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ABSTRACT

Deep neural networks have been known to be vulnerable to adversarial examples,
which are inputs that are modified slightly to fool the network into making incorrect
predictions. This has led to a significant amount of research on evaluating the
robustness of these networks against such perturbations. One particularly impor-
tant robustness metric is the robustness to minimal ℓ2 adversarial perturbations.
However, existing methods for evaluating this robustness metric are either compu-
tationally expensive or not very accurate. In this paper, we introduce a new family
of adversarial attacks that strike a balance between effectiveness and computational
efficiency. Our proposed attacks are generalizations of the well-known DeepFool
(DF) attack, while they remain simple to understand and implement. We demon-
strate that our attacks outperform existing methods in terms of both effectiveness
and computational efficiency. Our proposed attacks are also suitable for evaluating
the robustness of large models and can be used to perform adversarial training (AT)
to achieve state-of-the-art robustness to minimal ℓ2 adversarial perturbations.

1 INTRODUCTION
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Figure 1: The average number of gradient com-
putations vs the mean ℓ2-norm of perturbations.
It shows that our novel fast and accurate method,
SDF, outperforms other minimum-norm attacks.
SDF finds significantly smaller perturbations com-
pared to DF, with only a small increase in computa-
tional cost. SDF also outperforms other algorithms
in optimality and speed. The numbers are taken
from Table 5.

Deep learning has achieved breakthrough im-
provement in numerous tasks and has developed
as a powerful tool in various applications, in-
cluding computer vision Long et al. (2015) and
speech processing Mikolov et al. (2011). De-
spite their success, deep neural networks are
known to be vulnerable to adversarial examples,
carefully perturbed examples perceptually in-
distinguishable from original samples Szegedy
et al. (2013). This can lead to a significant
disruption of the inference result of deep neu-
ral networks. It has important implications for
safety and security-critical applications of ma-
chine learning models.

Our goal in this paper is to introduce a
parameter-free and simple method for accu-
rately and reliably evaluating the adversarial
robustness of deep networks in a fast and
geometrically-based fashion. Most of the cur-
rent attack methods rely on general-purpose opti-
mization techniques, such as Projected Gradient
Descent (PGD) Madry et al. (2017) and Aug-
mented Lagrangian Rony et al. (2021), which
are oblivious to the geometric properties of mod-
els. However, deep neural networks’ robustness
to adversarial perturbations is closely tied to their geometric landscape Dauphin et al. (2014); Poole
et al. (2016). Given this, it would be beneficial to exploit such properties when designing and imple-
menting adversarial attacks. This allows to create more effective and computationally efficient attacks
on classifiers. Formally, for a given classifier k̂ and input x, we define an adversarial perturbation as
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the minimal perturbation r that is sufficient to change the estimated label k̂(x):

∆(x; k̂) := min
r
∥r∥2 s.t k̂(x+ r) ̸= k̂(x). (1)

DeepFool (DF) Moosavi-Dezfooli et al. (2016) was among the earliest attempts to exploit the
“excessive linearity” Goodfellow et al. (2014) of deep networks to find minimum-norm adversarial
perturbations. However, more sophisticated attacks were later developed that could find smaller
perturbations at the expense of significantly greater computation time.

In this paper, we exploit the geometric characteristics of minimum-norm adversarial perturbations to
design a family of fast yet simple algorithms that achieves a better trade-off between computational
cost and accuracy in finding ℓ2 adversarial perturbations (see Fig. 1). Our proposed algorithm, guided
by the characteristics of the optimal solution to Eq. (1), enhances DF to obtain smaller perturbations,
while maintaining simplicity and computational efficiency that are only slightly inferior to those of
DF. Our main contributions are summarized as follows:

• We introduce a novel family of fast yet accurate algorithms to find minimal adversarial
perturbations. We extensively evaluate and compare our algorithms with state-of-the-art
attacks in various settings.

• Our algorithms are developed in a systematic and well-grounded manner, based on theoreti-
cal analysis.

• We further improve the robustness of state-of-the-art image classifiers to minimum-norm
adversarial attacks via adversarial training on the examples obtained by our algorithms.

• We significantly improve the time efficiency of the state-of-the-art Auto-Attack (AA) Croce
& Hein (2020b) by adding our proposed method to the set of attacks in AA.

Related works. It has been observed that deep neural networks are vulnerable to adversarial
examples Szegedy et al. (2013); Moosavi-Dezfooli et al. (2016); Goodfellow et al. (2014). To exploit
this vulnerability, a range of methods have been developed for generating adversarial perturbations
for image classifiers. These attacks occur in two settings: white-box, where the attacker has complete
knowledge of the model, including its architecture, parameters, defense mechanisms, etc.; and black-
box, where the attacker’s knowledge is limited, mostly relying on input queries to observe outputs
Chen et al. (2020); Rahmati et al. (2020). Further, adversarial attacks can be broadly categorized into
two categories: bounded-norm attacks (such as FGSM Goodfellow et al. (2014) and PGD Madry et al.
(2017)) and minimum-norm attacks (such as DF and C&W Carlini & Wagner (2017)) with the latter
aimed at solving Eq. (1). In this work, we specifically focus on white-box minimum ℓ2-norm attacks.

The authors in Szegedy et al. (2013) studied adversarial examples by solving a penalized optimization
problem. The optimization approach used in Szegedy et al. (2013) is complex and computationally
inefficient; therefore, it cannot scale to large datasets. The method proposed in Goodfellow et al.
(2014) applied a single-step of the input gradient to generate adversarial examples efficiently. DF was
the first method to seek minimum-norm adversarial perturbations, employing an iterative approach.
It linearizes the classifier at each step to estimate the minimal adversarial perturbations efficiently.
C&W attack Carlini & Wagner (2017) transform the optimization problem in Szegedy et al. (2013)
into an unconstrained optimization problem. C&W leverages the first-order gradient-based optimizers
to minimize a balanced loss between the norm of the perturbation and misclassification confidence.
Inspired by the geometric idea of DF, FAB Croce & Hein (2020a) presents an approach to minimize
the norm of adversarial perturbations by employing complex projections and approximations while
maintaining proximity to the decision boundary. By utilizing gradients to estimate the local geometry
of the boundary, this method formulates minimum-norm optimization without the need for tuning
a weighting term. DDN Rony et al. (2019) uses projections on the ℓ2-ball for a given perturbation
budget ϵ. FMN Pintor et al. (2021) extends the DDN attack to other ℓp-norms. By formulating (1)
with Lagrange’s method, ALMA Rony et al. (2021) introduced a framework for finding adversarial
examples for several distances.

2 DEEPFOOL (DF) AND MINIMAL ADVERSARIAL PERTURBATIONS

In this section, we first discuss the geometric interpretation of the minimum-norm adversarial pertur-
bations, i.e., solutions to the optimization problem in Eq. (1). We then examine DF to demonstrate
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why it may fail to find the optimal minimum-norm perturbation. Then in the next section, we
introduce our proposed method that exploits DF to find smaller perturbations.

Let f : Rd → RC denote a C-class classifier, where fk represents the classifier’s output associated
to the kth class. Specifically, for a given datapoint x ∈ Rd, the estimated label is obtained by
k̂(x) = argmaxkfk(x), where fk(x) is the kth component of f(x) that corresponds to the kth class.
Note that the classifier f can be seen as a mapping that partitions the input space Rd into classification
regions, each of which has a constant estimated label (i.e., k̂(.) is constant for each such region). The
decision boundary B is defined as the set of points in Rd such that fi(x) = fj(x) = maxk fk(x)
for some distinct i and j.

Additive ℓ2-norm adversarial perturbations are inherently related to the geometry of the decision
boundary. More formally, Let x ∈ Rd, and r∗(x) be the minimal adversarial perturbation defined as
the minimizer of Eq. (1). Then r∗(x), 1) is orthogonal to the decision boundary of the classifier B,
and 2) its norm ∥r∗(x)∥2 measures the Euclidean distance between x and B, that is x+ r∗ lies on
B. We aim to investigate whether the perturbations generated by DF satisfy the aforementioned two
conditions. Let rDF denote the perturbation found by DF for a datapoint x. We expect x+ rDF to lie
on the decision boundary. Hence, if r is the minimal perturbation, for all 0 < γ < 1, we expect the
perturbation γr to remain in the same decision region as of x and thus fail to fool the model.

In Fig. 2 (top-left), we consider the fooling rate of γ rDF for 0.2 < γ < 1. For a minimum-norm
perturbation, we expect an immediate sharp decline for γ close to one. However, in Fig. 2 (top-left)
we cannot observe such a decline (a sharp decline happens close to γ = 0.9, not 1). This is a
confirmation that DF typically finds an overly perturbed point. One potential reason for this is the
fact that DF stops when a misclassified point is found, and this point might be an overly perturbed
one within the adversarial region, and not necessarily on the decision boundary.

Now, let us consider the other characteristic of the minimal adversarial perturbation. That is, the
perturbation should be orthogonal to the decision boundary. We measure the angle between the found
perturbation rDF and the normal vector orthogonal to the decision boundary (∇f(x+ rDF)). To do
so, we first scale rDF such that x+ γrDF lies on the decision boundary. It can be simply done via
performing a line search along rDF. We then compute the cosine of the angle between rDF and the
normal to the decision boundary at x+γrDF (this angle is denoted by cos(α)). A necessary condition
for γrDF to be an optimal perturbation is that it must be parallel to the normal vector of the decision
boundary (Figure 6 in the Appendix). In Fig. 2 (top-right) , we show the distribution of cosine of this
angle. Ideally, we wanted this distribution to be accumulated around one. However, it clearly shows
that this is not the case, which is a confirmation that rDF is not necessarily the minimal perturbation.

3 SUPERDEEPFOOL: EFFICIENT ALGORITHMS TO FIND MINIMAL
PERTURBATIONS

In this section, we propose a new class of methods that modifies DF to address the aforementioned
challenges in the previous section. The goal is to maintain the desired characteristics of DF, i.e.,
computational efficiency and the fact that it is parameter-free while finding smaller adversarial
perturbations. We achieve this by introducing an additional projection step which its goal is to steer
the direction of perturbation towards the optimal solution of Eq. (1).

Let us first briefly recall how DF finds an adversarial perturbations for a classifier f . Given the current
point xi, DF updates it according to the following equation:

xi+1 = xi −
f(xi)

∥∇f(xi)∥22
∇f(xi). (2)

Here the gradient is taken w.r.t. the input. The intuition is that, in each iteration, DF finds the
minimum perturbation for a linear classifier that approximates the model around xi. The below
proposition shows that under certain conditions, repeating this update step eventually converges to a
point on the decision boundary.

Proposition 1 Let the binary classifier f : Rd → R be continuously differentiable and its gradient
∇f and f are L

′
-Lipschitz. For a given input sample x0, suppose B(x0, ϵ) is a ball centered around
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Figure 2: (Left) we generated 1000 images with one hundred γ between zero and one, and the fooling
rate of the DeepFool (top) and SuperDeepFool (bottom) is reported. This experiment is done on the
CIFAR10 dataset and ResNet18 model. (Right) histogram of the cosine angle between the normal to
the decision boundary and the perturbation vector obtained by DeepFool (top) and SuperDeepFool
(bottom) has been showed.

x0 with radius ϵ, such that there exists x ∈ B(x0, ϵ) that f(x) = 0. If ∥∇f∥2 ≥ ζ for all x ∈ B

and ϵ < ζ2

L′2 , then DF iterations converge to a point on the decision boundary.

Proof: We defer the proof to the Appendix.

Notice while the proposition guarantees the perturbed sample to lie on the decision boundary, it does
not state anything about the orthogonality of the perturbation to the decision boundary.

To find perturbations that are more aligned with the normal to the decision boundary, we introduce
an additional projection step that steers the perturbation direction towards the optimal solution of
Eq. (1). Formally, the optimal perturbation, r∗, and the normal to the decision boundary at x0 + r∗,
∇f(x0+r∗), should be parallel. Equivalently, r∗ should be a solution of the following maximization
problem:

max
r

r⊤∇f(x0 + r)

∥∇f(x0 + r)∥∥r∥
, (3)

which is the cosine of the angle between r and ∇f(x0 + r). A necessary condition for r∗ to be a
solution of Eq. (3) is that the projection of r∗ on the subspace orthogonal to∇f(x0 + r∗) should be
zero. Then, r∗ can be seen as a fixed point of the following iterative map:

ri+1 = T (ri) =
ri

⊤∇f(x0 + ri)

∥∇f(x0 + ri)∥
· ∇f(x0 + ri)

∥∇f(x0 + ri)∥
. (4)

The scalar multiplier on the right-hand side of Eq. (4) represents the norm of the projection of the
vector ri along the gradient direction. The following proposition shows that this iterative process can
converge to a solution of Eq. (3).

Proposition 2 For a differentiable f and a given r0, ri in the iterations Eq. (4) either converge to a
solution of Eq. (3) or a trivial solution (i.e., ri → 0).

Proof: We defer the proof to the Appendix.
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3.1 A FAMILY OF ADVERSARIAL ATTACKS

Algorithm 1: SDF (m,n) for binary clas-
sifiers
Input: image x0, classifier f , m, and n.
Output: perturbation r

1 Initialize: x← x0

2 while sign(f(x)) = sign(f(x0)) do
3 repeat m times

4 x← x− |f(x)|
∥∇f(x)∥2

2
∇f(x)

5 end
6 repeat n times
7 x← x0 +

(x−x0)
⊤∇f(x)

∥∇f(x)∥2 ∇f(x)
8 end
9 end

10 return r = x− x0

Finding minimum-norm adversarial perturbations can
be seen as a multi-objective optimization problem,
where we want f(x + r) = 0 and the perturbation
r to be orthogonal to the decision boundary. So far
we have seen that DF finds a solution satisfying the
former objective and the iterative map Eq. (4) can
be used to find a solution for the latter. A natural
approach to satisfy both objectives is to alternate be-
tween these two iterative steps, namely Eq. (2) and
Eq. (4). We propose a family of adversarial attack
algorithms, coined SuperDeepFool, by varying how
frequently we alternate between these two steps. We
denote this family of algorithms with SDF(m,n),
where m is the number of DF steps Eq. (2) followed
by n repetition of the projection step Eq. (4). This
process is summarized in Algorithm 1. One inter-
esting case is SDF(∞, 1) which, in each iteration,
continues DF steps till a point on the decision bound-
ary is found and then applies the projection step. This

particular case has a resemblance with the strategy used in Rahmati et al. (2020) to find black-box
adversarial perturbations. This algorithm can be interpreted as iteratively approximating the decision
boundary with a hyperplane and then analytically calculating the minimal adversarial perturbation for
a linear classifier for which this hyperplane is the decision boundary. It is justified by the observation
that the decision boundary of state-of-the-art deep networks has a small mean curvature around data
samples Fawzi et al. (2017; 2018). A geometric illustration of this procedure is shown in Figure 3.

3.2 SDF ATTACK

We empirically compare the performance of SDF(m,n) for different values of m and n in Section 4.1.
Interestingly, we observe that we get better attack performance when we apply several DF steps
followed by a single projection. Since the standard DF typically finds an adversarial example in
less than four iterations for state-of-the-art image classifiers, one possibility is to continue DF steps
till an adversarial example is found and then apply a single projection step. We simply call this
particular version SDF(∞, 1) of our algorithm SDF, which we will extensively evaluate in Section 7.
SDF can be understood as a generic algorithm that can also work for the multi-class case by simply
substituting the first inner loop of Algorithm 1 with the standard multi-class DF algorithm. The label
of the obtained adversarial example determines the boundary on which the projection step will be
performed. A summary of multi-class SDF is presented in Algorithm 2. Compared to the standard
DF, this algorithm has an additional projection step. We will see later that such a simple modification
leads to significantly smaller perturbations.

Algorithm 2: SDF for multi-class classifiers
Input: image x0, classifier f .
Output: perturbation r

1 Initialize: x← x0

2 while k̂(x) = k̂(x0) do
3 x̃← DeepFool(x)

4 w ← ∇fk̂(x̃)(x̃)−∇fk̂(x0)
(x̃)

5 x← x0 +
(x̃−x0)

⊤w
∥w∥2 w

6 end
7 return r = x− x0 Figure 3: Illustration of two iterations of the

SDF(∞,1) algorithm. Here x0 is the original
data point and x∗ is the minimum-norm adver-
sarial example.
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Table 1: The cosine of the angle between the pertur-
bation vector (r) and ∇f(x+ r). We performed
this experiment on three models trained on CI-
FAR10 dataset.

Attack Models

LeNet ResNet18 WRN-28-10

DF 0.89 0.14 0.21
SDF (1,1) 0.90 0.63 0.64
SDF (1,3) 0.88 0.61 0.62
SDF (3,1) 0.92 0.70 0.72
SDF (∞, 1) 0.92 0.72 0.80

Table 2: Comparison of the ℓ2-norm of per-
turbations for DF and SDF family algorithms.
We performed this experiment on CIFAR10.
We use the same model architecture and hy-
perparameters for training as in C&W and
DDN.

Attack Mean-ℓ2 Median-ℓ2 Grads

DF 0.17 0.15 14
SDF (1,1) 0.14 0.13 22
SDF (1,3) 0.16 0.14 26
SDF (3,1) 0.12 0.11 30
SDF(∞, 1) 0.11 0.10 32

4 EXPERIMENTAL RESULTS

In this section, we conduct extensive experiments to demonstrate the effectiveness of our method
in different setups and for several natural and adversarially trained networks. We first introduce our
experimental settings, including datasets, models, and attacks. Next, we compare our method with
state-of-the-art ℓ2-norm adversarial attacks in various settings, demonstrating the superiority of our
simple yet fast algorithm for finding accurate adversarial examples. Moreover, we add SDF to the
collection of attacks used in AutoAttack, and call the new set of attacks Auto-Attack++. This setup
meaningfully speeds up the process of finding norm-bounded adversarial perturbations. We also
demonstrate that a model adversarially training using the SDF perturbations becomes more robust
compared to the models1 trained using other minimum-norm attacks.

Setup. We test our algorithms on architectures trained on MNIST, CIFAR10, and ImageNet datasets.
For MNIST, we use a robust model called IBP from Zhang et al. (2019) and naturally trained model
called SmallCNN. For CIFAR10, we use three models: an adversarially trained PreActResNet-18 He
et al. (2016b) from Rade & Moosavi-Dezfooli (2021), a regularly trained Wide ResNet 28-10 (WRN-
28-10) from Zagoruyko & Komodakis (2016) and LeNet LeCun et al. (1999). These models are
obtainable via the RobustBench library Croce et al. (2020). On ImageNet, we test the attacks on
two ResNet-50 (RN-50) models: one regularly trained and one ℓ2 adversarially trained, obtainable
through the robustness library Engstrom et al. (2019).

4.1 COMPARISON WITH DEEPFOOL (DF)

In this part, we compare our algorithm in terms of orthogonality and size of the ℓ2-norm perturbations
especially with DF. Assume r is the perturbation vector obtained by an adversarial attack. First, we
measure the orthogonality of perturbations by measuring the inner product between ∇f(x+ r) and
r. As we explained in Section 2, a larger inner product between r and the gradient vector at f(x+ r)
indicates that the perturbation vector is closer to the optimal perturbation vector r∗. We compare the
orthogonality of different members of the SDF family and DF. The results are shown in Table 1. We
observe that DF finds perturbations orthogonal to the decision boundary for low-complexity models
such as LeNet, but fails to perform effectively when evaluated against more complex ones. In contrast,
attacks from the SDF family consistently found perturbations with a larger cosine of the angle for all
three models.

Verifying optimality conditions for SDF. We validate the optimality conditions of the perturbations
generated by SDF using the procedure outlined in Section 2. Comparing Fig. 2 top (DF) and bottom
(SDF) rows, it becomes evident that our approach effectively mitigates the two issues we previously
highlighted for DF. Namely, the alignment of the perturbation with the normal to the decision
boundary and the problem of over-perturbation. We can see that unlike DF, the cosine of the angle
for SDF is more concentrated around one, which indicates that the SDF perturbations are more
aligned with the normal to the decision boundary. Moreover, Fig. 2 (bottom-right) shows a sharper
decline in the fooling rate (going down quickly to zero) when γ decreases. This is consistent with

1We only compare to publicly available models.
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Table 3: Performance for attacks on the
MNIST dataset with IBP models. The num-
bers between parentheses indicate the number
of iterations.

Attack FR Median-ℓ2 Grads

ALMA (1000) 100 1.26 1 000
ALMA (100) 98.90 4.96 100
DDN (1000) 99.27 1.46 1 000
DDN (100) 94.34 1.97 100
FAB (1000) 99.98 3.34 10 000
FAB (100) 99.98 5.19 1 000
FMN (1000) 89.08 1.34 1 000
FMN (100) 67.80 2.14 100
C&W 4.63 – 90 000
SDF 100 1.37 52

Table 4: Performance of attacks on the
CIFAR-10 dataset with WRN-28-10. The re-
sults on adversarially trained networks are
deferred to Tables 20 and 11 of the Appendix.

Attacks FR Median-ℓ2 Grads

DF 100 0.26 14
ALMA 100 0.10 100
DDN 100 0.13 100
FAB 100 0.11 100
FMN 97.3 0.11 100
C&W 100 0.12 90 000
SDF 100 0.09 25

our expectation for an accurate minimal perturbation attack. Table 2 demonstrates that SDF family
outperforms DF in finding more accurate perturbations, particularly SDF(∞,1) which significantly
outperforms DF at a small cost.

4.2 COMPARISON WITH MINIMUM-NORM ATTACKS

We now compare SDF with state-of-the-art minimum ℓ2-norm attacks: C&W, FMN, DDN, ALMA,
and FAB. For C&W, we use the same hyperparameters as in Rony et al. (2019). We use FMN, FAB,
DDN, and ALMA with budgets of 100 and 1000 iterations and report the best performance. For a
fair comparison, we clip the pixel-values of SDF-generated adversarial images to [0, 1], consistent
with the other minimum-norm attacks. We report the average number of gradient computations per
sample, as these operations are computationally intensive and provide a consistent metric unaffected
by hardware differences. We also provide a runtime comparison in Table 20 of the Appendix.

We evaluate the robustness of the IBP model, which is adversarially trained on the MNIST dataset,
against state-of-the-art attacks in Table 3. We choose this robust model as it allows us to have a more
nuanced comparison between different adversarial attacks. SDF and ALMA are the only attacks
that achieve a 100% percent fooling rate against this model, whereas C&W is unsuccessful on most
of the data samples. The fooling rates of the remaining attacks also degrade when evaluated with
100 iterations. For instance, FMN’s fooling rate decreases from 89% to 67.8% when the number
of iterations is reduced from 1000 to 100. This observation shows that, unlike SDF, selecting the
necessary number of iterations is critical for the success of fixed-iteration attacks. Even for ALMA
which can achieve a nearly perfect FR, decreasing the number of iterations from 1000 to 100 causes
the median norm of perturbations to increase fourfold. In contrast, SDF is able to compute adversarial
perturbations using the fewest number of gradient computations while still outperforming the other
algorithms, except ALMA, in terms of the perturbation norm. However, it is worth noting that
ALMA requires twenty times more gradient computations compared to SDF to achieve a marginal
improvement in the perturbation norm.

Table 4 compares SDF with state-of-the-art attacks on the CIFAR10 dataset. The results show that
state-of-the-art attacks have a similar norm of perturbations, but an essential point is the speed of
attacks. SDF finds more accurate adversarial perturbation very quickly rather than other algorithms.
We also evaluated all attacks on an adversarially trained model for the CIFAR10 dataset. SDF
achieves smaller perturbations with half the gradient calculations than other attacks. SDF finds
smaller adversarial perturbations for adversarially trained networks at a significantly lower cost than
other attacks, requiring only 20% of FAB’s cost and 50% of DDN’s and ALMA’s (see Tables 11 and
20 in the Appendix).

Table 5 demonstrates the performance of SDF on a naturally and adversarially trained models
on ImageNet dataset. Unlike models trained on CIFAR10, where the attacks typically result in
perturbations with similar norm, the differences between attacks are more nuanced for ImageNet
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Table 5: Performance comparison of SDF with other state-of-the-art attacks for median ℓ2 on
ImageNet dataset. FR columns show the fooling rates of attacks.

RN-50 RN-50 (AT)

Attack FR Median-ℓ2 Grads FR Median-ℓ2 Grads

DF 99.1 0.31 23 98.8 1.36 34
ALMA 100 0.10 100 100 0.85 100
DDN 99.9 0.17 1, 000 99.7 1.10 1, 000
FAB 99.3 0.10 900 100 0.81 900
FMN 99.3 0.10 1, 000 99.9 0.82 1, 000
C&W 100 0.21 82, 667 99.9 1.17 52, 000
SDF 100 0.09 37 100 0.80 49

Table 6: The comparison between ℓ2 robustness
of our adversarial trained model and Rony et al.
(2019) model. We perform this experiment on
CIFAR10 dataset.

Attack SDF (Ours) DDN

Mean Median Mean Median

DDN 1.09 1.02 0.86 0.73
FAB 1.12 1.03 0.92 0.75
FMN 1.48 1.43 1.47 1.43
ALMA 1.17 1.06 0.84 0.71
SDF 1.06 1.01 0.81 0.73

Table 7: Average input curvature of WRN-28-
10 models trained on CIFAR10 dataset, accord-
ing to the measures proposed in Srinivas et al..
The second column shows the average spectral-
norm of the Hessian w.r.t. input, ∥∇2f(x)∥2,
and the third column shows the average of the
same quantity normalized by the norm of the in-
put gradient, Cf (x) = ∥∇2f(x)∥2/∥∇f(x)∥2.
The standard deviation is denoted by numbers
enclosed in brackets.

Model Ex∥∇2f(x)∥2 ExCf (x)

Standard 600.06 (29.76) 73.99 (6.62)
DDN AT 2.86 (1.22) 4.32 (2.91)
SDF AT (Ours) 0.73 (0.08) 1.66 (0.86)

models. In particular, FAB, DDN, and FMN’s performance degrades when the dataset changes. In
contrast, SDF achieves smaller perturbations at a significantly lower cost than ALMA. This shows
that the geometric interpretation of optimal adversarial perturbation, rather than viewing (1) as a
non-convex optimization problem, can lead to an efficient solution. On the complexity aspect, the
proposed approach is substantially faster than the other methods. In contrast, these approaches involve
a costly minimization of a series of objective functions. We empirically observed that SDF converges
in less than 5 or 6 iterations to a fooling perturbation; our observations show that SDF consistently
achieves state-of-the-art minimum-norm perturbations across different datasets, models, and training
strategies, while requiring the least number of gradient computations. This makes it readily suitable
to be used as a baseline method to estimate the robustness of very deep neural networks on large
datasets.

4.3 SDF ADVERSARIAL TRAINING (AT)

In this section, we evaluate the performance of a model adversarially trained using SDF against
minimum-norm attacks and AutoAttack. Our experiments provide valuable insights into the effective-
ness of adversarial training with SDF and sheds light on its potential applications in building more
robust models. Adversarial training requires computationally efficient attacks, making costly options
such as C&W unsuitable. Therefore, an attack that is parallelizable (both on batch size and gradient
computation) is desired for successful adversarial training. SDF possesses these crucial properties,
making it a promising candidate for building more robust models.

We adversarially train a WRN-28-10 on CIFAR10. Similar to the procedure followed in Rony et al.
(2019), we restrict ℓ2-norms of perturbation to 2.6 and set the maximum number of iterations for SDF
to 6. We train the model on clean examples for the first 200 epochs, and we then fine-tune it with SDF
generated adversarial examples for 60 more epochs. Since a model trained using DDN-generated
samples Rony et al. (2019) has demonstrated greater robustness compared to a model trained using
PGD Madry et al. (2017), we compare our model against the former. Our model reaches a test
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accuracy of 90.8% while the model by Rony et al. (2019) obtains 89.0%. SDF adversarially trained
model does not overfit to SDF attack because, as Table 6 shows, SDF obtains the smallest perturbation.
It is evident that SDF adversarially trained model can significantly improve the robustness of model
against minimum-norm attacks up to 30%. In terms of comparison of these two adversarially trained
models with AutoAttack (AA), our model outperformed the Rony et al. (2019) by improving about
8.4% against ℓ∞-AA, for ε = 8/255, and 0.6% against ℓ2-AA, for ε = 0.5.

Furthermore, compared to a network trained on DDN samples, our adversarially trained model has a
smaller input curvature (Table 7). This observation corroborates the idea that a more robust network
will exhibit a smaller input curvature Moosavi-Dezfooli et al. (2019); Srinivas et al.; Qin et al. (2019).

4.4 AUTOATTACK++

Table 8: Analysis of robust accuracy for various defense strategies against AA++ and AA with ε = 0.5
for six adversarially trained models on CIFAR-10. All models are taken from the RobustBench
library Croce et al. (2020).

Models AA AA++

Clean acc. Robust acc. Grads Robust acc. Grads

R1 Rebuffi et al. (2021) 95.7% 82.3% 1259.2 82.1% 599.5
R2 Sehwag et al. (2021) 90.3% 76.1% 1469.1 76.1% 667.7
R3 Gowal et al. (2020) 89.4% 63.4% 1240.4 62.2% 431.5
R4 Rice et al. (2020) 88.6% 67.6% 933.7 68.4% 715.3
R5 Rice et al. (2020) 89.05% 66.4% 846.3 62.5% 613.7
R6 Ding et al. (2018) 88.02% 67.6% 721.4 63.4% 511.1
Standard trained 94.7% 0.00% 208.6 0.00 121.1

In this part, we introduce a new variant of AutoAttack by introducing AutoAttack++ (AA++).
AutoAttack (AA) is a reliable and powerful ensemble attack that contains three types of white-box
and a strong black-box attacks. AA evaluates the robustness of a trained model to adversarial
perturbations whose ℓ2/ℓ∞-norm is bounded by ε. By substituting SDF with the attacks in the AA,
we significantly increase the performance of AA in terms of computational time. Since SDF is an
ℓ2-norm attack, we use the ℓ2-norm version of AA as well. We restrict maximum iterations of SDF
to 10. If the norm of perturbations exceeds ε, we renormalize the perturbation to ensure its norm
stays ≤ ε. In this context, we have modified the AA algorithm by replacing APGD⊤ Croce & Hein
(2020b) with SDF due to the former’s cost and computation bottleneck in the context of AA. We
compare the fooling rate and computational time of AA++ and AA on the stat-of-the-art models from
the RobustBench leaderboard. In Table 8, we observe that AA++ is up to three times faster than AA.
In an alternative scenario, we added the SDF to the beginning of the AA set, resulting in a version
that is up to two times faster than the original AA, despite now containing five attacks (see Appendix).
This outcome highlights the efficacy of SDF in finding adversarial examples. These experiments
suggest that leveraging efficient minimum-norm and non-fixed iteration attacks, such as SDF, can
enable faster and more reliable evaluation of the robustness of deep models.

5 CONCLUSION

In this work, we have introduced a family of parameter-free, fast, and parallelizable algorithms
for crafting optimal adversarial perturbations. Our proposed algorithm, SDF, outperforms state-
of-the-art ℓ2-norm attacks, while maintaining a small computational cost. We have demonstrated
its effectiveness in various scenarios. Furthermore, we have shown that adversarial training using
the examples generated by SDF builds more robust models. While our primary focus in this work
has been on minimal ℓ2 attacks, there exists potential for extending SDF families to other threat
models, including general ℓp-norms and targeted attacks. In the Appendix, we have demonstrated
straightforward modifications that highlight the applicability of SDF to both targeted and ℓ∞-norm
attacks. However, a more comprehensive evaluation remains a direction for future work. Moreover,
further limitations of our proposed method are elaborated upon in Appendix O.
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A PROOFS

Proof of Proposition 1.

Since∇f(x) is Lipschitz-continuous, for x,y ∈ B(x0, ϵ), we have:

|f(x)− f(y) +∇f(y)T (x− y)| ≤ L
′

2
∥x− y∥2 (5)

DeepFool updates the new xn in each according to the following equation:

xn = xn−1 +
∇f(xn−1)

∥∇f(xn−1)∥2
f(xn−1) (6)

Hence if we substitute x = xn and y = xn−1 in 5, we get:

|f(xn)| ≤
L

′

2
∥xn − xn−1∥2. (7)

Now, let sn := ||xn − xn−1||. Using 7 and DeepFool’s step, we get:

sn+1 =
f(xn)

∥∇f(xn)∥
≤ L

′

2ζ

f(xn)
2

∥∇f(xn)∥2
(8)

We also know that for x,x∗ ∈ B(x0, ϵ) and the Lipschitz property:

|f(x)− f(x∗)| ≤ 2L
′
ϵ (9)

From property x∗ we know that f(x∗) = 0, so:

|f(x)| ≤ 2L
′
ϵ (10)

sn+1 =
f(xn)

||∇f(xn)||
⩽ snϵ

L
′2

ζ2
(11)

Using the assumptions of the theorem, We have L
′
ϵ

ζ2 < 1, and hence sn converges to 0 when n→∞.
We conclude that {xn} is a Cauchy sequence. Denote by x∞ the limit point of {xn}. Using the
continuity of f and Eq.(7), we obtain

lim
n→∞

|f(xn)| = |f(x∞)| = |f(x∗)| = 0, (12)

It is clear that x∗ is x. which concludes the proof of the theorem.

Proof of Proposition 2. Let us denote the acute angle between∇f(x0 + ri) and ri by θi (0 ≤ θi ≤
π/2). Then from (4) we have |ri+1| = |ri| cos θi. Therefore, we get

|ri+1| =
i∏

i=1

cos θi|r0|. (13)

Now there are two cases, either θi → 0 or not. Let us first consider the case where zero is not the
limit of θi. Then there exists some ϵ0 > 0 such that for any integer N there exists some n > N for
which we have θn > ϵ0. Now for ϵ0, we can have a series of integers ni where for all of them we
have θni

> ϵ0. Since we have 0 ≤ | cos θ| ≤ 1, we have the following inequality:

0 ≤
∞∏
i=0

| cos θi| ≤
∞∏
i=0

| cos θni
| ≤

∞∏
i=0

| cos ϵ0| (14)

The RHS of the above inequality goes to zero which proves that ri → 0. This leaves us with the other
case where θi → 0. This means that cos θi → 1 which is the maximum of Eq. (3), this completes the
proof.
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Table 9: Comparison of the effectiveness of line search on the CIFAR10 data for SDF and DF. We
use one regularly trained model S (WRN-28-10) and three adversarially trained models (shown with
R1 Rony et al. (2019), R2 Augustin et al. (2020) and R3 Rade & Moosavi-Dezfooli (2021)). ✓and
✗ indicate the presence and absence of line search respectively.

Model DF SDF

✓ ✗ ✓ ✗

S 0.16 0.19 0.09 0.10
R1 0.87 1.02 0.73 0.76
R2 1.40 1.73 0.91 0.93
R3 1.13 1.36 1.04 1.09

Table 10: Comparison of the effectiveness of line search on the CIFAR-10 data for other attacks. Line
search effects are a little for DDN and ALMA. For FMN and FAB because they use line search at the
end of their algorithms (they remind this algorithm as a binary search and final search, respectively),
line search does not become effective.

MODEL
DDN ALMA FMN FAB

✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗

WRN-28-10 0.12 0.13 0.10 0.10 0.11 0.11 0.11 0.11
R1 RONY ET AL. (2019) 0.73 0.73 0.71 0.71 1.10 1.10 0.75 0.75
R2 AUGUSTIN ET AL. (2020) 0.96 0.97 0.93 0.94 0.95 0.95 1.03 1.03
R3 RADE & MOOSAVI-DEZFOOLI (2021) 1.04 1.04 1.06 1.06 1.08 1.08 1.07 1.07

B ON THE BENEFITS OF LINE SEARCH

As we show in Figure 2 DF typically finds an overly perturbed point. SDF’s gradients depend on DF,
so overly perturbing DF is problematic. Line search is a mechanism that we add to the end of our
algorithms to tackle this problem. For a fair comparison between adversarial attacks, we add this
algorithm to the end of other algorithms to investigate the effectiveness of line search.

As shown in Table 9, we observe that line search can increase the performance of the DF significantly.
However, this effectiveness for SDF is a little.

We now measure the effectiveness of line search for other attacks. As observed from Table 10, line
search effectiveness for DDN and ALMA is small.

C COMPARISON ON CIFAR10 WITH THE PRN-18

In this section, we compare SDF with other minimum-norm attacks against an adversarially trained
network Rade & Moosavi-Dezfooli (2021). In Table 11, SDF achieves smaller perturbation compared
to other attacks, whereas it costs only half as much as other attacks.

Table 11: Comparison of SDF with other state-of-the-art attacks for median ℓ2 on CIFAR-10 dataset
for adversarially trained network (PRN-18 Rade & Moosavi-Dezfooli (2021)).

ATTACK FR MEDIAN-ℓ2 GRADS

ALMA 100 0.68 100
DDN 100 0.73 100
FAB 100 0.77 210
FMN 99.7 0.81 100
SDF 100 0.65 46
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(a) R1 (b) S
Figure 4: In this figure, we show the time ratio of AA to AA++. For regularly trained model (WRN-
28-10) and adversarially trained model Rade & Moosavi-Dezfooli (2021) (R1). We perform this
experiment on 1000 samples from CIFAR10 data.

D PERFORMANCE COMPARISON OF ADVERSARIALLY TRAINED MODELS
VERSUS AUTO-ATTACK (AA)

Evaluating the adversarially trained models with attacks used in the training process is not a standard
evaluation in the robustness literature. For this reason, we evaluate robust models with AA. We
perform this experiment with two modes; first, we measure the robustness of models with ℓ∞ norm,
and in a second mode, we evaluate them in terms of ℓ2 norm. Tables 12 and 13 show that adversarial
training with SDF samples is more robust against reliable AA than the model trained on DDN
samples Rony et al. (2019).

Table 12: Robustness results of adversarially trained models on CIFAR-10 with ℓ∞-AA. We perform
this experiment on 1000 samples for each ϵ.

MODEL NATURAL ε = 6
255

8
255

10
255

DDN 89.1 45 29.6 17.6
SDF (OURS) 90.8 47.5 38.1 25.4

Table 13: Robustness results of adversarially trained models on CIFAR-10 with ℓ2-AA. We perform
this experiment on 1000 samples for each ϵ.

MODEL NATURAL ε = 0.3 0.4 0.5 0.6

DDN 89.1 78.1 73 67.5 61.7
SDF (OURS) 90.8 83.1 79.7 68.1 63.9

E ANOTHER VARIANTS OF AA++

As we mentioned, in an alternative scenario, we added the SDF to the beginning of the AA set,
resulting in a version that is up to two times faster than the original AA. In this scenario, we do not
exchange the SDF with APGD. We add SDF to the AA configuration. So in this configuration, AA
has five attacks (SDF, APGD, APGD⊤, FAB, Square). By this design, we guarantee the performance
of AA. An interesting phenomenon observed from these tables is that when the budget increases, the
speed of the AA++ increases. We should note that we restrict the number of iterations for SDF to 10.

F WHY DO WE NEED STRONGER MINIMUM-NORM ATTACKS?

Bounded-norm attacks like FGSM Goodfellow et al. (2014), PGD Madry et al. (2017), and momentum
variants of PGD Uesato et al. (2018), by optimizing the difference between the logits of the true
class and the best non-true class, try to find an adversarial region with maximum confidence within a
given, fixed perturbation size. Bounded-norm attacks only evaluate the robustness of deep neural
networks; this means that they report a single scalar value as robust accuracy for a fixed budget. The
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Table 14: This table shows the ℓ2-median for the minimum-norm attacks. For all networks, we set
learning rate = 0.01 and weight decay = 0.01. For training with Lp-pooling, we set p = 2 for all
settings.

ATTACK
RN18 MOBILENET

NO POOL MAX-POOL LP-POOL NO POOL MAX-POOL LP-POOL

DF 0.40 0.90 0.91 0.51 0.95 0.93
DDN 0.16 0.25 0.26 0.22 0.27 0.26
FMN 0.18 0.27 0.30 0.24 0.30 0.29
C&W 0.18 0.25 0.27 0.22 0.26 0.24

ALMA 0.19 0.23 0.23 0.20 0.25 0.22
SDF 0.16 0.21 0.22 0.20 0.23 0.21

superiority of minimum-norm attacks is to report a distribution of perturbation norms, and they do not
report a percentage of fooling rates (robust accuracy) by a single scalar value. This critical property
of minimum-norm attacks helps to accelerate to take an in-depth intuition about the geometrical
behavior of deep neural networks.

We aim to address a phenomenon we observe by using the superiority of minimum-norm attacks. We
observed that a minor change within the design of deep neural networks affects the performance of
adversarial attacks. To show the superiority of minimum-norm attacks, we show how minimum-norm
attacks verify these minor changes rather than bounded-norm attacks.

Modeling with max-pooling was a fundamental aspect of convolutional neural networks when they
were first introduced as the best image classifiers. Some state-of-the-art classifiers such as Krizhevsky
et al. (2017); Simonyan & Zisserman (2014); He et al. (2016a) use this layer in network configuration.
We use the pooling layers to show that using the max-pooling and Lp-pooling layer in the network
design leads to finding perturbation with a bigger ℓ2-norm.

Assume that we have a classifier f . We train f in two modes until the training loss converges. In the
first mode, f is trained in the presence of the pooling layer in its configuration, and in the second
mode, f does not have a pooling layer. When we measure the robustness of these two networks
with regular budgets used in bounded-norms attacks like PGD (ε = 8/255), we observe that the
robust accuracy is equal to 0%. This is precisely where bounded-norm attacks such as PGD mislead
robustness literature in its assumptions regarding deep neural network properties. However, a solution
to solve the problem of bounded-norm attack scan be proposed: ” Analyzing the quantity of changes
in robust accuracy across different epsilons reveal these minor changes.” Is this case, the solution is
costly. This is precisely where the distributive view of perturbations from worst-case to best-case of
minimum-norm attacks detects this minor change.

To show these changes, we trained ResNet-18 and Mobile-Net Howard et al. (2017) in two settings.
In the first setting, we trained them in the presence of a pooling layer until the training loss converged,
and in the second setting, we trained them in the absence of a pooling layer until the training loss
converged. We should note that we remove all pooling-layers in these two settings. For a fair
comparison, we train models until they achieve zero training loss using a multi-step learning rate. We
use max-pooling and Lp-pooling, for p = 2, for this minor changes.

Table 14 shows that using a pooling layer in network configuration can increase robustness. DF has
an entirely different behavior according to the presence or absence of the pooling layer; max-pooling
affects up to 50% of DF performance. This effect is up to 9% for DDN and FMN. ALMA and SDF
show a 4% impact in their performance, which shows their consistency compared to other attacks.

As shown in Table 15, we observe that models with pooling-layers have more robust accuracy when
facing adversarial attacks such as AA and PGD. It should be noted that using regular epsilon for AA
and PGD will not demonstrate these modifications. For this reason, we choose an epsilon for AA and
PGD lower (ε = 2/255) than the regular format (ε = 8/255).

Table 14 and 15 demonstrate that pooling-layers can affect adversarial robustness of deep networks.
Powerful attacks such as SDF and ALMA show high consistency in these setups, highlighting the
need for powerful attacks.

16



Under review as a conference paper at ICLR 2024

Table 15: This table shows the robust accuracy for all networks against to the AA and PGD. For
training with Lp-pooling, we set p = 2 for all settings.

ATTACK
RN18 MOBILENET

NO POOL MAX-POOL LP-POOL NO POOL MAX-POOL LP-POOL

AA 1.1% 17.2% 16.3% 8.7% 21.3% 20.2%
PGD 9.3% 28% 26.2% 16.8% 31.4% 28.7%

F.1 MAX-POOLING’S EFFECT ON THE DECISION BOUNDARY’S CURVATURE

Here, we take a step further and investigate why max-pooling impacts the robustness of models. In
order to perform this analysis, we analyze gradient norms, Hessian norms, and the model’s curvature.
The curvature of a point is a mathematical quantity that indicates the degree of non-linearity. It
has been observed that robust models are characterized by their small curvature Moosavi-Dezfooli
et al. (2019), implying smaller Hessian norms. In order to investigate robustness independent of
non-linearity, Srinivas et al. propose normalized curvature, which normalizes the Hessian norm
at a given input x by its corresponding gradient norm. They defined normalized curvature for
a neural network classifier f as Cf (x) = ∥∇2f(x)∥2/(∥∇f(x)∥2 + ε). Where ∥∇f(x)∥2 and
∥∇2f(x)∥2 are the ℓ2-norm of the gradient and the spectral norm of the Hessian, respectively, where
∇f(x) ∈ Rd,∇2f(x) ∈ Rd×d, and ε > 0 is a small constant to ensure the proper behavior of the
measure. In Table 16, we measure these quantities for two trained models, one with max-pooling and
one without. It clearly shows that the model incorporating max-pooling exhibits a smaller curvature.
This finding corroborates the observation that models with greater robustness tend to have a smaller
curvature value.

Table 16: Model geometry of different ResNet-18 models. W (with pooling) and W/O (without
pooling).

MODEL Ex∥∇f(x)∥2 Ex∥∇2f(x)∥2 ExCf (x)

W 4.75 ± 1.54 120.70 ± 48.74 14.94 ± 0.52

W/O 7.04 ± 2.44 269.74 ± 10.23 22.81 ± 2.58

G MODEL GEOMETRY FOR AT MODELS

In this section we provide curvature analysis of our adversarially trained networks, SDF AT, and
DDN AT model. Table 17 shows that our AT model decreases the curvature of network more than
DDN AT model.

H ORTHOGONALITY CONDITIONS FOR OTHER ATTACKS

In Fig 5, we show the histogram of the cosine angle distribution between normals to the decision
boundary and perturbations for C&W and FMN attacks.

I CNN ARCHITECTURE USED IN TABLE 2

The architecture used to compare SDF variants and DF (Table 2) is summarized in Table 18.

Table 17: Model geometry for regular and adversarially trained models.

MODEL Ex∥∇f(x)∥2 Ex∥∇2f(x)∥2 ExCf (x)

STANDARD 9.54 ± 1.02 600.06 ± 29.76 73.99 ± 6.62

DDN AT 0.91 ± 0.34 2.86 ± 1.22 4.32 ± 2.91

SDF AT 0.38 ± 0.60 0.73 ± 0.08 1.66 ± 0.86
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Figure 5: Histogram of the cosine angle distribution between the gradient in the last step of C&W( left),
FMN( right) and the perturbation vector obtained by C&W and FMN. As previously mentioned in
the analysis of Linesearch B, it is observed that a majority of adversarial attacks exhibit not-overly
perturbed perturbations due to the incorporation of the Linesearch mechanism into their algorithms.
Therefore, due to this justification, gamma analysis is not an effective tool for distinguishing power
and comparing algorithms.

Layer Type CIFAR-10

Convolution + ReLU 3× 3× 64
Convolution + ReLU 3× 3× 64
max-pooling 2× 2
Convolution + ReLU 3× 3× 128
Convolution + ReLU 3× 3× 128
max-pooling 2× 2
Fully Connected + ReLU 256
Fully Connected + ReLU 256
Fully Connected + Softmax 10

Table 18: CNN architecture.

J MULTI-CLASS ALGORITHMS FOR SDF(1, 3) AND SDF(1, 1)

Algorithm 3 and 4 summarizes pseudo-codes for the multi-class versions of SDF(1, 1) and SDF(1, 3).
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Algorithm 3: SDF (1,1)
Input: image x, classifier f .
Output: perturbation r

1 Initialize: x0 ← x, i← 0

2 while k̂(xi) = k̂(x0) do
3 for k ̸= k̂(x0) do
4 w′

k ← ∇fk(xi)−∇fk̂(x0)
(xi)

5 f ′
k ← fk(xi)− fk̂(x0)

(xi)

6 end

7 l̂← argmink ̸=k̂(x0)

|f ′
k|

∥w′
k∥2

8 r̃ ← |f ′
l̂ |

∥w′
l̂
∥2
2
w′

l̂

9 x̃i = xi + r̃

10 wi ← ∇fk(x̃i)(x̃i)−∇fk(x0)(x̃i)

11 x← x0 +
(x̃i−x0)

⊤wi

∥wi∥2 wi

12 i← i+ 1
13 end
14 return r = xi − x0

Algorithm 4: SDF (1,3)
Input: image x, classifier f .
Output: perturbation r

1 Initialize: x0 ← x, i← 0

2 while k̂(xi) = k̂(x0) do
3 for k ̸= k̂(x0) do
4 w′

k ← ∇fk(xi)−∇fk̂(x0)
(xi)

5 f ′
k ← fk(xi)− fk̂(x0)

(xi)

6 end

7 l̂← argmink ̸=k̂(x0)

|f ′
k|

∥w′
k∥2

8 r̃ ← |f ′
l̂ |

∥w′
l̂
∥2
2
w′

l̂

9 x̃i = xi + r̃

10 for 3 steps do
11 wi ← ∇fk(x̃i)(x̃i)−∇fk(x0)(x̃i)

12 xi ← x0 +
(x̃i−x0)

⊤wi

∥wi∥2 wi

13 end
14 i← i+ 1
15 end
16 return r = xi − x0
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K NATURAL TRAINED MNIST MODEL

In Table 19 we show the results of evaluating adversarial attacks on naturally trained SmallCNN
on MNIST dataset. Our algorithm demonstrates a higher rate of convergence compared to other
algorithms, as the perturbations for all algorithms are generally similar.

Table 19: We compare the performance of all algorithms on the natural SmallCNN model that was
trained on the MNIST dataset.

Attacks FR Median-ℓ2 Grads

ALMA 100 1.34 1000
DDN 100 1.36 1000
FAB 100 1.36 10000
FMN 97.10 1.37 1000
C&W 99.80 1.35 90000
SDF 100 1.34 67

L RUNTIME COMPARISON

We report the number of gradient computations as a main proxy for computional cost comparison. In
Table 20, we have compared the runtime of different attacks for a fixed hardware. SDF is significantly
faster.

Table 20: Runtime comparison for adversarial attacks on WRN-28-10 architecture trained on CI-
FAR10, for both naturally trained model and adversarially trained models.

Natural R1 Rebuffi et al. (2021)

Attacks Time (S) Median-ℓ2 Time (S) Median-ℓ2
ALMA 1.71 0.10 13.10 1.22
DDN 1.54 0.13 12.44 1.53
FAB 2.33 0.11 16.21 1.66
FMN 1.42 0.11 10.25 1.83
C&W 734.8 0.12 5402.1 1.68
SDF 0.48 0.09 2.93 1.19

M GEOMETRIC CONDITIONS OF OPTIMAL PERTURBATIONS

Figure 6 illustrates the two conditions discussed in Section 2. In the figure, n1 and n2 represent two
orthogonal vectors to the decision boundary. The optimal perturbation vector r∗ aligns parallel to n2.
On the other hand, a non-optimal perturbation rDF forms an angle α with n1.

N QUERY-DISTORTION CURVES

As demonstrated in Pintor et al. (2021), query-distortion curves are utilised as a metric for evaluating
computational complexity of white-box attacks. In this particular context, the term “query” refers to
the quantity of forward passes available to find adversarial perturbations.

Unlike FMN and ALMA, SDF (and DF) does not allow control over the number of forward and
backward computations. They typically stop once a successful adversarial example is found. Termi-
nating the process prematurely could prevent them from finding an adversarial example. Hence, we
instead opted to plot the median norm of achievable perturbations for a given maximum number of
queries (Figure 7) Although this is not directly comparable to the query-distortion curves in Pintor
et al. (2021), it provides a more comprehensive view of the query distribution than the median alone.
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Figure 6: Illustration of the optimal adversarial example x+ r∗ for a binary classifier f ; the example
lies on the decision boundary (set of points where f(x) = 0) and the perturbation vector r∗ is
orthogonal to this boundary.
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Figure 7: Query-perturbation curves illustrating the relationship between the number of queries and
norms of perturbations for the DF and SDF attacks. The attacks are performed on a WRN-28-10
adversarially trained on CIFAR-10 dataset.

O LIMITATIONS

In this section, we discuss some limitations and potential extensions of SDF.

Extension to other ℓp-norms and targeted attacks. The proposed attack is primarily designed for
ℓ2-norm adversarial perturbations. Moreover, our method, similar to DeepFool (DF), is non-targeted.
Though there are potential approaches for adapting SDF to targeted and ℓp attacks, these aspects
remain largely unexplored in our work.

Nevertheless, we here demonstrate how one could possibly extend SDF to other p-norms. A simple
way is to replace the ℓ2 projection (Line 5 of Algorithm 2) with a projection operator minimizing ℓp
norm similar to the derivations used in Moosavi-Dezfooli et al. (2016). In particular, for p =∞, the
following projection would replace the line 5 of Algorithm 2:

x← x0 +
(x̃− x0)

⊤w

||w||1
sign(w) (15)

In Table 21, we compare the performance of this modified version of SDF, named SDFℓ∞ with FMN,
FAB, and DF, on two pretrained networks M1 Madry et al. (2017) and M2 Rony et al. (2019) on
CIFAR-10 dataset. Our findings indicate that SDFℓ∞ also exhibits superior performance compared to
other algorithms in discovering smaller perturbations.
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Table 21: Performance of SDFℓ∞ on two robust networks trained on CIFAR-10 dataset.

Attacks M1 M2

Median ℓ∞ FR Grads Median ℓ∞ FR Grads

DF 0.031 96.7 24 0.043 97.4 31
FAB 0.025 99.1 100 0.038 99.6 100
FMN 0.024 100 100 0.035 100 100
SDFℓ∞ 0.019 100 33 0.027 100 46

Table 22: Performance of targeted SDF on a standard trained WRN-28-10 on CIFAR-10, measured
using 100 random samples.

Attacks
Targeted Untargeted

FR Mean ℓ2 Median ℓ2 Grads FR Mean ℓ2 Median ℓ2 Grads

DDN 100 0.24 0.25 100 100 0.13 0.14 100
FMN 96.2 0.22 0.24 100 97.3 0.11 0.13 100
SDF (targeted) 98.2 0.21 0.22 25 100 0.10 0.11 34

Furthermore, we can convert SDF to a targeted attack by replacing the line 3 of Algorithm 2 with the
targeted version of DeepFool, and the line 4 with the following:

w ← ∇ft(x̃)−∇fk̂(x0)
(x̃), (16)

where t is the target label. We followed the procedure outlined in Carlini & Wagner (2017) to measure
the performance in the targeted setting. The result is summarized in Table 22. While SDF is effective
in quickly finding smaller perturbations, it does not achieve a 100% fooling rate. Further analysis
is required to understand the factors preventing SDF from converging in certain cases. This aspect
remains an area for future work.

Convergence guarantees. A common challenge for all gradient-based optimization methods
applied to non-convex problems is the lack of a guarantee in finding globally optimal perturbations for
SotA neural networks. Obtaining even local guarantees is not trivial. Nevertheless, in Propositions 1
and 2 we worked towards this goal. We have established local guarantees showing the convergence of
each individual operation, namely the DeepFool step and projection step. However, further analysis
is needed to establish local guarantees for the overall algorithm.

Adaptive attacks. It is known that gradient-based attacks, ours included, are prone to gradient
obfuscation/masking Carlini et al. (2019). To counter this challenge, adaptation, as outlined in
Tramer et al. (2020), is needed. It is also important to recognize that adapting geometric attacks
such as SDF, does not follow a one-size-fits-all approach, as opposed to loss-based ones such as
PGD. While this might be perceived as a weakness, it actually underscores a broader trend in the
community. The predominant focus has been on loss-based attacks. This emphasis has inadvertently
led to less exploration and development in the realm of geometric attacks.
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