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Abstract

As Large Language Models (LLMs) continue001
to exhibit remarkable performance in natural002
language understanding tasks, there is a crucial003
need to measure their ability for human-like004
multi-step logical reasoning. Existing logical005
reasoning evaluation benchmarks often focus006
primarily on simplistic single-step or multi-007
step reasoning with a limited set of inference008
rules. Furthermore, the lack of datasets for eval-009
uating non-monotonic reasoning represents a010
crucial gap since it aligns more closely with011
human-like reasoning. To address these limi-012
tations, we propose Multi-LogiEval, a compre-013
hensive evaluation dataset encompassing multi-014
step logical reasoning with various inference015
rules and depths. Multi-LogiEval covers three016
logic types — propositional, first-order, and017
non-monotonic consisting of more than 30 in-018
ference rules and more than 60 of their combi-019
nations with various depths. Leveraging this020
dataset, we conduct evaluations on a range of021
LLMs including GPT-4, ChatGPT, Gemini-Pro,022
Yi, Orca, and Mistral, employing a zero-shot023
chain-of-thought. Experimental results show024
that there is a significant drop in the perfor-025
mance of LLMs as the reasoning steps/depth026
increases (average accuracy of ∼ 68% at depth-027
1 to ∼ 43% at depth-5). We further conduct a028
thorough investigation of reasoning chains gen-029
erated by LLMs which reveals several impor-030
tant findings. We believe that Multi-LogiEval031
facilitates future research for evaluating and en-032
hancing the logical reasoning ability of LLMs1.033

1 Introduction034

The ability to perform multi-step reasoning – draw-035

ing conclusions from provided multiple premises036

– is a hallmark of human intelligence. Recently,037

Large Language Models (LLMs) such as GPT-4,038

ChatGPT, Gemini, and Mistral (Jiang et al., 2023)039

1Data is available at https://anonymous.4open.
science/r/Multi-LogiEval-FFDB
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Figure 1: Performance (avg. accuracy across each depth
for PL & FOL) of various LLMs on Multi-LogiEval.

have achieved impressive performance on a vari- 040

ety of language tasks that were previously thought 041

to be exclusive to humans (OpenAI, 2023; Brown 042

et al., 2020; Zhao et al., 2023). However, the abil- 043

ity of these LLMs to perform multi-step logical 044

reasoning over natural language remains under- 045

explored, despite its various real-world applications 046

(Khashabi, 2019; Beygi et al., 2022). Although 047

several datasets have been proposed (Luo et al., 048

2023) to evaluate the logical reasoning capabili- 049

ties of LLMs, these datasets are limited in their 050

scope by (1) evaluating simplistic single-step logi- 051

cal reasoning such as ProntoQA (Saparov and He, 052

2023) and (2) evaluating multi-step logical reason- 053

ing, but only on a single type of logic and covering 054

only a few logical inference rules as done in FO- 055

LIO (Han et al., 2022) and ProofWriter (Tafjord 056

et al., 2021). Furthermore, there are only a few 057

benchmarks, such as LogicBench (Parmar et al., 058

2024) and BoardgameQA (Kazemi et al., 2023), 059

that cover reasoning such as non-monotonic which 060

is closer to human-like reasoning. Motivated by 061

this, our work aims to bridge these gaps by creating 062

a more comprehensive and logically complex eval- 063

uation dataset by incorporating varying numbers of 064

reasoning depths (i.e., multi-steps) to reach conclu- 065
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sions. In addition, past attempts have been made to066

evaluate multi-hop reasoning of language models067

(Mavi et al., 2022). In contrast, our work system-068

atically evaluates multi-hop logical reasoning over069

various inference rules and their combinations.070

To this end, we propose Multi-LogiEval, a071

systematically created Question-Answering (QA)072

dataset covering multi-step logical reasoning073

across three different logic types: Propositional074

Logic (PL), First-Order Logic (FOL), and Non-075

Monotonic (NM) reasoning. Our objective is to076

present a preliminary analysis of the LLMs’ ability077

to perform multi-step logical reasoning and demon-078

strate their failures even when performing simple079

reasoning. We believe that, regardless of whether080

such reasoning is available in some existing natural081

data (e.g., examinations), LLMs should do proper082

logical reasoning. Thus, we systematically com-083

piled data using various inference rules and vary-084

ing numbers of reasoning depths. In particular, our085

proposed dataset provides ∼ 1.6k high-quality in-086

stances that cover 33 inference rules and reasoning087

patterns and more than 60 complex combinations088

of these inference rules with a different number of089

reasoning steps (1 ∼ 5). Our choice of inference090

rules is further explained in section 3.1. To evaluate091

LLMs, we formulate a binary classification task in092

Multi-LogiEval where the context represents a natu-093

ral language story consisting of logical statements,094

and the models have to determine whether the story095

logically entails a conclusion given in the question.096

Examples of instances are presented in Table 4. To097

develop Multi-LogiEval, we propose a two-stage098

procedure: (i) creating meaningful combinations099

of inference rules to generate data instances with100

different reasoning depths, and (ii) prompt LLMs101

to generate <context, question, answer> triplets102

consisting of different ‘ontologies’ (i.e., a collec-103

tion of concepts such as car, person, and animals).104

In the end, we perform human validation of each105

generated instance to ensure the quality.106

We evaluate a range of LLMs, including GPT-4,107

ChatGPT, Gemini-Pro, Yi-34B (Young et al., 2024),108

Orca-2-13B (Mitra et al., 2023), and Mistral-7B109

(Wei et al., 2021) on Multi-LogiEval using Zero-110

shot Chain-of-Thought (Zero-shot-CoT) prompting111

(Wei et al., 2022). The zero-shot CoT approach112

allows us to determine LLM’s ability to do logi-113

cal reasoning based on parametric knowledge (ac-114

quired during pre-training) since we can not ex-115

pect in-context examples of inference rules for var-116

ious reasoning depths will always be available in117

Dataset
Logic Covered Multi-Step

Logical ReasoningPL FOL NM

LogicNLI ✗ ✓ ✗ ✗

ProofWriter ✓ ✓ ✗ ✓
FOLIO ✗ ✓ ✗ ✓

SimpleLogic ✓ ✗ ✗ ✓
ProntoQA ✗ ✓ ✗ ✗

RuleTaker ✗ ✓ ✗ ✓
LogicBench ✓ ✓ ✓ ✗

Multi-LogiEval ✓ ✓ ✓ ✓

Table 1: Comparison of Multi-LogiEval with existing
datasets and benchmarks

prompts. We measure the accuracy of LLMs’ pre- 118

dictions on the binary classification task. As illus- 119

trated in Figure 1, our experimental results indi- 120

cate that LLMs performance decreases as the depth 121

of reasoning increases, indicating mistakes in the 122

initial reasoning step propagate further in the rea- 123

soning chain. The rationale behind the choice of 124

binary classification task is that it provides system- 125

atic standard metric-based evaluation (i.e., direct 126

comparison of LLMs’ performance in terms of ac- 127

curacy), which could be more challenging with 128

open-ended question-answer formats. However, 129

we also provide a manual and thorough analysis of 130

the reasoning chain generated by LLMs revealing 131

several findings such as the importance of contex- 132

tual information, the lack of correlation between 133

longer reasoning chains and better outcomes, and 134

the lower performance of larger-scale open-source 135

LLMs compared to smaller ones. 136

2 Related Work 137

Past attempts have been made to assess the logical 138

reasoning ability of language models. For instance, 139

LogiQA (Liu et al., 2021) and ReClor (Yu et al., 140

2020) evaluate diverse forms of logical reasoning 141

by compiling multi-choice questions from standard- 142

ized examinations, including multi-step reasoning. 143

However, in contrast to our Multi-LogiEval, these 144

datasets involve mixed forms of reasoning and do 145

not focus on assessing logical reasoning indepen- 146

dently. In terms of task formulation, our proposed 147

dataset is similar to ProofWriter (Tafjord et al., 148

2021), RuleTaker (Clark et al., 2021), FOLIO (Han 149

et al., 2022), ProntoQA (Saparov and He, 2023), 150

and LogicBench (Parmar et al., 2024) which are 151

QA datasets designed to evaluate logical reasoning 152

ability independently. ProofWriter provides multi- 153

hop proofs for each example, RuleTaker mainly 154

covers the simple implication rules such as modus 155
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Rule Propositional Logic First-order Logic

MP ((p → q) ∧ p) ⊢ q (∀x(p(x) → q(x)) ∧ p(a)) ⊢ q(a)

MT ((p → q) ∧ ¬q) ⊢ ¬p (∀x(p(x) → q(x)) ∧ ¬q(a)) ⊢ ¬p(a)

HS ((p → q)) ∧ (q → r)) ⊢ (p → r) (∀x((p(x) → q(x)) ∧ (q(x) → r(x))) ⊢ (p(a) → r(a))

DS ((p ∨ q) ∧ ¬p) ⊢ q (∀x(p(x) ∨ q(x)) ∧ ¬p(a)) ⊢ q(a)

CD ((p → q) ∧ (r → s) ∧ (p ∨ r)) ⊢ (q ∨ s) (∀x((p(x) → q(x)) ∧ (r(x) → s(x))) ∧ (p(a) ∨ r(a))) ⊢ (q(a) ∨ s(a))

DD ((p → q) ∧ (r → s) ∧ (¬q ∨ ¬s)) ⊢ (¬p ∨ ¬r) (∀x((p(x) → q(x)) ∧ (r(x) → s(x))) ∧ (¬q(a) ∨ ¬s(a))) ⊢ (¬p(a) ∨ ¬r(a))

BD ((p → q) ∧ (r → s) ∧ (p ∨ ¬s)) ⊢ (q ∨ ¬r) (∀x((p(x) → q(x)) ∧ (r(x) → s(x))) ∧ (p(a) ∨ ¬s(a))) ⊢ (q(a) ∨ ¬r(a))

CT (p ∨ q) ⊣⊢ (q ∨ p) ∀x(p(x) ∨ q(x)) ⊣⊢ ∀x(q(x) ∨ p(x))

DMT ¬(p ∧ q) ⊣⊢ ¬p ∨ ¬q ¬∀x(p(x) ∧ q(x)) ⊣⊢ ∃x(¬p(x) ∨ ¬q(x))

CO ((p → q) ∧ (p → r) ⊢ (p → (q ∧ r) ∀x((p(x) → q(x)) ∧ (p(x) → r(x))) ⊢ ∀x(p(x) → (q(x) ∧ r(x)))

IM (p → (q → r)) ⊣⊢ ((p ∧ q) → r) ∀x(p(x) → (q(x) → r(x))) ⊣⊢ ∀x((p(x) ∧ q(x)) → r(x))

MI (p → q) ⊣⊢ (¬p ∨ q) -

EG - p(a) ⊢ ∃x(p(x))

UI - ∀x(p(x)) ⊢ p(a)

Table 2: Inference rules that establish the relationship between premises and their corresponding conclusions. A
subset of these inference rules is adapted from Parmar et al. (2024). MP: Modus Ponens, MT: Modus Tollens, HS:
Hypothetical Syllogism, DS: Disjunctive Syllogism, CD: Constructive Dilemma, DD: Destructive Dilemma, BD:
Bidirectional Dilemma, CT: Commutation, DMT: De Morgan’s Theorem, CO: Composition, IM: Importation, MI:
Material Implication, EG: Existential Generalization, UI: Universal Instantiation

ponens, while FOLIO gives diverse and complex156

logical expressions and covers multi-step reason-157

ing. However, it is only limited to FOL. ProntoQA158

(Saparov and He, 2023) provides a QA dataset with159

explanation and reasoning steps but is limited to160

single-step modus ponens in FOL. Although Log-161

icBench (Parmar et al., 2024) covers various infer-162

ence rules and reasoning patterns comprehensively,163

it only contains single-step logical reasoning (see164

Table 1 for comparison). Additional datasets for165

evaluating multi-step logical reasoning also exist,166

such as SimpleLogic (Zhang et al., 2022), which167

only covers modus ponens inference rule, and Rule-168

Bert (Saeed et al., 2021) which covers only soft169

logical rules. In contrast, Multi-LogiEval evaluates170

logical reasoning independently beyond modus po-171

nens. In addition, FLD (Morishita et al., 2023) has172

formal logic theory based inference rules, and their173

combinations to create multi-step reasoning, but174

limited to PL and FOL. However, Multi-LogiEval175

offers a broader set of inference rules for PL and176

FOL, along with their meaningful combinations for177

multi-step reasoning, in addition to NM reasoning.178

3 Multi-LogiEval179

In developing Multi-LogiEval, we leverage the ca-180

pabilities of LLMs while employing different meth-181

ods to generate data for NM compared to PL and182

FOL since the formulations for PL and FOL differ183

from NM. In particular, our data creation process184

consists of two major stages: (i) Generation of rule185

combination and (ii) Generation of data instances. 186

Generation of rule combination We create 187

a meaningful combination of inference rules to 188

achieve reasoning depths and define the complex 189

question for each combination that will require 190

multiple reasoning steps to answer. Here, each step 191

generally corresponds to one inference rule. 192

Generation of data instances Using the combi- 193

nations of inference rules generated in the above 194

step, we prompt the LLM to generate a more 195

human-like natural language story embedded with 196

logical rules as a context and then the following 197

complex reasoning question. In this way, we gener- 198

ate data in the form of <context, question> pairs for 199

each combination of inference rules at each depth. 200

3.1 Data Generation for Monotonic Logic 201

Here, we provide details of the data generation 202

process for PL and FOL (further details are in Ap- 203

pendix A). Specifically, we delve into 14 distinct 204

inference rules of PL and FOL, detailed in Table 2. 205

Choice of inference rules Since entailment (con- 206

cluding a formula in logic from another formula 207

in that logic) in PL is Co-NP Complete, and en- 208

tailment in FOL is undecidable. Even though we 209

are interested in multi-step reasoning, our aim is 210

not to build a “complete” reasoning system (the 211

system that can make all possible entailments in 212

that logic), rather, our goal is to make LLMs be 213
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Depth Rule Combinations Premises in Story Premise in Question Answer

1 MT: (P → Q) ∧ ¬Q ⊢ ¬P (P → Q) ¬Q ¬P: ✓

2
MT: (P → Q) ∧ ¬Q ⊢ ¬P
DS: (P ∨ R) ∧ ¬P ⊢ R

(P ∨ R), (P → Q) ¬Q R: ✓

3
HS: (P → Q) ∧ (Q → R) ⊢ (P → R)
MP: (P → R) ∧ P ⊢ R
MP: (R → S) ∧ R ⊢ S

(P → Q),
(Q → R), (R → S)

P S: ✓

4

CD: (P → Q) ∧ (R → S) ∧ (P ∨ R) ⊢ (Q ∨ S)
DS: (Q ∨ S) ∧ ¬Q ⊢ S
MP: (S → T) ∧ S ⊢ T
MP: (T → U) ∧ T ⊢ U

(P → Q),
(R → S), (P ∨ R),
(S → T), (T → U)

¬Q U: ✓

5

HS: (P → Q) ∧ (Q → R) ⊢ (P → R)
MT: (P → R) ∧ ¬R ⊢ ¬P
DS: (P ∨ S) ∧ ¬P ⊢ S
MP: (S → T) ∧ S ⊢ T
MP: (T → U) ∧ T ⊢ U

(P → Q),
(Q → R), (P ∨ S),
(S → T), (T → U)

¬R U: ✓

Table 3: Examples of multi-step reasoning rule combinations for PL. Similar combinations are used for FOL.

able to at least mimic some key inference rules up214

to a depth of five, which itself is challenging. Thus,215

we start with the set of 25 inference rules used in216

(Parmar et al., 2024) and add eight more inference217

rules, resulting in 33 inference rules (with zero or218

one variable). For a depth of five that would mean219

a 335 possible combination, which is already quite220

big (> 39 million). In addition, we also consider221

seven FOL inference rules involving three vari-222

ables and binary, ternary relations (Appendix H).223

In adding the new inference rules, our main consid-224

eration was how well they match human intuition.225

For example, we left out p ∧ ¬p ⊢ q as that is not226

very intuitive to non-logician humans. Similarly,227

we left out inference rules such as simplification228

((p ∧ q) ⊢ p), conjunction (p, q ⊢ (p ∧ q)), and ad-229

dition (p ⊢ (p ∨ q)), as they would lead to infinite230

reasoning chains and it did not make sense to add231

them as an additional step of reasoning to arrive232

at a meaningful conclusion. Conversely, we added233

the DMT (¬(p∧ q) ⊣⊢ ¬p∨¬q), and show its use234

in multi-step, as shown in Table 8 (Appendix B).235

3.1.1 Generation of Rule Combination236

To incorporate multi-step reasoning, we employ237

various inference rules sequentially to reach a con-238

clusion, as shown in Figure 2.239

To ensure a comprehensive approach to answer-240

ing a question, we employ a method that involves241

leveraging contextual information and explicit de-242

tails provided in the question. This process requires243

a logical chain of reasoning, combining knowledge244

from the given context with the information pre-245

sented in the question. Each step in this reasoning246

chain corresponds to a basic inference rule. We247

. . .

Conclusion 1Premise 1

Conclusion 2Premise 2

Conclusion 3Premise 3

Figure 2: Process for combining multiple logical in-
ference rules for PL and FOL: Premise 1 is the set of
premises for the first inference rule, leading to Conclu-
sion 1. Conclusion 1 and Premise 2 derive Conclusion
2, and so on. ⊢: Entails.

create combinations so that each reasoning step 248

corresponds to one rule. To generate the combi- 249

nations, we start with the initial rule and assess 250

whether the conclusion of this rule aligns with the 251

premise of other rules. This iterative process results 252

in multi-step combinations, with the conclusion of 253

each step serving as a part of the premise for the 254

subsequent rule, facilitating multi-step reasoning. 255

We create 71 rule combinations, ranging from 2- 256

step to 5-step reasoning chains. We use each single 257

inference rule as depth-1. Examples of rule com- 258

binations in classical logic are presented in Table 259

3. Let’s consider a specific combination involving 260

the Modus Tollens (((p → q) ∧ ¬q) ⊢ ¬p) and 261

Disjunctive Syllogism (((p ∨ r) ∧ ¬p) ⊢ r) rules 262

for creating combination for depth-2. Given the 263

context, including natural language statements for 264

(p → q) and (p∨r) and information in the question 265

as ¬q, we ask about the truth value of r. Applying 266

Modus Tollens, we deduce ¬p from the (p → q) 267

from context and ¬q in question, giving the first 268

step. Subsequently, using ¬p as the premise for 269

Disjunctive Syllogism, we conclude that r is indeed 270
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Rule Combination Context and Question

PL Rules: MT, DS
Propositions:
p: Capture shots in golden hours.
q: Photo wins awards.
r: Focus on rare wildlife.

Context: In wildlife photography, Olivia was certain that if she captured shots in the golden
hours, her photos would win awards. However, opportunities varied each day. It was evident
that she either captured shots during the golden hours or she focused on rare wildlife, or both.
Olivia’s latest photos did not win any awards.
Question: Is it true that she focused on rare wildlife?

FOL Rules: BD, DS
Predicates:
p: Work extra hours.
q: Meet project deadlines.
r: Take minimal breaks.
s: Increase productivity.

Context: In a company, employees believe that if they work extra hours, they will meet
project deadlines, and if they take minimal breaks, they will increase productivity. However,
they face a dilemma - they either work extra hours or do not increase productivity.
Question: Jane didn’t meet the project deadline. Is it true that Jane took minimal breaks?

NM rule: BDR
PL rule: MP (Sentence Y)
Logic: Conclusion of BDR: X
MP: (X → Y) ∧ X ⊢ Y

Context: Jim and Pam work at the same office. Normally, employees at that office get free
lunch. Jim does not get free lunch. If Pam gets free lunch, then she gets an hour lunch break.
Question: Can we conclude Pam gets an hour lunch break?

Table 4: NL examples of different rule combinations for all three logic types. Appendix D provides more examples.

Generalized Rule Definition

Formatting Instruction

Diversity Instruction

Task Definition

Examples
< propositions, context, question >
< propositions, context, question >
< propositions, context, question >

Figure 3: Data generation prompt for PL and FOL

true based on the (p∨ r) and ¬p, giving the second271

step. More examples provided in Appendix B.272

3.1.2 Generation of Data Instances273

We create natural language (NL) data instances at274

various depths by prompting Claude-2 in a few-shot275

setting with instructions for different rule combina-276

tions. The prompt schema, as depicted in Figure 3,277

comprise five crucial components:278

Rule Definition We provide generalized rules279

for various combinations containing propositions280

represented by labels such as P and Q. For instance,281

Rule 1: “If P is true, then Q is true.” Utilizing these282

defined rules, we construct the contextual premise283

by combining them. Subsequently, we formulate284

a question that requires a step-by-step deduction285

using all the established rules to derive the answer.286

Format We provide model-specific instructions287

for generating outputs in a designated format, sim-288

plifying the process of parsing it on a large scale.289

Diversity To enhance diversity, we prompt the290

model to generate multiple instances across various291

domains, such as education and finance.292

Task Definitions We provide definitions to per- 293

form two tasks. First, to generate the context that 294

serves as a human-like illustration of generalized 295

rules. This task instructs the generation of a real- 296

life story with sentences exemplifying the specified 297

rules, where entity labels such as P,Q,R, S, T, 298

and U are replaced with actual entities. To en- 299

sure clarity, entity labels are excluded from the 300

context. Additionally, the context generation for 301

FOL incorporates instructions specifying the use of 302

generalized sentences with indefinite pronouns for 303

quantification. The second task focuses on question 304

generation, which entails formulating questions in 305

the format: "[(....) is true/not true, then is (....) 306

true?]" This dual-task approach ensures the gen- 307

eration of <context, question> pair. We provide 308

examples of generated NL instances in Table 4. 309

Examples We present five in-context exemplars 310

for every rule combination. Each instance com- 311

prises propositions such as P,Q,R, a contextual 312

narrative, and an associated question. An example 313

prompt for depth-3 is presented in Appendix C, and 314

we use a similar structure for all other prompts. 315

3.2 Non-Monotonic Reasoning 316

We utilize eight NM reasoning patterns defined in 317

Lifschitz (1989) (Appendix E), and have generated 318

data for depths 1 to 5. To increase reasoning depth, 319

we integrated NM with classical logic, using only 320

one NM rule per depth due to the 4-5 assumptions 321

each pattern involves. Thus, combining two NM 322

patterns with classical logic creates lengthy con- 323

texts, challenging for LLMs to generate quality 324

instances. Our rule combinations avoid overly long 325

contexts while requiring reasoning up to depth-5. 326
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Generation of Rule Combination We consider327

reasoning patterns corresponding to default reason-328

ing for depth-1. We generalize the rule to generate329

simple sentence pairs independently before com-330

bining them according to the template-based NM331

rule. After generating sentence pairs, we combined332

the sentences based on the defined rule and for-333

mulated the question-answer pair accordingly. We334

have manually generated 12, 2, 2, and 1 rule combi-335

nations for depth-2, depth-3, depth-4, and depth-5,336

provided in Appendix E. While formulating depth-337

wise rule combinations, a logical relationship be-338

tween the context and question is followed. The339

rule combinations for all depths from 2 to 5 include340

6 reasoning rules from NM—BDR, PBD, DRO,341

PBD, REII, and REIII—and 3 inference rules from342

PL—MP, MT, and DS. The data for depths 2 to 5 is343

generated by forming a logical connection between344

two NM rules’ conclusions and the PL rules.345

Generation of Data Instances In creating346

prompts for data generation, we use a four-part347

structure: (1) define the task, (2) explain each rule348

as an assumption and conclusion, (3) provide in-349

structions for creating context and questions to en-350

sure logical connections, and (4) establish format-351

ting guidelines for systematic output. Appendix E352

shows an example of the prompt.353

3.3 Qualitative Analysis354

After data generation, we conducted a manual qual-355

itative analysis, resulting in 1,552 high-quality sam-356

ples for Multi-LogicEval.357

Logic Reasoning Depth Total
1 2 3 4 5

PL 120 105 135 120 45 525
FOL 130 105 135 120 45 535
NM 160 232 40 40 20 492

Total 410 442 310 280 110 1552

Table 5: Statistics of Multi-LogiEval

Statistics Multi-LogicEval has 5 different logical358

reasoning depths. Table 5 shows the depth-wise359

statistics of samples present for each logic type af-360

ter validation. After manual validation, from the361

generated data, we selected/updated high-quality362

10 data instances for each inference rule in depth 1363

and 15 or 20 data instances for each rule combina-364

tion, which resulted in 410, 442, 310, 280, and 110365

samples for depth-1, depth-2, depth-3, depth-4, and366

depth-5, respectively. For evaluation, of the total 367

1552 samples, 1126 samples have the answer yes, 368

and the remaining 426 samples have the answer no. 369

Quality of Data Instances We examine each con- 370

text for potential discrepancies throughout the data 371

generation phase, ensuring they are logically cor- 372

rect and represent the intended logical relations. 373

We also dedicated considerable effort to eliminat- 374

ing typos and validating the grammar. While val- 375

idating, we encountered a few errors within the 376

synthetically generated story-based context. We 377

manually mitigate these errors to ensure integrity 378

and utility (Analysis presented in Appendix F). 379

4 Results and Analysis 380

4.1 Experimental Setup 381

Task Formulation We formulate a binary classi- 382

fication task using Multi-LogiEval. Let us consider 383

a set of data instances ID,L corresponding to depth 384

D and logic type L. In this set, ith instance is rep- 385

resented as Ii
D,L = {(ci, qi)} where ci represents 386

context and qi represents question corresponding 387

to ith instance. Here, each context and question 388

pair is created so that the conclusion provided in 389

the question always entails context. However, you 390

require different reasoning steps to conclude. We 391

prompt the model to assign a label Yes if the con- 392

clusion logically entails the context; otherwise, No. 393

To evaluate any LLMs, we provide < p, c, q > 394

as input to predict a label Yes or No where p is a 395

natural language prompt. 396

Experiments We evaluate a range of proprietary 397

models (i.e., GPT-4, ChatGPT, and Gemini-Pro) 398

and open-source models (i.e., Yi-34B-Chat, Orca- 399

2-13B, and Mistral-7B-Instruct) on Multi-LogiEval. 400

The evaluation is conducted on the versions of Ope- 401

nAI and Google models released in April 2024. 402

Each model is evaluated in a zero-shot-CoT setting. 403

The prompt used for experiments is provided below. 404

We evaluate LLMs in a zero-shot setting to show 405

the logical reasoning ability of the model based on 406

knowledge acquired during pre-training since we 407

can not expect in-context examples corresponding 408

to different reasoning patterns and depths during 409

inference. However, we also evaluate LLMs in a 410

3-shot setting (results are in Appendix G). 411

Metrics Since the objective is to assess the 412

model’s ability to arrive at the correct conclusion, 413

we measure the accuracy associated with a Yes and 414
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Models Propositional First-Order Non-Monotonic

d1 d2 d3 d4 d5 d1 d2 d3 d4 d5 d1 d2 d3 d4 d5

GPT-4 89.17 69.52 82.22 71.67 66.67 83.85 70.48 71.85 59.17 66.67 36.88 51.67 65.00 67.50 60.00
ChatGPT 91.67 56.19 63.70 62.50 44.44 97.69 59.05 57.78 50.83 37.78 33.75 41.11 50.00 62.50 60.00
Gemini 90.00 62.86 68.15 65.83 60.00 76.92 62.86 65.93 57.50 53.33 46.25 46.11 62.50 55.00 60.00
Yi-34B 85.00 65.71 58.52 46.67 26.67 90.00 55.24 57.94 48.33 13.33 37.50 41.11 55.00 62.50 65.00

Orca-13B 75.83 41.91 35.56 35.00 15.56 66.92 47.62 42.96 40.00 6.67 21.88 26.67 25.00 15.00 25.00
Mistral-7B 80.83 68.57 61.48 53.33 44.44 83.85 63.81 56.30 52.50 20.00 37.50 39.44 52.50 47.50 65.00

Avg 85.42 60.79 61.61 55.83 42.96 83.21 59.84 58.79 51.39 32.96 35.63 41.02 51.67 51.67 55.83

Table 6: Evaluation of LLMs in terms of accuracy on Multi-LogiEval.

No label. Apart from accuracy, we provide an in-415

depth analysis of reasoning chains in section 4.3 to416

gain insights into models’ performance. In addition,417

we would like to mention that the binary labels Yes418

and No indicate whether the conclusion presented419

in the question can be derived from the context.420

Hence, accuracy is an important evaluation metric,421

reflecting the model’s reasoning ability.422

Given the context that contains rules of logical rea-

soning in natural language and question, perform

step-by-step reasoning to answer the question. Based

on context and reasoning steps, answer the question

ONLY in ‘yes’ or ‘no.’ Please use the below format:

Context: [text with logical rules]

Question: [question that is based on context]

Reasoning steps: [generate step-by-step reasoning]

Answer: Yes/No
423

4.2 Main Results424

Objective Evaluation Table 6 illustrates the ac-425

curacy of reasoning at different depths for various426

LLMs, offering significant insights into their per-427

formance across distinct logic types and depths.428

From Table 6, experimental results reveal a consis-429

tent trend across PL and FOL, i.e., as the reasoning430

depth increases from 1 to 5, the models’ average431

performance drops. In particular, at depths 4 and432

5, accuracy drops significantly for the majority of433

LLMs we evaluated. For instance, the accuracy434

of GPT-4, ChatGPT, and Gemini demonstrates a435

substantial drop from 89.17%, 91.67%, and 90%436

at d1 to 66.67%, 44.44%, and 60.00% at d5 for PL,437

respectively, indicating the challenge encountered438

even by larger-scale LLMs when handling longer439

chains of logical reasoning. In summary, for PL440

and FOL, LLMs perform well on d1 compared to441

other depths. While they show competitive perfor-442

mance for d2 and d3, there is a significant drop in443

performance for d4 and d5 in most cases. In con-444

trast, moving on to NM, going from d1 to d5, there 445

is an increase in the performance of LLMs from an 446

average of 35.63% to 55.83%. 447

Findings Table 6 reveal that open-source models 448

experience a significant performance drop from d4 449

to d5. Also, there is an increasing performance 450

trend in NM. For PL and FOL, GPT-4, ChatGPT, 451

and Gemini show improved performance from d2 452

to d3, whereas the performance of open-source 453

models consistently decreases. In addition, larger 454

open-source models demonstrate decreasing per- 455

formance. Furthermore, ChatGPT performs lower 456

than GPT-4 and Gemini at d5 in PL and FOL. Also, 457

FOL performance is lower compared to PL at d5. 458

4.3 Analysis and Discussion 459

In this section, we manually analyze the generated 460

reasoning chains 2 by different LLMs and investi- 461

gate the above-mentioned findings in detail. 462

Performance Improvement from d2 to d3 in PL 463

and FOL for GPT-4, ChatGPT, and Gemini 464

GPT-4, ChatGPT, and Gemini excel at d3 for PL, 465

with a performance decrease at d4 and d5. This 466

trend is also observed in FOL for the same mod- 467

els except ChatGPT. Systematic analysis of all 468

the reasoning chains with wrong predictions for 469

PL and FOL shows these models reach incorrect 470

conclusions often due to the wrong interpretation 471

of evidence. In d3, increasing context length im- 472

proves LLMs accuracy in information mapping, 473

thus achieving peak performance (comparison with 474

d2 to d5). At d2, around ∼ 27.4% of reasoning 475

chains with incorrect conclusions were due to the 476

models’ failure to correctly map information, either 477

from context to conclusion or the premise from one 478

step to the next step. This number drops to ∼ 22% 479

at d3 and we observed that a larger context length 480

at d3 helps in reducing this problem. However, at 481

2https://anonymous.4open.science/r/
Multi-LogiEval-FFDB
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d4 and d5, the length of the reasoning chain in-482

creases further. Since longer reasoning steps are483

more prone to error propagation at later stages,484

causing the models to deviate further from the true485

conclusion, hence, lower performance at d4 and d5.486

Lower Performance of ChatGPT compared to487

GPT-4 and Gemini at Higher Depths This pat-488

tern is particularly evident in FOL and PL at d5489

for ChatGPT compared to Gemini, and GPT-4. At490

d5, manual analysis shows that ChatGPT tends491

to generate longer reasoning chains compared to492

Gemini, and GPT-4 when answering question. For493

PL and FOL, the average reasoning chain length494

for ChatGPT at d5 is 13.85, while for Gemini and495

GPT-4 at d5 is 8.85 and 10.87, respectively. Longer496

reasoning chains do not necessarily correlate with497

better reasoning outcomes, highlighting the com-498

plexity of complex reasoning task. This suggests499

that optimizing reasoning chain length is crucial for500

improving model accuracy in complex scenarios.501

Increasing Performance Trend in NM In our502

analysis of ChatGPT and the open-source model503

Yi-34B, we’ve observed consistent performance504

improvements with increasing depth in NM rea-505

soning. This trend diverges from classical logic506

PL and FOL. Specifically, at depths d2 to d5 , NM507

exhibits novel performance due to unique rule com-508

binations in reasoning patterns. For instance, at d2,509

NM combines one PL rule with one NM reason-510

ing pattern, progressing to two PL rules with one511

NM pattern at d3, and so forth. The addition of512

NM reasoning patterns complements PL and FOL513

by providing supplementary evidence and improv-514

ing contextual understanding. Notably, as depth515

increases, integrating basic classical rules with NM516

significantly enhances model accuracy, particularly517

evident at depths 4 and 5. This integration is piv-518

otal for the notable performance gains observed in519

NM compared to classical logic at higher depths.520

Larger Open-Source Models Show Decreased521

Performance Compared to Smaller Models522

Here, we examine Mistral-7B, Orca-13B, and Yi-523

34B, which differ significantly in parameter size.524

Mistral-7B, the smallest, performed best across var-525

ious depths of classical logic, except at the simplest526

d1. As reasoning depth increased, Mistral-7B con-527

sistently outperformed Orca-13B and Yi-34B, with528

Yi-34B only marginally better (1.5%) at d3. For529

NM tasks, Mistral-7B and Yi-34B showed similar530

performance across all depths. At the most chal-531

lenging depth (d5) for both PL and FOL, Mistral- 532

7B outperformed Orca-13B by achieving 3x perfor- 533

mance despite Orca-13B’s larger size. We believe 534

that this capability of Mistral-7B is attributed to its 535

architecture and training, enhancing its reasoning 536

abilities, as discussed in Jiang et al. (2023). 537

Lower Average Performance in FOL than PL 538

at d1 to d5 Upon observing the reasoning chains 539

with wrong final predictions for the FOL and PL, 540

we find that the generic rules in FOL contexts lead 541

to deviations from the correct reasoning path. In 542

some cases, it assigns predicates incorrectly to the 543

FOL inference rule. This pattern is more promi- 544

nent at d5, highlighting the large gap (∼ 10%) in 545

average performance between PL and FOL. 546

Lower Performance in d1 of NM Reviewing the 547

reasoning chains, we noted that models struggled 548

to accurately map information. Interpreting various 549

assumptions is crucial for effective reasoning at d1. 550

However, we observed that models have difficulty 551

concluding based solely on assumptions present in 552

the context when explicit knowledge is absent. 553

Preliminary Discussion on Multi-variable FOL 554

Since our work focuses on evaluating LLMs’ multi- 555

step reasoning with simple FOL inference rules, 556

we conducted only a preliminary study on their 557

reasoning abilities for multi-variable FOL rules, 558

discussed in Appendix H. 559

5 Conclusions 560

In this work, we introduced Multi-LogiEval, a com- 561

prehensive multi-step logical reasoning benchmark 562

consisting of three types of logic and over 60 com- 563

binations of inference rules. Our approach utilized 564

two-stage methodology to construct data instances 565

for our benchmark consisting of ∼ 1.6k data in- 566

stances with 1 ∼ 5 reasoning depth. We evalu- 567

ated a range of LLMs, including GPT-4, ChatGPT, 568

Gemini, Yi, Orca, and Mistral on Multi-LogiEval. 569

Experimental results revealed that these models 570

struggle to perform logical reasoning, and their 571

performance drops as the depth of logical reason- 572

ing increases (average accuracy of ∼ 68% at d1 573

to ∼ 43% at d5) for classical and non-classical 574

logic. Furthermore, we systematically analyzed 575

the reasoning chain generated by LLMs at various 576

depths and presented interesting findings. We hope 577

that Multi-LogiEval will facilitate future research in 578

evaluating and enhancing the ability of existing and 579

upcoming LLMs for multi-step logical reasoning. 580
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Limitations581

Though Multi-LogiEval facilitates the evaluation582

of the multi-step logical reasoning ability of LLMs,583

the complexity of reasoning depth presented in584

Multi-LogiEval can be improved by adding reason-585

ing depth beyond five steps. Multi-LogiEval can be586

further extended by incorporating other inference587

rules and logic types, for instance, the inference588

rules in first-order logic that capture n-ary relations589

between multiple variables. We also note that this590

research is limited to the English language and can591

be extended to multilingual scenarios for evaluating592

the logical reasoning ability of LLMs.593

Ethics Statement594

We have used AI assistants (Grammarly and595

ChatGPT) to address the grammatical errors and596

rephrase the sentences.597
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A Monotonic Logic Description727

Propositional Logic (PL) PL serves as a founda-728

tional framework for reasoning about truth values729

of statements, represented as propositions denoted730

by symbols like p, q, r, etc. Employing logical con-731

nectives such as ‘∧’ (conjunction), ‘∨’ (disjunc-732

tion), and ‘→’ (implication), it establishes rela-733

tionships between these propositions. PL incorpo-734

rates various inference rules, guiding the deriva-735

tion of conclusions from given propositions. For736

instance, Modus Ponens is an example of such in-737

ference rules where if presented with the premises738

((p → q) ∧ p)—interpreted as “if p, then q, and p739

is true”—we can deduce the truth of q, denoted as740

((p → q) ∧ p) ⊢ q.741

First-order Logic (FOL) FOL builds upon the742

foundations of PL by introducing predicates and743

quantifiers. Predicates allow us to express rela-744

tionships involving variables, and quantifiers such745

as the universal (∀) and existential (∃) quantifiers746

enable us to make statements about all or some ele-747

ments in a domain. For instance, instead of stating748

“John is a student,” we can express it in FOL as749

“There exists x such that x is John and x is a stu-750

dent.” This logic extends the rules of PL, such as751

the Modus Ponens rule, which lets us infer conclu-752

sions for specific instances from general premises.753

B Combinations of rules for Monotonic754

Logic755

We created 27 multi-step reasoning inference rule756

combinations for Propositional Logic (PL), with757

depths ranging from 2 to 5. We use the same rule758

combinations for First Order Logic (FOL) for each759

depth. All rule combinations for 2-step, 3-step,760

4-step, and 5-step reasoning for PL and FOL are761

presented in Tables 7, 8, 9, and 10 respectively. For762

each combination, we provide the inference rules763

to be used for reasoning, the premises present in764

the context and in the question, and the complex765

reasoning question-answer pair.766

C Example of Prompt767

Figure 4 illustrates an example prompt for combina-768

tion of rules from propositional logic, namely ‘con-769

structive dilemma’ (CD), ‘disjunctive syllogism’770

(DS), and ‘modus ponens’ (MP). CD is represented771

as (p → q) ∧ (r → s) ∧ (p ∨ r)) ⊢ (q ∨ s), which772

can be understood in natural language as “If p im-773

plies q, and if r implies s, and either p or r or774

Generalized Rule Definition:
Rule 1: [if {P} is true then {Q} is true, and if {R} is true then {S} is true, and either {P} or {R} or

both are true]
Rule 2: [if {S} is true, then {T} is true]

Formatting Instruction:
Complete the following tasks, only returning text in exactly the format given in the following

examples.

Diversity Instruction:
Generate 5 more examples from multiple domains

Task Definition:
Task 1: Generate a short real life story that includes sentences to illustrate the above rules, replacing

the entities P, Q, R, S, T with real values. Do not include the entity labels like P, Q, R, S, T in the story.
Task 2: Generate the following complex reasoning question using the story and the rules, by replacing

the respective entities.
Q1: [If Q is not true, then is T true?]

Examples:

Context: Jeff wants to improve his health and fitness. If Jeff meditates regularly, he will improve
his overall mental health. Also, if Jeff eats healthy nutritious meals, he is likely to lose weight. Jeff
decides to either meditate regularly, or eat healthy meals, or do both simultaneously. He also knew
that if he loses weight, then he will feel more confident about himself.

{P}: Jeff meditates regularly. 
{Q}: Jeff improves his mental health. 
{R}: Jeff eats healthy meals. 
{S}: Jeff loses weight. 
{T}: Jeff feels more confident about himself.

Question: If Jeff did not improve his mental health, did he feel more confident about himself?

Context: Mark promised to take his son Ryan to the park on Saturday. If Mark takes Ryan to the
park, then Ryan will get to play on the swings. Jackie said she would make cupcakes on Saturday.
If Jackie makes cupcakes, then she will bring some for Ryan. Ryan was certain that either Mark
would take him to the park, or Jackie would make cupcakes, or both might be true. If Jackie ends
up bringing cupcakes for Ryan, then Ryan will get a sugar rush.

{P}: Mark takes Ryan to the park.
{Q}: Ryan gets to play on the swings.
{R}: Jackie makes cupcakes.
{S}: Jackie brings some cupcakes for Ryan.
{T}: Ryan gets a sugar rush.

Question: If Ryan did not get to play on the swings, then did Ryan get a sugar rush?

Context: Sam wants to improve his geography knowledge. If he studies geography diligently, he
will ace his geography test. Also, if Sam travels the world, he will gain cultural awareness from
experiencing new places. Sam decides that he will either study geography, or travel the world, or
do both. If Sam gains cultural awareness, he will become more open-minded.

{P}: Sam studies geography. 
{Q}: Sam aces his geography test. 
{R}: Sam travels the world. 
{S}: Sam gains cultural awareness. 
{T}: Sam becomes more open-minded.

Question: If Sam did not ace his geography test, did he become more open-minded?

Figure 4: An example prompt for 3-step combination
of inference rules CD, DS, and MP from propositional
logic.

both are true, then we can conclude that either q 775

or s or both are true.” DS is formally represented 776

as (p ∨ q) ∧ ¬p) ⊢ q, which can be understood 777

in natural language as “If p or q are true, and we 778

know ¬p, then we can conclude q.” MP is formally 779

represented as (p → q) ∧ p) ⊢ q, which can be 780

understood in natural language as “If p implies q, 781

and we know p, then we can conclude q.” 782

In this prompt, the generalized rule definitions 783

provide a description of the premises given in the 784

story in natural language. The prompt includes in- 785

structions on how the generated samples should be 786

formatted, instructions to generate samples from 787

diverse domains, and detailed definitions for gener- 788

ating propositions, and then using them to generate 789

a context and question for each sample. To en- 790

hance the quality of samples in terms of relevance 791

and coherence, the prompt includes an examples 792

section that demonstrates these tasks. In Figure 793

4, we present three examples with their respective 794

propositions, contexts, and questions. 795
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Rule Combinations Premises in Story Premise in Question Answer

DS: (P ∨ Q) ∧ ¬P ⊢ Q
MP: (Q → R) ∧ Q ⊢ R

(P ∨ Q), (Q → R) ¬P R: ✓

MT: (P → Q) ∧ ¬Q ⊢ ¬P
DS: (P ∨ R) ∧ ¬P ⊢ R

(P → Q), (P ∨ R) ¬Q R: ✓

HS: (P → Q) ∧ (Q → R) ⊢ (P → R)
MP: (P → R) ∧ P ⊢ R

(P → Q), (Q → R) P R: ✓

CD: (P → Q) ∧ (R → S) ∧ (P ∨ R) ⊢ (Q ∨ S)
DS: (Q ∨ S) ∧ ¬Q ⊢ S

(P → Q),
(R → S), (P ∨ R)

¬Q S: ✓

DD: (P → Q) ∧ (R → S) ∧ (¬Q ∨ ¬S) ⊢ (¬P ∨ ¬R)
DS: (¬P ∨ ¬R) ∧ P ⊢ ¬R

(P → Q),
(R → S), (¬Q ∨ ¬S)

P R: ✗

BD: (P → Q) ∧ (R → S) ∧ (P ∨ ¬S) ⊢ (Q ∨ ¬R)
DS: (Q ∨ ¬R) ∧ ¬Q ⊢ ¬R

(P → Q),
(R → S), (P ∨ ¬S)

¬Q R: ✗

HS: (P → Q) ∧ (Q → R) ⊢ (P → R)
MT: (P → R) ∧ ¬R ⊢ ¬P

(P → Q), (Q → R) ¬R P: ✗

Table 7: 2-step reasoning rule combinations for PL and FOL.

Rule Combinations Premises in Story Premise in Question Answer

HS: (P → Q) ∧ (Q → R) ⊢ (P → R)
MP: (P → R) ∧ P ⊢ R
MP: (R → S) ∧ R ⊢ S

(P → Q),
(Q → R), (R → S)

P S: ✓

CD: (P → Q) ∧ (R → S) ∧ (P ∨ R) ⊢ (Q ∨ S)
DS: (Q ∨ S) ∧ ¬Q ⊢ S
MP: (S → T) ∧ S ⊢ T

(P → Q), (R → S),
(P ∨ R), (S → T)

¬Q T: ✓

BD: (P → Q) ∧ (R → S) ∧ (P ∨ ¬S) ⊢ (Q ∨ ¬R)
CT: (Q ∨ ¬R) ⊣⊢ (¬R ∨ Q)
DS: (¬R ∨ Q) ∧ R ⊢ Q

(P → Q),
(R → S), (P ∨ ¬S)

R Q: ✓

BD: (P → Q) ∧ (R → S) ∧ (P ∨ ¬S) ⊢ (Q ∨ ¬R)
DS: (Q ∨ ¬R) ∧ ¬Q ⊢ ¬R
MT: (T → R) ∧ ¬R ⊢ ¬T

(P → Q), (R → S),
(P ∨ ¬S), (T → R)

¬Q T: ✗

CD: (P → Q) ∧ (R → S) ∧ (P ∨ R) ⊢ (Q ∨ S)
CT: (Q ∨ S) ⊣⊢ (S ∨ Q)
DS: (S ∨ Q) ∧ ¬S ⊢ Q

(P → Q),
(R → S), (P ∨ R)

¬S Q: ✓

HS: (P → Q) ∧ (Q → R) ⊢ (P → R)
CD: (P → R) ∧ (S → T) ∧ (P ∨ S) ⊢ (R ∨ T)
DS: (R ∨ T) ∧ ¬R ⊢ T

(P → Q), (Q → R),
(S → T), (P ∨ S)

¬R T: ✓

HS: (P → Q) ∧ (Q → R) ⊢ (P → R)
MT: (P → R) ∧ ¬R ⊢ ¬P
DS: (P ∨ S) ∧ ¬P ⊢ S

(P → Q),
(Q → R), (P ∨ S)

¬R S: ✓

DD: (P → Q) ∧ (R → S) ∧ (¬Q ∨ ¬S) ⊢ (¬P ∨ ¬R)
DS: (¬P ∨ ¬R) ∧ P ⊢ ¬R
MT: (T → R) ∧ ¬R ⊢ ¬T

(P → Q), (R → S),
(¬Q ∨ ¬S), (T → R)

P T: ✗

DMT: (¬Q ∨ ¬R) ⊣⊢ ¬(Q ∧ R)
CO: (P → Q) ∧ (P → R) ⊢ P → (Q ∧ R)
MT: (P → (Q ∧ R) ∧ ¬(Q ∧ R) ⊢ ¬P

(P → Q), (P → R) ¬Q ∨ ¬R P: ✗

Table 8: 3-step reasoning rule combinations for PL and FOL.

12



Rule Combinations Premises in Story Premise in Question Answer

CD: (P → Q) ∧ (R → S) ∧ (P ∨ R) ⊢ (Q ∨ S)
DS: (Q ∨ S) ∧ ¬Q ⊢ S
MP: (S → T) ∧ S ⊢ T
MP: (T → U) ∧ T ⊢ U

(P → Q),
(R → S), (P ∨ R),
(S → T), (T → U)

¬Q U: ✓

BD: (P → Q) ∧ (R → S) ∧ (P ∨ ¬S) ⊢ (Q ∨ ¬R)
CT: (Q ∨ ¬R) ⊣⊢ (¬R ∨ Q)
DS: (¬R ∨ Q) ∧ R ⊢ Q
MP: (Q → T) ∧ Q ⊢ T

(P → Q), (R → S),
(P ∨ ¬S), (Q → T)

R T: ✓

BD: (P → Q) ∧ (R → S) ∧ (P ∨ ¬S) ⊢ (Q ∨ ¬R)
DS: (Q ∨ ¬R) ∧ ¬Q ⊢ ¬R
MT: (T → R) ∧ ¬R ⊢ ¬T
DS: (T ∨ U) ∧ ¬T ⊢ U

(P → Q),
(R → S), (P ∨ ¬S),
(T → R), (T ∨ U)

¬Q U: ✓

HS: (P → Q) ∧ (Q → R) ⊢ (P → R)
CD: (P → R) ∧ (S → T) ∧ (P ∨ S) ⊢ (R ∨ T)
DS: (R ∨ T) ∧ ¬R ⊢ T
MP: (T → U) ∧ T ⊢ U

(P → Q),
(Q → R), (S → T),
(P ∨ S), (T → U)

¬R U: ✓

CD: (P → Q) ∧ (R → S) ∧ (P ∨ R) ⊢ (Q ∨ S)
CT: (Q ∨ S) ⊣⊢ (S ∨ Q)
DS: (S ∨ Q) ∧ ¬S ⊢ Q
MP: (Q → T) ∧ Q ⊢ T

(P → Q), (R → S),
(P ∨ R), (Q → T)

¬S T: ✓

HS: (P → Q) ∧ (Q → R) ⊢ (P → R)
MT: (P → R) ∧ ¬R ⊢ ¬P
DS: (P ∨ S) ∧ ¬P ⊢ S
MP: (S → T) ∧ S ⊢ T

(P → Q), (Q → R),
(P ∨ S), (S → T)

¬R T: ✓

BD: (P → Q) ∧ (R → S) ∧ (P ∨ ¬S) ⊢ (Q ∨ ¬R)
DS: (Q ∨ ¬R) ∧ ¬Q ⊢ ¬R
MT: (T → R) ∧ ¬R ⊢ ¬T
MT: (U → T) ∧ ¬T ⊢ ¬U

(P → Q),
(R → S), (P ∨ ¬S),
(T → R), (U → T)

¬Q U: ✗

IM: (P → (Q ∧ R)) ⊢ (P ∧ Q) → R
MT: ((P ∧ Q) → R) ∧ ¬R ⊢ ¬(P ∧ Q)
DMT: ¬(P ∧ Q) ⊢ (¬P ∨ ¬Q)
DS: (¬P ∨ ¬Q) ∧Q ⊢ ¬P

(P → (Q ∧ R)) Q, ¬R P: ✗

Table 9: 4-step reasoning rule combinations for PL and FOL.

Rule Combinations Premises in Story Premise in Question Answer

HS: (P → Q) ∧ (Q → R) ⊢ (P → R)
MT: (P → R) ∧ ¬R ⊢ ¬P
DS: (P ∨ S) ∧ ¬P ⊢ S
MP: (S → T) ∧ S ⊢ T
MP: (T → U) ∧ T ⊢ U

(P → Q),
(Q → R), (P ∨ S),
(S → T), (T → U)

¬R U: ✓

BD: (P → Q) ∧ (R → S) ∧ (P ∨ ¬S) ⊢ (Q ∨ ¬R)
CT: (Q ∨ ¬R) ⊣⊢ (¬R ∨ Q)
DS: (¬R ∨ Q) ∧ R ⊢ Q
MP: (Q → T) ∧ Q ⊢ T
MP: (T → U) ∧ T ⊢ U

(P → Q),
(R → S), (P ∨ ¬S),
(Q → T), (T → U)

R U: ✓

CD: (P → Q) ∧ (R → S) ∧ (P ∨ R) ⊢ (Q ∨ S)
CT: (Q ∨ S) ⊣⊢ (S ∨ Q)
DS: (S ∨ Q) ∧ ¬S ⊢ Q
MP: (Q → T) ∧ Q ⊢ T
MP: (T → U) ∧ T ⊢ U

(P → Q),
(R → S), (P ∨ R),
(Q → T), (T → U)

¬S U: ✓

Table 10: 5-step reasoning rule combinations for PL and FOL.
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D NL Examples for PL and FOL796

In this section, we illustrate multi-step reasoning797

for PL and FOL using natural language examples798

for depths 2 through 5. Table 11 provides exam-799

ples in natural language for PL. We provide one800

example of rule combinations for each depth. For801

each example, we provide the inference rules and802

propositions, as well as the respective context and803

complex reasoning question. Table 12 provides804

examples in natural language for FOL, with one805

combination for each depth. Similar to PL, we pro-806

vide the inference rules, predicates, and the context-807

question pair for each example.808

E More Details on NM809

Table 14 displays instances of general rules dis-810

cussed in the paper by Lifschitz (Lifschitz, 1989),811

specifically chosen for depth-1 non-monotonic812

logic. Out of the 11 default non-classical reasoning813

rules mentioned in the paper, we opted for 8. These814

include Default Reasoning with Several Defaults815

(DRS), Default Reasoning with Irrelevant Infor-816

mation (DRI), Default Reasoning with a Disabled817

Default (DRD), Default Reasoning in an Open Do-818

main (DRO), Reasoning about Unknown Expec-819

tations I (RE1), Reasoning about Unknown Ex-820

pectations II (RE2), Reasoning about Unknown821

Expectations III (RE3), and Reasoning about Prior-822

ities (RAP). These rules constitute our selection for823

depth-1 non-monotonic logical reasoning. Moving824

on to depths 2 through 5, we integrated classical825

and non-classical logic. Tables 15, 16, 17, and 18826

outline the combinations of rules prepared respec-827

tively for depth-2, depth-3, depth-4, and depth-5828

logical reasoning tasks. In this context, we com-829

bined BDR, DRD, PBD, DRO, REII, and REIII830

from non-monotonic logic with MP, MT, and DS831

from propositional logic to form combinations for832

depths 2 to 5 of data. Tables 19, 20, 21, and 22833

show the prompts that we used to generate data834

instances respectively for depths 2, 3, 4, and 5. The835

instruction-based data generation can be seen in836

Tables 19, 20, 21, and 22. In addition to instruction-837

based generation, one-shot prompts were used for838

depth-3, depth-4, and depth-5 data generation as839

seen in Tables 20, 21, and 22.840

F Validation of Data Instances841

We categorized errors into three distinct groups.842

The categories of errors identified are (i) Incor-843

rect Logical Premises (ILP) which indicates that844

premises generated by the model in the context are 845

logically incorrect (i.e., did not align with the in- 846

tended conclusion), (ii) Leaking Conclusion (LC) 847

where the context inadvertently revealed the con- 848

clusion, bypassing the need for the logical deduc- 849

tion, and (iii) Repetition of Samples (RS) where 850

identical or nearly identical contexts are present, 851

reducing dataset diversity. We found ∼ 14.3% 852

(223 samples) of the total 1552 samples with ILP, 853

∼ 3.7% (57 samples) with LC, and ∼ 3.7% (57 854

samples) with RS. We mitigated all these errors 855

manually from the generated data instances to pro- 856

vide a high-quality evaluation set. Furthermore, 857

we also analyzed the number of samples we cor- 858

rected for PL (∼ 22% - 115/525), FOL (∼ 19% - 859

102/535), and NM (∼ 25.9% - 127/492), highlight- 860

ing the difficulty of generating instances for spe- 861

cific logics. Similarly, we also analyzed depth-wise 862

instance correction where we corrected ∼ 17.8% 863

(73/410), ∼ 21% (93/442), ∼ 23.5% (73/310), 864

∼ 33.2% (93/280), and ∼ 21% (23/110) for the 865

depth d1, d2, d3, d4, and d5, respectively, indi- 866

cating the challenges of generating and validating 867

multi-step reasoning context with increasing depth. 868

G Few shot evaluation Multi-LogiEval 869

We evaluate models in a few-shot setting (specif- 870

ically, 3-shot) on Multi-LogiEval, revealing a no- 871

table enhancement in performance, as depicted in 872

Table 23. In the 3-shot evaluation results, we ob- 873

serve notable improvements in the performance of 874

various LLMs. GPT-4 consistently exhibits high 875

accuracy across all depths, particularly excelling 876

in PL and FOL. Though showing significant en- 877

hancements compared to its zero-shot performance 878

across all the models, they still underperform in 879

NM, highlighting a persistent challenge in this area. 880

Open-source models such as Yi-34B and Mistral- 881

7B, while benefiting from the 3-shot setup, still 882

display noticeable performance drops in higher 883

depths. Comparing these findings to the zero-shot 884

results from Table 6, we see a general trend of im- 885

proved performance in the 3-shot setting, indicat- 886

ing the effectiveness of few-shot prompting. How- 887

ever, the observed performance drop from d4 to 888

d5 in open-source models comparable across both 889

settings, suggesting that while few-shot examples 890

enhance overall accuracy, they do not fully miti- 891

gate the inherent challenges these models face in 892

higher depths. Moreover, the performance trends 893

identified in the zero-shot evaluation, such as the 894
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Depth Rules and Propositions Context and Question

2

Rules: CD, DS

Propositions:
P: There is a big snowstorm coming.
Q: Schools will be closed.
R: Boss tells us to work from home.
S: I avoid driving in the snow

Context: If there is a big snowstorm coming, schools will be closed tomorrow.
Also, if my boss tells us to work from home, I can avoid driving in the snow.
It seems either there will be a snowstorm or I’ll be told to work from home,
maybe both.

Question: If schools were not closed tomorrow, then did I avoid driv-
ing in the snow?

3

Rules: BD, DS, MT

Propositions:
P: The weather is nice.
Q: She goes for a walk.
R: Finishes chores.
S: Has free time.
T: It’s the weekend

Context: It was a beautiful sunny day. Amy knew that if the weather is nice,
she goes for a walk. Amy also had chores to complete today. If Amy finishes
her chores, then she has free time. Amy is certain that either the weather is
nice, or she doesn’t have free time, or the weather is nice and she doesn’t have
free time. She also knows that if it’s the weekend, then she finishes her chores.

Question: If Amy didn’t go for a walk, then is it the weekend?

4

Rules: HS, CD, DS, MP

Propositions:
P: Studied hard for the exam.
Q: Feel confident.
R: Score well.
S: Cooked nice dinner.
T: Feel relaxed.
U: Sleep soundly.

Context: Jim had a big exam coming up that he needed to prepare for. If Jim
studied hard for the exam, he would feel confident going into it. If Jim felt
confident about the exam, he would end up scoring well on it. His wife Lucy
enjoyed cooking nice dinners. If Lucy cooked a nice dinner, she felt relaxed
afterwards. Last night, either Jim studied hard, or Lucy cooked a nice dinner,
or they both did those things. Jim knew that if Lucy felt relaxed after dinner,
she always slept soundly through the night.

Question: If Jim did not score well on the exam, did Lucy sleep soundly?

5

Rules: HS, MT, DS, MP, MP

Propositions:
P: Train consistently.
Q: Increase endurance and stamina.
R: complete the 26.2 mile marathon.
S: Ate nutritious food.
T: More steady energy.
U: Train harder staying injury free.

Context: Jessica set a goal to run a marathon. She learned that if she trained
consistently, she could increase her endurance and stamina. Jessica knew
that if her endurance improved, she could complete the 26.2 mile marathon.
To complement her training, Jessica made sure she either trained regularly,
or ate nutritious foods, or did both. Eating nutritious foods gave Jessica
more steady energy for her workouts. With this extra energy, Jessica found
she could train harder while staying injury-free on her road to marathon success.

Question: If Jessica does not complete the marathon, then does she
stay injury-free during training?

Table 11: Natural language examples of rule combinations of each depth for PL.

consistent decrease in accuracy for larger open-895

source models and the superior performance of896

proprietary models such as GPT-4 and ChatGPT in897

PL and FOL, remain similar in the 3-shot setting.898

H Extended first-order logic with n-ary899

relations900

First-order logic often involves handling n-ary re-901

lations involving more than two variables—such902

as the ternary relation in “If P (a, b, c) ∧ Q(c, d)903

then R(a, d)”. Moreover, one can alternate for all904

(∀), and there exists (∃) for any number of times in905

FOL, and that means there are an infinite number906

of such rules in first-order logic. As discussed in907

section 3.1, our aim is not to build a comprehen-908

sive set covering all the possible inference rules but909

rather to evaluate the reasoning ability of language910

models up to a reasoning depth of five on a system-911

atically curated set of inference rules. However, to912

evaluate the ability of LLMs to reason with such913

complex rules, we explore 7 such inference rules914

for which we generated data using a similar prompt915

structure as depicted in Figure 3. We generate 10 916

instances for each of the inference rule, resulting in 917

70 instances for evaluation. The choice of inference 918

rules can be found in Table 13. We evaluate the 919

large-scale models GPT-4, ChatGPT, and Gemini. 920

These models achieve an average accuracy of 80%, 921

84.3%, and 90%, respectively. This demonstrates 922

that these LLMs can comprehend multi-variable 923

FOL, but the rules currently involve only single- 924

step reasoning. Our work also shows that these 925

models perform well with single-step reasoning. 926

Exploring multi-step reasoning with multi-variable 927

FOL presents an interesting direction for future 928

research direction. 929
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Depth Rules and Predicates Context and Question

2

Rules: CD, DS

Predicates:
P: Compose original music.
Q: Work would be Unique.
R: Promote music online.
S: Gain following.

Context: An aspiring musician decided to try writing their own songs. They realized
that if they composed original music, their work would be unique; if they promoted
their music online, they would gain a following. The musician could write original
songs or promote their music online.

Question: Given that Maria’s music was not unique, is it true that she gained a
following online?

3

Rules: BD, DS, MT

Predicates:
P: It’s Monday.
Q: There is a staff meeting.
R: Finish report.
S: Submit the report.
T: Good Employee.

Context: It was a busy morning at the office. If it was Monday, then there would be a
staff meeting. If they finished the report, then they could submit it to their manager.
They were certain that either it was Monday, or they did not submit the report. It is
known at the office that if someone is a good employee, they finish their reports on
time.

Question: Sam did not have a staff meeting, is Sam a good employee?

4

Rules: BD, DS, MT, DS

Predicates:
P: First day of school.
Q: students feel nervous and excited.
R: Study Hard.
S: get good grades.
T: teacher is very strict.
U: class textbook is very long.

Context: If it is the first day of school, then students feel nervous and excited. If
someone studies hard, then they get good grades. Either it is the first day, or they do
not get good grades, or it is the first day and they do not get good grades. If a teacher
is very strict, then students have to study hard for that class. Either the teacher is very
strict, or the class textbook is very long, or perhaps both are true.

Question: Emma was not nervous on the first day, does this mean did she
have a very long textbook in one of her classes?

5

Rules: HS, MT, DS, MP, MP

Predicates:
P: Practice drawing techniques.
Q: improve artistic skills.
R: sell their artwork.
S: studies art history and famous artists.
T: gain inspiration.
U: develop creative style.

Context: Someone wanted to become an artist. They learned that if they practiced
drawing techniques consistently, they would improve their artistic skills. With im-
proved artistic skills, they could sell their artworks. Either someone practices drawing
techniques consistently, or someone studies art history and famous artists, or they do
both. If someone studies art history and famous artists, then they gain inspiration
for their own art. If they gain inspiration, then they can develop their own creative style.

Question: If Emma cannot sell her artworks yet, then has she developed her
own creative style?

Table 12: Natural language examples of rule combinations of each depth for FOL.

Rule Extended First-order Logic with Multi-variable

1 ∀x∀y((p(x) ∧ q(x)) → r(x, y)) ∧ ∃u∃v(p(u) ∧ ¬r(u, v)) ⊢ ∃y¬q(y)

2 ∀x∀y((p(x) ∧ q(x)) → ¬s(x, y)) ∧ ∀z(r(z) → p(z)) ∧ r(a) ∧ s(a, b) ⊢ ¬q(b)

3 ∀x∃y((p(x) → q(x, y)) ∧ ∀u∀v((q(u, v) ∧ r(u, v)) → s(v)) ∧ ∃z∃k(p(z) ∧ r(z, k)) ⊢ ∃ws(w)

4 ∀x∀y∀z(p(x, y, z) → (q(x, z) ∨ r(y))) ∧ ∃u∃v∃w(p(u, v, w) ∧ ¬q(u,w)) ⊢ ∃sr(s)

5 ∀x((p(x) → ∃yr(y, x)) ∧ p(a) ⊢ ∃zr(z, a)

6 ∀x∀y(p(x, y) ∨ q(x, y)) ∧ ∃u∃v¬q(u, v) ⊢ ∃z∃wp(z, w)

7 ∀x∀y(p(x, y) → (q(x) ∧ r(y)) ∧ p(a, b) ⊢ q(a) ∧ r(b))

Table 13: FOL inference rules that establish the relationship between multiple variables
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Basic Default Reasoning Default Reasoning with Irrelevant Information

Context: Blocks A and B are heavy.
Heavy blocks are typically located on the table.
A is not on the table.

Conclusion: B is on the table.

Context: Blocks A and B are heavy.
Heavy blocks are typically located on the table.
A is not on the table.
B is red.

Conclusion: B is on the table.

Default Reasoning with a Disabled Default Default Reasoning in an Open Domain

Context: Block A and B are heavy
Heavy blocks are normally located on the table.
A is possibly an exception to this rule.

Conclusion: B is on the table.

Context: Block A is heavy.
Heavy blocks are normally located on the table.
A is not on the table.

Conclusion: All heavy blocks other than A are on the table.

Reasoning about Unknown Expectations I Reasoning about Unknown Expectations II

Context: Blocks A, B, and C are heavy.
Heavy blocks are normally located on the table.
At least one of A, B, is not on the table.

Conclusion: C is on the table.
Exactly one of A, B is not on the table.

Context: Heavy blocks are normally located on the table.
At least one heavy block is not on the table.

Conclusion: Exactly one heavy block is not on the table.

Reasoning about Unknown Expectations III Reasoning about Priorities

Context: Blocks A is heavy.
Heavy blocks are normally located on the table.
At least one heavy block is not on the table.

Conclusion: A is on the table.

Context: Jack asserts that block A is on the table.
Mary asserts that block A is not on the table.
When people assert something, they are normally right.

Conclusion: If Mary’s evidence is more reliable than Jack’s.
then block A is not on the table

Table 14: Illustrative examples of non-monotonic reasoning adapted from (Lifschitz, 1989).
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Rule Examples

BDR_MP

Conclusion of BDR: X
MP: (X → Y) ∧ X ⊢ Y

Context: Jim and Pam work at the same office. Normally, employees at that office get free
lunch. Jim does not get free lunch. If Pam gets free lunch, then she gets an hour lunch break.

Question: Can we conclude Pam gets an hour lunch break? (Yes)

BDR_MT

Conclusion of BDR: X
MT: (X → Y) ∧ ¬Y ⊢ ¬X

Context: Emma and Jacob are students in the same class. Usually students in that class
submit homework assignments. Emma did not submit the last homework. If Jacob missed
over 3 classes, that means he likely did not submit the homework.

Question: Can we conclude Jacob missed over 3 classes? (No)

DRD_MP

Conclusion of DRD: X
MP: (X → Y) ∧ X ⊢ Y

Context: The Honda and Toyota are sedans. Sedans normally have four doors. The Honda
might not have four doors even though it’s a sedan. If the Toyota has a four doors then it has
four windows.

Question: Can we conclude the Toyota likely has four windows? (Yes)

DRD_MT

Conclusion of DRD: X
MT: (X → Y) ∧ ¬Y ⊢ ¬X

Context: Oaks and pines are types of trees. Typically trees grow from seeds. Oaks may not
grow from seeds even though they are trees. If a pine is artificial, then it does not grow from
a seed.

Question: Can we conclude the pine is artificial? (No)

DRI_MP

Conclusion of DRI: X
MP: (X → Y) ∧ X ⊢ Y

Context: John and Mary are students in the same class. Usually students in their class do
homework every day. John did not do his homework yesterday. Mary studied extra material
last night. If Mary did her usual homework, she would have also reviewed her notes.

Question: Can we conclude that Mary reviewed her notes last night? (Yes)

DRI_MT

Conclusion of DRI: X
MT: (X → Y) ∧ ¬Y ⊢ ¬X

Context: Sara and David ordered dessert at a restaurant. Usually, people who order dessert
also order coffee. Sara did not order coffee. David requested extra whipped cream. If a
customer asks for extra toppings, it means they did not order coffee.

Question: Can we conclude David asked for extra toppings? (No)

PBD_MP

Conclusion of PBD: X
MP: (X → Y) ∧ X ⊢ Y

Context: Jenny said the dog dug up the flower bed. Her brother said the dog did not dig up
the flower bed. People usually tell the truth. Jenny is more trustworthy than her brother. If
the dog dug up the flowers, it likely made a mess.

Question: Can we conclude the dog made a mess? (Yes)

PBD_MT

Conclusion of PBD: X
MT: (X → Y) ∧ ¬Y ⊢ ¬X

Context: John said the shirt was blue. Mary said the shirt was not blue. Normally people
are correct when they make assertions. John had a closer look at the shirt than Mary. If the
shirt was purple, it could not be blue.

Question: Can we conclude the shirt was purple? (No)

REI_MP

Conclusion of REI: X
MP: (X → Y) ∧ X ⊢ Y

Context: Ben, Mark, and Jacob took a history test. Students who study many hours usually
pass history tests. Ben and Mark did not study many hours. If Jacob passed the history test,
he must have paid attention in class.

Question: Can we conclude Jacob paid attention in class? (Yes)

REI_MT

Conclusion of REI: X
MT: (X → Y) ∧ ¬Y ⊢ ¬X

Context: John, Peter and Kate are students in math class. Students in math class normally
do homework. John and Peter did not do their math homework. If Kate missed class then
she did not do her math homework.

Question: Can we conclude Kate missed class? (No)

REII_MP

Conclusion of REII: X
MP: (X → Y) ∧ X ⊢ Y

Context: John bought a new phone. New phones usually come with a warranty. However,
some new phones do not come with a warranty. If a phone has a warranty, then it has
customer support.

Question: Can we conclude John’s new phone has customer support? (Yes)

REII_MT

Conclusion of REII: X
MT: (X → Y) ∧ ¬Y ⊢ ¬X

Context: Kate booked a room at hotel Y. Rooms at hotel Y are usually clean. There is at
least one room at hotel Y that is not clean. If Kate’s room has mold, then it is probably not
clean.

Question: Can we conclude Kate’s room has mold? (No)

Table 15: Natural language examples of rule combinations of depth-2 for NM.
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Rule Examples

Rule: d3_1

Assumptions:
1: A and B are objects of type T and have property S.
2: Normally objects of type T with property S have property U.
3: if A has property U implies C has property D
4: if C has property D implies E has property F

Question 1:
Can we conclude if E does not have F then B has U? (YES)
Question 2:
Can we conclude if E does not have F then B does not have U?
(NO)

Context: Smartphone A and Smartphone B both have GPS technology.
Normally, smartphones with GPS technology also have internet
connectivity. If smartphone A has internet connectivity, then Mike can
access online maps. If Mike can access online maps, then Emily can get
driving directions from Mike.

Question 1: Can we conclude if Emily can not get driving di-
rections from Mike, then smartphone B has internet connectivity? (Yes)
Question 2: Can we conclude if Emily can not get driving directions
from Mike, then smartphone B does not have internet connectivity? (No)

Rule: d3_2

Assumptions:
1: A and B are objects of type T and have property S.
2: Normally objects of type T with property S have property U.
3: if C has property G implies C has property D
4: if A has property U implies E has property F
5: either C has property G or E does not have property F or both

Question 1:
Can we conclude if C does not have D then B has U? (YES)
Question 2:
Can we conclude if C does not have D then B does not have U?
(NO)

Context: Car A and car B are electric vehicles. Normally, electric
vehicles (cars) have fast-charging capabilities. If car C is a hybrid, then
car C has good fuel efficiency. If car A has a fast-charging capability,
then it implies that the environment is very eco-friendly. Either car C is a
hybrid or the environment is not very eco-friendly, or both.

Question 1: Can we conclude if car C is not a good fuel effi-
cient then Car B has a fast-charging capability? (Yes)
Question 2: Can we conclude if car C is not a good fuel efficient then
Car B does not have a fast-charging capability? (No)

Table 16: Natural language examples of rule combinations of depth-3 for NM.

Rule Examples

Rule: d4_1

Assumptions:
1: A and B are objects of type T and have property S.
2: Normally objects of type T with property S have property U.
3: if C has property G implies C has property D
4: if E has property L implies E has property F
5: either C has property G or E has property F or both
6: if A has property U then E has property L

Question 1:
Can we conclude if C does not have D then B has U? (YES)
Question 2:
Can we conclude if C does not have D then B does not have U?
(NO)

Context: Apple tree and Orange tree are fruit trees. Normally, fruit
trees produce edible fruit. If Garden is regularly watered, then its plants
are flourishing. If Orchard receives enough sunlight, then it yields
high-quality fruit. Either Garden has regular watering or Orchard yields
high-quality fruit or both. If the apple tree produces edible fruit, then
Orchard receives enough sunlight.

Question 1: Can we conclude if Garden does not have flourish-
ing plants then the orange tree produces edible fruit? (Yes)
Question 2: Can we conclude if Garden does not have flourishing plants
then the orange tree does not produce edible fruit? (No)

Rule: d4_2

Assumptions:
1: A and B are objects of type T and have property S.
2: Normally objects of type T with property S have property U.
3: if C has property G implies C has property D
4: if E has property L implies E has property F
5: either C does not have property D or E does not have property
F or both
6: if A has property U then E has property L

Question 1:
Can we conclude if C has property G then B has U? (YES)
Question 2:
Can we conclude if C does not have G then B does not have U?
(NO)

Context: Assume A and B are plants of species T and they both produce
flowers. Normally, flowering plants of species T also bear fruit. If
an animal C is a bird, then it can fly. If an environment has a lot of
sunlight, then it supports plant growth. Either the bird cannot fly or the
environment does not support plant growth or both. If plant A bears fruit,
then the environment has a lot of sunlight.

Question 1:
Can we conclude if the bird is capable of flying then plant B bears fruit?
(Yes)
Question 2:
Can we conclude if the bird can fly then plant B does not bear fruit? (No)

Table 17: Natural language examples of rule combinations of depth-4 for NM.
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Rule Examples

Rule: d5_1

Assumptions:
1: A and B are objects of type T and have property S.
2: Normally objects of type T with property S have property U.
3: if C has property G implies C has property D
4: if E has property L implies E has property F
5: either C has property G or E has property F or both
6: if I has property H then E has property L
7: if A has property U then I has property H

Question 1:
Can we conclude if C does not have D then B has U? (YES)
Question 2:
Can we conclude if C does not have D then B does not have U?
(NO)

Context: Rose and Lily are plants that flower. Normally, plants that
flower also produce seeds. If a plant is a Cactus, and it has thorns, then it
can survive in the desert. If a plant is an Orchid, and it has broad leaves,
then it can grow in tropical areas. Either a Cactus has thorns, or an
Orchid can grow in tropical areas, or both. If a Lotus has flowers, then
an Orchid has broad leaves. If a Rose produces seeds, then a Lotus has
flowers.

Question 1:
Can we conclude if a Cactus cannot survive in the desert then a Lily
produces seeds? (YES)
Question 2:
Can we conclude if a Cactus cannot survive in the desert then a Lily does
not produce seeds? (NO)

Table 18: Natural language examples of rule combinations of depth-5 for NM.

Rule:
Assumptions:
1: A and B are objects of type T and have property P.
2: Normally objects of type T with property P have property Q.
3: A does not have property Q.
4: If B has property Q then it implies B has property C.
Question: Can we conclude B has property C?

Task 1:
Generate a short generic story that should only contain the natural
language sentences for assumptions 1, 2, 3, and 4 using propositions to
replace the labels A, B and so on.
The story should not include labels like p or q and so on.

Task 2:
Generate the question by replacing them with the entities with respective propositions.

Table 19: An example of prompt used to generate data instance for depth-2 using NM-BDR and PL-MP
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Rule: d3_1

Assumptions:
1: A and B are objects of type T and have property S.
2: Normally objects of type T with property S have property U.
3: if A has property U implies C has property D
4: if C has property D implies E has property F

Question 1:
Can we conclude if E does not have F then B has U? (YES)

Question 2:
Can we conclude if E does not have F then B does not have U? (NO)

Task 1: Generate a short context paragraph by replacing all the entity labels A, B,
and so on in the above context with propositions and real entities. The generated context
should have natural language sentences for all the sentences 1-4. It should not
include label representations like A or B and should not mention the words "property".

Task 2: Generate questions 1 and 2 by replacing the respective labels from the generated context.

Example 1:
Assumptions:
Smartphone A and Smartphone B both have GPS technology.
Normally, smartphones with GPS technology also have internet connectivity.
If smartphone A has internet connectivity, then Mike can access online maps.
If Mike can access online maps, then Emily can get driving directions from Mike.

Question 1:
Can we conclude if Emily can not get driving directions from Mike,
then smartphone B has internet connectivity?

Question 2:
Can we conclude if Emily can not get driving directions from Mike,
then smartphone B does not have internet connectivity?

Table 20: An example of prompt used to generate data instance for depth-3 for NM
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Rule: d4_1

Assumptions:
1: A and B are objects of type T and have property S.
2: Normally objects of type T with property S have property U.
3: if C has property G implies C has property D
4: if E has property L implies E has property F
5: either C has property G or E has property F or both
6: if A has property U then E has property L

Question 1:
Can we conclude if C does not have D then B has U? (YES)

Question 2:
Can we conclude if C does not have D then B does not have U? (NO)

Task 1: Generate a short context paragraph by replacing all the entity labels A, B,
and so on in the above context with propositions and real entities. The generated context
should have natural language sentences for all the sentences 1-4. It should not
include label representations like A or B and should not mention the words "property".

Task 2: Generate questions 1 and 2 by replacing the respective labels from the generated context.

Example 1:
Assumptions:
Apple tree and Orange tree are fruit trees.
Normally, fruit trees produce edible fruit.
If Garden is regularly watered, then its plants are flourishing.
If Orchard receives enough sunlight, then it yields high-quality fruit.
Either Garden has regular watering or Orchard yields high-quality fruit or both.
If the apple tree produces edible fruit, then Orchard receives enough sunlight.

Question 1: Can we conclude if Garden does not have flourishing
plants then the orange tree produces edible fruit?

Question 2: Can we conclude if Garden does not have flourishing
plants then the orange tree does not produce edible fruit?

Table 21: An example of prompt used to generate data instance for depth-4 for NM
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Rule: d5_1

Assumptions:
1: A and B are objects of type T and have property S.
2: Normally objects of type T with property S have property U.
3: if C has property G implies C has property D
4: if E has property L implies E has property F
5: either C has property G or E has property F or both
6: if I has property H then E has property L
7: if A has property U then I has property H

Question 1:
Can we conclude if C does not have D then B has U? (YES)

Question 2:
Can we conclude if C does not have D then B does not have U? (NO)

Task 1: Generate a short context paragraph by replacing all the entity labels A, B,
and so on in the above context with propositions and real entities. The generated context
should have natural language sentences for all the sentences 1-4. It should not
include label representations like A or B and should not mention the words "property".

Task 2: Generate questions 1 and 2 by replacing the respective labels from the generated context.

Example 1:
Assumptions:
Rose and Lily are plants that flower.
Normally, plants that flower also produce seeds.
If a plant is a Cactus, and it has thorns, then it can survive in the desert.
If a plant is an Orchid, and it has broad leaves, then it can grow in tropical areas.
Either a Cactus has thorns, or an Orchid can grow in tropical areas, or both.
If a Lotus has flowers, then an Orchid has broad leaves.
If a Rose produces seeds, then a Lotus has flowers.

Question 1: Can we conclude if a Cactus cannot survive
in the desert then a Lily produces seeds? (YES)

Question 2: Can we conclude if a Cactus cannot survive
in the desert then a Lily does not produce seeds? (NO)

Table 22: An example of prompt used to generate data instance for depth-5 for NM

Models Propositional First-Order Non-Monotonic

d1 d2 d3 d4 d5 d1 d2 d3 d4 d5 d1 d2 d3 d4 d5

GPT-4 90.00 85.71 84.44 79.17 73.33 97.78 84.76 73.33 68.33 73.33 54.38 56.11 75.00 90.00 75.00
ChatGPT 96.67 82.86 77.78 79.17 80.00 94.44 86.67 84.44 64.17 64.44 45.63 41.67 57.50 65.00 45.00
Gemini 92.22 73.33 81.48 88.33 77.78 90.00 83.81 81.48 76.67 57.78 59.38 42.78 75.00 62.50 75.00
Yi-34B 68.89 61.90 66.67 64.17 64.44 76.67 61.90 62.96 45.00 51.11 59.38 33.33 52.50 52.50 50.00

Orca-13B 85.56 80.00 72.59 75.83 68.89 91.11 73.33 63.70 55.00 42.22 56.88 46.67 60.00 50.00 50.00
Mistral-7B 80.00 64.76 71.11 73.33 66.67 93.33 71.43 62.96 62.50 42.22 37.50 36.11 45.00 57.50 70.00

Avg 84.22 75.05 74.52 74.33 70.67 90.67 75.62 69.48 59.00 54.66 50.75 42.78 60.83 62.92 60.83

Table 23: Few-shot Evaluation of LLMs in terms of accuracy on Multi-LogiEval.
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