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Abstract

In this paper, we explore the application of Segment
Anything (SAM) foundation models for segmenting
crevasses in Uncrewed Aerial Vehicle (UAV) images
of glaciers. We evaluate the performance of the
SAM and SAM 2 models on ten high-resolution
UAV images from Svalbard, Norway. Each SAM
model has been evaluated in inference mode without
additional fine-tuning. Using both automated and
manual prompting methods, we compare the segmen-
tation quantitatively using Dice Score Coefficient
(DSC) and Intersection over Union (IoU) metrics.
Results show that the SAM 2 Hiera-L model out-
performs other variants, achieving average DSC and
IoU scores of 0.43 and 0.28 respectively with auto-
mated prompting. However, the overall off-the-shelf
performance suggests that further improvements
are still required to enable glaciologists to examine
crevasse patterns and associated physical processes
(e.g. iceberg calving), indicating the need for fur-
ther fine-tuning to address domain shift challenges.
Our results highlight the potential of segmentation
foundation models for specialised remote sensing
applications while also identifying limitations in ap-
plying them to high-resolution UAV images, as well
as ways to enhance further model performance on
out-of-domain glacier imagery, such as few-shot and
weakly supervised learning techniques.

1 Introduction

In recent years, deep learning foundation models that
contain the transformer neural network architecture
have gained significant traction in natural language
processing and computer vision [1, 2]. Notably, large
companies like Meta Facebook AI Research (FAIR)
and Google are contributing to the evolution of deep
learning research by publishing more pre-trained
models open source [3–5]. Convolutional Neural
Networks (CNNs) and the Vision Transformer (ViT)
have advanced the field by providing researchers with
access to many pre-trained models that would oth-
erwise be computationally prohibitive to pre-train
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from scratch on non-commercial computer hardware
[6, 7]. In most cases, pre-training on a larger dataset
in a controlled laboratory with more compute power
and then fine-tuning to a specialist downstream
task usually leads to better performance at a much
cheaper cost [8]. However, foundation models still
face challenges in generalising to specialised image
segmentation applications from the Earth Obser-
vation (EO) and medical image domains because
of the large quantities of labelled data required for
conventional supervised fine-tuning [9, 10]. Gath-
ering and labelling image segmentation data can
be labour-intensive, requires expert approval, and
is costly when acquiring data in the Polar regions
due to their remote locality [11, 12]. Therefore, the
Segment Anything Model (SAM) and the recently
released Segment Anything Model 2 (SAM 2) from
Meta FAIR provide researchers with the first segmen-
tation foundation models [13, 14]. SAM and SAM 2
are pre-trained on large-scale image datasets with
self-supervised learning but their applicability and
performance on more specialist downstream appli-
cations for the segmentation of fractures on glaciers
known as crevasses, is underexplored. This work
explores the performance and generalisability of the
SAM and SAM 2 foundation models when applied to
centimetre resolution UAV images captured over a
fast-flowing glacier in Svalbard using automatic and
manual prompting without additional fine-tuning.
The SAM and SAM 2 image segmentation architec-
ture is included in Figure 1.

1.1 Motivation and Challenges

Melting and retreating glaciers worldwide have gar-
nered significant interest as they directly contribute
to rising sea levels [15]. Climate change and rising
sea levels are causing concern around the world be-
cause of the disruption and devastating effects on
coastal habitats [16]. In this context, understanding
better the controls on glacier mass balance, which
directly measures the amount of ice being lost, will
help scientists analyse glacier dynamics in more de-
tail. In the Arctic, which has been warming four
times faster than anywhere else on the globe since
1979, Svalbard has lost ice cover at a rate of -10.5
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Figure 1. The SAM and SAM 2 architecture that is used for image segmentation. An input UAV image is
included with the output segmentation mask over the top of the image as the output. The binary segmentation
mask and the ground truth have also been included in the diagram.

Gt / yr in the early 21st century [17, 18]. According
to [15] a total of 7563 ± 699 Gt of ice has been lost
from ice sheets between 1992 and 2020.

Crevasses on the surface of glaciers provide the
line of weakness through which icebergs detach from
tidewater glacier termini in a process known as ice-
berg calving [19, 20]. High rates of iceberg calving
lead to glacier mass loss, hence it follows that in-
creased crevassing may lead to further calving and
hence mass loss. Furthermore, crevasses also play
an essential role in regulating ice flow by acting as a
conduit for surface meltwater to reach the bed and
speed up ice flow [19]. However, manually mapping
crevasses with Geographic Information System (GIS)
software is laborious and time-consuming because
of the the high level of skill required to accurately
annotate crevasses. Therefore, automatically an-
notating crevasses using deep learning foundation
models provides a solution to a labour-intensive pro-
cess. However, like other remote sensing applications
such as building or sea ice detection, crevasse seg-
mentation usually involves complex scenes not found
in everyday images, making it harder for algorithms
to segment [21].

Using a foundation model to prompt an image
and output a segmentation mask could help with
starting the crevasse mapping process for a glacier
or provide enough detail to give experts enough
information to discover new findings. Currently, to
date, a segmentation model that requires or does
not require any prompting to segment crevasses to
this standard is not available off the shelf. Therefore,
the deep learning community and glaciologists in
particular, could use the SAM or SAM 2 models built
into an end-to-end user interface system to start the
labelling process for segmentation to reduce labelling
time and the amount of labour required.

The contributions of this paper are summarised
as follows. UAV images that are an optical image
data modality have been compared in performance

using the SAM and SAM 2 foundation models for
image segmentation. The binary segmentation mask
output from the SAM and SAM 2 models have been
compared visually and with evaluation performance
metrics for image segmentation applications. We
also provide suggestions for future work that could
improve the output segmentation results from the
SAM 2 foundation model in the form of few-shot or
weakly supervised learning.

2 Related Work

2.1 Glaciology Deep Learning

In recent years, automated algorithms have been
explored because of how labour-intensive it is to man-
ually map crevasses using GIS software [23]. The
U-Net model was initially used to extract crevasses
from the entire Antarctic Ice Shelf using Mean of An-
gles (MOA) images, demonstrating the use of deep
learning for crevasse extraction [24, 25]. In [26] the
U-Net model was enhanced by pre-processing the
input Sentinel-1 Synthetic Aperture Radar (SAR)
images from Antarctica with the Probabilistic-Patch
Based filter to highlight crevasses in the SAR im-
agery. Further data augmentations were applied to
increase the size of the dataset to train the U-Net
model [26]. A Dice Score Coefficient (DSC) of 0.7602
was achieved with this method. However, the U-
Net model failed to segment crevasses on the glacier
where ridges or raised land passes underneath the
ice, creating curvature on the surface. A further two
models were proposed in [23] to distinguish between
crevasses on Ice Shelves and Ice Sheets from Antarc-
tica with the help of the proposed Parallel-Structure
filter. Two types of crevasses had to be distinguished
with each of the two models because of the angle of
the radar signal often not capturing finer crevasses
that are only a single pixel wide [23]. Therefore,
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(a) Image 1 [22] (b) Ground Truth (c) SAM Mask (d) SAM 2 Mask

(e) Image 3 [22] (f) Ground Truth (g) SAM Mask (h) SAM 2 Mask

Figure 2. Example UAV drone images, segmentation masks, and ground truth masks from the best-performing
images segmented by the SAM and SAM 2 models, respectively, using the mask generator module. The segmentation
mask output for the SAM and SAM 2 models are included for both images.

thinner crevasses were eliminated to allow the over-
all algorithm to concentrate on larger crevasses that
are often involved with glacier calving. The Re-
sUNet model that adds residual connections to a
standard U-Net architecture was proposed by [27]
to further enhance the performance of crevasse iden-
tification where a DSC of 0.771 was achieved over
0.751 when using a standard U-Net architecture. In
[20] MobileViT was used as a lightweight backbone
feature extractor fine-tuned on SAR imagery from
the West Antarctic Ice Sheet (WAIS). The back-
bone ViT was pre-trained on ImageNet-21K and
fine-tuned on ImageNet-1K to increase the size of the
pre-training datasets [28, 29]. Pre-trained backbone
models trained on well-constructed datasets such as
ImageNet as a feature extractor allow deep learning
segmentation models to be adapted using less data
than training the overall model from scratch. A
DSC of 0.840 was achieved, improving the perfor-
mance of Antarctic crevasse detection without any
pre-processing steps for the input images. All of
the above techniques have been applied to Antarc-
tic crevasse segmentation rather than in the Arctic.
The reasons for this are that crevasses in Antarctica
are larger and appear on satellite imagery that is
openly available for machine/deep learning research.
As crevasses in the Arctic are smaller and harder to
detect than in Antarctica, they are more challenging
to segment for computerised algorithms.

2.2 Segment Anything Model (SAM)

The SAM and SAM 2 foundation models released
in 2023 and 2024 respectively by Meta FAIR are
the first foundation models for image and video

segmentation [13, 14]. The SAM models provided
researchers with an open-source foundation model
to use for segmentation applications with prompting.
The main differences between the SAM models are
that the SAM 2 model has smaller, more efficient
ViT backbone models that are based on the Masked
Auto Encoder Hiera (MAE-Hiera) models [30], SAM
2 can be used on image and video data and the over-
all SAM 2 model has been trained on the SA-1B
and SA-V datasets [13, 14]. In total, the SAM 2
model has been trained on one billion patches from
eleven million images from the SA-1B dataset and
35.5 million video frames as image patches from the
SA-V dataset. Overall, this is a total of 1.355 billion
image patches. Therefore, the SAM 2 model is not
only more lightweight in architecture but is the seg-
mentation foundation model that has been trained
on the largest quantity of image data available to
date. However, as SAM models have recorded excel-
lent performance metrics on general AI benchmark
datasets that are in a similar domain to the training
data of the SA-1B and SA-V datasets, it is chal-
lenging to adapt them to complex imagery such as
for EO or medical applications. In [31, 32] SAM
was used to segment glaciological features across
the EO platforms from Sentinel 1, Sentinel 2, and
Planet. A DSC value of 0.44 was achieved with
manual point prompts without any additional fine-
tuning for crevasse segmentation on a Planet optical
image from the Helheim glacier in East Greenland.
Being able to prompt a foundation model to an ac-
curate output prediction for crevasse segmentation
would help overcome data labelling challenges that
are associated with mapping crevasse patterns.
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Metric SAM-B SAM-L SAM-H SAM2-T SAM2-S SAM2-B+ SAM2-L
DCE 0.37 0.36 0.34 0.42 0.40 0.40 0.43
IoU 0.24 0.22 0.21 0.27 0.26 0.26 0.28

Table 1. SAM and SAM 2 mask generator segmentation results (average DSC and IoU scores) of seven SAM
model variants on ten 2D RGB UAV images from the Borebreen glacier. SAM-Base: 93.7M; SAM-Large: 312.3M;
SAM-Huge: 641.1M; SAM2-Tiny: 38.9M; SAM2-Small: 46.0M; SAM2-Base+: 80.8M; SAM2-Large: 224.4M.

Figure 3. DSC and IoU dust line plots for the SAM and SAM 2 results on all seven models for the automatic
mask generator prompt experiments on ten 2D RGB UAV images from the Borebreen glacier.

3 UAV Data

The spatial resolution of satellite imagery is much
coarser compared to those acquired from UAVs, en-
abling mapping of finer scale structures on a glacier
surface [33]. In this study, we used UAV imagery
collected over the highly crevassed glacier terminus
region in Svalbard [22]. The images were extracted
with a variety of crevasse patterns to test the perfor-
mance of the SAM models in a range of conditions.
Structure from Motion (SfM) was used to construct
an orthomosaic of the surveyed region at 10 cm pixel
spacing from images captured on 8th August 2023
[34]. Figure 2 displays an example of the best UAV
images segmented from the SAM and SAM 2 models
that were captured from the Borebreen glacier in
Svalbard, Norway.

The UAV images were captured on 8th August
2023 because Svalbard in the Arctic is in the summer
season. Capturing UAV image data in the summer
months allows for maximum use of 24-hour daylight
conditions in the Arctic as opposed to permanent
darkness in the winter. Permanent darkness would
prevent optical imagery from being captured because
optical image sensors require ultraviolet (UV) rays
from the sun to operate. UAV images are better
in resolution than satellite imagery captured from
space because UAVs fly 20 meters above the ground.
Another limitation when using optical satellite im-
agery from space is that if there is any cloud cover
or snow on the ground, it is captured with the im-
age. Therefore, these limitations are removed by
using UAV optical image data during summer be-
cause they fly below the cloud level, and there is less
snow on the ground in the Arctic. The resolution

at 10 cm per pixel in the UAV images provides a
better resolution than 3 to 10 meters per pixel from
satellite images captured from space. Therefore,
the crevasses are larger in UAV imagery, making
them less challenging to segment for computerised
algorithms.
The UAV images used for the experiments were

cropped from the larger orthomosaic image in the
GIS software package QGIS. The output image crops
were converted from GeoTiff to RGB format and
cropped to a resolution of 1024 x 1024 pixels each
using the RasterIO package available to Python
before modelling. An image resolution of 1024 x
1024 has been used to prevent images from being
interpolated up to a larger resolution that is required
to align with the input dimensions of the SAMmodel.
Therefore, as much information in the image can be
retained to improve the performance of the SAM
model and allow a fairer evaluation against SAM
2. In total, ten images were converted to RGB
format and cropped to allow them to be manually
annotated for segmentation in the Computer Vision
Annotation Tool (CVAT). Each of the ten annotated
images was approved by an expert glaciologist to
ensure proper evaluation of any modelling.

4 Methods

4.1 Mask Generator Experiments

The SAM and SAM 2 model experiments have been
carried out in the same way by using the automated
mask generator and manual point prompt Python
source code provided in the official GitHub reposi-
tory for each model [35, 36]. Using the mask gen-
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Metric SAM-B SAM-L SAM-H SAM2-T SAM2-S SAM2-B+ SAM2-L
DCE 0.09 0.11 0.15 0.11 0.09 0.08 0.08
IoU 0.05 0.06 0.08 0.06 0.05 0.06 0.05

Table 2. SAM and SAM 2 single-mask point-prompt segmentation results (average DSC and IoU scores) of seven
SAM model variants on ten 2D RGB UAV images from the Borebreen glacier. SAM-Base: 93.7M; SAM-Large:
312.3M; SAM-Huge: 641.1M; SAM2-Tiny: 38.9M; SAM2-Small: 46.0M; SAM2-Base+: 80.8M; SAM2-Large:
224.4M.

Metric SAM1-B SAM1-L SAM1-H SAM2-T SAM2-S SAM2-B+ SAM2-L
DCE 0.16 0.21 0.20 0.19 0.18 0.12 0.19
IoU 0.09 0.12 0.12 0.11 0.11 0.07 0.12

Table 3. SAM and SAM 2 best multi-mask point-prompt segmentation results (average DSC and IoU scores)
of seven SAM model variants on ten 2D RGB UAV images from the Borebreen glacier. SAM-Base: 93.7M;
SAM-Large: 312.3M; SAM-Huge: 641.1M; SAM2-Tiny: 38.9M; SAM2-Small: 46.0M; SAM2-Base+: 80.8M;
SAM2-Large: 224.4M.

erator to generate prompts on the UAV images au-
tomatically is a way to prompt the SAM and SAM
2 models without a human placing point or box
prompts on the input image. Therefore, making it
faster to apply prompts to each image tested during
the evaluation of any modelling.
The SAM and SAM 2 models are designed to

segment objects in images [13, 14]. Therefore, as
the ice on the glacier in the foreground is larger
than the crevasses, the ice is prompted by the mask
generator module. The mask generator from SAM
and SAM 2 outputs a binary segmentation mask for
each object in an image as an instance. Therefore,
each segmentation mask for each instance must be
combined into one overall binary segmentation mask
in preparation for evaluation. The crevasses are lo-
cated in the UAV imagery in the background, but
the SAM and SAM 2 models are segmenting the
glacier’s ice in the foreground. Therefore, each seg-
mentation mask output from the model must have
the zero and one pixel values reversed to display the
segmentation of the crevasses on the output mask.
The converted segmentation masks output from the
SAM and SAM 2 models were evaluated visually and
with performance metrics for image segmentation.
The DCE and Intersection over Union (IoU) metrics
have been used because of the imbalance between
the foreground and background pixel classes. There
are more foreground pixels in the UAV imagery than
in the background after the output segmentation
masks have their zero and one values reversed.

4.2 Point Prompt Experiments

Further experiments were run with the SAM and
SAM 2 models by applying a single background and
foreground point prompt to the UAV images from
Borebreen. The manual point prompt experiments
were run using the single-mask and multi-mask set-
tings on both models. The single-mask and multi-
mask binary segmentation results were evaluated

visually and with performance metrics for image
segmentation. For the same pixel class imbalance
reasons as the mask generator module experiments,
the DCE and IoU performance metrics were used.
However, instead of reversing the zero and one pixel
values in each segmentation mask output, the back-
ground (red) and foreground (green) point prompts
were reversed. A single background (red) point
prompt was placed on the glacier’s ice, and a single
foreground (green) point prompt was placed inside
a crevasse in the UAV images evaluated. Placing
the point prompts in this order prompts the SAM
and SAM 2 models to segment the crevasses on the
glacier without needing to reverse the output seg-
mentation mask’s zero and one pixel class values
after modelling.

5 Results & Discussion

5.1 Mask Generator Prompting

After running tests with the SAM and SAM 2 mask
generator modules, the automated prompting perfor-
mance was evaluated on the ten UAV images. Ten
test images have been used because of how labour-
intensive and time-consuming it is to annotate im-
ages and gain expert approval. In the time frame for
writing the paper, all the labelled images for seman-
tic segmentation have been used in the experiments.
However, ten 1024 x 1024 resolution UAV images are
the same as having 160, 256 x 256 images which is a
common resolution used for deep learning computer
vision experiments. The performance evaluation re-
sults are included in Table 1, which show that the
SAM 2 Hiera-L model outperforms the other SAM
models with average DSC and IoU scores of 0.43
and 0.28, respectively. However, when inspecting
the segmentation masks from each model, it was
noticed that both models detected false positives
around the areas of the segmented crevasses. The

5



walls inside some of the crevasses were found to have
pixel values similar to those of the glacier’s surface,
which the SAM models are mistaken for crevasses.
The SAM models were also noted to detect false
negatives because the dark pixel colours inside the
crevasses are the same colour as the sediment that
grows on the glacier surface outside the crevasses.
The SAM 2 Hiera-L model outperformed the SAM
ViT-H model because the visual results display that
they align with the SAM 2 Hiera-L model’s aver-
age DSC and IoU performance metrics in Table 1.
Although the SAM 2 Hiera-L model has a smaller,
more efficient architecture than the SAM ViT-H
model, the results display how the largest SAM 2
model can outperform larger models with more pa-
rameters. The visual segmentation results for the
SAM and SAM 2 model mask generator outputs are
included in Figures A.1. to A.20 in the appendix.

The average DSC and IoU scores were analysed
with a line plot that includes a dust line to display
the average DSC and IoU values and the overall
average DSC and IoU values for the complete range
between models in Figure 3. The line plots were
used to visually display the DSC and IoU model
performance metrics against one another and their
data distributions for the ten UAV images in the
test dataset. The dust line plots show that the SAM
2 Hiera-L performs the best and has a data distri-
bution over a smaller range than the other SAM
models except for image 6. Image 6 is an outlier
because it is very challenging for the SAM models to
segment crevasses because of how small the crevasses
are in the image compared to the other nine images
evaluated. Therefore, all of the performance eval-
uation results and plots indicate that the SAM 2
Hiera-L model performs the best because it has been
trained on the largest pre-training dataset and has
the largest model architecture of the SAM 2 models.

5.2 Point Prompting

After evaluating the performance of the automated
prompting experiments using the SAM and SAM
2 mask generator modules, manual point prompt
experiments were evaluated. The evaluation test re-
sults from the single-mask and the best performing
multi-mask output for each SAM and SAM 2 model
have been presented in Tables 2 and 3 respectively.
Table 2 shows that the SAM ViT-H model outper-
forms the other SAM and SAM 2 models when ap-
plying point prompts in the single-mask mode with
average DCE and IoU values of 0.15 and 0.08. How-
ever, after evaluating the best overall performance
from the three segmentation masks output from the
multi-mask mode for the SAM and SAM 2 models
in Table 3, it was found that the SAM 2 Hiera-L and
SAM ViT-H performs almost on par with the SAM
ViT-L model. The SAM ViT-L performed the best

during multi-mask mode point prompt experiments
with DCE and IoU values of 0.21 and 0.12. The
dust line plots display the reduced DSC and IoU
results over a larger data distribution range for the
single and multi-mask experiments with the SAM
and SAM 2 models over the mask generator results.
The dust line plots are included in Figures A.21 and
A.22 in the appendix. The SAM models generate
confidence scores through a combination of mask
prediction, refinement using attention mechanisms
and the conversion of logits to probabilities using
the sigmoid activation function. Therefore, the con-
fidence scores generated in the multi-mask setting
of the SAM models help guide the model to a bet-
ter output perdition. A better output prediction is
made because three masks are generated and scored
to reflect the model’s certainty about each mask
generated instead of one in the single-mask mode.
Using the multi-mask mode of the SAM models
helps limit the adverse effects on the model from
ambiguity, complex shapes, overlapping objects, and
noisy data. Overall, the manual point prompt ex-
periments with both single-mask and multi-mask
modes set for the SAM and SAM 2 models did not
outperform the segmentation results of the SAM 2
Hiera-L model using the mask generator module’s
automated prompting.

6 Conclusion & Future Work

All of the available SAM and SAM 2 models have
been evaluated on ten UAV images from the Bore-
breen glacier. The SAM 2 Hiera-L model was found
to perform better during the evaluation of this work
for automated prompting experiments than the other
SAM and SAM 2 models. During the automated
prompting experiments, the SAM 2 Hiera-L model
outperformed all SAM and SAM 2 models run with
single and multi-mask point prompt tests. This
displays that foundation models that are the size
of the SAM 2 Hiera-L architecture and trained on
the same quantity of image data has the potential
to be used on challenging out-of-domain images for
EO segmentation applications. However, as the
DSC and IoU performance metrics are lower than
required for glaciology experts to analyse the model
outputs, further fine-tuning techniques are required
to be implemented to increase model performance.
Finetuning is required because of how far out of
the domain the UAV images are from the images in
the SA-1B and SA-V training datasets for the SAM
and SAM 2 foundation models. In future work few-
shot and weakly supervised learning are techniques
that can be used for finetuning to overcome data
shortages and labelling challenges. Depth estima-
tion, image classification and object detection for
crevasses could also be included in future works.
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(a) Borebreen Image 1 [22] (b) Image Under Ground Truth [22] (c) Image Under SAM 2 Output [22]

Figure A.1. Borebreen Image 1 with the ground truth over the image and the SAM 2 model output over the
same image. The background that has been segmented is blue in colour for the ground truth and the SAM 2
model output.

(a) Borebreen Image 2 [22] (b) Image Under Ground Truth [22] (c) Image Under SAM 2 Output [22]

Figure A.2. Borebreen Image 2 with the ground truth over the image and the SAM 2 model output over the
same image. The background that has been segmented is blue in colour for the ground truth and the SAM 2
model output.

(a) Borebreen Image 3 [22] (b) Image Under Ground Truth [22] (c) Image Under SAM 2 Output [22]

Figure A.3. Borebreen Image 3 with the ground truth over the image and the SAM 2 model output over the
same image. The background that has been segmented is blue in colour for the ground truth and the SAM 2
model output.

(a) Borebreen Image 4 [22] (b) Image Under Ground Truth [22] (c) Image Under SAM 2 Output [22]

Figure A.4. Borebreen Image 4 with the ground truth over the image and the SAM 2 model output over the
same image. The background that has been segmented is blue in colour for the ground truth and the SAM 2
model output.
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(a) Borebreen Image 5 [22] (b) Image Under Ground Truth [22] (c) Image Under SAM 2 Output [22]

Figure A.5. Borebreen Image 5 with the ground truth over the image and the SAM 2 model output over the
same image. The background that has been segmented is blue in colour for the ground truth and the SAM 2
model output.

(a) Borebreen Image 6 [22] (b) Image Under Ground Truth [22] (c) Image Under SAM 2 Output [22]

Figure A.6. Borebreen Image 6 with the ground truth over the image and the SAM 2 model output over the
same image. The background that has been segmented is blue in colour for the ground truth and the SAM 2
model output.

(a) Borebreen Image 7 [22] (b) Image Under Ground Truth [22] (c) Image Under SAM 2 Output [22]

Figure A.7. Borebreen Image 7 with the ground truth over the image and the SAM 2 model output over the
same image. The background that has been segmented is blue in colour for the ground truth and the SAM 2
model output.

(a) Borebreen Image 8 [22] (b) Image Under Ground Truth [22] (c) Image Under SAM 2 Output [22]

Figure A.8. Borebreen Image 8 with the ground truth over the image and the SAM 2 model output over the
same image. The background that has been segmented is blue in colour for the ground truth and the SAM 2
model output.
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(a) Borebreen Image 9 [22] (b) Image Under Ground Truth [22] (c) Image Under SAM 2 Output [22]

Figure A.9. Borebreen Image 9 with the ground truth over the image and the SAM 2 model output over the
same image. The background that has been segmented is blue in colour for the ground truth and the SAM 2
model output.

(a) Borebreen Image 10 [22] (b) Image Under Ground Truth [22] (c) Image Under SAM 2 Output [22]

Figure A.10. Borebreen Image 10 with the ground truth over the image and the SAM 2 model output over the
same image. The background that has been segmented is blue in colour for the ground truth and the SAM 2
model output.

(a) Borebreen Image 1 [22] (b) Image Under Ground Truth [22] (c) Image Under SAM Output [22]

Figure A.11. Borebreen Image 1 with the ground truth over the image and the SAM model output over the
same image. The background that has been segmented is blue in colour for the ground truth and the SAM model
output.

(a) Borebreen Image 2 [22] (b) Image Under Ground Truth [22] (c) Image Under SAM Output [22]

Figure A.12. Borebreen Image 2 with the ground truth over the image and the SAM model output over the
same image. The background that has been segmented is blue in colour for the ground truth and the SAM model
output.
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(a) Borebreen Image 3 [22] (b) Image Under Ground Truth [22] (c) Image Under SAM Output [22]

Figure A.13. Borebreen Image 3 with the ground truth over the image and the SAM model output over the
same image. The background that has been segmented is blue in colour for the ground truth and the SAM model
output.

(a) Borebreen Image 4 [22] (b) Image Under Ground Truth [22] (c) Image Under SAM Output [22]

Figure A.14. Borebreen Image 4 with the ground truth over the image and the SAM model output over the
same image. The background that has been segmented is blue in colour for the ground truth and the SAM model
output.

(a) Borebreen Image 5 [22] (b) Image Under Ground Truth [22] (c) Image Under SAM Output [22]

Figure A.15. Borebreen Image 5 with the ground truth over the image and the SAM model output over the
same image. The background that has been segmented is blue in colour for the ground truth and the SAM model
output.

(a) Borebreen Image 6 [22] (b) Image Under Ground Truth [22] (c) Image Under SAM Output [22]

Figure A.16. Borebreen Image 6 with the ground truth over the image and the SAM model output over the
same image. The background that has been segmented is blue in colour for the ground truth and the SAM model
output.
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(a) Borebreen Image 7 [22] (b) Image Under Ground Truth [22] (c) Image Under SAM Output [22]

Figure A.17. Borebreen Image 7 with the ground truth over the image and the SAM model output over the
same image. The background that has been segmented is blue in colour for the ground truth and the SAM model
output.

(a) Borebreen Image 8 [22] (b) Image Under Ground Truth [22] (c) Image Under SAM Output [22]

Figure A.18. Borebreen Image 8 with the ground truth over the image and the SAM model output over the
same image. The background that has been segmented is blue in colour for the ground truth and the SAM model
output.

(a) Borebreen Image 9 [22] (b) Image Under Ground Truth [22] (c) Image Under SAM Output [22]

Figure A.19. Borebreen Image 9 with the ground truth over the image and the SAM model output over the
same image. The background that has been segmented is blue in colour for the ground truth and the SAM model
output.

(a) Borebreen Image 10 [22] (b) Image Under Ground Truth [22] (c) Image Under SAM Output [22]

Figure A.20. Borebreen Image 10 with the ground truth over the image and the SAM model output over the
same image. The background that has been segmented is blue in colour for the ground truth and the SAM model
output.
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Figure A.21. DSC and IoU dust line plots for the SAM and SAM 2 results on all seven models for single-mask
point prompt experiments.

Figure A.22. DSC and IoU dust line plots for the SAM and SAM 2 results on all seven models for multi-mask
point prompt experiments.
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