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Abstract. Scholars in Operations Research have studied automated
timetabling for the past sixty years, developing algorithms that assign
students and teachers to courses and timeslots. In the Post-Enrollment
Course Timetabling Problem (PECTP), we seek the optimal timetable
that maximizes students getting enrolled in their requested courses.

Given the complexity of the NP-complete PECTP, most high schools
pre-assign teachers to each section of each course, and then build their
Master Timetable. This action reduces the number of feasible timeta-
bles, since no teacher can be teaching two courses in the same timeslot,
and most teachers are required to have a non-teaching timeslot every day.

In this paper, we explain how we created the Master Timetable for a
Canadian high school that intentionally does not pre-assign teachers to
courses. Instead, each course has a set of possible teachers, and each
teacher has a fixed number of courses they must be assigned. By provid-
ing flexible teacher assignments, this school increases the likelihood that
all students get into the courses they select. Our final Master Timetable
enrolls students in 99.8% of their requested courses (3557 out of 3565),
which is just one shy of the provably-optimal upper bound.

Keywords: School Timetabling · Integer Programming · Optimization.

1 Introduction

Every high school in the world requires a Master Timetable, listing the complete
set of offered courses, along with the timeslot and classroom for each section of
that course. From the timetable, each instructor knows what they are teaching,
where they are teaching, and when they are teaching.

Due to the complexity of creating a Master Timetable satisfying hundreds
of constraints, Operations Research scholars have been analyzing the School
Timetabling Problem (STP) since the 1960s [13], creating timetables for high
schools around the world [21]. In the most basic version of the STP, the objec-
tive is to assign courses to teachers, timeslots, and classrooms, subject to the
following constraints: a teacher cannot teach two courses in the same timeslot,
no classroom can be used by two courses simultaneously, and each teacher has
a set of unavailable teaching timeslots. This problem is NP-complete [5].
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Given the challenge of creating a Master Timetable, some school administra-
tors focus only on teacher requirements and preferences, disregarding the course
requests of the students (i.e., the individuals most affected by the timetable). If
a high school decides to offer only one section of courses X and Y , and both of
these courses are placed in the same timeslot, then no student can take courses
X and Y . Bad timetabling decisions have a significant impact on a student’s
future, especially when they are prevented from taking a course they need.

To advance the field of educational timetabling, a group of researchers in-
troduced the Post-Enrollment Course Timetabling Problem (PECTP), to in-
corporate student course preferences into the STP [18]. The PECTP involves
student-related hard constraints, such as ensuring that no student is enrolled in
multiple sections of the same course, and the objective function is to maximize
the number of occurrences where students are enrolled in their desired courses.

In the PECTP, points are awarded for enrolling students in any section of
a desired course. For example, if there are three different sections of Calculus,
a student wishing to take Calculus needs to be assigned to exactly one of these
three sections.

The lead author has created 50 Master Timetables for various Canadian
high schools over the past six years, using his published algorithms to solve
large real-life PECTP instances for schools: using graph colouring [15] and large
neighbourhood search [16]. In every high school but one (see Section 4), schools
pre-assign teachers to every section of every course. This action limits the per-
centage of students who can get enrolled in their desired courses.

To illustrate the shortcoming of pre-assigning teachers to courses, consider
a simple timetable with two timeslots, where each of four students (S1 to S4)
wishes to enroll in two courses chosen among four course offerings (C1 to C4).
Each course is taught by one of two teachers (T1 or T2).

Consider the following scenario where teachers are pre-assigned to their
courses, and students pick two of the four courses.

Course Assigned Teacher Student Requested Courses
C1 T1 S1 C1, C3

C2 T1 S2 C1, C4

C3 T2 S3 C2, C3

C4 T2 S4 C2, C4

Given that our timetable has two timeslots, and given that a teacher cannot
be teaching two courses in the same timeslot, the timetable must either be the
one on the left or the one on the right.

Course Teacher Timeslot Course Teacher Timeslot
C1 T1 1 C1 T1 1
C3 T2 1 C4 T2 1
C2 T1 2 C2 T1 2
C4 T2 2 C3 T2 2
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In the timetable on the left, students S1 and S4 can only take one of their two
courses, since both of their requested courses are offered in the same timeslot.
And in the timetable on the right, students S2 and S3 can only take one of their
two courses, for the same reason. In both scenarios, only 6 out of 8 student course
requests are satisfied, with two students unable to enroll in a desired course.

Now we simply ask: must these courses be taught by these teachers? Suppose
C2 and C3 can be taught by either T1 or T2; we just need each teacher teaching
exactly 2 out of the 4 courses. By swapping the teacher assignments for C2 and
C3, we now have all 8 student course requests satisfied, increasing our success
rate from 75% to 100%. Below is the optimal timetable, listing the teacher and
students for each course in each timeslot.

Course Teacher Timeslot Enrolled Students
C1 T1 1 S1, S2

C2 T2 1 S3, S4

C3 T1 2 S1, S3

C4 T2 2 S2, S4

Ideally, schools would not pre-assign teachers to every section of every course,
and instead allow the timetabling algorithm to find the best assignment of teach-
ers to course sections to maximize students getting enrolled in their desired
courses. Later in the paper we will demonstrate the effectiveness of this ap-
proach for a Canadian high school where numerous courses have a set of possible
teachers who can be assigned to that course.

This paper proceeds as follows. In Section 2, we provide a brief literature
review on related work. In Section 3, we describe our solution to the PECTP by
formulating it as an Integer Linear Program (ILP) with five-dimensional binary
variables. In Section 4, we apply our model to generate the Master Timetable
for a Canadian high school, which succeeded in satisfying 3557 out of 3565
course requests from the 403 students. In Section 5, we conclude the paper with
directions for future research.

2 Related Work

Educational timetabling is split into three main areas: high school timetabling,
university course timetabling, and university examination timetabling [2].

High school timetabling problems involve the scheduling of all courses, en-
suring the satisfaction of hard constraints, such as preventing teachers from
being assigned to multiple courses at the same time [2]. The introduction of
the XHSTT format [23] provides standardized specifications for addressing high
school timetabling instances. Moreover, a variety of solution techniques and ap-
proaches have been developed to tackle this problem. As described in a recent
survey paper [27], these methods include algorithms based on integer program-
ming [1,3,8,17,25,28], tabu search [19], simulated annealing [29], matheuristics
approaches [4] [7] [24] and metaheuristic algorithms such as adaptive large neigh-
bourhood search [26] and variable neighbourhood search [6].
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While metaheuristic algorithms are capable of generating high-quality so-
lutions in a short amount of time, they do not guarantee optimal results. In
contrast, mathematical optimization techniques based on integer programming
can find optimal solutions, particularly for smaller problem instances [8]. How-
ever, because timetabling is an NP-hard problem [21], mathematical optimiza-
tion methods become less effective for medium- and large-sized problems [3,24].
As a result, researchers have integrated exact mathematical optimization meth-
ods with metaheuristics in an approach known as matheuristics [27].

At some educational institutions, students are divided into cohorts, where
they complete the same set of courses with everybody else in that cohort. In
this case, an optimal timetable can be easily generated by solving an integer
program [14,17]. This is consistent with the observation that many instances in
the XHSTT benchmark dataset have been solved to proven optimality [2]. A few
of the XHSTT instances do involve the assignments of teachers to courses.

Alternatively, some high schools are organized similarly to universities, where
students are not divided into fixed cohorts but instead choose their own set of
desired courses. These timetabling problems fall under the category of Univer-
sity Course Timetabling, specifically the Post-Enrollment Course Timetabling
Problem (PECTP), which was introduced in 2007 as one of the tracks of the
International Timetabling Competition (ITC) [18].

PECTP follows a distinct formulation from XHSTT and has two benchmark
datasets from ITC-2002 and ITC-2007 [2]. The same heuristics used to solve XH-
STT instances can be applied to PECTP with appropriate adjustments. Since
PECTP instances involve significantly more decision variables due to each stu-
dent selecting a set of courses, researchers are rarely able to find the optimal
solution. According to [2], the-state-the-art solution of ITC-2007 is achieved by
local search methods, namely tabu search [20] and simulated annealing [9–11]

Most research on PECTP focuses on timetabling at universities, and all of
the benchmark instances are artificial as they were obtained by a generator [2].
For example, ITC-2019 focuses exclusively on university timetabling.

Several researchers, including the lead author of this paper, have solved
PECTP instances based on actual data sent from various high schools. Our
PECTP instances have been tackled using matheuristics, through a bundling
metaheuristic method [15] and Large Neighbourhood Search [16]. These Cana-
dian PECTP instances are less complex than the benchmark ITC-2007 instances,
as they have fewer students. Thus, a matheuristic approach is well-suited, as we
can find an optimal (or close-to-optimal) solution in a short amount of time.

In this paper, we ask a question that we have not yet seen in the Educational
Timetabling literature: “what if teacher assignments are flexible?” By specify-
ing a set of possible teachers for each course, can we figure out the optimal
assignment of teachers to courses to maximize students getting enrolled in their
desired courses? Answering this question leads to better solutions, as we saw in
the simple example in Section 1 with |S| = 4 students, |C| = 4 courses, and
|T | = 2 teachers, where we improved our success rate from 75% to 100%.

We now provide our solution to the PECTP with flexible teacher assignments.
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3 Mathematical Model

Each course c has one or more sections s. We define the binary decision variable
Xs,c,d,p to equal 1 if section s of course c is scheduled on day d in period p.
Otherwise, Xs,c,d,p = 0.

We define the pair (s, c) as an event and each pair (d, p) pair as a timeslot.
Each event is taught by one or more teachers and is offered in one or more rooms.

A school’s timetable is a d-day repeating cycle, with p periods in each day.
In our real-life school example in Section 4, we have d = 2 and p = 5, so we have
ten timeslots (i.e., blocks) during which all sections of all courses occur.

Our Integer Linear Program (ILP) will generate the Master Timetable by
assigning exactly one timeslot to each event. Using two other binary decision
variables, we will determine the set of events assigned to each teacher, as well
as the set of events assigned to each student.

The notation used in our Model is presented in Table 1.

Table 1: Notation used for the model

Symbol Definition

Sets
t ∈ T set of teachers
i ∈ I set of individual students
c ∈ C set of courses
r ∈ R set of rooms
d ∈ D set of days
p ∈ P set of periods in a day
(s, c) ∈ E set of event tuples (s, c)
(d, p) ∈ B set of block/timeslot tuples (d, p)
Tc set of teachers qualified to teach course c
Er set of event tuples assigned to room r

Parameters
Pi,c an integer representing the preference coefficient of

student i ∈ I being enrolled in course c ∈ C.
#Ts,c the number of teachers that must be assigned to

event (s, c), for each (s, c) ∈ E
#Is,c the maximum number of students who can enroll in

event (s, c), for each (s, c) ∈ E

Decision Variables
Zt,s,c,d,p binary variable that indicates whether teacher t is

assigned to event (s, c) in timeslot (d, p)
Yi,s,c,d,p binary variable that indicates whether student i is

enrolled in event (s, c) in timeslot (d, p)
Xs,c,d,p binary variable that indicates whether event (s, c) is

scheduled in timeslot (d, p)
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Our ILP has the following objective function, which we seek to maximize:∑
i∈I

∑
(s,c)∈E

∑
(d,p)∈B

Pi,c · Yi,s,c,d,p

For each student i ∈ I, we denote by Pi,c their preference for getting enrolled
in a requested course c. This parameter will be some positive integer that is
based on the student’s grade (older students have more weight than younger
students) as well as the course itself (required courses have more weight than
elective courses). We assume that Pi,c is a parameter that is independent of the
section s, day d, and period p.

We now present our hard constraints. As we are employing a matheuristic
approach that integrates Integer Linear Programming (ILP) with a Large Neigh-
bourhood Search (LNS) heuristic, our constraints are structured into two stages,
aligning with our two-stage solving strategy.

3.1 Stage I: Hard restrictions on course and teacher scheduling

Our first step is to find a feasible timetable that meets all of the hard constraints
involving courses, teachers, and rooms, while ignoring student requests.

Each event (s, c) must be scheduled in exactly one timeslot (d, p).∑
(d,p)∈B

Xs,c,d,p = 1 ∀ (s, c) ∈ E (1)

An event is scheduled in a timeslot if and only if at least one qualified teacher
is assigned to this event in this timeslot.

Xs,c,d,p ≤
∑
t∈Tc

Zt,s,c,d,p ∀ (s, c) ∈ E, (d, p) ∈ B (2)

Xs,c,d,p ≥ Zt,s,c,d,p ∀ t ∈ Tc, (s, c) ∈ E, (d, p) ∈ B (3)

A teacher cannot be assigned a course that they are unqualified to teach.∑
(d,p)∈B

Zt,s,c,d,p = 0 ∀ (s, c) ∈ E, t /∈ Tc (4)

A teacher cannot be assigned to two different events in any timeslot.∑
(s,c)∈E

Zt,s,c,d,p ≤ 1 ∀ t ∈ T, (d, p) ∈ B (5)

A room cannot accommodate two different events in any timeslot.∑
(s,c)∈Er

Xs,c,d,p ≤ 1 ∀ r ∈ R, (d, p) ∈ B (6)
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Each event must be assigned the required number of teachers.∑
t∈Tc

∑
(d,p)∈B

Zt,s,c,d,p = #Ts,c ∀ (s, c) ∈ E (7)

The hard constraints (1)-(7) represent the fundamental requirements that
must be satisfied in any valid timetable.

In addition to these, a school timetable has additional constraints. Following
the structure of [14], we categorize these specific constraints into three families:
restrictions on sets of events, restrictions on teacher assignments, and relation-
ships between sets of events. A general formulation is provided for each family.

Family I: Restrictions on sets of events For each restriction, let E∗ denote
the set of events affected by the restriction and B∗ denote the set of timeslots
affected by the restriction. We have∑

(s,c)∈E∗

∑
(d,p)∈B∗

Xs,c,d,p {=,≤,≥} N∗ (8)

For each of these constraints, we choose the appropriate sign from {=,≤,≥}
and we choose N∗ to be a non-negative integer. Let us provide several examples
to illustrate the versatility of this family of constraints.

(i) “All sections of AP Physics must be scheduled on Day 1” means E∗ is the
set of events with c equal to AP Physics, and B∗ is the set of timeslots with
d ̸= 1. Our sign is =, and N∗ = 0.

(ii) “Each timeslot can have at most four Math classes” means we create a
separate constraint for each of the timeslots (d, p) ∈ B. For each timeslot
B∗, we let E∗ be the set of events for which c is a Math course, our sign is
≤, and N∗ = 4.

(iii) “The art room must be used at least twice every day” means we create a
separate constraint for each day d. For each day d, we list all the timeslots
B∗ for that day, we let E∗ be the set of events that take place in the art
room, our sign is ≥, and N∗ = 2.

As we can see from the examples above, constraints involving sets of events
can be expressed in the form of equation (8).

Family II: Restrictions on teacher assignments For each restriction, let
E∗ denote the set of events affected by the restriction and B∗ denote the set of
timeslots affected by the restriction. We have∑

(s,c)∈E∗

∑
(d,p)∈B∗

Zt,s,c,d,p {=,≤,≥} N∗ (9)

For each of these constraints, we choose the appropriate sign from {=,≤,≥}
and we choose N∗ to be a non-negative integer. Let us provide several examples
to illustrate the versatility of this family of constraints.
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(iv) “Teacher Smith has a teaching load of five courses” means E∗ is the set of
events for which c is a course that Teacher Smith is qualified to teach, B∗ is
the set of all timeslots, our sign is =, and N∗ = 5.

(v) “Teacher Smith must have at least one non-teaching period on Day 1” means
E∗ is the set of events for which c is a course that Teacher Smith is qualified to
teach,B∗ is the set of all timeslots with d = 1, our sign is≤, andN∗ = |P |−1.

(vi) “Teacher Smith must teach at least one class every afternoon” means we
create a separate constraint for each day d. For each day d, we list all the
timeslots B∗ that occur in the afternoon, we let E∗ be the set of events for
which c is a course that Teacher Smith is qualified to teach, our sign is ≥,
and N∗ = 1.

As we can see from the examples above, constraints involving teacher assign-
ments can be expressed in the form of equation (9).

Family III: Relationships between sets of events For some integer v ≥ 2,
let E1, E2, . . . , Ev be a set of v events. Using a linear equation or linear inequality,
we can model three additional timetabling constraints that relate these v events.

All v events must occur in the same timeslot.

Xsi,ci,d,p = Xsi+1,ci+1,d,p ∀(d, p) ∈ B, i ∈ [1, v − 1] (10)

All v events must occur on the same day.∑
p∈P

Xsi,ci,d,p =
∑
p∈P

Xsi+1,ci+1,d,p ∀d ∈ D, i ∈ [1, v − 1] (11)

The v events must occur on v different days.∑
i∈[1,v]

∑
p∈P

Xsi,ci,d,p ≤ 1 ∀d ∈ D (12)

This versatile and flexible framework enables us to model constraints that
relate almost any set of events to each other. For example, we can ensure that
certain courses are not scheduled on the same day, that two Grade 9 French
classes occur in the exact same timeslot, and that a part-time teacher only
needs to be at the school on just one of the |D| days.

3.2 Stage II: Hard Constraints on Student Enrollment

Using equations (1)-(12), we find a feasible timetable by solving the ILP, where
the variablesXs,c,d,p tell us the timeslot for each event, and the variables Zt,s,c,d,p

tell us the teaching assignment for each teacher. This is Stage I.
In Stage II, we incorporate the constraints involving the student decision

variables Yi,s,c,d,p.
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Each student can be enrolled in at most one event per timeslot.∑
(s,c)∈E

Yi,s,c,d,p ≤ 1 ∀ i ∈ I, (d, p) ∈ B (13)

For any course, each student can be enrolled in at most one section of that
course. ∑

(d,p)∈B

∑
s:(s,c)∈E

Yi,s,c,d,p ≤ 1 ∀ i ∈ I, c ∈ C (14)

No student can be enrolled in an event during a timeslot in which that event
is not scheduled.

Yi,s,c,d,p ≤ Xs,c,d,p ∀ i ∈ I, (s, c) ∈ E, (d, p) ∈ B (15)

Each event has a maximum number of students who can be enrolled.∑
i∈I

Yi,s,c,d,p ≤ #Is,c ·Xs,c,d,p ∀ (s, c) ∈ E, (d, p) ∈ B (16)

Finally, no student can be enrolled in a course that they did not request.
Specifically, if student i did not request course c, then for all events (s, c) ∈ E,∑

(d,p)∈B

Yi,s,c,d,p = 0 (17)

This is our model for the PECTP with flexible teacher assignments.
Our optimal timetable is found by maximizing the objective function of this

ILP subject to these seventeen constraints. Our solution consists of three families
of binary variables: the variables Xs,c,d,p tell us the timeslot for each event, the
variables Zt,s,c,d,p tell us each teacher’s set of assigned courses, and the variables
Yi,s,c,d,p tell us each student’s set of enrolled courses.

While our ILP is guaranteed to output an optimal timetable, the computing
time grows exponentially as the problem size increases. Thus, for a large school
with hundreds of students and course offerings, we might not be able to solve
the ILP.

To find a close-to-optimal timetable in a reasonable amount of time, we use
Large Neighbourhood Search (LNS), a well-known technique [22] to iteratively
improve our solution. Given any solution to the PECTP (e.g. the initial timetable
found in Stage I), we lock in all but h of the variables Xs,c,d,p, set them as hard
constraints, and then re-calculate the PECTP to generate a new solution where
some of these h events may be reassigned to other timeslots, and the teacher
assignments Zt,s,c,d,p can change as well.

Like all local search algorithms, the LNS may get stuck in a local minimum,
especially if the value of h is small. However, when h is sufficiently large, the
results of the LNS get better at each step, and we stop when the algorithm
appears to have converged.

We now apply our work on a real-world instance and we describe that in the
following section.
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4 Application

West Point Grey Academy (WPGA) is one of Canada’s leading independent
schools. Founded in 1996, WPGA is located in Vancouver, the most populous
city in the Canadian province of British Columbia. Its competitive debate team
is one of the most decorated teams in Canada, with five national titles since
2008, including victory at the World Schools Debate Championship in 2010.

WPGA has an enrollment of 940 students from Junior Kindergarten to Grade
12, with just over 400 students and teachers in the Senior School (Grades 8-12).
The lead author has worked closely with the Senior School’s academic head,
building the WPGA Master Timetable for each of the past five years.

Unlike students in the lower grades who take mostly required courses in fixed
cohorts, the Senior School students have numerous course options, and each
student wants to enroll in a different combination of courses in the 9 timeslots.

For the 2024-2025 timetable, the |S| = 403 students requested a total of
3565 courses, which was fewer than the theoretical maximum of 403× 9 = 3627.
This occurred because the oldest (Grade 12) students could take a “self-study
period”, i.e., a spare block, as could some of the younger students.

Based on the student requests, the school decided to offer |C| = 124 different
courses, of which 68 were single-section courses. Of the 56 multi-section courses,
many had two or three sections, though several required courses had up to five
sections. In all, there were 245 total course sections, i.e., 245 events.

Each school day consists of five periods, alternating between Day 1 (A, B, C,
D, X) and Day 2 (E, F, G, H, I), repeating this pattern for the entire academic
year. The final timeslot on Day 1 is a special period where no courses are sched-
uled, and instead students go through an advisory program that emphasizes
mental well-being, social awareness and personal relationships.

Thus, we can think of the WPGA timetable as having |D| = 2 days, |P | = 5
periods, and |D||P | − 1 = 9 timeslots, since no event can be scheduled on Day 1
Period 5.

For each of the |C| = 124 courses, the academic head of the WPGA Senior
School listed the set of teachers who were qualified to teach that course. For
40 of these courses, the academic head listed more than one teacher who could
teach that course, thus creating the flexible structure that motivated this paper.
(For the remaining 84 courses, the academic head decided that only one teacher
could teach that course, and so these courses had pre-assigned teachers).

Furthermore, for each of the |T | = 54 teachers, the academic head listed
the teaching load for that teacher, i.e., the number of events they needed to be
assigned, as well as any special constraints. For example, several of the teachers
were part-time and so all of their classes needed to be on either Day 1 or on Day
2. Several key teachers, known as Department Heads, needed to have a common
non-teaching block in which to meet.

Finally, every teacher with a load of 4 courses had to have an even 2-2 split
between the two Days, every teacher with a load of 6 courses had to have an
even 3-3 split, and every teacher with a load of 5 courses had to have a 3-2 split
or a 2-3 split.
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The academic head set the weight for each preference coefficient Pi,c, which
was a function of the student’s grade as well as the type of course. Older students
were given higher weights, and required courses were given more points than
elective courses.

Our optimization program, written in Python, inputted an Excel sheet con-
sisting of all the course/teacher/room data as well as the course requests from
each student. To solve the ILP, we used the solver from IBM’s ILOG CPLEX
Optimization Studio with the Google OR-Tools wrapper [12].

Following the process presented in the previous section, we first found an
initial timetable that considered all of the course/teacher/room constraints, i.e.,
a feasible assignment of 245 events to 9 timeslots. This process took less than
half a second on our computer, an 8GB Lenovo laptop running Windows 10 with
a 2.1 GHz processor.

Once we found our initial timetable, we incorporated the student course
requests, following our two-stage heuristic. We applied our LNS with a threshold
of h = 60 so that our ILP locked in 245 − h = 185 events in its timeslot, while
allowing the remaining h = 60 events to be re-assigned to other timeslots.

We found that randomly reshuffling h = 60 events was ideal for our problem
size, so that each step of the search computed in an average time of 90 seconds.
Our local search algorithm converged to the same solution within one hour, in
every single trial we ran.

Here were our final results, with just eight missed course requests.

3557 out of 3565 total course requests satisfied: 99.78 percent

706 out of 711 Grade 12 course requests satisfied: 99.3 percent

695 out of 697 Grade 11 course requests satisfied: 99.71 percent

708 out of 709 Grade 10 course requests satisfied: 99.86 percent

724 out of 724 Grade 9 course requests satisfied: 100.0 percent

724 out of 724 Grade 8 course requests satisfied: 100.0 percent

Of the eight students who were not enrolled in a course they requested, all of
them missed a low-priority elective course. Thus, it was a relatively easy fix for
the school, since each of these students could select a different elective course.

We naturally wanted to know whether 8 misses was the best possible result.
To verify this, we first changed all of the preference coefficients Pi,c to equal 1
if student i selected course c, and set Pi,c equal to 0 otherwise. We ran the ILP
on just the 79 Grade 10 students, and our CPLEX solver quickly confirmed that
708 points was the optimal solution, i.e., the best we could do was one miss for
the Grade 10 students.

We then ran our optimization model on the 160 students in Grades 11 and
12. Running our Python program for over twenty-four hours without any LNS
threshold, the best our solver could find was a solution with 1402 out of 1408
course requests satisfied. We are extremely confident that this is the best possible
result for the Grade 11 and 12 students, which means that the lower bound on
misses is 6 + 1 = 7.

Our solution, generated in less than one hour using a simple LNS local search
heuristic, found a nearly-perfect timetable with only 8 misses.
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To illustrate the effectiveness of flexible teacher assignments, we ran five trials
where we randomly pre-assigned teachers to courses to satisfy constraints (1) to
(7) of our model, fixed those assignments so they could not be changed, and then
ran our Large Neighbourhood Search model to solve for Xs,c,d,p and Yi,s,c,d,p.
Our best solution was 19 misses and our worst solution was 26 misses. While
all of these trials resulted in a success rate over 99%, pre-assigning teachers to
courses led to far more misses than the 8 misses in our solution.

5 Conclusion

In this paper, we presented our solution to solving the Post-Enrollment Course
Timetabling Problem (PECTP) with flexible teacher assignments. We then ap-
plied our ILP model on a real-world instance at a Canadian high school, suc-
cessfully enrolling the 403 students in 99.8% of their requested courses.

We recognize that our research on the PECTP is in its beginning stages, as
further research will need to be conducted to assess how our model scales to
larger data sets with thousands of students. For these larger data sets, what is
the best value of h? And how does our approach compare to pure heuristics?
These are questions for further exploration.

In conclusion, we have shown that flexible teacher assignments do make a
difference, and will result in better Master Timetables that satisfy 100% of the
course/teacher/room constraints while increasing the percentage of students who
can get enrolled in their desired courses.
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