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Abstract

Physics-informed neural operators offer a powerful framework for learning solution operators
of partial differential equations (PDEs) by combining data and physics losses. However,
these physics losses require the efficient and accurate computation of derivatives. Computing
these derivatives remains challenging, with spectral and finite difference methods introducing
approximation errors due to finite resolution. Here, we propose the mollified graph neural
operator (mGNO), the first method to leverage automatic differentiation and compute
eract gradients on arbitrary geometries. This enhancement enables efficient training on
arbitrary point clouds and irregular grids with varying geometries while allowing the seamless
evaluation of physics losses at randomly sampled points for improved generalization. For
a PDE example on regular grids, mGNO paired with Autograd reduced the L2 relative
data error by 20x compared to finite differences, suggesting it better captures the physics
underlying the data. It can also solve PDEs on unstructured point clouds seamlessly, using
physics losses only, at resolutions vastly lower than those needed for finite differences to
be accurate enough. On these unstructured point clouds, mGNO leads to errors that are
consistently 2 orders of magnitude lower than machine learning baselines (Meta-PDE, which
accelerates PINNs) for comparable runtimes, and also delivers speedups from 1 to 3 orders
of magnitude compared to the numerical solver for similar accuracy. mGNOs can also be
used to solve inverse design and shape optimization problems on complex geometries.

1 Introduction

PDEs are critical for modeling physical phenomena relevant for scientific applications. Unfortunately,
numerical solvers become very expensive computationally when used to simulate large-scale systems. To
avoid these limitations, neural operators, a machine learning paradigm, have been proposed to learn solution
operators of PDEs (Azizzadenesheli et al., [2024; Berner et al.| [2025). Neural operators learn mappings
between function spaces rather than finite-dimensional vector spaces, and approximate solution operators of
PDE families (Li et al., 2020b; |[Kovachki et al.,|2023]). One example is the Fourier Neural Operator (FNO) (Li
et al., |2020a)), which relies on Fourier integral transforms with kernels parameterized by neural networks.
Another example, the Graph Neural Operator (GNO) (Li et al. |2020b), implements kernel integration with
graph structures and is applicable to complex geometries and irregular grids. The GNO has been combined
with FNOs in the Geometry-Informed Neural Operator (GINO) (Li et al., 2023) to handle arbitrary geometries
when solving PDEs. Neural operators have been successfully used to solve PDE problems with significant
speedups (Li et al., 2021a} [Kurth et al., |2022)). They have shown great promise, primarily due to their ability
to receive input functions at arbitrary discretizations and query output functions at arbitrary points, and
also due to their universal operator approximation property (Kovachki et al.l [2021]).

However, purely data-driven approaches may underperform in situations with limited or low resolution
data (Li et al.; 2021b)), and may be supplemented using knowledge of physics laws (Karniadakis et al., |2021)
as additional loss terms, as done in Physics-Informed Neural Networks (PINNs) (Raissi et al.l |2017ajb; 2019).
In the context of neural operators, the Physics-Informed Neural Operator (PINO) (Li et al.l [2021b) combines
training data (when available) with a PDE loss at a higher resolution, and can be finetuned on a given PDE
instance using only the equation loss to provide a nearly-zero PDE error at all resolutions.



Under review as submission to TMLR

1 Mollified GNO Kernel (1,024 points) GNO Kernel (1,024 points) 1.04 —— bump
; —— quartic
—— octic
half_cos
0.8+
0.6 1
@ 3
=
=y
g 0.4
0.2
0.0 N~
0 llz =yl

Figure 1: (left) Mollified GNO kernel’s neighborhood and weights versus those of the vanilla GNO kernel
with differing point densities. (right) Examples of weight functions (equation El-equation for mGNO.

A major challenge when using physics losses is to efficiently compute derivatives without sacrificing accuracy,
since numerical errors on the derivatives are compounded in the physics losses. Approximate derivatives can
be computed using finite differences, but can require a very high resolution grid to be sufficiently accurate, thus
becoming intractable for fast-varying dynamics. Numerical derivatives can also be computed using Fourier
differentiation, but this requires smoothness, uniform grids, and performs best when applied to periodic
problems. In contrast, automatic differentiation computes exact derivatives using repeated applications
of the chain rule and scales better to large-scale problems and fast-varying dynamics. Unlike numerical
differentiation methods, which introduce errors, automatic differentiation gives exact gradients, ensuring the
accuracy required for physics losses, making it the preferred approach for physics-informed machine learning.

Approach. We propose a fully differentiable modification to GNOs to allow for the use of automatic
differentiation when computing derivatives and physics losses, which was previously prohibited by the GNO’s
non-differentiability. More precisely, we replace the non-differentiable indicator function in the GNO kernel
integration by a differentiable weighted function. This is inspired by mollifiers in functional analysis (Evans
, which are used to approximate, regularize, or smooth functions.

As a result, our differentiable mollified GNO (mGNO) is the first method capable of computing exact
derivatives at arbitrary query points. The resulting mGNO can, in particular, be used within GINO to
learn efficiently and accurately the solution operator of families of large-scale PDEs with varying geometries
without data using physics losses. A data loss can help further improve the results when reference simulations
are available, even if these are of very low resolution, when paired with a high-resolution physics loss.

Summary of Results. We test our approach on Burgers’ and Navier—Stokes equations with regular grids,
and on nonlinear Poisson and hyperelasticity equations with varying domain geometries. Figure [2| shows
example solutions, highlighting the complexity of the geometries considered. Physics losses prove critical,
emphasizing the need for accurate and efficient derivative computation.

Using Autograd instead of finite differences reduces the relative L2 data loss by 20x for Burgers’ equation on
regular grids, showing that the Autograd physics loss captures the underlying physics more accurately. In
hybrid training with noisy reference data, the Autograd-based mGNO o FNO remains robust and accurate,
maintaining low PDE residuals and data loss.
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Figure 2: Examples of solutions for the problems considered.

It also excels at learning the lid cavity flow example governed by the Navier—Stokes equations. For this
problem, access to data is essential, but a small number of randomly sampled points proves sufficient at with
Autograd at each iteration to achieve excellent results, when trained with a hybrid loss. Including a physics
loss is also critical, as it ensures PDE fidelity and guides the network toward physically consistent solutions
even at low resolution.

Autograd mGINO performs seamlessly for the PDEs on unstructured point clouds, while finite difference
derivatives are not sufficiently accurate at the same training resolution and would need at least 9x more
points. Autograd mGINO achieves a relative error 2-3 orders of magnitude lower than the machine learning
baselines (Meta-PDE with LEAP and MAML) considered for a comparable running time,
and enjoys speedups of 20-25x and 3000-4000x compared to the numerical solver for similar accuracy on the
Poisson and hyperelasticity equations.

Furthermore, as a result of its differentiability, mGINO can be used seamlessly for solving inverse design and
shape optimization problems on complex geometries, as demonstrated with an airfoil design problem.

2 Background

2.1 Neural Operators

Neural operators compose linear integral operators K with pointwise non-linear activation functions o to
approximate non-linear operators. A neural operator is defined as

QOU(WL+’CL+bL)0"'OO'(W1+IC1+b1)OP (1)

where Q and P are the pointwise neural networks that encode (lift) the lower dimension function onto a
higher dimensional space and project it back to the original space, respectively. The model stacks L layers of
o(W; + K, + b;) where W, are pointwise linear operators (matrices), K; are integral kernel operators, b; are
bias terms, and o are fixed activation functions.

The parameters of a neural operator consist of all the parameters in P, Q, W;, K;, b;. [Kossaifi et al.| (2025])
maintain a comprehensive open-source library for learning neural operators in PyTorch, which serves as the
foundation for our implementation.
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Fourier Neural Operator (FNO). A FNO (Li et al., 2020a) is a neural operator using Fourier integral
operator layers

(K(@)ve) (@) = F~ (Ry - (Fun) ) () (2)

where Ry is the Fourier transform of a periodic function x parameterized by ¢. When the discretizations
of both the input and output functions are given on a uniform mesh, the Fourier transform F can be
implemented using the fast Fourier transform. We note that the FNO architecture is fully differentiable. A
depiction of the FNO architecture is provided in Figure

Graph Neural Operator (GNO). A GNO (Li et al., |2020b) implements kernel integration with graph
structures and is applicable to complex geometries and irregular grids. The GNO kernel integration shares
similarities with the message-passing implementation of graph neural networks (GNNs) (Battaglia et al.l
2016). However, GNO defines the graph connection in a ball in continuous physical space, while GNN assumes
a fixed set of neighbors in a discrete graph. The GNN nearest-neighbor connectivity violates discretization
convergence and degenerates into a pointwise operator at high resolutions, leading to a poor approximation
of the operator. In contrast, GNO adapts the graph based on points within a physical space, allowing for
universal approximation of operators.

Specifically, the GNO acts on an input function v as follows,
Gono () = [ T,y () y)o(y) dy, 3)
D

where D € R? is the domain of v, & is a learnable kernel function, and 1, (s is the indicator function over
the ball B,.(z) of radius r > 0 centered at € D. The radius r is a hyperparameter, and the integral can be
approximated with a Riemann sum, for instance.

Geometry-Informed Neural Operator (GINO). GINO (Li et al., [2023)) proposes to combine a FNO
with GNOs to handle arbitrary geometries. More precisely, the input is passed through three main neural

operators,

Gamwo = G&NE o Geno o GENS™. (4)

First, a GNO encodes the input given on an arbitrary geometry into a latent space with a regular geometry.
The encoded input can be concatenated with a signed distance function evaluated on the same grid if
available. Then, a FNO is used as a mapping on that latent space for efficient global integration. Finally, a
GNO decodes the output of the FNO by projecting that latent space representation to the output geometry.
As a result, GINO can represent mapping from one complex geometry to another. A depiction of the GINO
architecture is displayed in Figure

2.2 Physics-Informed Machine Learning

Physics-Informed Neural Network (PINN). In the context of solving PDEs, a PINN (Raissi et al.l
2017ajb: |2019) is a neural network representation of the solution of a PDE, whose parameters are learned
by minimizing the distance to the reference PDE solution and deviations from known physics laws such
as conservation laws, symmetries and structural properties, and from the governing differential equations.
PINNs minimize a composite loss

L= Edata + A‘Cphysics (5)

where Lgat. measures the error between data and model predictions while Lpnysics penalizes deviations away
from physics laws. PINN overcomes the need to choose a discretization grid of most numerical solvers, but
only learns the solution for a single PDE instance and does not generalize to other instances without further
optimization. Many modified versions of PINNs have also been proposed and used to solve PDEs in numerous
contexts (Jagtap et all [2020; |Cai et all [2022; |[Yu et all 2022). When data is not available, we can try to
learn the solution by minimizing Lynysics only.
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While physics losses can prove very useful, the resulting optimization task can be challenging and prone to
numerical issues. The training loss typically has worse conditioning as it involves differential operators that
can be ill-conditioned. In particular, [Krishnapriyan et al|(2021)) showed that the loss landscape becomes
increasingly complex and harder to optimize as the physics loss coefficient A\ increases. The model could also
converge to a trivial or non-desired solution that satisfies the physics laws on the set of points where the
physics loss is computed (Leiteritz & Pfliiger} 2021). There could also be conflicts between the multiple loss
terms when their gradients point in opposite directions. Even without such conflicts, the losses can vary
significantly in magnitude, leading to unbalanced back-propagated gradients during training (Wang et al.,
2021)), and thus to the contribution and reduction of certain losses to be negligible relatively during training.
Manually tuning the loss coefficients can be computationally expensive, especially as the number of loss terms
increases. Note that strategies have been developed to adaptively update the loss coefficients and mitigate
this issue (Chen et all 2018 Heydari et al.l |2019; Bischof & Kraus, 2021)).

Physics-Informed Neural Operator (PINO). In the physics-informed neural operator approach (Li et al.l
2021Db)), a FNO is trained with low-resolution reference simulations (or even without data) and high-resolution
physics losses, allowing for near-perfect approximations of PDE solution operators. To further improve
accuracy at test time, the trained model can be finetuned on a given PDE instance using only the equation
loss and provides a near-zero error at all resolutions. PINO has been successfully applied to many PDEs (Song
et al. |2022; Meng et al.| |2023; |Rosofsky et al.l [2023). In practice, the PDE loss vastly improves generalization,
physical validity, and data efficiency in operator learning compared to purely data-driven methods.

Physics-informed approaches without physics losses. Various approaches enforce physics laws in
surrogate models without using physics losses. This can be achieved, for instance, by using projection
layers (Jiang et al. [2020f [Duruisseaux et al., 2024; Harder et al., 2024)), by finding optimal linear combinations
of learned basis functions that solve a PDE-constrained optimization problem (Negiar et al.l |2022; |Chalapathi
et al. 2024), by leveraging known characterizations and properties of the solution operator as for divergence-
free flows (Richter-Powell et al. 2022; [Mohan et al., 2023} | Xing et al.| [2024), or Hamiltonian systems with
their symplectic structure (Burby et al., 2020} [Jin et al., [2020; |Chen & Tao, [2021; |Duruisseaux et al., [2023)).
These approaches are particularly advantageous when the system is well-understood and physical constraints
can be explicitly encoded, ensuring strict compliance with the underlying physics. They also tend to require
less computational overhead than methods that rely on minimizing physics losses. However, such approaches
are often tailored to specific PDE structures and are limited to dynamical systems with well-characterized
solutions. In contrast, physics-loss-based methods offer greater flexibility and broader applicability across a
wide range of PDEs, including systems whose solution properties are not fully understood. By incorporating
physics-based loss terms during training, as in PINNs and PINOs, the governing equations serve as regularizers,
offering greater flexibility, broad applicability across diverse PDEs, and the advantage of requiring only
knowledge of the underlying equations. Hybrid strategies are also possible, in which certain constraints
are enforced directly in the architecture while others are imposed through physics losses during training.
For instance, in incompressible Navier—Stokes problems, a physics loss can penalize deviations from the
momentum equation, while the divergence-free condition can be enforced explicitly in the model (e.g. using
projections as done in [Jiang et al.| (2020)) and |Duruisseaux et al.| (2024))).

Physics-Infused Transformer Architectures. Recent parallel research has explored embedding certain
structures of PDEs into Transformer architectures. Transolver (Wu et al. 2024; Luo et al., 2025) introduces
a physics-attention mechanism that adaptively groups mesh points with similar physical states, enabling the
model to capture complex correlations across arbitrary geometries efficiently. Unisolver (Zhou et al.,|2025)
conditions a Transformer on complete physics information, incorporating both domain-wise components, such
as equation symbols and coefficients, and point-wise components such as boundary conditions, achieving broad
applicability across diverse PDEs. PDEFormer (Ye et al.,|2025) represents PDEs as computational graphs and
combines symbolic and numerical information through a graph Transformer and implicit neural representation,
allowing mesh-free solutions and efficient handling of varied PDE types. Collectively, these architectures
illustrate an alternative approach to integrating physical knowledge into Transformer structures, offering com-
plementary strategies for improving the accuracy and flexibility of machine learning surrogates for PDE solvers.
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Figure 3: Qualitative assessment of the smoothness of derivatives. We fit mGINO with a physics loss to
the differentiable function u(z,y) = sin(4rxy) on [0, 1]?, and compare the analytic ground truth derivative
Oppu(z,y) = —1672y? sin(4mwy) (left) with the numerical derivatives obtained using automatic differentiation
(middle) and finite differences (right).

2.3 Computing Derivatives

To use physics losses, a major technical challenge is to efficiently compute derivatives without sacrificing
accuracy, since numerical errors on the derivatives will be amplified in the physics losses and output solution.

Finite Differences. A simple approach is to use numerical derivatives computed using finite differences.
This differentiation method is fast and memory-efficient (it requires O(n) computations for a n-points grid).
However, it faces the same challenges as finite difference numerical solvers: it requires a fine-resolution grid
to be accurate and therefore becomes intractable for multi-scale and fast-varying dynamics. On point clouds,
the stencil coeflicients in finite difference formulas vary from point to point and must be computed each time,
as outlined in Appendix [D] adding to the computational cost. The errors in the resulting derivatives will also
vary across the domain depending on the density of nearby points.

Fourier Differentiation. Fourier differentiation is also fast and memory-efficient to approximate derivatives
as it requires O(nlogn) given an n-points grid. However, just like spectral solvers, it requires smoothness,
uniform grids, and performs best when applied to periodic problems. Fourier differentiation can be performed
on non-uniform grids but the computational cost grows to O(n?), and if the target function is non-periodic
or non-smooth, the Fourier differentiation is not accurate. To deal with this issue, the Fourier continuation
method (Maust et all [2022)) can be applied to embed the problem domain into a larger periodic space, at the
cost of higher computational and memory complexity.

Pointwise Differentiation with Autograd. Derivatives can be computed pointwise using automatic
differentiation by applying the chain rule to the sequence of operations in the model. Autograd
automates this process by constructing a computational graph during the forward pass and
leveraging reverse-mode differentiation to compute gradients during the backward pass. Autograd is typically
the preferred method for computing derivatives in PINNs for a variety of reasons (Baydin et al.| 2017):

o Unlike finite differences, which can introduce large discretization errors when not computed on
fine enough grids, Autograd provides eract derivatives, ensuring the accuracy that is critical in
physics-informed machine learning, where derivative errors are amplified in physics losses. By
exact derivatives, we mean that automatic differentiation computes gradients precisely from the
differentiable computation graph, accurate up to machine precision. While the graph represents a
discretized approximation of the continuous PDE, in practice, the computed loss and gradients are
extremely accurate, and automatic differentiation remains highly reliable even when evaluated on a
relatively small set of points, as demonstrated in our numerical experiments.
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o Autograd computes gradients in a single pass (while finite differences require multiple function
evaluations). It provides exact derivatives regardless of the mesh resolution, making it particularly
advantageous for large-scale problems, where finite differences become computationally intractable.

e Autograd can compute higher-order derivatives with minimal additional cost, while finite differences
require additional function evaluations and can suffer from further error accumulation.

e Autograd can compute derivatives at any point in the domain seamlessly, while finite differences can
struggle to handle complex geometries.

o Figure [3] empirically shows that Autograd derivatives are smoother and more stable than finite
differences with the proposed model.

However, Autograd also has limitations: all operations need to be differentiable, and storing all intermediate
computations in a computational graph can significantly increase memory usage for deep models. As a
result, it can be slower and more memory-intensive than finite differences for simpler low-dimensional
problems for which finite differences are accurate enough at low resolutions. When the physics loss involves a
deep composition of operations, issues of vanishing or exploding gradients can also be exacerbated during
backward propagation with automatic differentiation.

3 Methodology

Mollified GNO. Recall from Equation that the GNO computes the integral of an indicator function
1, () that is not differentiable. We propose a fully differentiable layer that replaces the indicator function
1, () with a differentiable weight function w supported within 1g, (). This is inspired by the mollifier in
functional analysis (Evans, [2010]), which is used to smooth out the indicator function. The resulting mollified
graph neural operator (mGNO) acts on an input function v via

Gnolo)a) = [ wla,)x(a.)ots) do (6)
for x € D. Here, we padded the input of the FNO such that its output function v is supported on the
extended domain

D:=D+B,(0)={z+y|zeD, yeB,(0)},

which allows to recover exact derivatives at the boundary. Then, we can compute the derivative

9z Gmano(v)(z)= ; (?x[w(x,y)fi(%y)]v(y) dy. (7)

Automatic differentiation algorithms can then be used to compute the derivatives appearing in physics losses.
We can also use a cached version of neighbor search (i.e. store neighbors with nonzero weight) to keep the
method as efficient as the original GNO up to the negligible cost of evaluating the weight function w. We
emphasize that these definitions work for arbitrarily complex domains D. As for the GNO, the radius r is a
hyperparameter and the integral can be approximated with a Riemann sum, for instance. An example of
simplified pseudocode for the mGNO layer is provided in Appendix [C]

Mollified GINO. The mollified GNO can then be used within a fully differentiable mollified geometry-
informed neural operator (mGINO) to learn efficiently the solution operator of PDEs with varying geometries
using physics losses where the derivatives are computed using automatic differentiation,

GmeiNo = GENG © Grno o G, (8)

This allows mGINO to be used for solving inverse design and shape optimization problems on complex
geometries, by backpropagating gradients with respect to control parameters through it.
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Weight Functions. The choice of weight function plays a central role in mollifying the hard cut-off
neighborhoods of standard GNOs with smooth, compactly supported functions that enable stable and
accurate automatic differentiation. These weights gradually attenuate contributions near the neighborhood
boundary, improving gradient stability and reducing artifacts. Key properties include smoothness to avoid
spurious gradient oscillations, compact support to control computational cost by ignoring distant points, and
locality tuned through the radius r.

In practice, smooth bell-shaped or cosine-like profiles often perform well and are well-suited. The radius r is
typically chosen to obtain a desired typical number of neighbors per query point, which balances efficiency
and information aggregation. Performance is poor when the radius is too small, and when r becomes too
large, the computational and memory costs significantly increase while performance deteriorates. In practice,
one can start from a smaller value of r and progressively increase it until satisfactory performance is achieved.

Letting d = ||z — yl|2/7, examples of weight functions w with support in 1g ;) (y) are

Woump (7,Y) =1, (2)(y) exp(d®/(d* 1)), (9)
Wauartic(Z,Y) =1, (2)(y) (1 —2d% + d4) , (10)
Woetic (T, ) =1p, () (y) (1 — 6d* + 8d° — 3d°) , (11)
Whalf_cos(2,Y) =1g, (2)(y) [0.5 + 0.5 cos(nd)] . (12)

These weight functions, displayed on the right in Figure [} are decreasing functions from 1 to 0 on [0, r], and
preserve differentiability for all points.

An ablation study for the radius r and choice of weight function w is conducted for the nonlinear Poisson
equation in Section and a discussion on the choice of aggregation scheme for neighbors contributions is
provided in Section [£.2.3] in particular to highlight how a mean aggregation can lead to undesired artifacts
when training based on a data loss only.

Remark. The entire mGNO and mGINO architectures are designed such that all of their components
are differentiable, ensuring that derivatives of any order can be computed correctly and accurately using
automatic differentiation. For instance, we avoid non-differentiable activation functions such as ReLLU
(Rectified Linear Unit), which introduce discontinuities in their derivatives, and instead use smooth
alternatives like GeLU (Gaussian Error Linear Unit). All the other operations in the network, including the
Fourier layers, pointwise linear neural networks, and pointwise linear operators, are also implemented in a
differentiable manner. This design eliminates issues related to subgradients or undefined derivatives at specific
points and preserves the validity of higher-order derivative computations using automatic differentiation. A
discussion of using Autograd with non-differentiable components is included in Appendix [F]

4 Numerical Experiments

We use Meta-PDE (Qin et al.l [2022) and the popular finite element method (FEM) FEniCS (Alnaes et all 2015;
Logg et all|2011) as baselines. Meta-PDE learns initializations for PINNs over multiple instances that can be
finetuned on any single instance, and two versions have been proposed based on the meta-learning algorithms
MAML (Finn et all 2017) and LEAP (Flennerhag et al., [2019). While FEniCS has been successfully applied
in various disciplines, it has not been highly optimized for our applications and could possibly be outperformed
by other FEMs and non-FEMs (Liu, [2009) such as Radial Basis Function (RBF) method (interpolation using
RBFs), Finite Point Methods (FPMs) and Moving Least Squares (MLS) methods (weighted least squares to
approximate solutions) and spectral methods (expanding the solution in a basis of functions).
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4.1 Burgers’ Equation
4.1.1 Problem Description

The Burgers’ equation models the propagation of shock waves and the effects of viscosity in fluid dynamics.
We consider the 1D time-dependent Burgers’ equation with periodic boundary conditions, and initial condition
ug € L2, (D;R) with D = (0,1). The goal is to learn the mapping G' from the initial condition u(z, 0) = ug
to the solution u(zx,t) of the following differential equation for z € D:

Opu(z,t) 4+ 0, (u*(x,1)/2) = vdypu(z, t), t € (0,1]
u(z,0) = up(x).

We focus on the dataset of |Li et al.| (2021agb)) consisting of 800 instances of the Burgers’ equation with
viscosity coefficient ¥ = 0.01 and 128 x 26 resolution. Each sample in the dataset corresponds to a different
initial condition ug drawn from the Gaussian process N (0,625(—A + 251)~2). Examples of initial conditions
and solutions to this time-dependent Burgers’ equation are shown in Figures [4] and

0.4+

0.2+

0.0 1

u(z,t=0)

_0'2 4

_0.4 4

0 1
Figure 4: Examples of initial conditions used for the Burgers’ Equation.

.

>
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Figure 5: Ground truth solutions for several initial conditions of the Burgers’ Equation

The input initial condition ug(x) given on a regular spatial grid is first duplicated along the temporal

dimension to obtain a 2D regular grid, and then passed through a 2D FNO and a mollified GNO to produce
a predicted function

v = (Gmano © Grno)(uo) (13)

approximating the solution u(z,t). We minimize a weighted sum of the PDE residual and initial condition
loss,

2
EBurgers(U) = ||(9{U + ax(vz/Q) - VaxacUHLz(DX(O’l)) + ||U(,0) - UJO”QL?(D) : (14)
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4.1.2 Comparison of Differentiation Methods and Training Strategies

We trained models using Lpurgers, Where the derivatives are computed using various differentiation methods.
The results, obtained by finetuning the models one instance at a time and then averaging over the dataset,
are presented in Table [I Compared to numerical differentiation, mGNO o FNO with Autograd was easier to
tune and produced a model with data loss 20x lower (although 6x slower per training epoch), suggesting it
better captures the physics underlying the data. It also achieved a physics loss 3000x smaller, but this was
expected since the physics loss is evaluated using Autograd.

Table 1: Data and physics losses (computed using Autograd) for the proposed mGNO o FNO models and
PINO baselines, trained with Lpurgers Where derivatives are computed using different methods.

PDE Residual Loss Relative L2 Data Loss

Autograd (ours) 1.62-10°¢ 1.33-1072
Finite Differences 4.89-1073 2.24.107!
Fourier Differentiation 4.77-1073 2.19-107!
PINO Baselines:

Autograd 1.87-107° 1.22-1071

Finite Differences 3.71-107% 2.26-1071

Fourier Differentiation 3.63-1074 2.19-107!
Transolver Baseline (finite-differences) 3.01-1072 7.47-1072

A comparison to PINO (i.e. using a FNO instead of a mGNO o FNO) shows that PINO achieved a lower
physics loss, but failed to reduce the Relative L2 data loss below 10% on the hyperparameter sweep considered.
Note that Autograd mGNO o FNO was only 1.2x slower than Autograd PINO (although this was with a
batch size of 1 and Autograd PINO could be accelerated more easily using batching). We also compared
performance to Transolver (Wu et all 2024) with finite-differences. We performed a grid search over learning
rate, hidden dimension, number of heads and layers, initial condition loss coefficient, and report the best
result in Table[I] Transolver does not reduce the PDE residual as effectively as the other approaches, but
strikes a better balance by achieving lower data loss than the remaining baselines. Nonetheless, it still falls
short of the performance of Autograd mGNO o FNO, which attains a substantially lower PDE residual while
staying closer to the reference data.

We trained mGNO o FNO models using a data loss, a physics loss, and a hybrid loss (data and physics). The
results displayed in Table [2 show that using the data loss helps reduce the gap with reference data, but can
come at the cost of a higher physics loss, and vice-versa.

Table 2: Data and PDE loss of three models trained with different losses £, using Autograd to compute the
physics losses, for the Burgers’ equation.

»Cdata »Cdata + Aﬁphysics »Cphysics
Relative L2 Data Loss 1.42-1073 3.81-1073 1.33-1072
PDE Residual Loss 4.80-10~4 1.48 10~ 1.62-10~6

We also tried pretraining the mGNO o FNO models using the data loss before finetuning them with the
physics loss Lpurgers Only, but were not able to obtain better results this way. The data loss rapidly
deteriorates from its original value obtained in a data-driven way, while the physics loss improves slowly but
does not get better than when training with hybrid and physics-only losses without data loss pretraining.

10
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4.1.3 Subsampling and Data Efficiency

We now consider randomly subsampling the points at which the PDE residuals are evaluated to consider the
effect of reducing the resolution used for the physics loss on performance. Table [3] shows that despite the
random location and reduction of the number of points used to evaluate the derivatives, we maintain good
results until the number of points becomes very low.

Table 3: PDE Residual and relative data losses for mGNO o FNO models trained with the physics loss
LBurgers Using Autograd derivatives evaluated at different numbers of randomly subsampled points from the
original 128 x 26 regular grid with 3328 points.

PDE Residual Loss Relative L2 Data Loss
Full Grid (3328 points) 1.62-10°¢ 1.33-1072
Random 1000 points 6.70-1076 1.32-1072
Random 500 points 8.15-1076 1.33-1072
Random 250 points 1.47-107° 1.44-1072
Random 100 points 4.06-107° 1.91-1072
Random 50 points 5.31-107° 2.19-1072
Random 25 points 1.29-107% 2.93-1072
Random 10 points 3.49.10~4 4.62-1072

We also investigate data efficiency of hybrid loss training, and more precisely how performance changes when
varying the number of points at which the data loss and physics loss are evaluated when training the proposed
mGNO o FNO models using a hybrid training loss Lqata + ALlphysics- Table @ shows the results obtained
with mGNO o FNO models on the time-dependent Burgers’ equation. We see that performance remains
unaffected until the spatial resolution falls below 16 or the temporal resolution falls below 5. This corresponds
to 8x spatial subsampling and 5X time subsampling from the original 128 x 26 grid, and highlights the data
efficiency of the proposed approach: instead of requiring high resolution 128 x 26 simulations (3328 points)
for the data loss, we can obtain results of similar accuracy by supplementing low resolution simulations (e.g.
at 22 x 9, i.e. 198 points) with a physics evaluated at a higher resolution.

Table 4: Relative L2 data loss and physics loss (computed using Autograd) for the proposed mGNO o FNO
models on Burgers’ equation, when training with a hybrid loss. We consider the effect of reducing the
resolution at which the data loss is evaluated during training, starting from the original 128 x 26 resolution.
Each row corresponds to a different spatial resolution (subsampled from 128), while each column corresponds
to a different temporal resolution (subsampled from 26). We show in orange the settings where the data loss
starts being affected, and in red the settings where the data loss is significantly worse.

W 26 13 9 5
Time

Physics | Data Physics | Data Physics | Data Physics | Data
128 1.48-107%13.81-107% 1.85-107%]4.69-10=2 1.77-107%]4.80-10=2 1.11-107%|
64 1.73-107%13.83-1073 1.95-107%]4.89-102 1.86-107%]4.82-10=% 1.17-107%|
43 1.74-107% [ 4.04-1073 1.85-107% ] 4.84-1072 1.88-107%[5.02-1072 1.14-107* |
32 1.74-107% 1 4.22-1073 1.85-107%]4.89-1072 1.82-107%[4.91-1072 1.17-107*|
26 1.82-107%14.21-1073 1.77-107% ] 4.82-107% 1.92-107% | 4.87-107% 1.13-107* |
22 1.70-107* [ 4.03-1073 1.68-107%]4.60-1073 1.72-107%[4.77-1073 1.21-107*|
16 1.84-107% | 1.99 - 1074 | 1.97-107% | 1.41-107% |
11 1.86-107% ] 1.32-1072 1.90-107%| 1.17-1072 2.04-107%] 1.11-1072 1.40-107*] 1.13- 102
7 1.57-107% | 5.67-107? 1.68-107%|5.15-102 2.01-107%]5.06-1072 1.21-107*]5.12-10°2
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4.1.4 Robustness to Noisy Data

We now investigate the effect of noisiness on reference data when training the proposed mGNO o FNO models
using a hybrid training loss Lqata + ALphysics, both with finite differences and automatic differentiation.

More precisely, instead of the distance to the reference solution u, the data loss is based on the distance to a
noisy reference solution

1,1
(z,t) = u(x,t) +n-e(x,t) - /0/0 lu(2’ ") da’ dt’, (15)

where 7 is the noise level, the integral represents the average absolute value of u(x,t), and e(x,t) is an
independent standard normal random variable for each (z,t), that is e NN (0,1).

Table ] illustrates the effect of noise in the reference data on the mGNO o FNO models trained with a hybrid
physics-data loss. The results show that the Autograd approach, our proposed method, maintains very low
PDE residuals even as noise increases, demonstrating its robustness and stability. The relative L2 error with
respect to the true solution grows with noise level, reflecting the unavoidable discrepancy between noisy
training data and the true solution, but increases significantly slower than the training L2 error with respect
to the noisy reference. This indicates that the physics loss truly helps the model to learn effectively the
dynamics without overfitting to noise.

Compared to finite differences, Autograd achieves slightly lower residuals and errors across noise levels,
highlighting its reliability for accurately computing derivatives within the physics loss. These results confirm
that the proposed Autograd-based hybrid training is effective and resilient, preserving model accuracy even
when the reference data is noisy, while finite differences provide a reasonable but less precise baseline.

Table 5: Effect of injecting noise of different levels 7 (as defined in equation in the reference data when
training a mGNO o FNO on Burgers’ equation with a hybrid loss. We report the PDE residual and the
relative L2 data loss both to the true reference solution u and to the noisy reference solution @. We consider
both the cases where the derivatives are computed using Autograd and finite differences in the physics losses.

Noise Level n PDE Residual Relative L2 (true) Training Relative L2 (noisy)
Autograd
n = 0% (Reference) 3.43-107% 1.68-1073 1.68-1073
n=0.1% 3.39-10~* 1.70-1073 1.90-1073
n=0.5% 3.08-1074 1.99-1073 4.62-1073
n=1% 2.79-10~* 2.64-1073 8.74-1073
n=2% 3.01-107% 4.09-1073 1.72-1072
n = 5% 4.93-1074 8.41-1073 4.29 - 1072
n=10% 5.73-10~* 1.31-1072 8.58 - 1072
n = 20% 9.79-10~4 2.22-1072 1.70 - 1071
n = 50% 1.67-1073 4.39-1072 3.97-1071
Finite Differences
n = 0% (Reference) 4.78 104 1.35-1073 1.35-1073
n=0.1% 4.88-1074 1.40-1073 1.63-1073
n=0.5% 5.00 - 10~* 2.24-1073 4.73-1073
n=1% 5.30 - 1074 3.54-1073 9.10-1073
n=2% 6.28 - 104 5.81-1073 1.78 - 1072
n=5% 8.23-10~% 1.12-1072 4.40-1072
n=10% 1.16-1073 1.85-1072 8.74-1072
n=20% 1.71-1073 3.07-1072 1.72-1071
n = 50% 2.98-1073 6.08 - 1072 4.01-1071
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4.2 Nonlinear Poisson Equation
4.2.1 Problem Description

The Poisson equation is a fundamental PDE that appears in numerous applications in science due to its ability
to model phenomena with spatially varying and nonlinear behaviors. We consider the nonlinear Poisson
equation with varying source terms, boundary conditions, and geometric domain,

V- [(140.1u(x)*)Vu(x)] = f(x) x€Q (16)
u(x) = b(x) x € 00 (17)

where u € R and  C R2. The domain € is centered at the origin and defined in polar coordinates with
varying radius about the origin

7(6) = ro[l + ¢1 cos(46) + co cos(80)],

where the parameters ¢; and ¢q are drawn from a uniform distribution on (—0.2,0.2). The source term f is a

sum of radial basis functions f(x) = 2?21 Biexp ||x — p;|3, where B; € R and p; € R? are both drawn from
standard normal distributions. The boundary condition b is a periodic function, defined in polar coordinates
as by + 3 [b1 cos(0) + by sin(6) + bs cos(20) + by sin(26)], where the parameters b; are drawn from a uniform

distribution on (—1,1). This is the setting used by (2022).

The mesh coordinates, signed distance functions, source terms, and boundary conditions, are passed through

a GINO model of the form

GieRley o Grwo o GEKE™ (18)

to produce an approximation to the solution u. We minimize the PDE residual and boundary condition loss,

Lpoisson(v) = ||V [(1+0.102) V0] - f||2L2(Q) + allv = bl3ap0) - (19)

Examples of predictions made by the trained mGINO model for a variety of geometries are displayed in
Figure [6] below the corresponding reference solutions.

r8o00n
rRo00 %

Figure 6: Comparison of reference solutions to the nonlinear Poisson equation on various geometries (top)
with the corresponding mGINO predictions (bottom).

Ground Truth

Prediction

4.2.2 Comparison to Baselines

The results in Figure [7] show the trade-off between inference time and accuracy. mGINO achieves a relative
squared error 2-3 orders of magnitude lower than Meta-PDE (i.e. initialized PINNs) for a comparable running
time, and a speedup of 20-25x compared to the solver for similar relative accuracy. In addition, mGINO is
more consistent across different instances, with smaller variations in errors compared to Meta-PDE.
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Figure 7: Computational time for inference versus accuracy for the nonlinear Poisson and hyperelasticity
equations. We compare the proposed approach with Meta-PDE (MAML and LEAP) and with the baseline
FEniCS solver. The FEniCS solver was used with 6 different resolutions for the Poisson equation, and 4
different resolutions (iteratively tries to refine the solution) for the hyperelasticity equation. The mean values
across 200 instances are plotted, with the shaded regions representing the min and max error values.

4.2.3 Using Different Training Losses

We trained models using a data loss, a physics loss, and a hybrid loss (data and physics). Table |§| shows that
using a physics loss has a comparable data error to the data-driven approach, while achieving a PDE residual
4-5 orders of magnitude lower. Finetuning the trained data-driven model using Lpyisson did not work well, as
its physics loss is 7 orders of magnitude larger than its data loss, and attempts at lowering the physics loss
only worked by completely sacrificing the data loss.

Table 6: Data and PDE losses of mGINO trained with different losses £ for the Poisson equation.

£data Ldata + /\Ephysics Lphysics
MSE Data Loss 1.36-107° 2.29-107° 1.39-107°
PDE Residual Loss 3.55 - 102 2.07-1072 7.21-1073

When training only with data loss, the predicted solutions have discontinuities at higher resolutions coinciding
with circles of radius r centered at the latent query points of the GINO, (see Figure a)). These discontinuities
lead to high derivatives and inaccurate physics losses, regardless of the differentiation method used (see
Figures [§(b)(c)). This happens despite the low data MSE, indicating that only training the mGINO model
with data loss is not sufficient to capture the solution correctly at higher resolutions.

Recall that the GNO’s kernel integration can be viewed as an aggregation of messages if we construct a graph
on the spatial domain of the PDE, as described in |Li et al.| (2020b)). The mean aggregation is given by

Vi1 =0 W?]t(l‘) + Z H(b(e(];?y))vt(y)

yEN(z)

[N ()]

where v;(x) € R™ are the node features, e(x,y) € R™ are the edge features, W € R"*" is learnable, N(x)
is the neighborhood of z, and k4(e(z,y)) is a neural network mapping edge features to a matrix in R™*".
When using a differentiable weight function, points in N(z) at the edge of the neighborhood have near-zero
weights but still contribute to the denominator |N(z)|. Thus, as the query point x moves slightly, additional
neighbors get included or excluded with near-zero weights, thereby introducing the discontinuities we see in
Figure a). Using a sum aggregation for the output GNO’s kernel integration mitigates the rigid patterns.
When training with a physics loss, the patterns disappear, as shown in Figure [9] while the MSE for the
predictions remains of the same order of magnitude.
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Predicted Solution 0.08 Gradient Norm (using autograd) Gradient Norm (using finite differences)

0.1

v ()

-0.1 0.1 -0.1 0.1

Figure 8: (a) Prediction of a mGINO trained using data loss only for the nonlinear Poisson equation.
This is the predicted solution evaluated at a high resolution on a small patch centered at a latent query
point of the mGNO. The prediction exhibits discontinuities that coincide with the circles of radius r (blue
lines) centered at the neighboring latent query points. (b)(c) Norm of the gradient of the predicted solution
shown in (a), computed using automatic differentiation (in (b)) and finite differences (in (c)).

Predicted Solution Ground Truth Solution
0.1 0.08 0.1 0.08
0.07 0.07
0.06 0.06
0.05 0.05
0.04 0.04
-0.1 -0.1
-0.1 0.1 -0.1 0.1

Figure 9: Comparison between the prediction of a mGINO model (left) trained using a hybrid loss,
L = Liata + AMphysics and the corresponding ground truth solution (right) for the nonlinear Poisson equation.
The prediction and ground truth solutions are evaluated at a high resolution on a small patch centered
at a latent query point of the mGNO. Using the physics loss regularized the higher resolution prediction, and
removed the visible discontinuity patterns shown in Figure a).

4.2.4 Nonlinear Poisson PDE Residual Loss with Finite Differences

Figure [I0] shows gradients norms on a domain patch, computed using Autograd and finite differences at
16 x 16 and higher resolutions (both displayed at 16 x 16). The finite difference gradient norms at lower
resolution in (c) differ completely from those obtained using Autograd (b)(e), and high-resolution finite
differences (f), while the latter are very similar. In addition, inaccuracies can be further amplified with finite
differences on unstructured point clouds in regions with a low density of points. The Autograd mGINOs
were trained successfully with a density of randomly located points on the whole domain slightly lower than
the density here with 162 points on the domain patch displayed in Figure Given that numerical errors
made on derivatives are amplified in physics losses, Lpoisson does not provide enough information to move
towards physically plausible solutions when computed using finite differences on unstructured point clouds
at the same resolution at which Autograd mGINOs models were trained successfully. This showcases how
Autograd mGINO can be used to obtain surrogate models using physics losses at resolutions at which finite
differences are not accurate enough. We estimate that at least 9x more points would be necessary to compute
reasonable finite difference derivatives. Higher resolution finite difference computations typically require a
higher computational time and memory requirement (see Appendix EI for a comparison of training times at
different resolutions).
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Predicted Solution Gradient Norm (using autograd on 16x16) Gradient Norm (using FD on 16x16)
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Figure 10: Prediction of a mGINO model and the norm of its gradient, computed on a 16 x 16 regular grid
(top row) and a 96 x 96 regular grid (bottom row) using Autograd and finite differences (FD). All plots are
displayed on a 16 x 16 grid for ease of qualitative comparison.

4.2.5 Data Efficiency

We now investigate the data efficiency of hybrid loss training, and more precisely how performance changes
when varying the number of points at which the data loss and physics loss are evaluated when using a hybrid
training loss Lqata + ALphysics for the nonlinear Poisson equation. Table El displays the results obtained with
the proposed mGINO model, showing that both the data and physics losses worsen when the number of
points used for the physics loss during training decreases. However, performance is not very heavily impacted
when the number of points used for the data loss during training is reduced.

Table 7: Data loss (MSE) and physics loss (computed using Autograd) for the proposed mGINO models on
the Poisson equation, when training with a hybrid loss. We vary the resolutions at which the data loss and
physics losses are evaluated during training. Each row corresponds to a different number of points used for
the physics loss, while each column corresponds to a different number of points used for the data loss.

Data . . .
m 400 points 200 points 50 points

Physics | Data Physics | Data Physics | Data
800 points 2.63-1072 | 8.28-107° 3.31-107213.89-107° 3.82-1072 | 6.73-107°
400 points 2.13-107' | 1.10- 1074 1.22-107119.20-107° 1.39-1071 | 1.29-10~*
200 points 3.75-1071 | 2.40-10~* 2.55-1071 | 2.92-10~* 3.33-1071 | 5.18-107*
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4.2.6 Ablation Study on GNO Radius and Weight Function

We investigate how performance changes as the mGNO radius changes for mGINO models, and also compare
the performance of the different weight functions @I}— on the nonlinear Poisson equation. Note that the
radius cutoff used in the weight functions of mGNOs is the same as the mGNO radius to avoid the additional
cost of carrying a second neighbor search. The mGNO radius 7 is an important hyperparameter to tune. It
needs to be large enough so that the ball B,.(z) contains sufficiently many other latent query points, and a
value too large can lead to prohibitive computational and memory costs. We denote the number of latent
query points in B,.(z) by #|B,(x)|. For the nonlinear Poisson equation, we are using a regular 2D latent
space grid, so B,.(z) will only contain a single latent query point (z itself) until r is large enough for B,.(z) to
contain one extra latent query point in each direction. B,.(x) will progressively contain more latent query
points by thresholds as the radius increases further, together with computational time and memory cost.

Table |8 shows the results obtained for mGINO models with different weight functions for values of r such
that #|B,(z)| = 32,52,7%,92,152. As expected, performance is poor when the radius is too small. On the
other hand, when r becomes too large, the computational and memory costs significantly increase while
performance deteriorates. For this numerical experiment, the best performance was achieved with a radius
for which #|B,.(z)| = 72, and Whalt cos and Wquartic led to the best performance.

Table 8: MSE of mGINO models trained on only PDE loss, with different GNO radii and weight functions.

bump half cos quartic octic
#|B,(2)] = (r =0.0875 3.64-1071 3.41-1071 2.20 - 1072 3.48 1071
#|B,.(z)| =25  (r=0.13125 4.51-107° 3.59-107° 3.95-107° 4.24-107°

1 (r=0.21875 5.35- 104 1.01-1074 7791075 1.76 - 1074

()| =9 )
(z)| =2 )
#|B,.(z)| = 49 (r =0.175) 1.40-10~* 1.39-107° 2.93-107° 9.49-10°
(z)| =8 )
(r)] =2 ) 3.92-1073 9.36 - 10~* 4.28 1073 6.59 - 10~*

4.3 Hyperelasticity Equation

4.3.1 Problem Description

The hyperelasticity equation models the shape deformation under external forces of hyperelastic materials
(e.g. rubber) for which the stress-strain relation is highly nonlinear. We consider the deformation of a
homogeneous and isotropic hyperelastic material when compressed uni-axially (assuming no body and traction
forces), and learn the final deformation displacement u mapping the initial reference position to the deformed
location. More precisely, we consider the deformation of a two-dimensional porous hyperelastic material
under compression, as in |Overvelde & Bertoldi (2014 and |Qin et al.| (2022). We keep the pores circular and
fix the distance between the pore centers, so that the size of the pore is the only varied parameter. The size
of the pores determines the porosity of the structure and affects the macroscopic deformation behavior of the
structure. Examples of final deformation displacement fields are shown in Figure

I 3

Figure 11: Final deformation displacement for several instances of the hyperelasticity dataset.
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The mesh coordinates and signed distance functions are passed through a GINO model of the form
GieXs o Grno o GERE™ (20)

to produce an approximation to the solution w to the hyperelasticity equations.

The solution can be obtained as the minimizer of the total Helmholtz free energy of the system fQ 1 dx. Here
1) denotes the Helmholtz free energy relating the Piola—Kirchhoff stress P with the deformation gradient
F via P = %. Instead of minimizing the PDE loss from the strong form of the hyperelasticity equation,
we minimize the Helmholtz free energy of the system by randomly sampling collocation points from the
PDE domain and the Dirichlet boundary and using these points to form a Monte Carlo estimate of the total

Helmholtz free energy. In addition, we add a weighted boundary loss term.

4.3.2 Numerical Results

We trained models using a data loss, a physics loss, and a hybrid loss. Table [J] shows that using a physics
loss is critical for this problem, as the data-driven approach achieves a low data loss, but the predictions do
not satisfy the physics at all. In contrast, both the physics-only and hybrid approaches achieve low data and
PDE errors. As for the Poisson equation, finetuning the trained data-driven model using the physics loss
did not work, due to the high physics loss of the data-driven model. As in Section Autograd enables
computation of accurate derivatives at resolutions where finite differences are not accurate.

Table 9: Data and PDE losses of mGINO trained with different losses £ for the hyperelasticity equation.

Edata Ldata + )\Lphysics Lphysics
MSE Data Loss 3.35-1077 9.69-10~7 9.42-107°
PDE Residual Loss 2.97-102%6 1.57-1072 1.21-1072

A comparison to baselines is displayed in Figure [7] mGINO achieves a relative squared error 2 orders of
magnitude lower than Meta-PDE (i.e. initialized PINNs) with a slightly faster running time, and achieves a
speedup of 3000-4000x compared to the FEniCS solver for similar accuracy. In addition, mGINO achieves
consistent results across different samples (all within a single order of magnitude) while Meta-PDE results
span more than 3 orders of magnitude. This high variation in Meta-PDE results is likely caused by the
difficulty disparity across samples, as samples with larger pores are harder to resolve.

4.4 Navier—Stokes Equations
4.4.1 Problem Setting

Finally, we consider the lid cavity flow governed by the Navier—-Stokes equations

Ou(z, t) + u(zx, t) - Vu(z,t) = —%Vp(x,t) + éAu(z,t), z € (0,1)%t e (0,T]

V- ulz,t) =0, z e (0,1)%,¢ € 0,T] (21)

u(z, 0) = up(z), r € (0,1)?

We study the standard cavity flow on domain D = (0,1)? with 7" = 10 seconds, where u is velocity, p is
pressure, p = 1 is density, and Re = 500. We assume zero initial conditions, and the no-slip boundary
condition where u(z,t) = (0,0) at the left, bottom, and right walls and u(x,t) = (1,0) on top. We also start
from zero initial conditions, u(0,t) = 0 for x € (0,1)%. We are interested in learning the solution for the time
interval [5,10]. Figure [12[shows the solution to this equation at a few timesteps. The main challenge lies in
handling the boundary conditions within the velocity—pressure formulation.
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u velocity att=5.0s u velocity att=7.5s u velocity at t=10.0 s
v velocity att=5.0s v velocity att=7.5s v velocity at t=10.0 s

Figure 12: Example of solution for the lid cavity flow governed by the Navier—Stokes equations.

4.4.2 Results

We first trained mGNO o FNO models using a data-only loss, a physics-only loss, and a hybrid loss. To
facilitate the tuning of the loss coefficients for this numerical experiment, we employ ReLoBRaLo (Relative
Loss Balancing with Random Lookback) (Bischof & Kraus| 2021) to adaptively update and balance the
various loss coefficients in the total loss. ReLoBRaLo uses the history of loss decay across random lookback
intervals to achieve uniform progress across the different terms and faster convergence overall. We also
investigate how performance changes when varying the number of points at which the data and physics
losses are evaluated during training when using a hybrid training loss Lqata + ALphysics for the Navier—Stokes
equations. Table [I0] displays the results obtained.

We see that access to data is essential, as training solely on the PDE residual leads to high data loss. Also,
training with data on a fixed grid results in poor generalization to higher resolutions. By contrast, with
Autograd, a small number of randomly sampled points is sufficient to get excellent results. This demonstrates
that random sampling allows the Autograd mGNO o FNO to capture correct underlying physics instead of
overfitting to a fixed grid. Also, including a physics loss is critical. Models trained only on data loss exhibit
extremely large PDE residuals, while incorporating the physics term, even at low resolution with randomly
sampled points, ensures good PDE fidelity. This indicates that the physics loss guides the network toward
physically consistent solutions, and very high-resolution PDE evaluation is not always necessary.

Finally, none of the results obtained with finite differences were satisfactory. It is worth noting that these were
trained with a physics loss on a fixed grid (given the added complexity and reduced reliability of non-uniform
finite differences), which can limit generalization across resolutions. However, even accounting for this, using
finite differences physics losses led to results significantly worse than training purely on data, both in terms of
PDE residual and data loss at the test resolutions. This reveals a clear mismatch between the finite-difference
PDE loss and the reference data, suggesting that the finite-difference derivatives were not sufficiently accurate
at the training resolutions, even when using as many as 50,000 randomly sampled points.
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Table 10: Results of training mGNO o FNO models with a hybrid loss for the Navier—Stokes equations, using
varying resolutions for the physics term (PDE Res.) and the data term (Data Res.) during training. When
the resolution is denoted by a single number N, it indicates that N points are randomly sampled at each
training iteration. In contrast, when the resolution is written as N, x Ny x IV, it refers to using a fixed
grid with the specified spatial and temporal resolutions. The table reports both PDE residuals and data
losses at the training resolutions, and at the testing resolutions (fixed to 32x32x 16 for the PDE residual
and 64 x64 x50 for the data loss). Derivatives are computed with Autograd and finite differences. Cells

highlighted indicate suboptimal results (orange) or poor generalization (red) at the test resolution.

AUTOGRAD
PDE Res. Data Res. | PDE (Train) PDE (Test) | Data (Train) Data (Test)
10000 32 x 32 x 50 3.25-107° 6.99 - 107> 2.91-107% 1.50 - 102
10000 50000 1.71-106 2.13-1076 1.06 - 1074 1.05-10~4
10000 10000 1.52-1076 2.04-10°6 1.11-10~% 1.09 - 10~
10000 1000 2.51-107° 3.11-107° 2.53-10* 2.27-104
10000 100 1.70 - 1074 1.80-107* 1.32-1073 1.87-1073
10000 — 1.16-1077 2.82-1077 — 2.04-1072
1000 32 x 32 x 50 2.74-10°7 6.28 - 10" 1.57-107° 1.50 - 1072
1000 50000 2481077 5.82-1077 5.51-107° 5.79-107°
1000 10000 3.59-1077 6.82-1077 5.44-107° 5.28-107°
1000 1000 6.74-10° 8.02-1076 1.48-10~4 1.31-107*
1000 100 3.35-107% 4.13-107% 3.55-1073 3.95-1073
1000 — 4.40-10-° 1.02-107° — 2.84 - 1072
100 32 x 32 x 50 1.03-10~7 2.38-1077 6.58 - 10~ 1.57-1072
100 50000 3.85-1076 5.50 - 1076 3.49-107° 3.53-107°
100 10000 1.98-10¢ 2.47-1076 8.01-107° 8.06-107°
100 1000 1.97-106 2.74-1076 8.59-107° 7.69-107°
100 100 6.64 - 1076 8.67-1076 2.50-10* 2.32-104
100 — 2.92-1077 3.39-1077 — 2.01- 102
25 32 x 32 x 50 9.28-1078 1.83-1077 8.04-107° 1.50 - 102
25 50000 9.98-10~7 9.55-10~" 6.63-107° 6.84-107°
25 10000 2.59-1077 1.16-1076 1.07-104 1.05-10~4
25 1000 1.27-1076 1.63-10°6 1.16-10~4 1.35-10~%
25 100 2.46 -107° 3.53-107° 2.04-1074 3.08-107*
25 — 1.96 - 1077 1.02-10°6 — 1.92-1072
FINITE DIFFERENCES
PDE Res. Data Res. | PDE (Train) PDE (Test) | Data (Train) Data (Test)
32x32x25 32x32x50 | 9.14x10°* 1.09 x 106 3.07 x 1073 4.29 x 1072
16 x16x25 32x32x50 | 5.16x107* 3.42 x 10° 1.78 x 103 4.28 x 1072
16 x 16 x 12 32 x 32 x 50 1.76 x 107* 2.45 x 107 8.28 x 104 4.12 x 1072
32 x 32 x 25 50000 3.58 x 1073 1.93 x 10° 3.43 x 1073 3.51 x 1073
32 x 32 x 25 10000 3.20 x 1073 8.95 x 10% 3.73 x 1073 3.54 x 1073
NO PHYSICS LOSS
PDE Res. Data Res. | PDE (Train) PDE (Test) | Data (Train) Data (Test)
— 32 x 32 x 50 — 3.55 . 10° 5.30- 107 1.56 - 102
— 50000 — 2.26 - 10* 1.87-1076 1.82-107°
— 10000 — 2.83.10% 1.97-1076 1.91-10°
— 1000 — 2.47 - 10° 3.84-1076 3.51-1076
— 100 — 2.83.10% 4181076 6.54-1076
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4.5 Airfoil Inverse Design
4.5.1 Description of the Forward Mapping

We consider the transonic flow over an airfoil (ignoring the viscous effect), governed by the Euler equation,

opf

hd (ofv) =
5 TV (p’v) =0, (22)
OF
o TV (BE+pv) =0, (23)
f
%—!—V-(pfv@v-l-pﬂ):(), (24)

where p/ is the fluid density, v is the velocity vector, p is the pressure, and E is the total energy. The far-field
boundary condition iS poe = P = 1, Mo = 0.8, AoA = 0, where M, is the Mach number and AoA is the
angle of attack, and no-penetration condition is imposed at the airfoil.

We use the same dataset as (2022)), where the shape parameterization of the airfoil follows the design
element approach . The initial NACA-0012 shape is mapped onto a ‘cubic’ design element with
8 control nodes in the vertical direction with prior d ~ U[—0.05,0.05]. That initial shape is morphed to a
different shape following the displacement field of the control nodes. The dataset contains 1000 training
samples and 200 test samples generated using a second-order implicit finite volume solver. The C-grid mesh
with (220 x 50) quadrilateral elements is used and adapted near the airfoil but not around the shock.

For the forward pass, the mesh point locations and signed distance functions are passed through a trained
differentiable mollified GINO model of the form

decod d
GmcINO = GmcNG © Grno © G &S (25)

to produce an approximation of the pressure field p.

4.5.2 Inverse Design

For the inverse problem, we parametrize the shape of the airfoil by the vertical displacements of a few spline
nodes, and set the design goal to minimize the drag-lift ratio. The parametrized displacements of the spline
nodes are mapped to a mesh, which is passed through the mGINO to obtain a pressure field, from which
we can obtain the drag lift ratio. We optimize the vertical displacement of spline nodes by differentiating
through this entire procedure. A depiction of the airfoil design problem is given in Figure [I3]

l

predtits

control spline nodes

Backpropagate gradients to update control nodes

( — | drag-lift ratio

point cloud pressure field p

Figure 13: The airfoil design problem. Parametrized vertical displacements of control spline nodes generate
a point cloud, which is passed through the differentiable mGINO to obtain a pressure field p, from which we
can compute the drag-lift ratio. We update the control nodes to minimize the drag-lift ratio by differentiating
through this entire procedure.
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As a result of this optimization process, we obtain an airfoil design with drag coefficient 0.0216 and lift
coefficient 0.2371, based on the model prediction. Using the numerical solver on this optimal design, we verify
these predictions and obtain a similar drag coeflicient 0.0217 and a similar lift coefficient 0.2532. This yields
a drag-lift ratio of around 0.09, outperforming the optimal drag-lift ratio of 0.14 reported by [Li et al.| (2022)
(drag 0.04 and lift 0.29, obtained using a Geo-FNO instead of mGINO).

Discussion

We proposed mGNO, a fully differentiable version of GNO, to allow for the use of automatic differentiation when
computing derivatives, and embedded it within GINO to learn efficiently solution operators of families of large-
scale PDEs with varying geometries without data. The proposed approach circumvents the computational
limitations of traditional solvers, the heavy data requirement of fully data-driven approaches, and the
generalization issues of PINNs.

The use of a physics loss proved critical and was sufficient to achieve very good results with data at a very
low-resolution and even in the absence of data, demonstrating the data efficiency of the physics-informed
paradigm. This highlights the need for efficient and accurate methods to compute physics losses, to improve
data efficiency and regularize neural operators. Autograd can compute exact derivatives in a single pass
seamlessly across complex geometries and enables higher-order derivatives with minimal additional cost.
However, it can be memory-intensive for deep models, possibly making it less efficient than finite differences
for simpler problems. Despite these limitations, its accuracy, capability to handle complex geometries, and
scalability for complicated learning tasks make it the preferred differentiation method in PINNs, and a
promising approach in our physics-informed neural operator setting on complex domains.

Using Autograd instead of finite differences led to a 20x reduction of the relative L2 data loss for Burgers’
equation on regular grids, suggesting that the Autograd physics loss better captured the physics that
underlies the data. In hybrid training with noisy reference data, mGNO o FNO remained robust and
accurate, maintaining low PDE residuals and data loss. It also exceled at learning the lid cavity flow example,
where a small number of randomly sampled points proved sufficient with Autograd to achieve excellent
results. Here again, including a physics loss, potentially at a small number of randomly sampled points,
proved critical. Autograd mGINO performed seamlessly for the Poisson and hyperelasticity equations on
unstructured point clouds, while finite differences were not sufficiently accurate at the training resolution
used and would need at least 9x more points to compute reasonable derivatives. Autograd mGINO achieved
a relative error 2-3 orders of magnitude lower than the Meta-PDE baselines for a comparable running time,
and enjoyed speedups of 20-25x and 3000-4000x compared to the solver for similar accuracy on the Poisson
and hyperelasticity equations. We also demonstrated with an airfoil design problem that mGINO can be
used seamlessly for solving inverse design and shape optimization problems on complex geometries.

Future Directions

Our framework lays the groundwork for further transformative advances in physics-informed machine learning.

Integrating techniques that have proven effective in PINNs and PINOs, such as adaptive loss reweighting
and targeted sampling, could dramatically enhance training efficiency and solution accuracy, while advanced
automatic differentiation strategies like the Stochastic Taylor Derivative Estimator (Shi et al. [2024) can help
make high-dimensional PDEs with exact derivatives more computationally tractable. Learning data-driven
mollifiers directly from PDE residuals could allow the model to adaptively tailor its smoothing properties
to the structure of the underlying PDE, potentially improving both stability and generalization across
regimes. Adaptive meshing further leverages the model’s flexibility with arbitrary point clouds, concentrating
computational effort on regions with steep gradients, singularities, or other complex dynamics, thereby
accelerating training and enabling highly efficient forward and inverse design.
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Data and training efficiency can be further improved by leveraging multiscale strategies. As shown throughout
the paper, mGNO achieves high accuracy and strong data efficiency by combining low-resolution data
with high-resolution physics losses. This aligns with growing recent evidence for the benefits of multiscale
methods. For example, Ahamed et al.| (2025)) introduce a CNN training scheme across spatial resolutions,
where gradual refinement maintains stable gradients and improves efficiency and generalization when direct
high-resolution training would be too costly. |Gal et al.| (2025 propose a coarse-to-fine GNN framework
using graph coarsening and multiscale gradients to reduce memory and computation without sacrificing
accuracy. While we do not apply hierarchical coarsening, subsampling PDE residual points similarly reduces
cost with minimal accuracy loss and suggests potential for adaptive sampling. |George et al.| (2024]) extend
the idea to FNOs with progressive training in spatial resolution and spectral modes, lowering cost, improving
generalization, and producing more compact models than full-resolution training. This highlights the broader
advantage of resolution adaptivity, which mGINO can exploit when handling point clouds, for example by
gradually increasing Fourier modes alongside resolution during training. Together, these results underscore
the value of exploring multiscale extensions of mGNO, such as mollified kernels of varying radii, enabling
simultaneous capture of short- and long-range interactions and addressing multiscale and nonlocal phenomena
that challenge conventional architectures.

Together, these directions underscore the transformative potential of our approach for modeling complex,
high-dimensional PDEs, opening pathways for both predictive accuracy and computational efficiency that
extend well beyond current state-of-the-art methods.
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A FNO and GINO Architecture Diagrams

We first depict the Fourier Neural Operator (FNO) (Li et al. [2020a)) architecture:

@—> Fourier layer 1—{Fourier layer 2—> @ @ @ —» Fourier layer T
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Figure 14: The Fourier Neural Operator (FNO) architecture (extracted from (2020a)).

Next, we depict Geometry-Informed Neural Operator (GINO) (Li et al., 2023) architecture:
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Figure 15: The Geometry-Informed Neural Operator (GINO) architecture (extracted from (2023)).
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B Choices of Hyperparameters

For all experiments, the “optimal" hyperparameters used (including weight functions and loss coefficients)
were obtained by conducting a grid search on a subset of hyperparameters.

For the radius cutoff used in the weight functions of mGNOs, we use the same radius as for the GNO to
avoid the additional cost of carrying a second neighbor search.

We use the following Mean Squared Error (MSE), Relative Squared Error, L2 error, and Relative L2 errors,
as metrics in our experiments:

MSE(ypred s ytrue) =
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where € is a small positive number for numerical stability, and the constant C' is a scaling constant taking

into account the measure an dimensions of the data, to ensure that the loss is averaged correctly across the
spatial dimensions.

RELATIVEL2(Ypred, Ytrue) =

B.1 Burgers’ Equation

For Burger’s equation, the input initial condition ug(x) given on a regular spatial grid in the domain [0,1]? is
first duplicated along the temporal dimension to obtain a 2D regular grid of resolution 128 x 26, and then
passed through a 2D FNO and a mollified GNO to produce a predicted function

v = (Gmano © Grno)(uo)

approximating the solution u(z,t).

For this experiment, the 2D FNO has 4 layers, each with 26 hidden channels and (24, 24) Fourier modes, and
we used a Tucker factorization with rank 0.6 of the weights. The mGNO uses the half cos weight function
with a radius of 0.1, and a 2-layer MLP with [64, 64] nodes.

The resulting model has 1,019, 569 trainable parameters, and was trained in PyTorch for 10,000 epochs using
the Adam optimizer with learning rate 0.002 and weight decay 10~%, and the ReduceLROnPlateau scheduler
with factor 0.9 and patience 50.
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B.2 Nonlinear Poisson Equation

For the nonlinear Poisson equation, the mesh coordinates within [—1.4,1.4]2, signed distance functions, source
terms, and boundary conditions, are passed through

GicliE © Grno © GG

model to produce an approximation to the solution wu.

For this experiment, the input GNO has a radius of 0.16, and a 3-layer MLP with [256, 512, 256] nodes. The
2D FNO has 4 layers, each with 64 hidden channels and (20, 20) Fourier modes, and acts on a latent space
of resolution 64 x 64. The output mGNO uses the half cos weight function with a radius of 0.175, and a
3-layer MLP with [512,1024, 512] nodes.

The resulting model has 8,691,972 trainable parameters, and was trained in PyTorch for 300 epochs using
the Adam optimizer with learning rate 0.0001 and weight decay 10~%, and the ReduceLROnPlateau scheduler
with factor 0.9 and patience 2. We used 7000 samples for training and 3000 samples for testing.

B.3 Navier-Stokes Equations

For the Navier—Stokes equations, we employ a physics-informed neural operator approach that learns
the mapping from spatial-temporal coordinates (x,y,t) to the velocity-pressure field (u,v,p). The model
architecture combines a 3D FNO with a mollified GNO to produce a predicted function

v = (Gmano © Grno)(7, Y, 1)
approximating the solution (u(z,y,t),v(z,y,t),p(x,y,t)).

The 3D FNO has 3 layers, each with 16 hidden channels and (16, 16, 16) Fourier modes, and uses a Tucker
factorization with rank 0.1 of the weights. The mGNO uses the half cos weight function with radius 0.016,
a 2-layer channel MLP with [128,64] nodes. The resulting model has 431, 183 trainable parameters, and
was trained in PyTorch for 15,001 epochs using the Adam optimizer with learning rate 0.001 and the
ReduceLROnPlateau scheduler with factor 0.8 and patience 200.

The training loss combines (up to) four loss components: (1) PDE residual enforcing the Navier—Stokes
equations on varying numbers of randomly subsampled points from a high-resolution 256 x 256 x 80 grid, (2)
data loss matching velocity predictions to target data on either a varying number of points subsampled from
a 64 x 64 x 50 grid or a static 32 x 32 x 50 grid, (3) initial condition loss enforcing zero initial velocity, and
(4) boundary condition loss enforcing no-slip conditions on walls and lid-driven flow on the top boundary.
Loss weighting was handled automatically and adaptively using ReLoBRaLo (Bischof & Kraus, [2021)).

B.4 Hyperelasticity Equation

For the hyperelasticity equation, the mesh coordinates within [0, 1]> and signed distance functions are passed
through a

gdecoder encoder

mGNO © IFNO © GGNG
model to produce an approximation to the solution u to the hyperelasticity equations.
For this experiment, the input GNO has a radius of 0.05625, and a 3-layer MLP with [128, 256, 128] nodes.
The 2D FNO has 4 layers, each with 64 hidden channels and (20, 20) Fourier modes, and acts on a latent

space of resolution 32 x 32. The output mGNO uses the half cos weight function with a radius of 0.1125,
and a 3-layer MLP with [1024, 2048, 1024] nodes.

The resulting model has 11,678,211 trainable parameters, and was trained in PyTorch for 400 epochs using
the Adam optimizer with learning rate 0.0001 and weight decay 10~%, and the ReduceLROnPlateau scheduler
with factor 0.9 and patience 10. We used 1000 samples for training and 1000 samples for testing.
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B.5 Airfoil Inverse Design

For the airfoil design forward problem, the 220 x 50 mesh point locations within [—40, 40]? and signed distance
functions are passed through a differentiable mollified GINO model of the form

decod d
GmaiNno = GoicNe 0 Grno © G SRS

to produce an approximation of the pressure field p.

For this experiment, the input mGNO uses the half cos weight function with a radius of 2, and a 3-layer
MLP with [128,128,128] nodes. The 2D FNO has 3 layers, each with 16 hidden channels and (36, 36) Fourier
modes, and acts on a latent space of resolution 64 x 64. The output mGNO uses the half cos weight function
with a radius of 6, and a 3-layer MLP with [128, 128, 128] nodes.

The resulting model has 1,162,546 trainable parameters, and was trained in PyTorch for 750 epochs using
the Adam optimizer with learning rate 0.0001 and weight decay 10~?, and the ReduceLROnPlateau scheduler
with factor 9 and patience 5. We used 1000 samples for training and 200 samples for testing.

C mGNO Layer Pseudocode
Here, we provide a simplified example of PyTorch pseudocode for the mGNO layer

Gmano (v)(z) = ﬁw<x,y>n<x,y>v<y> dy,

D
with the half cos weight function wnai¢ cos(2,y) = 1g, (2)(y) [0.5 + 0.5 cos(nd)] , where d = ||z — y||*/r.

i|def half_cos_weight function(dists, radius=1., scale=1.):
2 return scale * (0.5 * torch.cos(torch.pi * dists**2 / radius**2) + 0.5)

| def mGNO_layer (

5 v: Tensor([bs, n_in, codim],
6 y: Temsor[bs, n_in, dim],

7 x: Tensor[bs, n_out, dim],
8 delta: Temsor[bs, n_in], quadrature weights when approzimating integral
9 radius=None, radius of the mollified GNO

10 weight_fn=None # weight function w,

11 net: torch.nn.Module # meural network parametrizing the kernel, e.g. a MLP

discretization of the funmction to transform
coordinates of the discretization of wv

#
#
# query locations
#

H*

12/) => Tensor[bs, n_out, codim]:

14 # Kernel ewvaluation
15 shape = [bs, n_in, n_out, dim]
16 kernel_inp = [y.unsqueeze(2).expand(shape), x.unsqueeze (1) .expand(shape)]

17 kernel = net(torch.cat(kernel_inp, dim=-1))

19 # Weitghted aggregation using the quadrature weights

20 output = kernel * v.unsqueeze(l) * delta.view(bs, n_in, 1, 1)

21

22 # Mollification

23 if radius is not None:

24 dists = cdist(y, x) # get distances between input and query locations
25 output [dists > radius, :]J] = 0 # give wetght 0 outside ball of radius 7

26 if weight_fn is not None:
27 # Apply the weight function
28 output = output * weight_fn(dists, radius).unsqueeze(-1)

30 return output.sum(dim=-2)
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D Finite Differences on Point Clouds

On a regular grid, standard well-known stencil formulas are available to compute first-order and higher-order
derivatives using finite differences. However, on arbitrary point clouds, the varying distances between points
have to be taken into account, and a different stencil is needed for each point at which the derivatives need
to be computed. We detail below one strategy to obtain these stencil formulas in 2D.

We consider the case where we have an arbitrary point 2D cloud with N points, {(z;,v:)}X,, and suppose
that the function values {f(z;,v:)}}L, of a function f are known at these points. The goal is to approximate
partial derivatives of f at any other point (Z, %) in the domain. We start with first-order derivatives, and
write them as a finite difference with unknown stencil coefficients:

N

af i, 1) Zc(ai)f (i, 9i), g£(~ ) ~ chv)f(x“yz) (26)
1=1

To find the stencil coefficients cl(-m) and cz(-y)7 we enforce that the approximation holds exactly for the functions

1, z and y, that is, we enforce that the approximation holds true for any polynomial of degree 1 in 2D. This

results in the following systems of equations for the stencil coefficients CEI) and cz(»y
N N N
Yoav=0 Y lwm-n=1 Y4 w-9=0 (27)
i=1 i=1 i=1
and
N N
Z W =o, Z cz(-y) (r; —2)=0 Z CEU =1 (28)
=1 i=1
This can be written as
where
1 1 1
A= |21 -3 x29—7 N — I, (30)
Yi—9 Y29 yn — 4
and
c(lx) ng) 0 0
@ =11, cW=1.1, b@ = 1], b = 0] . (31)
e R 0 1
These systems of equations can be solved using least squares:
c® = (ATA)1ATH®), cW = (ATA)1ATHW. (32)

Plugging these coefficients in Equation gives the desired approximation to the first-order derivatives at f.

We emphasize that this procedure needs to be repeated for every point (Z,§) at which the derivatives need to
be evaluated, since the location of the point affects the entries of the matrix A. Note that it is not necessary
and not recommended to use all N points to approximate the derivatives, and one should instead identify a
subset of nearest neighbors from which the finite differences can be computed.

To compute higher-order derivatives, one could follow a similar strategy (which would lead to a more
complicated system of equations to solve), or first evaluate first derivatives on the point cloud and repeat the
above procedure by replacing f by its appropriate partial derivative.

31



Under review as submission to TMLR

E Training Times of 2D mGNOs with Autograd and Finite Differences

We compare the training times per epoch when training 2D mGNOs with Lpgisson using Autograd, finite
differences on uniform grids, and finite differences on non-uniform (NU) grids. Figures [16[and [L7| display the
training times per epoch versus the latent resolution and output resolution, respectively.

As expected, we see from Figure [16| that Autograd is more expensive than finite differences on a uniform
grid at fixed latent and output resolutions. We can also see, by looking at individual columns corresponding
to fixed latent space resolutions (i.e. the same model architecture), how finite differences at higher output
resolutions compare to Autograd at lower output resolutions. In particular, non-uniform finite differences are
often more expensive than Autograd at a slightly lower resolution. Figure [I7] quantifies how running time
increases when the latent space resolution of the model increases.

e Finite Differences e NU Finite Differences e Autograd ®128
®64
160 @160 0128
. [
0.5 64 0128
®96
256 ®128
®128 e128
096
®500
® 256 0128
w» 0.2 064
s 696 096
O
2
O ® 64 @32
5 064
Q 438
Q
£
— 0.1
0128 ecd 48 ®32
@256 ®32
128 064
@48 @48 032
[ ]
005 e
. 016
e 48 $32 ®16
®16
e32 ® 32
16 064
8x8 16x16 32x32 48x48

Latent Resolution

Figure 16: Time per epoch when training 2D mGNOs with Lpgisson using Autograd, finite differences on
uniform grids, and finite differences on non-uniform (NU) grids. We display the training times per epoch at
different latent space resolutions (z-azis) and different output resolutions (the numbers next to the points
denote the number of points along each dimension,).
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Figure 17: Time per epoch when training 2D mGNOs with Lpgisson using Autograd, finite differences on
uniform grids, and finite differences on non-uniform (NU) grids. We display the training times per epoch
at different output resolutions (z-azis) and different latent space resolutions (the numbers at the end of the
curves denote the number of points along each dimension).

F Automatic Differentiation with Non-Differentiable Components

In our experiments, the entire mGNO and mGINO architectures are designed such that all of their components
are differentiable, ensuring that derivatives of any order can be computed correctly and accurately using
automatic differentiation. For instance, we avoid non-differentiable activation functions such as ReLU
(Rectified Linear Unit), which introduce discontinuities in their derivatives, and instead use smooth alternatives
like GeLU (Gaussian Error Linear Unit). All the other operations in the network, including the Fourier layers,
pointwise linear neural networks, and pointwise linear operators, are also implemented in a differentiable
manner to avoid issues related to non-differentiability.

While automatic differentiation is naturally suited to smooth functions, it can accommodate non-differentiable
components. For example, ReLLU is non-differentiable at 0, yet Autograd computes exact gradients on each side
and assigns a subgradient at 0, (e.g. 0 or 1). This works well in practice since exact zero inputs are rare and
subgradient-based optimization remains effective. Other strategies exist for non-smooth components. Clarke
subderivatives formalize generalized derivatives at non-smooth points. Proximal methods split updates into a
smooth gradient step and a proximal mapping for the non-smooth part. Randomized smoothing adds small
perturbations to inputs and averages outputs. Straight Through Estimators use the true non-differentiable
function in the forward pass while replacing its gradient in the backward pass with a differentiable surrogate
such as a smoothed function or the identity.

Physics-informed approaches use automatic differentiation to compute derivatives of network outputs with
respect to input coordinates. While automatic differentiation can handle non-differentiable components,
they can be problematic for physics-informed losses. Non-smoothness can create regions where derivatives
are undefined or discontinuous, and these issues cn propagate through the chain rule when higher-order
derivatives are needed for PDE residuals. The result can be abrupt residual changes, numerical instability, and
convergence to suboptimal solutions. Differentiable components are therefore preferable since they provide
continuous derivatives, ensuring smooth residuals that better capture the physics. This reduces numerical
artifacts, improves gradient quality, and supports stable optimization, leading to faster convergence and more
accurate solutions, with greater reliability.
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