent is close. The
goalkeeper easily saves this hasty attack. Agent 4 in (d), who learns excellent coordination with
Agent 3, stops the ball and immediately adds another shot to create the goal.

GoMARL’s automatic grouping module learns a reasonable grouping G = {{a1, a2}, {a3, a4}} for
this complex goal, in which the first group successfully brings the ball into the penalty area through
smooth coordination, while the second group creates the final goal through skillful cooperation.
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