
Published as a conference paper at ICLR 2024

SEAL: A FRAMEWORK FOR SYSTEMATIC EVALUA-
TION OF REAL-WORLD SUPER-RESOLUTION

Wenlong Zhang1,2, Xiaohui Li2,3, Xiangyu Chen2,4,5, Xiaoyun Zhang3

Yu Qiao2,5, Xiao-Ming Wu1∗, Chao Dong2,5∗
1The HongKong Polytechnic University, 2Shanghai AI Laboratory 3Shanghai Jiao Tong University
4University of Macau 5Shenzhen Institute of Advanced Technology, CAS
wenlong.zhang@connect.polyu.hk, xiao-ming.wu@polyu.edu.hk, chao.dong@siat.ac.cn

ABSTRACT

Real-world Super-Resolution (Real-SR) methods focus on dealing with diverse
real-world images and have attracted increasing attention in recent years. The key
idea is to use a complex and high-order degradation model to mimic real-world
degradations. Although they have achieved impressive results in various scenar-
ios, they are faced with the obstacle of evaluation. Currently, these methods are
only assessed by their average performance on a small set of degradation cases
randomly selected from a large space, which fails to provide a comprehensive
understanding of their overall performance and often yields inconsistent and po-
tentially misleading results. To overcome the limitation in evaluation, we propose
SEAL, a framework for systematic evaluation of real-SR. In particular, we clus-
ter the extensive degradation space to create a set of representative degradation
cases, which serves as a comprehensive test set. Next, we propose a coarse-to-fine
evaluation protocol to measure the distributed and relative performance of real-SR
methods on the test set. The protocol incorporates two new metrics: acceptance
rate (AR) and relative performance ratio (RPR), derived from acceptance and
excellence lines. Under SEAL, we benchmark existing real-SR methods, obtain
new observations and insights into their performance, and develop a new strong
baseline. We consider SEAL as the first step towards creating a comprehensive
real-SR evaluation platform, which can promote the development of real-SR. The
source code is available at https://github.com/XPixelGroup/SEAL

1 INTRODUCTION

Image super-resolution (SR) aims to reconstruct high-resolution (HR) images from their low-
resolution (LR) counterparts. Recent years have witnessed great success in classical SR settings
(i.e., bicubic downsampling) with deep learning techniques (Dong et al., 2014; Zhang et al., 2018b;c;
Ledig et al., 2017; Wang et al., 2018). To further approach real-world applications, a series of “blind”
SR methods have been proposed to deal with complex and unknown degradation kernels (Zhang
et al., 2018a; Gu et al., 2019; Wang et al., 2021a; Luo et al., 2020). Among them, real-SR meth-
ods, such as BSRGAN (Zhang et al., 2021) and RealESRGAN (Wang et al., 2021b), have attracted
increasing attention due to their impressive results in various real-world scenarios.

Different from classical SR that only adopts a simple downsampling kernel, real-SR methods pro-
pose complex degradation models (e.g., a sequence of blurring, resizing and compression opera-
tions) that can represent a much larger degradation space, covering a wide range of real-world cases.
However, they also face a dilemma in evaluation: As the degradation space is vast, how to evaluate
their overall performance? Directly testing on all degradations is obviously infeasible, as there are
numerous degradation combinations in the vast degradation space.

To evaluate the performance of real-SR methods, previous works directly calculate the average per-
formance on a randomly-sampled small-sized test set based on an IQA metric (e.g., PSNR). How-
ever, we find that this evaluation protocol is fatally flawed. Due to the vastness of the degradation
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(b) Results with our framework SEAL.

Figure 1: (a) We compare the average performance of BSRNet and RealESRNet on two real test sets
generated by common practice. There is a significant variance in their performance: the differences
between their average PSNR on the two test sets are -0.23dB and 0.18dB respectively, leading to
contradictory conclusions. (b) BSRNet and RealESRNet assessed under our SEAL framework in a
distributed manner with 100 representative test sets. It shows the former outperforms the latter in
60% cases, providing a comprehensive overview of their performance.

space, a small test set that is selected randomly cannot reliably represent the degradation space
and may cause significant bias and randomness in the evaluation results, as illustrated in Fig. 1.
In addition, the current evaluation strategy is not enough for assessing real-SR methods, as they
typically average quantitative results across all testing samples, which may also lead to misleading
comparison results. For example, one method may outperform another on 60% of the degradation
types, but it may not achieve a higher mean PSNR value for the entire test set (Sec. 5.3). The av-
erage score cannot adequately represent the overall performance and distribution. Furthermore, if
the goal is to improve the average score, we could focus solely on enhancing the performance of
simple cases (e.g., small noise or blur), which, however, would adversely affect difficult ones (e.g.,
complex degradation combinations). This would contradict our main objective. Instead, once we
have achieved satisfactory outcomes in easy cases, we should divert our focus towards challenging
ones to enhance the overall performance. The aforementioned points indicate the need for a new
framework that can comprehensively evaluate the performance of real-SR methods.

In this work, we establish a systematic evaluation framework for real-SR, namely SEAL, which
assesses relative, distributed, and overall performance rather than relying solely on absolute, average,
and misleading evaluation strategy commonly used in current evaluation methods. Our first step is
to use a clustering approach to partition the expansive degradation space to identify representative
degradation cases, which form a comprehensive test set. In the second step, we propose an evaluation
protocol that incorporates two new relative evaluation metrics, namely Acceptance Ratio (AR) and
Relative Performance Ratio (RPR), with the introduction of acceptance and excellence lines. The
AR metric indicates the percentage by which the real-SR method surpasses the acceptance line,
which is a minimum quality benchmark required for the method to be considered satisfactory. The
RPR metric measures the improvement of the real-SR method relative to the distance between the
acceptance and excellence lines. The integration of these metrics intends to provide a more thorough
and detailed evaluation of real-SR methods.

With SEAL, it becomes possible to conduct a comprehensive evaluation of the overall performance
of real-SR methods, as illustrated in Fig. 1. The significance of our work can be summarized as:

• Our relative, distributed evaluation approach serves as a complement to existing evaluation
methods that solely rely on absolute, average performance, addressing their limitations and
providing a valuable alternative perspective for evaluation.

• By employing SEAL, we benchmark existing real-SR models, leading to the discovery of
new observations and valuable insights, which further enables us to develop a new strong
real-SR model.

• The components of our SEAL framework are flexibly customizable, including the cluster-
ing algorithm, acceptance/excellence lines, and evaluation protocol. It can facilitate the
development of appropriate test sets and comparative evaluation metrics for real-SR.
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2 RELATED WORK

Image super-resolution. Since Dong et al. (Dong et al., 2014) first introduced Convolutional Neural
Networks (CNNs) to the Super-Resolution (SR) task, there have been significant advancements in
the field. A variety of techniques have been developed, including residual networks (Kim et al.,
2016), dense connections (Zhang et al., 2018c), channel attention (Zhang et al., 2018b), residual-
in-residual dense blocks (Wang et al., 2018), and transformer structure (Liang et al., 2021a; Chen
et al., 2023b). To reconstruct realistic textures, Generative Adversarial Networks (GANs) (Ledig
et al., 2017; Wang et al., 2018; Zhang et al., 2019; Wenlong et al., 2021) are introduced to SR
approaches for generating visually pleasing results. Although these methods have made significant
progress, they often rely on a simple degradation model (i.e., bicubic downsampling), which may
not adequately recover the low-quality images in real-world scenarios.

Blind super-resolution. Several works have been made to improve the generalization of SR net-
works in real-world scenarios. These works employ multiple degradation factors (e.g., Gaussian
blur, noise, and JPEG compression) to formulate a blind degradation model. SRMD (Zhang et al.,
2018a) employs a single SR network to learn multiple degradations. Kernel estimation-based meth-
ods (Gu et al., 2019; Luo et al., 2020; Bell-Kligler et al., 2019; Wang et al., 2021a) introduce a
kernel estimation network to guide the SR network for the application of the low-quality image with
different kernels. To cover the diverse degradations of real images, BSRGAN (Zhang et al., 2021)
proposes a practical degradation model that includes multiple degradations with a shuffled strategy.
RealESRGAN (Wang et al., 2021b) introduces a high-order strategy to construct a large degradation
model. These works demonstrate the potential of blind SR in real-world applications.

Model evaluation for super-resolution. For non-blind SR model evaluation, a relatively standard
process employs the fixed bicubic down-sampling on the benchmark test datasets to generate low-
quality images. However, it is typically implemented using a predefined approach (e.g., uniform
sampling) for blind SR, such as the general Gaussian blur kernels (Zhang et al., 2018a; Liang et al.,
2021c), Gaussian8 kernels (Gu et al., 2019), and five spatially variant kernel types (Liang et al.,
2021b). For real-SR, existing methods often add random degradations to DIV2K val (includes 100
Ground-Truth images) to construct the real test set, such as DIV2K4D in BSRGAN (Zhang et al.,
2021) and DIV2K val with three Levels in DASR (Liang et al., 2022). However, these methods use
small test sets with average performance, making it difficult to evaluate overall performance across
different degradation combinations in real-world scenarios.

3 DEGRADATION SPACE MODELING

3.1 GENERATING THE DEGRADATION SPACE

In real-SR, the degradation process (Wang et al., 2021b) can be simulated by

ILR = (ds ◦ · · · ◦ d2 ◦ d1)(IHR), (1)

where s is the number of degradations applied on a high-resolution image IHR, and di (1 ≤ i ≤ s)
represents a randomly selected degradation. Assume there are only s degradation types (e.g., blur,
resize, noise, and compression), and each type contains only k discrete degradation levels. The total
degradation should be As

s × ks. With s = 10 and k = 10, it will generate a degradation space
of magnitude (A10

10) ∗ 1010, which is already an astronomical figure. Clearly, randomly sampling a
limited number of degradations (e.g., 100 in existing works (Zhang et al., 2021)) from such a huge
space cannot adequately represent the entire space, which will inevitably result in inconsistent and
potentially misleading outcomes, as illustrated in Fig. 1.

3.2 REPRESENTING THE DEGRADATION SPACE

To represent the degradation space D, a straightforward way is to divide the space by degradation
parameters, which may seem reasonable at first glance. However, we observe that different com-
binations of degradation types may have similar visual quality and restoration difficulty. As shown
in Fig. 13 of the Appendix, the images undergone different degradations have similar appearances.
This suggests that it might be more reasonable to distinguish the degraded images with their low-
level features instead of degradation parameters.
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Figure 2: Our proposed evaluation framework consists of a clustering-based approach for degra-
dation space modeling (Sec. 3) and a set of metrics based on representative degradation cases
(Sec. 4). We divide the degradation space into K clusters and use the degradation parameters
of the class centers to create K training datasets to train K tiny/large SR models as the accep-
tance/excellence line. The distributed performance (Eq. 4) of the real-SR model across the K test
datasets will be compared with the acceptance and excellence lines and evaluated by a set of metrics.

Therefore, we propose to find prototypical degradation cases to represent the vast degradation space.
As shown in Fig. 2, a plausible solution is to cluster the degradation space by grouping the degraded
images into K groups and choose the K group centers as the representative cases:

D = {c1, c2, · · · , cK}, (2)

where ci(1 ≤ i ≤ K) is the center of the i-th group. Note that the images can be represented by
their features (e.g., image histograms) and clustered by a conventional clustering algorithm such as
spectral clustering.

3.3 EVALUATING REAL-SR MODELS USING THE REPRESENTATIVE DEGRADATION CASES

We then use the degradation parameters of the cluster centers ci to construct a test set for systematic
evaluation, denoted as the SE test set:

Dtest = {Dc1 ,Dc2 , · · · ,DcK}, (3)

where Dci(1 ≤ i ≤ K) is a set of low-quality images obtained by using the degradation parameters
of ci on a set of clean images (e.g., DIV2K dataset). Dci can be used to evaluate the distributional
performance of a real-SR model on a representative degradation case. Dtest can be used to provide a
full picture of the performance on all representative degradation cases.

4 EVALUATION METRICS

To provide a comprehensive and systematic overview of the performance of a real-SR model on
Dtest, we develop a set of evaluation metrics to assess its effectiveness in a quantitative manner.

Distributed Absolute Performance. The most straightforward way to evaluate a real-SR model is
to compute its distributed performance on Dtest:

Qd = {Qd
1, Q

d
2, · · · , Qd

K}, Qd
ave =

1

K

∑
i

Qd
i , (4)

where Qd
i represents the average absolute performance of a real-SR model on the i-th representative

test set Di, and Qd
ave denotes the average absolute performance on Dtest.

Distributed Relative Performance. To comparatively evaluate a real-SR model and pinpoint the
representative cases where its performance is deemed inadequate, we specify an acceptance line and
an excellence line. The acceptance line is designated by a small network (e.g., FSRCNN (Dong
et al., 2016)), while the excellence line is provided by a large network (e.g., SRResNet (Ledig et al.,
2017)). If the real-SR model is unable to surpass the small network on a representative case, it
is considered failed on that case. We use Qac and Qex to represent the acceptance line and the
excellence line:
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Qac = {Qac
1 , Q

ac
2 , · · · , Qac

K}, Qex = {Qex
1 , Q

ex
2 , · · · , Qex

K}, (5)

where Qac
i and Qex

i are the performance of the small and large networks trained with the degradation
parameters of ci in a non-blind manner.

Acceptance Rate (AR) measures the percentage of acceptable cases among all K representative
degradation cases for a real-SR model. An acceptable case is one in which the performance of a
real-SR model surpasses the acceptance line. AR is defined as

AR =
1

K

∑
i

I(Qd
i > Qac

i ), (6)

where I represents the indicator function. AR can reflect the overall generalization ability of a
real-SR model.

Relative Performance Ratio (RPR) is devised to compare the performance of real-SR models at
the same scale w.r.t. the acceptance and excellence lines. It is defined as

RPRi = σ

(
Qd

i −Qac
i

Qex
i −Qac

i

)
, and R = {RPR1, RPR2, · · · , RPRK}, (7)

where σ denotes the sigmoid function, which is used to map the value to (0, 1). Note that RPRi >
σ(0) = 0.5 indicates that the real-SR model is better than the acceptance line on the i-th degradation
case, and RPRi > σ(1) = 0.73 means it is better than the excellence line.

a) Interquartile range of RPR (RPRI ) is used to access the level of variance in the performances
of a real-SR model on Dtest. It is defined as:

RPRI = RW3
−RW1

, (8)

where RW3
and RW1

denote the 75th and 25th percentiles (Wan et al., 2014) of the RPR scores,
respectively. Low RPRI means the real-SR model demonstrates a similar relative improvement in
most degradation cases.

b) Average RPR on acceptable cases (RPRA) computes the mean of RPR scores on acceptable
cases:

RPRA =
1

|RA|
∑

Ri∈RA

Ri, RA = {Ri ∈ R|Ri ≥ 0.5}. (9)

Note that RPRA ∈ (0.5, 1), and RPRA > 0.73 means the average performance of a real-SR model
on acceptable cases exceeds the excellence line.

c) Average RPR on unacceptable cases (RPRU ) computes the mean of RPR scores on unac-
ceptable cases:

RPRU =
1

|RU |
∑

Ri∈RU

Ri, RU = {Ri ∈ R|Ri < 0.5}. (10)

Note that RPRU ∈ (0, 0.5), and RPRA near 0.5 means the average performance of a real-SR
model on unacceptable cases is close to the acceptance line.

Coarse-to-fine Evaluation Protocol. Based on the proposed metrics, we develop a coarse-to-
fine evaluation protocol to rank different real-SR models. As illustrated in Fig. 3, the models are
compared by the proposed metrics sequentially by order of priority. AR represents a coarse-grained
comparison, while RPR provides a fine-grained comparison. If their performances are too close to
the current metric, the next metric is used to rank them.

Real-SR Models !" "#"! "#"" "#"#
Coarse-grained comparison Fine-grained comparison

Figure 3: A coarse-to-fine evaluation protocol to rank real-SR models with the proposed metrics.
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Figure 4: Visualization of distributed
performance in PSNR for MSE-based
real-SR methods on Set14-SE.

Table 1: Benchmark results and ranking of MSE-based
real-SR methods in PSNR by our proposed SEAL. The
subscript denotes the rank order. × means the model fails
in a majority of degradation cases.

Models PSNR AR ↑ RPRI ↓ RPRA ↑ RPRU ↑ Rank

SRResNet 20.95 0.00(×) 0.02 0.00 0.03 ×
DASR 21.08 0.00(×) 0.01 0.00 0.02 ×
BSRNet 22.77(2) 0.59(1) 0.42(4) 0.72(2) 0.27(4) 1
RealESRNet 22.67(3) 0.27(4) 0.28(2) 0.63(3) 0.28(3) 4
RDSR 22.44(5) 0.08(×) 0.23 0.63 0.21 ×
RealESRNet-GD 22.82(1) 0.43(2) 0.37(3) 0.74(1) 0.33(1) 2
SwinIR 22.61(4) 0.41(3) 0.24(1) 0.58(4) 0.29(2) 3

Input RDSR RealESNet SwinIR FSRCNN RealESRNet-GD SRResNet BSRNet
PSNR (dB) 22.55 22.73 23.04 23.05 23.31 23.52 23.66

Input RealESRNet SwinIR FSRCNN RDSR BSRNet RealESRNet-GD SRResNet
PSNR (dB) 23.06 23.52 23.65 23.68 23.70 23.96 24.20

Figure 5: Visual results of MSE-based real-SR methods with the acceptance line FSRCNN and
excellence line SRResNet. It is best viewed in color.

5 EXPERIMENTS

5.1 IMPLEMENTATION

Constructing the test set for systematic evaluation. We utilize two widely-used degradation mod-
els, BSRGAN (Zhang et al., 2021) and RealESRGAN (Wang et al., 2021b), which are designed to
simulate the real-world image space. By combining the two degradation models with equal prob-
ability [0.5, 0.5], we generate a dataset of 1 × 104 low-quality images from the ground-truth (GT)
image, lenna, from the Set14 dataset (Zeyde et al., 2010). To categorize the degraded images, we
employ spectral clustering due to its effectiveness in identifying clusters of arbitrary shape, making it
a flexible choice for our purposes. Specifically, we first use the histogram feature (Tang et al., 2011;
Ye & Doermann, 2012) with 768 values (bins) to represent the degraded image. Then, we compute
the pairwise similarities of all degraded images. Next, we implement spectral clustering based on
the computed similarity matrix to generate 100 cluster centers. The degradation parameters of the
cluster centers are then utilized to generate the distributional test set Dtest. We take Set14 (Zeyde
et al., 2010) and DIV2K val (Lim et al., 2017) to construct the test sets for systematic evaluation,
denoted as Set14-SE and DIV2K val-SE, respectively.

Establishing the acceptance and excellence lines. We use the 100 representative degradation
parameters to synthesize 100 training datasets based on DIV2K. In the case of MSE-based real-
SR methods, we utilize a variant of FSRCNN (Dong et al., 2016), referred to as FSRCNN-mz, to
train a collection of 100 non-blind SR models, which serve as acceptance line. Concurrently, we
employ SRResNet (Ledig et al., 2017), following an identical procedure, as the excellence line 1.
The models within the model zoo are initially pre-trained under the real-SR setting. Subsequently,
they undergo a fine-tuning process consisting of a total of 2 × 105 iterations. The Adam (Kingma
& Ba, 2014) optimizer with β1 = 0.9 and β2 = 0.99 is used for training. The initial learning rate is
2×10−4. We adopt L1 loss to optimize the networks. Regarding GAN-based SR methods, we adopt
the widely recognized RealESRGAN (Wang et al., 2021b) as our acceptance line. Concurrently, we
consider the state-of-the-art RealHATGAN (Chen et al., 2023b;a) as our excellence line. We utilize
the officially released models for our experiments.

1Both the two lines and the distributed test set will be released.
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Figure 6: Visualization of distributed
performance in LPIPS for GAN-based
real-SR methods on Set14-SE.

Table 2: Benchmark results and ranking of GAN-based
real-SR methods in LPIPS by our proposed SEAL. The
subscript denotes the rank order. × means the model fails
in a majority of degradation cases.

Models LPIPS ↓ AR ↑ RPRI ↓ RPRA ↑ RPRU ↑ Rank

ESRGAN 0.6224(6) 0.00(×) 0.01 0.00 0.03 ×
RealSRGAN 0.5172(5) 0.01(×) 0.10 0.53 0.14 ×
DASR 0.5230(4) 0.02(×) 0.13 0.61 0.12 ×
BSRGAN 0.4810(3) 0.44(3) 0.40(3) 0.72(1) 0.28(3) 3
MMRealSR 0.4770(2) 0.80(2) 0.08(1) 0.57(3) 0.41(1) 1
SwinIR 0.4656(1) 0.81(1) 0.24(2) 0.71(2) 0.31(2) 2

Input RealSRGAN BSRGAN DASR RealESRGAN SwinIR MMRealSR RealHATGAN
LPIPS 0.474 0.449 0.440 0.428 0.416 0.384 0.530

Input RealSRGAN DASR BSRGAN RealESRGAN MMRealSR SwinIR RealHATGAN
LPIPS 0.507 0.495 0.471 0.470 0.461 0.456 0.439

Figure 7: Visual results of GAN-based real-SR methods with the acceptance line RealESRGAN
and excellence line RealHATGAN. It is best viewed in color.

5.2 BENCHMARKING EXISTING MSE-BASED AND GAN-BASED REAL-SR METHODS

We utilize the proposed SEAL to evaluate the performance of existing MSE-based real-SR methods,
including DASR (Wang et al., 2021a), BSRNet (Zhang et al., 2021), SwinIR (Liang et al., 2021a),
RealESRNet (Wang et al., 2021b), RDSR (Kong et al., 2022), and RealESRNet-GD (Zhang et al.,
2022). Furthermore, we benchmark GAN-based real-SR methods such as ESRGAN (Wang et al.,
2018), DASR (Liang et al., 2022), BSRGAN (Zhang et al., 2021), MMRealSR (Mou et al., 2022),
SwinIR (Liang et al., 2021a). We also modify SRGAN (Ledig et al., 2017) to achieve RealSRGAN
under the RealESRGAN training setting.

The visualization of the distributed performance offers a comprehensive insight into real-SR
performance. Fig. 4 illustrates the distribution performance for MSE-based real-SR methods, using
PSNR as the IQA metric. On the other hand, Fig. 6 depicts the distribution performance for GAN-
based real-SR methods, with LPIPS as the metric. Both visualizations are generated using our
proposed SE test set. The SE test sets are arranged in ascending order based on the PSNR values
of the acceptance line output. Test sets with lower numbers represent more challenging cases. It’s
noticeable that there are a few degradation cases that fall significantly below the acceptance line
in Fig. 4. Interestingly, real-SR methods seem to perform better on more challenging degradation
cases. This is evident in test datasets 0-20 in Fig. 4 and 80-100 in Fig. 6.

The coarse-to-fine evaluation protocol offers a systematic ranking. In Tab. 1 and Tab. 2, the real-
SR models with AR below 0.25 are excluded from the ranking due to their low acceptance rates. For
the real-SR models with AR > 0.25, a step-by-step ranking is performed based on {AR, RRPI ,
RPRA, RPRU}, with thresholds {0.02, 0.02, 0.05, 0.05} respectively. If the difference in the cur-
rent metric exceeds the threshold, the metric is used to represent the overall ranking. Otherwise,
the next metric is considered. From our proposed SEAL evaluation, we can make several observa-
tions: (1) Some existing methods fail on the majority of degradation cases. The AR values of
some existing methods are below 0.5, as shown in Tab. 1 and Tab. 2. For instance, most MSE-based
real-SR models can not even outperform the small network (i.e., FSRCNN-mz) in most degrada-
tion cases. (2) Our SEAL is capable of ranking existing methods across various dimensions,
such as robustness, denoted by RPRI and performance bound indicated by RPRA. In Tab. 2,
the metric learning based MMRealSR achieves significant robustness (RPRI 0.08) compared with
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the transformer-based SwinIR (RPRI 0.24). Therefore, under our current coarse-to-fine evaluation
protocol, MMRealSR is ranked in the first place. Interestingly, we observed that SwinIR achieves
a higher RPRA at the same AR level. If the user prioritizes the performance of acceptance cases,
SwinIR would be a better choice. Consequently, we can also flexibly set RPRA as the first finer
metric. In this way, SwinIR would take the first place. (3) The acceptance line serves as a useful
reference line for visual comparison. Visual results are presented in Fig. 5 and Fig. 7. It’s evi-
dent that the visual results of the acceptance line can serve as a basic need for image quality, while
the visual results of the excellence line represent the upper bound of image quality under the cur-
rent evaluation protocol. The visuals below the acceptance line clearly exhibit unacceptable visual
effects, including blurring (as seen in the crocodile results of RealSRGAN and DASR in Fig. 7),
over-sharpening (as seen in the text results of RealESRNet in Fig. 5), and other artifacts. Notably,
our SEAL can flexibly use new reference lines for future needs.

5.3 COMPARISON WITH THE CONVENTIONAL EVALUATION

Here, we compare our SEAL with the conventional strategy (Zhang et al., 2021; Liang et al., 2022)
used for evaluating real-SR models.

Randomly generated multiple synthetic test sets fail to establish a clear ranking with distinct
differences. We randomly sample 100 degradation cases and add them to Set14 to obtain 100 test
sets (Set14-Random). Tab. 3 shows that 1) the mean and standard deviations (std) of PSNR obtained
on the two Set14-Random100 datasets show significant inconsistency, demonstrating the presence
of high randomness and variability in the sampled degradation cases. 2) On our Set14-SE (formed
with the 100 representative cases), the means and stds of the compared methods are very close,
making it hard to establish a clear ranking with distinct differences among the methods. In contrast,
our SEAL offers a definitive ranking of these methods based on their AR scores, offering a new
systematic evaluation view.

Table 3: Comparison with multiple synthetic test sets on mean and standard deviations.

Set14-Random100 (#1) Set14-Random100 (#2) Set14-SE
PSNR ↑ mean ↑ std ↓ mean ↑ std ↓ mean std AR ↑ RPRI ↓ RPRA ↑ RPRU ↑ rank

BSRNet 23.39(3) 1.56(2) 22.98(1) 1.64(1) 22.77(2) 1.65(1) 0.59(1) 0.42(4) 0.72(2) 0.27(4) 1
RealESRNet-GD 23.72(1) 1.64(4) 22.98(1) 1.95(4) 22.82(1) 1.83(4) 0.43(2) 0.37(3) 0.74(1) 0.33(1) 2

SwinIR 23.25(4) 1.62(3) 22.79(4) 1.69(2) 22.61(4) 1.69(2) 0.41(3) 0.24(1) 0.58(4) 0.29(2) 3
RealESRNet 23.54(2) 1.55(1) 22.80(3) 1.83(3) 22.67(3) 1.73(3) 0.27(4) 0.28(2) 0.63(3) 0.28(3) 4

The utilization of a randomly generated synthetic test set may lead to misleading outcomes.
Following Zhang et al. (2021); Liang et al. (2022), we randomly add degradations to images in the
DIV2K (Agustsson & Timofte, 2017) validation set to construct a single real-DIV2K val set. Tab. 4
shows that RealESRNet achieves a higher average PSNR than BSRNet (24.93dB vs. 24.77dB) on
real-DIV2K val, leading to the misleading impression that RealESRNet is superior than BSRNet.
However, our SEAL framework leads to a contrary conclusion. BSRNet obtains much higher PSNR
(24.74dB vs. 24.43dB) and AR value (0.55 vs. 0.15) than RealESRNet on our DIV2K val-SE,
illustrating that the former outperforms the latter in most representative degradation cases.

Table 4: Comparison with the single synthetic test set. Under our SEAL framework, BSRNet is
ranked first, contrary to the results obtained by the conventional method. PSNR-SE (Eq. 4) denotes
the average PSNR on our DIV2K val-SE.

PSNR Rank PSNR-SE AR ↑ RPRI ↓ RPRA ↑ RPRU ↑ Rank (ours)

BSRNet 24.77 2 24.74 0.55(1) 0.36 0.65 0.26 1
RealESRNet 24.93 1 24.43 0.15(2) 0.33 0.59 0.18 2

5.4 ABLATION STUDIES AND ANALYSIS

In this section, we first conduct ablation studies on several factors that affect spectral clustering,
including the number of sampled degradations, similarity metrics, and the number of clusters. Then,
we study the stability of degradation clustering for real-SR evaluation.
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Figure 8: Effect of the number of clusters on
RPR value of Set14-SE.

Figure 9: Effect of the dataset used for clus-
tering on average PSNR of Set14-SE.

Number of sampled degradations. To assess the effect of the number of sampled degradations, we
randomly generate four datasets, each containing 500, 1000, 5000, and 10000 degradation samples,
respectively. We compute the variance of the similarity matrices for each of these datasets, which
are 8.32, 8.45, 8.68, and 8.71, respectively. The observation indicates that the change in variance
is not significant when the number of samples increases from 5000 to 10000. This observation
suggests that a sample size of 5000 random degradations sufficiently represents the degradation
space. However, to ensure the highest possible accuracy in our results, we opted to use 10000
degradation samples for the clustering process.

Table 5: The purity accuracy of the cluster-
ing results with different similarity metrics on
Blur100, Noise100, and BN100 datasets.

Range K MSE SSIM Histogram

Blur100 0.1 - 4 4 78.2% 78.2% 80.2%
Noise100 1 - 40 4 39.6% 34.6% 80.2%

Blur100 + Noise100 - 8 51.7% 58.2% 80.5%

Choice of similarity metric. We compare differ-
ent metrics that are used to compute the similarity
matrix for degradation clustering, including MSE,
SSIM, and histogram similarity. In Tab. 5, the pu-
rity accuracy of the clustering results using MSE
or SSIM is significantly lower than that with his-
togram similarity, especially when noise is consid-
ered. Thus, we adopt histogram similarity as the
similarity metric.

Choice of the number of clusters. Our goal is to
generate as many representative classes as possible while maintaining the clustering quality so that
the class centers can serve as representative cases. The results in Fig. 8 show the performance of
RealESRNet and BSRNet becomes stable as k approaches 100, with minimal variations observed
for k = 60, 80, 100. Therefore, to achieve a more comprehensive assessment and strike a balance
between clustering quality and time cost, we set k = 100 without further increasing its value. In
the appendix, we have included the quantitative results of the silhouette score (Rousseeuw, 1987), a
metric commonly employed to evaluate the quality of clusters.

Stability of degradation clustering for real-SR evaluation. In Fig. 9, we study the stability of
degradation clustering by using different images as a reference for evaluation. Beyond the Lenna
image, our study incorporated four additional images—specifically, Baboon, Barbara, Flowers, and
Zebra—from the Set14 dataset. These images were employed as Ground Truth images in the con-
struction of the clustering dataset, adhering to the same degradation clustering process. Despite
using different reference images, our results show that the average PSNR of BSRNet is consistently
higher than that of RealESRNet by more than 0.1dB, indicating that our degradation clustering
method exhibits excellent stability for real-SR evaluation.

6 CONCLUSIONS

In this work, we have developed a new evaluation framework for a fair and comprehensive evaluation
of real-SR models. We first use a clustering-based approach to model a large degradation space
and design two new evaluation metrics, AR and RPR, to comparatively assess real-SR models on
representative degradation cases. Then, we benchmark existing real-SR methods with the proposed
evaluation protocol and present new observations and insights. Finally, extensive ablation studies
are conducted on the degradation clustering. We have demonstrated the effectiveness and generality
of SEAL via extensive experiments and analysis.
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A ADAPTABILITY OF OUR SEAL FRAMEWORK

We contend that the components of our SEAL framework are highly adaptable to user preferences.
For instance, users have the option to choose a different reference line to visualize distributed per-
formance, reorganize the SE test sets into new groups, and utilize any IQA metrics for evaluation.

A.1 INCORPORATING NEW IQA METRICS

To illustrate the adaptability of our SEAL framework, we have opted for SSIM as the IQA metric
to perform a comprehensive evaluation of real-SR methods. As depicted in Tab. 6, RealESRNet
surpasses other methods in terms of AR, an outcome that can be credited to the use of sharpened
Ground-Truth images. It is significant that RealESRNet and SwinIR exhibit remarkable stability, as
evidenced by their RPRI values. Furthermore, our findings indicate that SwinIR attains the highest
RPRA value, implying that transformer-based networks favor acceptance degradation cases. As
evidenced by these observations, our proposed evaluation framework displays considerable adapt-
ability. It accommodates various IQA metrics to systematically evaluate real-SR methods from
diverse angles, such as reconstruction capability (PSNR) and structural similarity (SSIM).

Table 6: Results and ranking of different methods in SSIM by our SEAL framework. The subscript
denotes the rank order. × represents a failed SR model in a large degradation space.

Set14-SE AR ↑ RPRI ↓ RPRA ↑ RPRU ↑ Rank

SRResNet 0.00(×) 0.04 0.00 0.04 ×
DASR 0.00(×) 0.03 0.00 0.04 ×
BSRNet 0.76(3) 0.27(5) 0.70(2) 0.36(4) 3
RealESRNet 0.91(1) 0.16(1) 0.67(3) 0.43(1) 1
RDSR 0.32(5) 0.22(3) 0.59(5) 0.33(5) 5
RealESRNet-GD 0.69(4) 0.26(4) 0.67(3) 0.39(2) 4
SwinIR 0.84(2) 0.17(2) 0.72(1) 0.38(3) 2

A.2 USING MULTIPLE REFERENCE IMAGES FOR DEGRADATION CLUSTERING

To illustrate the adaptability of the component in our SEAL framework, we have incorporated a new
experiment by utilizing the 5 reference images in Figure 9 for degradation clustering. To accomplish
this, we computed the average of the similarity matrices induced by these images. We used the newly
identified representative degradation cases to rank GAN-based methods and provided the results
in Tab. 7. Notably, we have observed that this adjustment has led to a more conclusive ranking
compared to the results obtained when using a single image (Tab. 2). In Tab. 2, we observed that
SwinIR and MMRealSR had a very close difference of only 0.01 in the AR metric. Consequently,
their ranks needed to be determined using finer metrics such as RPRI . However, in Table 7, we
found that SwinIR (AR: 0.86) and MMRealSR (AR: 0.75) could be easily ranked based on the
AR metric alone. This suggests that the degradation cases identified by combining the 5 images
may indeed be more representative. It also emphasizes the potential benefits of applying enhanced
clustering algorithms, which can further enhance the stability and representativeness of our SEAL
framework.

Table 7: Benchmark results and ranking of GAN-based real-SR methods in LPIPS by our proposed
SEAL with five reference images. The subscript denotes the rank order. × means the model fails in
a majority of degradation cases.

Models LPIPS-SE ↓ AR ↑ RPRI ↓ RPRA ↑ RPRU ↑ Rank

ESRGAN 0.6152(6) 0.01(×) 0.01 0.73 0.03 ×
RealSRGAN 0.5180(5) 0.02(×) 0.16 0.55 0.15 ×
DASR 0.5228(4) 0.04(×) 0.13 0.59 0.13 ×
BSRGAN 0.4809(3) 0.52(3) 0.33(3) 0.69(2) 0.29(2) 3
MMRealSR 0.4777(2) 0.75(2) 0.10(1) 0.59(3) 0.41(1) 2
SwinIR 0.4672(1) 0.86(1) 0.19(2) 0.71(1) 0.28(3) 1
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A.3 USER-CUSTOMIZED SE TEST SETS

In order to accommodate varying user preferences, such as the analysis of the quantitative perfor-
mance of IQA metrics, the SE test sets are organized in ascending order based on the PSNR values
of the FSRCNN-mz output. These sets are then partitioned into five groups of equal size. Group
1 encompasses the most challenging cases, while Group 5 includes the least challenging ones. As
shown in Table 8, the average RPR value of BSRNet closely matches that of RealESRNet-GD. How-
ever, there is a variation in their performance across different groups. RealESRNet-GD outperforms
in groups {3, 4, 5}, whereas BSRNet takes the lead in groups {1, 2}.

Table 8: RPR value of different methods on Set14-SE in PSNR. Blue: better than FSRCNN-mz.

Model SRResNet DASR BSRNet RealESRNet RDSR RealESRNet-GD SwinIR

Group 1 0.03 0.03 0.64 0.37 0.26 0.34 0.48
Group 2 0.02 0.02 0.60 0.37 0.21 0.45 0.43
Group 3 0.07 0.07 0.51 0.42 0.31 0.57 0.40
Group 4 0.02 0.01 0.37 0.40 0.29 0.68 0.27
Group 5 0.03 0.03 0.44 0.36 0.17 0.55 0.36

Average 0.03 0.03 0.51 0.38 0.25 0.52 0.39

0 25 50 75 100
Test dataset

20

22

24

PS
N

R
 (d

B
)

FSRCNN-mz - 0.4M
(train/test time: 167h/10.7s)
SRResNet-mz - 1.5M
(train/test time: 183h/15.6s)
RRDBNet-mz - 16.7M
(train/test time: 1008h/81.9s)

Figure 10: Comparison of network structures for the acceptance and excellence lines.

A.4 EXTENSION ON ACCEPTANCE LINE AND EXCELLENCE LINE.

For the acceptance line, we hope it can represent an acceptable lower bound of performance with
good discrimination for different models. Concretely, the acceptance line cannot be so high that AR
of most methods cannot exceed 0, nor can it be so low that AR can easily reach 1.0. FSRCNN (Dong
et al., 2016) is a small network (0.4M Params.) while it can distinguish the performance difference
well, as shown in Tab. 1. Therefore, we choose FSRCNN-mz as the acceptance line.

For the excellence line, we compare the networks of SRResNet (Ledig et al., 2017) (1.5M Params.)
and RRDBNet (Wang et al., 2018) (16.7M Params.). In Fig. 10, we observe that SRResNet-mz and
FSRCNN-mz can already distinguish the performance difference. Although RRDBNet-mz exhibits
a slight performance improvement, it comes at the expense of increased training and testing time, far
surpassing those of other models. Considering the trade-off between performance and time costs,
we choose SRResNet-mz as the excellence line. Nonetheless, we emphasize that our rationale for
choosing these two lines is that they can well differentiate the methods for comparison. Note that
the two lines can be changed flexibly to meet specific requirements of other scenarios.

A.5 TIME COST OF OUR EVALUATION FRAMEWORK

We provide information on time cost in Tab. 9. As expected, our approach does result in an increase
in inference time, which scales linearly with the number of identified representative degradation
cases (e.g., 100 in our experiments). However, since the inference time remains within acceptable
limits, we believe this is a worthwhile tradeoff between evaluation efficiency and quality.
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Table 9: Comparison of the time cost between the conventional evaluation method and our approach
using RRDBNet (Zhang et al., 2021; Wang et al., 2021b).

inference time [s] PSNR run-time [s] AR,RPR run-time [s]

Set14 4.22 0.52 0.013
Set14-SE (ours) 382.74 49.47 0.013

Table 10: Basic strategies for model comparison. We use three basic strategies to compare the
overall performance of real-SR models. The real-SR models are trained on: (1) different network
structures, (2) different training datasets, and (3) the RealESRGAN degradation model with different
gate probability as proposed in (Zhang et al., 2022).

AR ↑ RPRI ↓ RPRA ↑ RPRU ↑ Rank

SRResNet (1.5) 0.12(×) 0.20 0.63 0.26 ×
RCAN (15.6) 0.37(2) 0.15(1) 0.62(2) 0.39(2) 2

RRDBNet (16.7) 0.37(2) 0.33(3) 0.68(1) 0.32(3) 3Network (Parameter [M])

SwinIR (11.9) 0.67(1) 0.15(1) 0.62(2) 0.41(1) 1

DIV2K 0.32(3) 0.25(3) 0.64(2) 0.33(3) 3
DF2K 0.43(2) 0.24(2) 0.67(1) 0.39(2) 2Training dataset

ImageNet 0.63(1) 0.22(1) 0.67(1) 0.41(1) 1

1.00 0.37(4) 0.33(1) 0.68(3) 0.32(2) 3
0.75 0.44(1) 0.35(2) 0.69(2) 0.34(1) 1
0.50 0.43(2) 0.35(2) 0.70(1) 0.31(3) 1Gate probability

0.25 0.40(3) 0.43(4) 0.66(4) 0.21(4) 4

BSRNet (SOTA) 0.59(2) 0.42(2) 0.72(1) 0.27(2) 2
SwinIR-GD-I (Ours) 0.85(1) 0.25(1) 0.72(1) 0.40(1) 1

B DEVELOPING NEW STRONG REAL-SR MODELS

According to the evaluation results by our framework, as shown in Tab. 10, we can improve the
real-SR performance in three aspects to develop a stronger real-SR model: 1) A powerful back-
bone is vital for overall performance. We can observe that SwinIR obtains the highest AR and
the lowest RPRI . 2) Using a large-scale dataset (i.e., ImageNet (Deng et al., 2009)) can also
greatly improve the real-SR performance. 3) A degradation model with the appropriate distribution
(i.e., gate probability: 0.75 (Zhang et al., 2022)) also has a non-negligible impact on the real-SR
performance. Based on these observations, we use SwinIR as the backbone to train a new strong
real-SR model on ImageNet with a high-order gate degradation (GD) model (gate probability: 0.75),
denoted as SwinIR-GD-I. The evaluation results in Tab. 10 show that SwinIR-GD-I obtain a signif-
icant improvement over the SOTA performance of BSRNet. Fig. 11 shows that the visual results
of SwinIR-GD-I are obviously better than BSRNet and SwinIR. We believe our framework would
inspire more powerful real-SR methods in the future.

BSRNet SwinIR SwinIR-GD-I BSRNet SwinIR SwinIR-GD-I

BSRNet SwinIR SwinIR-GD-I BSRNet SwinIR SwinIR-GD-I

BSRNet SwinIR SwinIR-GD-I BSRNet SwinIR SwinIR-GD-I

Figure 11: Visual results of the proposed baseline SwinIR-GD-I and other real-SR methods.
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C LIMITATIONS OF THE CONVENTIONAL EVALUATION METHOD

To further demonstrate the limitations of the traditional evaluation method, we generated 20 random
test sets for comprehensive analysis. Using a large degradation model, we randomly apply degra-
dations to the images from the DIV2K val dataset. As shown in Fig. 12, each bar represents the
PSNR difference between BSRNet and RealESRNet on a single test set. Across these 20 test sets,
BSRNet and RealESRNet each outperform the other in approximately half of the cases, with their
performance gap ranging from -0.22 to 0.18. It is difficult to definitively determine which method
is superior. This observation further highlights the inadequacy of using randomized test sets for
evaluation.
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Figure 12: Results of PSNR distance between BSR-
Net and RealESRNet on 20 randomly generated test
sets, sorted in ascending order.

Blur3.0 Noise20+Blur3.0 JPEG70+Blur3.0

Figure 13: Similar visual effects of different
degradation combinations.

D DETAILS OF DEGRADATION CLUSTERING

D.1 SPECTRAL CLUSTERING

We use the shuffled degradation model of BSRGAN (Zhang et al., 2021) and the high-order degra-
dation model of RealESRGAN (Wang et al., 2021b) to construct a large degradation space. The
degraded images are generated by the shuffled (Zhang et al., 2021) and high-order (Wang et al.,
2021b) degradation models with probabilities of {0.5, 0.5}. The degradation types mainly consist of
1) various types of Gaussian blur; 2) commonly-used noise: Gaussian, Poisson, and Speckle noise
with gray and color scale; 3) multiple resize strategy: area, bilinear and bicubic; 4) JPEG noise.

Algorithm 1 Image degradation clustering

Input: Similarity matrix S ∈ Rn×n, number k of clusters to construct.
1: Compute Adjacency Matrix W and Degree Matrix D.
2: Compute Laplacian Matrix L = D −W .
3: Compute the first K eigenvectors u1, ..., uk of L.
4: Let U ∈ Rn×k be the matrix containing the vectors u1, ..., uk as columns.
5: For i = 1, ..., n, let yi ∈ Rk be the vector corresponding to the i-th row of U .
6: Cluster the points (yi)i=1,...,n in Rk with the k-means algorithm into clusters C1, ..., Ck

Output: Cluster centers c1, ..., cK with ci ∈ Ci.

We use spectral clustering to group the degraded images (x) due to its effectiveness and flexibility
in finding arbitrarily shaped clusters. First, we use the RGB histogram (h) (Tang et al., 2011; Ye
& Doermann, 2012) with 768 values (bins) as the image feature to calculate the similarity sij =
L1(h(xi), h(xj)). The histograms of R, G, and B are generated separately and then concatenated
into a single vector to represent the degraded image. The similarity matrix is defined as a symmetric
matrix S, where sij represents a measure of the similarity between data points x with indices i
and j for n data points. We execute Algo. 1 step by step to obtain the degradation parameter of
cluster centers D = {c1, c2, ..., cK}. Then, we use the degradation parameter of cluster centers as
the representative degradations to construct the systematic set.
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D.2 SIMILARITY METRICS

In this section, we provide more experimental details for the Sec. similarity metrics in the main
paper. To select an appropriate similarity metric, we create two datasets with simple degradation
types – Gaussian blur with a range of [0.1, 4.0] and Gaussian noise [1, 40]. We use the image
lenna in Set14 (Zeyde et al., 2010) as our Ground-Truth image. Firstly, we generate 100 low-quality
images named Blur100 by applying Gaussian blur within a range of [0.1, 4.0]. Each cluster is
assigned a label based on the degradation intensity. We label the low-quality images with {[0.1,
1.0], [1.0, 2.0], [2.0, 3.0], [3.0, 4.0]} as {1, 2, 3, 4} respectively. Similarly, we generate 100 low-
quality images named Noise100 by applying Gaussian noise within the range [1, 40], labeled as {1,
2, 3, 4} based on noise intensity.

To evaluate the effectiveness of the similarity metric, we combine Blur100 and Noise100 to produce
BN100, which comprises 100 blurred images and 100 noised images. BN100 is labeled as {1, 2,
3, 4, 5, 6, 7, 8} using the same criteria as the previous datasets. Purity (Schütze et al., 2008) is an
external criterion (similar to NMI, F measure (Schütze et al., 2008)) that assesses the alignment of
the clustering outcome with the actual, known classes. It is defined as:

Purity =
1

N

k∑
i=1

max
j

|ci ∩ tj |, (11)

where N is the total number of data points, Ω = {ω1, ω2, . . . , ωK} is the set of clusters and C =
{c1, c2, . . . , cJ} is the set of classes. To compute purity, each cluster is assigned to the class that
appears most frequently within that cluster. The accuracy of this assignment is then evaluated by the
number of correctly assigned points divided by the total number of points.

(a) k5 s0.12 (b) k40 s0.04 (c) k100 s0.03 (d) k200 s0.01

Figure 14: Ablation of the number of clusters k. s denotes silhouette score.

D.3 THE NUMBER OF CLUSTERS

To determine the number of clusters, we use silhouette scores (Rousseeuw, 1987) to measure the
quality of the clusters. A higher silhouette score represents a better cluster, while the clustering
result is acceptable if the silhouette score is greater than 0. As demonstrated in Fig. 14, the silhouette
scores of k=40 and k=100 are very close, thus we utilize 100 clusters to find the representative cases.

E MORE EXPERIMENTAL RESULTS

E.1 MORE VISUAL RESULTS ON REAL-SR METHODS

In this section, we further explore the effectiveness of our evaluation framework by providing addi-
tional qualitative results. We compare our proposed lines of acceptance and excellence with existing
real-SR methods. The MSE-based methods that we consider include DASR (Wang et al., 2021a),
BSRNet (Zhang et al., 2021), SwinIR (Liang et al., 2021a), RealESRNet (Wang et al., 2021b), RDSR
(Kong et al., 2022), and RealESRNet-GD (Zhang et al., 2022). In Fig. 15, we use FSRCNN (green)
to denote the acceptance line, and SRResNet (red) to represent the excellence line. Moving on to
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Figure 15: Visual results of MSE-based real-SR methods and the acceptance line FSRCNN and
excellence line SRResNet with PSNR metric. It is best viewed in color.

the GAN-based methods, we include DASR (Liang et al., 2022), BSRGAN (Zhang et al., 2021),
MMRealSR (Mou et al., 2022), SwinIR (Liang et al., 2021a) and RealSRGAN (Ledig et al., 2017).
In Fig. 16, RealESRGAN (green) is used to denote the acceptance line, and RealHATGAN (red) is
used to represent the excellence line. This comprehensive comparison provides a clear understand-
ing of the performance of our proposed lines against the existing methods, thereby demonstrating
the effectiveness of our evaluation framework.
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Figure 16: Visual results of GAN-based real-SR methods and the acceptance line RealESRGAN
and excellence line RealHATGAN with LPIPS metric. It is best viewed in color.

E.2 VISUAL RESULTS OF DEGRADATION CLUSTERING

We provide the visual comparison of samples both between and within clusters. In Fig. 17, we
randomly selected five clusters out of a total of 100 clusters and chose six samples from each cluster.
We observed that samples within each cluster exhibit similar degradation patterns, indicating they
share a comparable level of restoration difficulty. In contrast, samples belonging to different clusters
display remarkably distinct degradation patterns. In addition, we present the visualization of the
degradation cluster centers in Fig. 18, Fig. 19, Fig. 20, Fig. 21 and Fig. 22. The cluster centers are
sorted based on the PSNR value of the output of FSRCNN-mz. The results demonstrate that the
degradation clustering algorithm performed as expected.
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Figure 17: Visualization of samples from five randomly selected clusters. Best viewed in color.

Figure 18: Visualization of the degradation cluster centers [1, 20], sorted by the PSNR of the output
of FSRCNN-mz. Best viewed in color.
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Figure 19: Visualization of the degradation cluster centers [21, 40], sorted by the PSNR of the output
of FSRCNN-mz. Best viewed in color.

Figure 20: Visualization of the degradation cluster centers [41, 60], sorted by the PSNR of the output
of FSRCNN-mz. Best viewed in color.
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Figure 21: Visualization of the degradation cluster centers [61, 80], sorted by the PSNR of the output
of FSRCNN-mz. Best viewed in color.

Figure 22: Visualization of the degradation cluster centers [81, 100], sorted by the PSNR of the
output of FSRCNN-mz. Best viewed in color.
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