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Abstract

Recently, test-time adaptation has attracted wide interest in the context of vision-
language models for image classification. However, to the best of our knowledge,
the problem is completely overlooked in dense prediction tasks such as Open-
Vocabulary Semantic Segmentation (OVSS). In response, we propose a novel TTA
method tailored to adapting VLMs for segmentation during test time. Unlike TTA
methods for image classification, our Multi-Level and Multi-Prompt (MLMP)
entropy minimization integrates features from intermediate vision-encoder layers
and is performed with different text-prompt templates at both the global CLS
token and local pixel-wise levels. Our approach could be used as plug-and-play
for any segmentation network, does not require additional training data or labels,
and remains effective even with a single test sample. Furthermore, we introduce
a comprehensive OVSS TTA benchmark suite, which integrates a rigorous eval-
uation protocol, nine segmentation datasets, 15 common synthetic corruptions,
and additional real and rendered domain shifts, with a total of 87 distinct test
scenarios, establishing a standardized and comprehensive testbed for future TTA
research in open-vocabulary segmentation. Our experiments on this suite demon-
strate that our segmentation-tailored method consistently delivers significant gains
over direct adoption of TTA classification baselines. Code and data are available at
https://github.com/dosowiechi/MLMP,

1 Introduction

Contrastive Vision-Language Models (VLMs) such as CLIP [1] have demonstrated remarkable
generalization capabilities by aligning vision and language modalities through large-scale pre-training.
This versatility has positioned VLMs as powerful foundation models for numerous downstream
tasks [2} 13, 14]. A promising direction for leveraging VLMs beyond classification is Open-Vocabulary
Semantic Segmentation (OVSS), where models aim to segment objects beyond a pre-defined set of
categories, via VLMs’ zero-shot recognition capabilities. Unlike traditional segmentation methods
that require pixel-wise supervision, OVSS enables generalization to unseen object categories through
language-driven representations.

Although existing OVSS methods have made significant progress, they remain vulnerable to domain
shifts at test time, such as environmental changes or image corruptions, which may dramatically
degrade segmentation quality. In the absence of a mechanism enabling them to adapt to unseen
test-time distributions, these models might lose their generalization capabilities, which limits their
reliability in real-world applications. Consequently, there is an unresolved gap for the Test-Time
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Figure 1: Motivation. (a) Left: Mean = std entropy across seven text templates for the CLS token
and the spatial tokens of the final and intermediate vision layers. Even the final-layer spatial tokens
exhibit higher entropy and variability than CLS, and this sensitivity grows further in intermediate
layers (numbers show % std increase relative to CLS). These patterns highlight pronounced prompt-
induced uncertainty at multiple depths and motivate both multi-level and multi-prompt adaptation.
(b) Right: mIoU of the baseline vs. MLMP on clean and corrupted data, showing consistent absolute
improvements and underscoring the effectiveness of our joint adaptation strategies. Here, V20 denotes
the Pascal VOC 20 dataset, and V20-C represents the average performance over its 15 synthetic
corruption types. The variance in (a) is computed across all samples and all corruptions.

Adaptation (TTA) of OVSS models, which would enable models to dynamically adjust both to the
task shift of VLM-based segmentation and to the domain shifts encountered during inference.

To close this gap, we present a novel Multi-Level Multi-Prompt (MLMP) test time adaptation strategy,
the first fully test-time adaptation framework that could be plugged into any OVSS model, to the
best of our knowledge. MLMP is lightweight and plug-and-play, boosting performance on the fly
without access to labels. Its power comes from two key ideas: (i) adaptively integrating intermediate
vision-encoder layers to harvest complementary, shift-resilient features, and (if) a multi-prompt
optimization that exploits VLMs’ template sensitivity to provide a robust adaptation signal across
diverse text-template conditions.

The core requirement for test-time adaptation is a reliable signal that faithfully reflects the current
input distribution—even under severe domain shifts or corruptions. To meet this need, MLMP
begins by adaptively integrating intermediate layers of the vision encoder: earlier layers preserve
fine-grained edges and textures, while deeper blocks encode semantic context, and each layer reacts
differently when the data distribution changes. By aggregating these multi-level features into the
adaptation process and weighting them by their confidence, MLMP harvests the most trustworthy
signals for each input sample.

Beyond multi-level fusion, MLMP leverages VLMs’ prompt sensitivity to model uncertainty. Prior
work [516] shows that changing a prompt template, e.g., from “’a photo of a {class}” to “’an origami
of a {class}”, could drastically change the classification performance. In segmentation, we show
that this effect is even more extreme: per-pixel predictions under different prompts diverge far more
than the single CLS token used for classification (Figure[Ila: CLS token vs. last-layer spatial tokens).
This sensitivity effect is even more pronounced in intermediate feature maps. The intermediate layers
that we fuse for reliability exhibit even stronger template-specific shifts (Figure[Iu: intermediate-
layer tokens). Instead of viewing this inconsistency as a weakness, MLMP models it directly by
incorporating multi-prompt, multi-level predictions into its adaptation objective function. This multi-
prompt approach not only smooths out template-specific noise, thereby reducing gradient variance
and preventing degenerate collapse, but also ensures that the model yields segmentations that are
consistent across diverse linguistic formulations. In this way, MLMP transforms prompt sensitivity
into a powerful adaptation signal that complements its multi-level feature integration. As illustrated
in Figure [Tp, our MLMP method consistently outperforms the non-adapted baseline, achieving about
8-9 absolute mloU improvements on domain-shifted inputs, while also boosting performance on
original (non-corrupted) images. This demonstrates the benefit of our joint multi-level, multi-prompt
adaptation.

We outline our key contributions as follows:



Plug-and-Play TTA Framework for OVSS: We introduce MLMP, which is, to the best of our
knowledge, the first fully test-time adaptation method that could be easily applied to any OVSS
backbone.

L]

Adaptive Multi-Level Fusion: MLMP integrates features from intermediate vision-encoder
layers to capture complementary, shift-resilient cues. To further enhance robustness, we propose
an uncertainty-aware strategy that re-weights features from individual layers based on their
prediction entropy.

Multi-Prompt Local-Global Test-Time Optimization: MLMP turns prompt sensitivity into
signal by directly minimizing entropy across different text prompt templates at both the global
CLS token and local pixel-wise levels. This optimization naturally complements our multi-level
feature fusion by enforcing consistency across linguistic perspectives and feature depths.

Comprehensive OVSS TTA Benchmark Suite: We curate a rigorous evaluation protocol
spanning nine mainstream segmentation datasets and 15 common synthetic corruptions, and
additional real and rendered domain shifts, with a total of 87 distinct test scenarios, estab-
lishing a standardized and comprehensive testbed for future TTA research in open-vocabulary
segmentation. Our experiments on this suite demonstrate that MLMP consistently delivers
significant gains over baselines across all scenarios.

2 Related Work

Test-time adaptation (TTA) for open-vocabulary semantic segmentation (OVSS) remains unex-
plored—existing TTA methods focus on classification or single-modality segmentation, while OVSS
approaches use VLMs without any online adaptation. We bridge this gap with our proposed method
MLMP, a plug-and-play TTA framework that can be applied to any OVSS method.

Test-Time Adaptation. TTA addresses domain shifts by adapting pre-trained models to unlabeled
target data without source samples. Methods like PTBN [[7] and TENT [8]] update batch statistics and
affine parameters via entropy minimization but rely on large batches or augmentations. MEMO [9]
simplifies this with single-sample augmentations, LAME [10] clusters features via Laplacian smooth-
ing, and SAR [11] stabilizes adaptation using batch-agnostic normalization and sharpness-aware
entropy minimization.

Test-Time Adaptation on Segmentation. TTA enhances segmentation robustness against domain
shifts without source data. Methods include self-supervised adaptation via entropy minimization
or contrastive learning [8, [12]], single-image adaptation optimizing per-image predictions [13], and
continual TTA that leverages clustering to prevent forgetting [[14]. Multi-modal adaptation uses
cross-modal self-supervision [[15], while active TTA integrates minimal human feedback for guided
refinement [16]. These approaches assume a fixed, vision-only label space and rely on spatial or
surrogate tasks, making them ill-suited for zero-shot, text-driven OVSS. Consequently, none have
been applied to VLMs.

Open-Vocabulary Semantic Segmentation. OVSS enables segmentation of unseen categories
using vision-language models like CLIP. Approaches fall into fully-supervised, weakly-supervised,
and training-free categories. Fully-supervised methods use pixel-wise annotations [17, (18], [19],
while weakly-supervised ones leverage image-text pairs [20, 21}, 122} |23]]. Training-free OVSS avoids
adaptation data but may rely on auxiliary pre-trained models [24] 25| 26]. Training-free OVSS
approaches aim to enhance segmentation without additional training data. Some methods, such as
SCLIP [27], adjust self-attention mechanisms to improve feature localization, while others, like
MaskCLIP [28]], refine feature extraction from CLIP’s visual backbone. GEM [29] introduces
additional optimization techniques to extract better dense features without fine-tuning. Among these,
NACLIP [30] enhances CLIP’s dense prediction capabilities by introducing neighborhood attention,
which ensures that image patches focus on nearby regions, and by refining similarity measures to
improve spatial consistency.

To the best of our knowledge, this is the first work to address TTA for OVSS models, filling a
previously unexplored intersection between these fields.

To better situate this contribution within the broader landscape of general adaptation methods, TableT]
summarizes the key distinctions among zero-shot inference, domain generalization (DG) [31} 32],
few-shot segmentation (FSS) [33], test-time training (TTT) [34} 35, 136], and our fully unsupervised
test-time adaptation (TTA). This comparison highlights that MLMP addresses the most challenging



Table 1: Comparison of general learning and adaptation paradigms. Here, z°, y® denote labeled
source samples and z¢, y’ denote target (test) samples and labels. Domain Generalization trains
on labeled multi-domain source data to improve robustness on unseen targets, while few-shot and
test-time training methods rely on labeled or source data during or after training. Our approach (Fully
TTA) adapts solely using unlabeled test samples, requiring neither supervision nor source access.

Setting Source Data Target Data Train Loss Test Loss
Zero-Shot Inference X zt X X
Domain Generalization (DG) 2°, y® (often multi-domain) zt L(z%,y°) (DG objectives) X
Few-Shot Learning (FSS) X ztyt (few)  L(z',y') (FSS objectives) X
Test-Time Training (TTT) x®, y° zt s

t t
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and realistic scenario, adapting models entirely from unlabeled test data without any source access or
annotated support samples.

3 Methodology

We first revisit the contrastive vision—language model (VLM) for open-vocabulary semantic segmen-
tation (OVSS), and then present our Multi-Level Multi-Prompt (MLMP) adaptation strategy.

3.1 OVSS with VLMs
Given an input image X € R *Wx3 and a set of concepts C}, € C expressed in natural language,
OVSS seeks a semantic mask y € {1, ..., K }7*W that assigns one concept to every pixel.

Following recent approaches for OVSS [30, 27], we employ a transformer-based VLM to extract
visual and text features from the image and concepts in natural language. Specifically, we feed the
image X into the ViT-based vision encoder to extract a visual token matrix F = [f[cls], fi,..., fN]

with each f; € RP, where N = | H/s|x|W/s] is the number of patches of size sx s in the image and
[cls] is the CLS token for classification. We define Q = [q[cls], qi,---, qN] , with each q; € RD’,
the output features before the projection layer: F = proj(Q). At the same time, the text encoder is
employed to extract text features t;, € R for each concept Cj, € C. This is achieved by combining
C} with a text prompt template, for instance “A photo of a [C}]” or “An image of a [Cj]”
where CY; is an arbitrary text description like “white horse”.

The standard approach for classifying images with a contrastive VLM such as CLIP [[1] computes the
cosine between the CLS token features and text embeddings of classes, and assigns the image to the
class with highest similarity:
. . Xy
argmax sim(fic1q), tx), where sim(x,y) = ———. )
g simfiaa &) BT

For extending this approach to segmentation, we instead compute the similarity between patch
embeddings f; and text embeddings tj, and assign a class/concept to each patch.

3.2 MLMP: Proposed Method

Figure [2] illustrates our full test-time adaptation pipeline, MLMP. MLMP integrates three com-
plementary ideas: uncertainty-aware multi-level fusion, image-level entropy minimization and
multi-prompt adaptation.

We begin by modifying the entropy minimization objective of TENT [8] from image classification to
work with spatial tokens. More specifically, for a batch of B images, each containing N tokens, the
probability that token i belongs to concept k is

_ exp (sim(f;, tx)/7) .
Z‘kc,lzl exp (sz’m(fi, tk/)/T)

where 7 is a softmax temperature scaling parameter, T = [tl, e ,t‘c|], and norm(-) denotes a
function normalizing the columns of its input matrix to unit length. Also, let P denote a matrix
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Figure 2: Overview of our MLMP method. In the Adaptation Phase, the model is adapted by
leveraging multiple prompt templates alongside various intermediate feature layers, as well as the
global feature. During the Evaluation Phase, the model computes weights based on the entropy of the
intermediate features to perform a weighted averaging. These averaged features, combined with the
different templates, are then used to generate the final segmentation map.

containing the probabilities in (2)), which could be expressed more compactly as follows:
P = softmax (norm(F)-norm(T) " /7). 3)
The batch-wise entropy, which is minimized for adaptation, is then defined as follows:

B-N [C]|

1
P) = ——— 3 pulogpi. 4
H(P) BN i:lk:lpk 0g Pik “)

Following [3] 37|, we keep the entire text encoder frozen and update only the LayerNorm parameters
of the vision encoder during adaptation. Freezing the text encoder greatly reduces computational
overhead, since text embeddings can be precomputed and reused across all test samples.

Uncertainty-Aware Multi-Level Fusion. In VLM-based classification, the CLS token in the last
layer of the visual encoder is typically used to compute the class label probabilities. This approach
relies on the idea that the relevant information for classification lies at the end of the ViT and that
intermediate layers serve to transform features. In segmentation, however, features from intermediate
layers are often used to capture complementary information at different scales [38]]. This hypothesis
is validated in Table [2] as well as Figure 3] showing that a higher segmentation mIoU is obtained
when combining the features from different intermediate layers.

Inspired by this result, and leveraging the useful property of ViTs that the output of each layer has
the same shape, we extend the entropy-based loss described above to use features from multiple
layers. Denoting as qf the visual features of patch i obtained at layer ¢, we seek to aggregate the
multi-level features into a single vector g, for segmentation prediction. A simple approach for doing
this is to compute q; by averaging qf across all layers £. However, this approach ignores the relative
contribution and confidence of each layer in the final segmentation. To address this limitation, we
estimate a confidence weight o for each layer ¢ based on its prediction entropy. First, we get visual
features F¥ = proj(QY) using the same projection head as for the final segmentation. Following the
same approach as before, we then compute the batch-wise entropy of layer ¢ as

ht = H(PY), with P* = softmax (norm(F*) - norm(T) " /7). 5)
Finally, the confidence weight of the layer is obtained using a softmax as follows:
—_B.hKt
of = exp(—p-h°) ) 6)

Sp_y exp(—B-ht)



Here, 3 is a parameter controlling the “sharpness” of the weight distribution. During adaptation, we
set 5 = 0 to promote a uniform contribution from all layers in the prediction. During inference, we
sharpen the distribution with a value of 5 = 1, emphasizing the more confident layers in the final
prediction.

With these confidence weights, we can now obtain our uncertainty-aware multi-level (UAML) features
as

L
F = proj(Q), withQ =) o‘Q’, )
=1
giving the following entropy-based loss to minimize:

Luami(T) = H(P), with P = softmax (norm(F) - norm(T) " /7). 3)

Image-Level Entropy Minimization. Since the CLS token is not directly linked to individual
patch predictions but rather captures a more global representation of the input, we also include an
image-level entropy (ILE) minimization term specifically for this token. As illustrated in Figure[T}
the CLS token demonstrates increased robustness and reliability. This term, which encourages the
model to produce more confident global predictions is expressed as:

B |C|
1 cls Ccls
Lie(T) = =5 >0 > " logpiy”. ©)
b=1 k=1

Here, pl[:is] denotes the predicted probability for concept C}, obtained using the CLS token in the last

layer for the b-th sample.

Multi-Prompt Adaptation. Prior work on TTA for classification [S] has shown the usefulness
of leveraging multiple prompt templates in VLM to encode class labels, based on the idea that
the templates capture complementary information about these classes. As shown in Figure [Th,
the sensitivity to the choice of prompt templates is even more pronounced in segmentation tasks,
where fine-grained spatial predictions are required. Using multiple templates acts as cross-modal
regularization, encouraging more stable and generalized learning signals. While different from image
augmentation, it can be seen as a strong, safe, and lightweight text-space augmentation. Rather
than averaging the weights adapted from different prompt templates as in [S]—a computationally
expensive approach for dense prediction tasks such as segmentation—our method minimizes our
proposed UAML and ILE losses across these templates. Let T; be the text features obtained using
the ¢-th template. Our final adaptation loss is defined as:
T
1
Lona(0) = — > (Luamn(Te) + LiLe(Ty)). (10)
t=1

Theoretical Justification. Each template ¢ contributes its own adaptation loss, as we optimize
their average in Eq. (I0). By optimizing the adaptation loss of each prompt directly, we force the
model to correct for the unique wording and visual cue of each template, rather than ’averaging’
these differences in the text embedding space. This loss-level integration treats each template as an
independent critic, translating diverse linguistic perspectives into separate gradient signals. Averaging
those signals produces an unbiased descent direction whose variance decays as 1/7, enabling each
adaptation step to represent the full prompt ensemble while being stable under noisy shifts.

Proposition 1 (Unbiasedness and Variance Bound). Assume that each per-template gradient
9:(0) = Vo[Luamr(T:) + LiLe(Ty)] has variance bounded by o2, then the ensemble gradient,

defined by Vg Lgna = % Zle g:(0), is unbiased and satisfies the following variance bound:

o2

T
E[VoLaa] =Elgi®)]:  Var(VoLawn) = 75 > Var(a.(®)) < % an
t=1

Proof. A proof of Prop. 1 is provided in the Appendix. O

The 1/T reduction in gradient variance, as stated in Prop. 1, explains the improved stability we
observe. Table | confirms that this loss-level ensemble outperforms alternative fusion strategies.



Table 2: mloU performance when using different layer ranges in the proposed multi-level adaptation.

- Loy Loz 24 Loz 24 L1924 L1324 L724 L1 24
VITL/14 LayerRange | (130 (lagttwo)  (last three)  (last 25%)  (last 50%)  (last 75%)  (all layers)
V20 (Original) \ 77.00 £004 77.65+002 77.66+009 80.61 005 80.50+003 81.67 +0.04 78.79 +0.02
Gaussian Noise 63.02 +0.06 64.41+005 65.39+013 66.88 +0.18 66.88 +0.02 67.82+0.01 63.06 +0.09
Defocus Blur 72.06 +0.12  72.93 +019 72.84+002 76.10+016 76.37+005 78.78 +0.02 77.56 +0.09
Snow 71.04 +005  72.09 +0.04 72.56+0.02 7447 +012 T4.41+001  76.39+0.02 73.72 +0.07
JPEG Compression 71.84 +015  73.88+0.11 74404007 7696 +002 77.67 +0.03 78.73 +0.08 75.87 +0.19
V20-C Average | 6933 70.33 70.78 72.89 73.45 74.90 72.02
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Figure 3: Mean and standard deviation of layer-wise confidence weights of MLMP across datasets.
The fusion mechanism adaptively emphasizes more reliable layers based on input conditions.

4 Experimental Settings

Experimental Setup. Following prior work on TTA in classification [37, 5], we restrict updates
to the normalization layers within the vision encoder. The adaptation process is carried out over 10
iterations using the Adam optimizer with a constant learning rate of 10~3 across all datasets. We
use a batch size of 2 images during adaptation across all datasets. For each new batch, the model
undergoes a reset, restoring it to its initial weights before adaptation is applied.

Datasets. In traditional TTA for segmentation, two datasets are commonly employed to simulate
domain shifts—one for model training and another for adaptation during inference (e.g., GTAV and
Cityscapes)—as both must share the same semantic label space. In our study, as this is the first
exploration of TTA for VLMs in segmentation tasks and given that VLMs are pre-trained, we draw
inspiration from ImageNet-C [39] to introduce 15 synthetic corruptions on segmentation datasets.
Our experiments are conducted on Pascal VOC 20 (v20), Pascal VOC 21 (v21) [40], Pascal Context
59 (P59), Pascal Context 60 (P60) [41], and Cityscapes [42]], incorporating both original version
(clean) and the synthetic 15 corruptions (denoted with a “-C” suffix). For COCO-Stuff [43] and
COCO-Object [44], we use only the original versions. To further evaluate robustness under real and
rendered distributional shifts, we additionally include ACDC [45]—capturing real-world adverse
conditions such as fog, night, rain, and snow—and GTA-V [46]], which provides photorealistic,
game-rendered urban scenes. This extended setup results in 87 distinct test scenarios encompassing
synthetic, real, and rendered shifts, enabling a comprehensive evaluation of MLMP across diverse
conditions.

Benchmarking. While MLMP is compatible with any OVSS framework, we incorporate NA-
CLIP [30] with ViT-L/14 as our baseline OVSS model, which leverages neighborhood attention to
enhance spatial consistency in a training-free manner. The compared methods include TENT [8]],
which serves as a baseline and minimizes entropy during adaptation; CLIPATTT [37], which employs
pseudo-labels generated via conformal learning; WATT [5]], which averages learnable parameters
across multiple parallel branches; and TPT [[6], which performs prompt tuning to adapt VLMs at test
time. For a fair comparison, we modified all methods for the segmentation setting by processing all
spatial tokens extracted from the VLM, rather than relying solely on the CLS token.

5 Results
5.1 Ablation studies

Effect of Intermediate Layers. To analyze the impact of layer selection in our uncertainty-aware
multi-level adaptation strategy, we use different ranges of intermediate layers. As shown in Table 2}



Table 3: mloU comparison of MLMP components, showing individual and combined contributions.

Multi-Level Fusion X v v X X v v v v X v v
Multi-Prompt Loss X X X v X v v X X v v v
Image-Level Entropy X X X X v X X v v v v v
Uncertainty-Aware Weighting X X v X X X v X v X X v
V20 (Original) ‘77.00 77.38 81.67 79.70 78.74 7897 83.00 77.69 8270 81.15 79.13 83.76
Gaussian Noise 63.02 6542 67.82 66.75 65.66 6596 69.13 66.17 69.00 69.62 67.35 71.13
Defocus Blur 72.06 76.65 78.78 7431 75.00 76.46 7878 7729 79.78 77.14 7779 80.36
Snow 71.04 72.64 7639 74.66 74.16 7325 7731 7405 7850 7720 7494 79.53
JPEG Compression 71.84 7438 78.73 75.56 7477 76.77 80.81 74.61 79.79 7798 7794 82.06
V20-C Average ‘69.33 71.59 7490 7258 7199 72.66 7597 7241 76.18 75.08 73.89 77.58
80.
73 Table 4: mloU performance for prompt-integration strategies (Text,
” —— Params, Loss) on clean and corrupted data.
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Figure 4: mloU performance
of our method for different V20-C Average ‘ 71.92 68.44 72.58

numbers of templates.

performance varies notably with the fusion range. While using only the final layers yields moderate
improvements, incorporating the last 75% of the layers consistently achieves the best performance
across both clean and corrupted inputs. This highlights that multi-level fusion is a key driver of
adaptation performance: earlier layers, although less semantically abstract, contribute valuable low-
level features—such as texture and edge cues—that enhance robustness to distribution shifts. In this
ablation, we isolate the effect of multi-level fusion by applying only the first term in Eq.[T0] using a
single prompt template and omitting the L g term.

Effect of Uncertainty-Aware Layer Fusion. We investigate strategies for aggregating multi-level
features by comparing uniform averaging (8 = 0) and uncertainty-aware fusion (8 = 1) during
evaluation, using the same 75% layer range identified in the previous ablation. As shown in Table 3]
incorporating entropy-based weighting improves performance by 4.29% on V20 and 3.31% on V20-C.
This highlights the importance of leveraging layer-wise confidence when aggregating features.

Visualization of Layer-Wise Confidence Weights. We visualize the mean and standard deviation
of the learned layer weights to better understand the behavior of our uncertainty-aware fusion
strategy. As shown in Figure 3] deeper layers tend to receive higher confidence, though earlier layers
also contribute, especially under corrupted conditions. This variation is most pronounced in the
Cityscapes dataset, where the distribution fluctuates more across layers and corruption types. In
contrast, the COCO-Stuff dataset shows a flatter distribution, where the final layer is not consistently
the most influential. These results underscore the core strength of our fusion mechanism: its ability
to adaptively reweight layers based on input conditions, assigning greater importance to those that
remain more reliable under distribution shifts and corruption. Please refer to the Appendix for
additional results on other datasets.

Effect of Global Image-Level Adaptation Term. The image-level entropy term, L,z complements
our patch-level adaptation by encouraging consistent global predictions through the CLS token. While
the multi-level loss targets fine-grained spatial predictions, the ILE term introduces global context that
helps stabilize adaptation. As shown in Table when added in isolation, L, i improves performance
by 1.74% and 2.66% on V20 and V20-C, respectively, demonstrating the benefit of incorporating
global context under distribution shift.

Effect of Number of Prompt Templates. To isolate this effect, we evaluate performance using
different numbers of prompt templates while disabling both the multi-level fusion and the image-level
entropy (ILE) term in Eq[T0] As shown in Figured] increasing the number of templates improves
performance up to 7, after which the gains begin to saturate or slightly decline. This trend holds across



Table 5: mloU comparison of MLMP and baselines across several datasets. CLIPArTT could not be
run for a few cases owing to GPU memory shortages. Full per-dataset results are in the Appendix.

OVSS Backbone: NACLIP | Adaptation Method
Dataset \ No Adapt. \ TENT TPT WATT CLIPArTT MLMP
V20 (Original) \ 75.91 \ 77.00 4004 75934001 57.73+006 7277 +0.14  83.76 +0.00
Gaussian Noise 62.89 63.02 4006 6298 +0.01 36.44 +0.04 53.36+025 71.1340.09
Shot noise 66.26 65.88 £0.06  66.33+0.02 40.95+0.05 58.154+028 75.0240.03
Impulse Noise 63.16 64.17 £0.04  63.12+001 3490 +006 54.83+003 71.34 +o.11
Defocus blur 72.59 72.06 +£0.12  72.5540.02 52.43 +0.03 65394045 80.36 +0.06
Glass blur 71.44 70.74 £007  71.40+0.01 49.96 +0.05 64.62+0.13 78.84 +0.05
Motion blur 73.10 73.50+0.10  73.16 £0.02 53.35+0.06 67.48 +0.17 81.4140.05
Zoom blur 59.03 61.36 £0.07  59.00£0.01  41.39+0.08 52.37+0.12  69.41 +0.12
g Snow 71.49 71.04 005 71444001 51.18+0.06 66.97 +0.02  79.53 4+0.05
g Frost 65.38 67.01 4002 65464001 45.75+0.05 60.48 +0.08 73.20 +0.07
Fog 70.69 70.54 £0.07  70.70 £0.01  52.96 £0.04 67.85+0.10 79.81 +0.06
Brightness 74.95 75.61 4002 74954001 55.82+005 71.52+0.14 83.51+0.01
Contrast 71.51 70.51 4004 71.4940.02 50.74 +0.06  66.01 £0.06  79.06 +0.16
Elastic transform 62.86 65.78 £0.05  62.95+0.01 4545+004 60.41+0.10 74.03 +0.01
Pixelate 77.28 76.95+0.12  77.31 4001  59.76 +£0.05 73.14+0.17 84.97 +0.04
JPEG compression 72.59 71.84 £0.15  72.56+001 53.44+005 68.21 £0.07  82.06 £0.01
Average \ 69.01 \ 69.33 69.03 48.30 63.39 77.58
V21 (Original) 45.12 45.65 +£0.02  45.17 +0.01  28.58 4£0.05  39.50 £0.04  50.78 +0.02
V21-C Average 40.75 40.95 40.77 24.12 34.16 46.25
P59 (Original) 28.23 28.73 4002 28.26 £0.01  16.5540.04 24.60+£0.03  31.95 +0.02
P59-C Average 23.88 23.88 23.88 13.37 19.72 27.03
P60 (Original) 24.95 2529 +0.01 2498 +001 14.77 £003 21.88 +£0.03  27.99 +0.03
P60-C Average 21.39 21.25 21.49 12.08 17.79 24.07
CityScapes (Original) 29.49 30.54 +0.04  29.57 +0.01  20.77 £0.06 - 33.35 +0.03
CityScapes-C Average 21.63 21.64 21.60 13.45 - 23.02
COCOObject (Original) 23.80 24.88 £0.01  23.84+0.01 14.14 +0.06 21.34+0.03  28.84 10.01
COCOStuff (Original) 18.34 18.76 +£0.01  18.35 40.01 9.49 +0.02 15.48 £0.01  21.25 +0.01

both clean and corrupted settings, indicating that a moderate number of diverse prompt templates is
sufficient for MLMP. We therefore use 7 templates by default in our main experiments. Please refer
to the Appendix for template details.

Where to Integrate Multi-Prompt Information. Here, we empirically compare strategies for
integrating multi-prompt information into the adaptation process. Specifically, we evaluate: (1)
text-level averaging, where prompt embeddings are averaged before computing logits—a technique
commonly used in zero-shot learning [1]]; (2) a learnable parameter averaging baseline (Params)
inspired by WATT [5]]; and (3) our proposed method (Loss), which incorporates all prompt templates
directly into the adaptation loss (Eq[I0). To isolate the effect of prompt integration, this analysis
excludes other components such as multi-level fusion and the image-level entropy (ILE) term. As
shown in Table[d} our loss-level formulation consistently outperforms the alternatives across both
clean and corrupted settings.

Full Component Analysis. Table |3| presents an extensive ablation evaluating the contribution
of each component in our MLMP strategy. Each proposed element yields consistent gains when
added independently, but it is their combination that delivers the highest overall performance across
both clean and corrupted settings, highlighting their strong complementary effects within a unified
framework. Additionally, we provide further ablations in the Appendix, including alternative OVSS
backbones, different VLMs, ViT architecture variants, computational complexity analysis, and MLMP
segmentation map visualizations, as well as discussions on the effect of longer prompts, effect of
adaptation iterations, and episodic vs. online adaptation.

5.2 Final Comparison with Alternative Adaptation Methods

Performance on Clean Data (No Distributional Shift). We begin by evaluating MLMP on clean
test data (original), where no distributional shift is present. This setting is crucial, as TTA methods
must avoid degrading performance when adaptation is unnecessary. As shown in Table 5| MLMP
achieves strong mloU gains of +7.85, +5.66, +3.72, and +3.04 on V20, V21, P59, and P60, and



+5.04/42.91 on challenging datasets COCOObject and COCOStuff. In contrast, most alternative
adaptation methods fail to improve performance in this setting. These gains highlight the robustness
and generalization of our method, even when no explicit domain shift is present.

Performance Under Distributional Shift. Under distributional shifts, the advantages of MLMP
become even more apparent. As shown in Table[5] MLMP consistently outperforms both the zero-shot
baseline and existing adaptation methods, achieving mloU gains of +8.60, +5.50, +3.15, and +2.68
on V20-C, V21-C, P59-C, and P60-C, respectively. Beyond standard corruptions, we further evaluate
on the Cityscapes dataset, which presents natural domain shifts such as environmental variation,
weather conditions, and resolution differences. Despite its challenging nature and low zero-shot
performance, MLMP improves mloU by +3.86, demonstrating its real-world adaptability. To push
this further, we apply 15 corruption types to create Cityscapes-C, where MLMP still yields a +1.39
gain. While TENT provides modest improvements, most other adaptation methods—including
ClipArTT, TPT, and WATT—either fail to improve or degrade performance. These results highlight
that naive strategies like pseudo-labeling, prompt tuning, or weight averaging are insufficient for open-
vocabulary segmentation, and emphasize the need for segmentation-specific adaptation techniques
such as MLMP. Detailed results can be found in the Appendix.

While Cityscapes already embodies natural dis-
tributional shifts caused by variations in lighting,
camera viewpoint, and urban layouts, we further Table 6: mloU comparison on realistic (ACDC)
assess MLMP on datasets explicitly designed and rendered (GTA-V) domain shifts. Full ACDC
to capture targeted domain shifts. Specifically, results (including reference/clean views) are pro-
we evaluate on ACDC [45]], which contains real- vided in the Appendix.

world adverse conditions (Fog, Night, Rain, and

Snow), and GTA-V [46], a photorealistic, game- ~ OVSS: NACLIP | Adaptation Method
rendered dataset that introduces a distinct syn-  Dataset | No Adapt. ~ TENT MLMP
thetic d1§tr1but10n shift rglgtlve to real imagery Fog 2388 26.89 004 33.33 <0.04
seen during CLIP pre-training. As summarized Night 2212 24.17 4000 24.76 +0.03
in Table [0} MLMP achieves consistent improve- & Rain 23.86  26.84+004 32.44+0.04
ments over both the non-adapted baseline and < Snow 2354 27.25+005 30.59 £0.03

TENT across all ACDC domains, yielding on Average | 2335 26.29 30.28
average +6 mloU gains under real-world condi-
tions. Similarly, on the GTA-V dataset, MLMP
improves by +3.8 mloU over the baseline, fur-
ther confirming its robustness across both realis-
tic and rendered distribution shifts.

GTA-V \ 25.09 26.62 +0.01 28.84 10.02

6 Conclusion

We presented MLMP, a plug-and-play test-time adaptation framework for open-vocabulary semantic
segmentation that can be integrated with any OVSS method. By combining uncertainty-aware fusion
of intermediate ViT features with a novel loss-level integration of multiple prompt templates, MLMP
consistently enhances performance across both clean and shifted domains—including common cor-
ruptions and natural distributional shifts. Our comprehensive OVSS-TTA benchmark—covering nine
datasets and 87 distinct test scenarios—demonstrates MLMP’s broad applicability and establishes a
rigorous evaluation protocol for future work in adaptive, language-aware segmentation. While MLMP
demonstrates strong, consistent gains, there remain opportunities to further refine its components.
In particular, our current layer-weighting mechanism relies on entropy estimates from a shared
projection head, which may not fully reflect each layer’s unique characteristics. Future work could
investigate more flexible architectures—such as lightweight adapters or dedicated projection modules
per layer—to more accurately assess and fuse intermediate features.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract, we claim that we introduce a new method to adapt VLMs for
segmentation. In the paper, we present this method and prove its performance compared to
state-of-art.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We mentioned limitations in the last part of the conclusion section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: All our assumptions are included in the Introduction and the Methodology.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In the Section [ we present all our different settings which are based on
previous methods for TTA. We also provide our code.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: Everything is detailed in our github link provided in the Abstract.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Everything is detailed in the section 4}
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All experiments have been conducted at least three times to ensure statistical
robustness.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Everything is detailed in the Appendix.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have considered all potential harms caused by the research process, societal
impacts, and potential harmful consequences, as described in the NeurIPS Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our paper addresses a research field that is not currently utilized for direct
practical applications, thereby limiting its immediate social impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: In our paper, we cite all sources that inspired our work, and we provide links
in our git repository to the codes from which we drew inspiration.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We document all aspects of our research and provide a link to our implementa-
tion, along with step-by-step explanations for reproducing the results.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:[NA ]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:

Justification: This work does not use LLMs in the core methodology, scientific rigorousness,
or originality of the research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Test-Time Adaptation of Vision-Language Models for
Open-Vocabulary Semantic Segmentation - Appendix

A Proof of Proposition 1

Unbiasedness and Variance Bound Proposition 1 (Restated): Assume each per-template gradient
g:(0) = Vg[Luamr(Ty) + Lig(T3)] has variance bounded by o2. Then, the ensemble gradient,

defined by Vg Lana = % Zthl g¢(0), is unbiased and satisfies the following variance bound:

q
[V}

E[Vo Lina] = Elg:(0)],  Var(VoLina) = 73 ZVar 9:(0)) < —

Step 1: Unbiasedness. By linearity of expectation, we have:
1 X
th = T ZE[gt(é))] = E[g:(0)].
t=1

Hence, averaging the gradients from all T" templates gives an unbiased estimate of the true gradient
of the final loss.

[VG Lﬁndl

Step 2: Variance Bound. Assuming independence with Var(g;) < o2, we get

2

1 « To? o
Var(Vo Lina) = < th ) =72 ;Var(gt(e)) S =7

Thus, the variance bound holds:

[ V)

g

Var(VGLﬁnal) < ?

This completes the proof of Proposition 1.

B Implementation Details

Unless otherwise noted, all experiments utilize NACLIP [30] with ViT-L/14 as the OVSS backbone.
We adapt only the LayerNorm parameters within the vision encoder, amounting to approximately
0.02% of the model’s total parameters. Our adaptation setup follows prior work in classification [,
371l, using the Adam optimizer with a fixed learning rate of 0.001 and 10 adaptation steps (iterations)
across all experiments. Additionally we use batch of 2 images during adaptation. After each batch,
model weights are explicitly reset to their original pre-adaptation values to ensure that each batch is
adapted independently, without leveraging information from previously processed data. Following
standard settings from [1]], we use the default softmax temperature value of 100 in all experiments.
All images are resized to 224 x 224 pixels. Due to the high resolution of images in the Cityscapes
dataset, we split them into overlapping patches of size 224 x 224 pixels with an overlap of 112 pixels
between patches. The segmentation predictions from these patches are aggregated to reconstruct the
final, full-resolution segmentation maps. No image augmentation techniques are applied during either
the adaptation or evaluation phases.

All experiments are conducted on NVIDIA V100 GPUs equipped with 32GB memory. We implement
our approach using the PyTorch deep learning framework. To ensure statistical robustness and fairness
in our comparisons, we repeat each experiment three times, reporting average performance along with
standard deviation. We have provided detailed instructions and step-by-step scripts in jour repository,
clearly demonstrating how to generate datasets, perform the described test-time adaptations, and
reproduce our reported results.

We adapt other baseline methods (TENT [8]], TPT [6], WATT [5]], CLIPArTT [37]) to work with
spatial tokens. General adaptation hyperparameters (optimizer, learning rate, adaptation steps, and
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Table 7: List of the seven prompt templates used in our MLMP method. These general-purpose
templates, originally proposed by the CLIP authors, serve as diverse textual views of each class and
are not tailored to specific datasets or domains.

ID Prompt template

T' itap of a {class}

T? a bad photo of the {class}.
T3 a origami {class}.

T* a photo of the large {class}.
T® a {class} in a video game.
T® art of the {class}.

T7 a photo of the small {class}.

batch size) remain consistent with our setup. Method-specific hyperparameters or components are
retained as reported in their original implementations. Specifically, for WATT, we used the sequential
version (WATT-S) with default values of [ = 2 and m = 5, for CLIPATrTT we used the default k& = 3,
and for TPT we used the 4 learnable tokens. Adapting these baseline methods to the segmentation
task allowed us to systematically evaluate how various adaptation strategies—such as prompt tuning
(TPT), pseudo-labeling (WATT, CLIPArTT), prompt refinement (CLIPArTT), and weight averaging
(WATT)—perform in the context of open-vocabulary segmentation.

C Template Details

Table[7]lists the seven prompt templates used in our MLMP method. These templates were selected
by the original CLIP author and are general-purpose, not tailored to any specific image content.
The CLIP repository also provides a full set of 80 prompt templates, which we use for larger-scale
ablations.

More specifically, for the ablation in Figure ] of the main paper, we vary the number of templates 7'
as follows:

e T = 1: the default CLIP prompt “a photo of a {class}”
o T = 3: the first three templates {7, 72, T} in Table[7]

e T = T: all seven templates {7, ..., 7"} in Table[7]

* T = 20: the first 20 templates from the 80-template pool

e T = 80: the complete set of 80 CLIP templates

D Dataset Details

This section details the datasets used in our experiments, along with the synthetic, real, and rendered
domain shifts applied to evaluate robustness under distributional changes.

More specifically, we conduct experiments on a diverse set of segmentation benchmarks:

* Pascal VOC (V20/V21) [40]: Contains 20 foreground object classes (v20) with a back-
ground class (v21), widely used for benchmarking semantic segmentation tasks.

* Pascal Context (P59/P60) [41]: An extension of the Pascal VOC 2010 dataset, providing
pixel-level annotations for more than 400 classes. Due to sparsity, a frequently used subset
includes 59 object classes plus a background class, totaling 60 categories.

* Cityscapes [42]]: A large-scale dataset for semantic segmentation of urban street scenes.
It comprises around 5,000 finely annotated images from 50 cities, recorded under various
daylight conditions, featuring dynamic objects, varying layouts, and changing backgrounds,
capturing significant natural domain shifts.

https://github.com/openai/CLIP/blob/main/notebooks/Interacting_with_CLIP.ipynb
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COCO-Stuff [43]: Extends the original COCO dataset by adding annotations for back-
ground categories ("stuff"), resulting in 171 classes—=80 objects, and 91 stuff categories.

COCO-Object [44]: A subset of the original COCO dataset, consisting exclusively of 80
object categories without background annotations.

ACDC [45]: Includes pixel-level annotations for 19 semantic classes, covering diverse
driving scenes under fog, night, rain and snow conditions.

GTA-V [46]: Contains 24,966 synthetic images with pixel-accurate semantic labels; one
version aligns to 34/19 classes compatible with real-world segmentation benchmarks.

In addition to the original versions of each dataset—some of which already reflect natural domain
shifts (e.g., Cityscapes)—we further assess the robustness of all methods by applying synthetic
corruptions. Inspired by ImageNet-C [39], we apply 15 synthetic corruptions to evaluate the
robustness of segmentation models under various perturbations. These corruptions include Gaussian
noise, shot noise, impulse noise, defocus blur, glass blur, motion blur, zoom blur, snow, frost, fog,
brightness variations, contrast variations, elastic transformations, pixelation, and JPEG compression.
Each corruption is applied at severity level 5, representing the most challenging scenario.

We resize images from all datasets to 224 x 224 pixels. Due to the high resolution of Cityscapes and
ACDC images, we process them as overlapping patches of size 224 x 224 pixels (with overlaps of 112
pixels). Predictions for these patches are subsequently aggregated to produce the final segmentation
maps.

This extended benchmark comprises a total of 87 distinct test scenarios, encompassing synthetic,
real, and rendered domain shifts. It provides a rigorous and comprehensive evaluation protocol that
captures variations in resolution, scene diversity, object size, and semantic granularity.

E Computational Complexity

In this section, we provide an exhaustive analysis of each test-time adaptation method’s resource
footprint by measuring: (i) latency, (ii) floating-point operations (FLOPs), (iii) peak GPU memory
usage, and (iv) number of learnable parameters. For a fair comparison, all measurements were
performed on a single test sample using the same NVIDIA V100 (32 GB) GPU. The results are
summarized in Table 8]

We compare TENT, TPT, CLIPArTT, WATT, and our MLMP across all four complexity metrics. In
TENT, WATT, CLIPArTT, and MLMP, only the LayerNorm parameters of the vision encoder are
updated during adaptation, whereas TPT introduces additional learnable tokens at the input of the
text encoder. Additionally TENT, WATT, and MLMP use a fixed sets of text features without a need
for recalculating them during adaptation/evaluation, so all prompt templates can be encoded once (v/
in the “One-time Text Encoder” column) and then reused throughout both adaptation and evaluation
phases. In contrast, TPT and CLIPArTT modify prompt embeddings or refine text templates during
adaptation, requiring multiple forward passes through the text encoder.

In terms of latency, MLMP completes both adaptation and evaluation in just 0.582 ms, which
is only marginally slower than TENT (0.480 ms) but substantially faster than WATT (5.215 ms)
and CLIPArTT (3.525 ms). Despite leveraging multi-level fusion and multiple prompt templates,
MLMP maintains a lightweight computational profile with only 82.4 GFLOPs and 82.9 GFLOPs for
adaptation and evaluation, respectively—comparable to TENT and significantly lower than all other
baselines. Furthermore, MLMP’s peak memory usage is among the lowest at 2,093.9 MB, and like
TENT, it updates only 0.02% of the model parameters. These results highlight MLMP’s efficiency: it
delivers rich representational capacity through multi-level and multi-prompt integration by boosting
the results significantly (as shown in Table[5]of the main paper), yet remains almost as lightweight as
the simplest baseline.

F Performance with a Single Test Sample

As shown in Table[0] while TENT yields improvements on the original dataset, it leads to a perfor-
mance drop on V20-C. In contrast, our method, MLMP, consistently improves performance over the
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Table 8: Computational-complexity comparison across methods. For GFLOPs, only the forward-pass
cost in adaptation and evaluation is measured; by common practice, the cost of back-propagation in
adaptation phase can be approximated as twice the forward cost. A v in the second column indicates
that all text information are encoded once and cached. A dagger (1) indicates that TPT adds additional
parameters beyond the original network.

One-time Time (sec.) | GFLOPs | Max Memory Learn. Params

Method Text Encoder Adapt Eval Adapt Eval (MB) | (Ratio) |

TENT v 0.462 0.018 79.1 79.1 2,068.4 102,400 (0.02%)
TPT X 0.445 0.031 275.6 275.6 2,583.1 3,0721 (<0.01%)
CLIPAITT X 3494  0.031 1,755.5 275.6 8,928.5 102,400 (0.02%)
WATT v 5.197 0.018 553.9 79.1 7,232.4 716,800 (0.17%)
MLMP (ours) v 0.541 0.041 82.4 82.9 2,093.9 102,400 (0.02%)

no adaptation baseline, with gains of 8.77% on the otiginal data and 9.40% on the average across
corruptions.

Table 9: mloU performance comparison when using a single test sample for V20 dataset.

OVSS Backbone: NACLIP ‘ Adaptation Method
Dataset: V20 | No Adapt. TENT MLMP
Original | 7591 7620  84.68
Gaussian noise 62.89 62.59 71.92
Shot noise 66.26 65.45 75.78
Impulse noise 63.16 63.34 72.35
Defocus blur 72.59 71.37 80.91
Glass blur 71.44 69.95  79.29
Motion blur 73.10 72.55 81.64
Zoom blur 59.03 60.64  69.99
Snow 71.49 70.03 80.64
Frost 65.38 6596  74.33
Fog 70.69 69.39  80.77
Brightness 74.95 74.73 84.58
Contrast 71.51 69.74  79.78
Elastic transform 62.86 65.09 7532
Pixelate 77.28 75.84  85.63
JPEG compression 72.59 70.85 83.20
V20-C Average | 69.01 68.50  78.41

G Generalization Across Model Variants

To evaluate the robustness and generality of our method, we conduct a series of experiments using
different model configurations within the segmentation pipeline. Specifically, we assess how MLMP
performs when (i) changing the vision transformer backbone, (ii) switching between different open-
vocabulary semantic segmentation (OVSS) formulations, and (iii) adopting an entirely different
vision—language model. These experiments demonstrate that our method maintains consistent
improvements across a wide range of architectural and algorithmic configurations, confirming its
flexibility and transferability.

G.1 Comparison Across ViT Backbones

To evaluate whether our method generalizes across different vision transformer backbones, we
replicate the main experiments using ViT-B/16 and ViT-B/32 in place of the default ViT-L/14 model.
These backbones represent lighter configurations, with fewer parameters and larger patch (32 and
16). As shown in Tables[I0]and [T, MLMP continues to provide substantial improvements over all
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baselines across both configurations, on both clean data (V20 Original) and under severe synthetic
corruptions. These results confirm that the benefits of our multi-level and multi-prompt adaptation
strategy are not tied to model scale or specific architectural configurations, and remain effective even
in lower-resolution settings.

Table 10: Performance comparison of test-time adaptation methods using the ViT-B/16 backbone
with NaCLIP as the OVSS model. Results are reported as mIoU scores on the V20 dataset (original)
and 15 corruption types. MLMP achieves the highest performance across all settings, demonstrating
strong robustness even with a smaller backbone.

OVSS Backbone: NACLIP \ Adaptation Method

Dataset: V20 \ No Adapt. TENT TPT WATT CLIPAITT MLMP
Original \ 77.62 79.15+006  77.63 £001 43.18+007 72.70+0.17 84.18 +0.07
Gaussian noise 48.00 52.04 +0.12  48.11 £0.00 18.83+0.14 33.80+052 61.67 £0.00
Shot noise 52.49 55.56 +£0.16  52.41 4000 19.86+0.12 37.62+033 64.97 +0.10
Impulse noise 49.51 52.87 +0.11  49.41+001 19.12+023 35924005 61.15 +0.09
Defocus blur 68.03 69.85 +0.04 67.88 £0.01 37.54+0.17 56.77 £0.19  76.71 £0.02
Glass blur 62.17 65.14 £0.17 6245 +000 31.12+0.08 47.86+0.15 72.62 +0.04
Motion blur 69.56 71934002 69.54 +0.01 36.89+0.15 58.644+029 77.08 +£0.03
Zoom blur 47.34 52.30 £0.19  47.38 4001 22.83+0.12 33.52+020 59.05 +0.20
Snow 60.88 64.38 £0.05 61.24 4000 27.68 +021 4991 +038 71.4140.15
Frost 55.45 58.38 £0.14  55.44 £0.00 29.66+023 46.94 +0.04 67.42 £0.09
Fog 67.07 70.01 £0.02  67.07 £0.00 35.84 +023 59.98 4009  76.32 +0.02
Brightness 73.33 75.14 4017 73234000 40.87+0.09 67.30+033 82.14 +0.03
Contrast 60.30 63.30 £0.04  60.204+0.00 29.68 +0.12 48.42 +055 70.02 40.04
Elastic transform 50.14 54.83 +£0.01  50.00 £0.01  23.32+0.14 43.67 £0.00 63.65 +0.07
Pixelate 75.48 77.44 £0.03  75.31+001 42.26+0.08 67.33 +0.08  83.29 +0.01
JPEG compression 69.17 70.97 4007  69.15+0.01 3494 +007 60.30+0.54  79.35 +0.12
V20-C Average \ 60.59 63.61 60.59 30.03 49.87 71.12

Table 11: Performance comparison of test-time adaptation methods using the ViT-B/32 backbone
with NaCLIP as the OVSS model. Results are reported as mIoU scores on the V20 dataset (original)
and 15 corruption types. MLMP achieves the highest performance across all settings, demonstrating
strong robustness even with a smaller backbone and smaller patch size.

OVSS Backbone: NACLIP \ Adaptation Method

Dataset: V20 \ No Adapt. TENT TPT WATT CLIPAITT MLMP
Original | 7243 72.83 £001  72.52 000 50.71 +0.10  67.67 +0.15  79.95 +o.01
Gaussian noise 47.59 49.30 +0.18  47.43 +000 29.26 +0.09 37.36 +0.17  59.27 +o0.16
Shot noise 51.80 54.43 +021 51.83 +£0.00 31.82 +0.15 41.07 £021  63.73 +0.12
Impulse noise 48.79 51.59 +o.11 4879 +000 30.31 +0.04 37.65 +0.17 58.81 +0.04
Defocus blur 60.23 61.86 £0.07 60.17 £0.00 36.54 +020 48.97 +021 66.70 +0.08
Glass blur 54.59 56.73 +£0.09 54.80 +0.00 28.70 +£0.10 37.96 +026 65.34 +0.03
Motion blur 59.53 60.49 +0.02 59.65 +0.00 35.80 +£0.06 47.61 +052 66.71 +0.08
Zoom blur 38.66 41.07 +0.10  38.62 +0.00 21.72 +0.14 24.39 +0.18  49.53 +0.08
Snow 49.17 51.01 +0.08 48.88 +0.01 27.55 +0.17 40.30 £0.00 62.30 +0.09
Frost 47.60 50.18 +£0.09 47.53 +0.00 28.48 +0.15 39.23 +0.12  60.22 +0.07
Fog 56.25 59.47 £0.08 56.22 +£0.00 35.76 +£0.09 47.63 +029 68.18 +0.04
Brightness 68.03 68.94 +0.04 6795 4000 46.11 002 61.07 £025 76.90 +0.09
Contrast 48.79 50.67 +0.07 48.88 +£0.02 29.54 +006 36.64 +0.05 58.81 +o0.11
Elastic transform 52.73 55.59 +£020 52.75 +£0.00 29.86 +021 44.84 +0.18 65.39 +0.09
Pixelate 68.61 69.15 +0.01  68.65 +0.01 44.57 +0.17 60.30 +0.41  77.28 +0.04
JPEG compression 63.86 65.12 £0.05 63.87 £000 42.85 +0.11  55.44 +0.08 74.40 +0.09
V20-C Average \ 54.42 56.37 54.40 33.26 44.03 64.97
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Table 12: Performance comparison of test-time adaptation methods using the original CLIP [1]]
and SCLIP [27] as the OVSS model with a ViT-B/16 backbone. MLMP consistently improves
performance across all settings, highlighting its strong generalization capabilities.

OVSS: CLIP[1] | Adaptation Method OVSS: SCLIP [27] | Adaptation Method

Dataset: V20 | No Adapt. TENT MLMP Dataset: V20 | No Adapt. TENT MLMP
Original | 3311 51.36 000 61.47 +0.01 Original | 7820 79.12 +005  84.91 +o.01
Gaussian noise 22.74 37.78 +oa11  49.35 +0.02 Gaussian noise 45.65 49.72 +007  61.20 +0.09
Shot noise 23.67 38.86 +020 50.81 +o.05 Shot noise 50.21 54.09 +015  64.06 +0.09
Impulse noise 22.36 36.63 +0.15  47.81 +oa7 Impulse noise 47.05 50.62 005 59.73 +o.14
Defocus blur 31.83 48.33 +013  58.25 +0.04 Defocus blur 66.40 66.44 +005 75.03 +0.07
Glass blur 28.60 46.59 +029 56.02 +0.02 Glass blur 62.01 64.79 +022  72.22 +027
Motion blur 32.62 50.61 +007 59.55 +o31 Motion blur 68.95 70.81 +002  76.23 +0.10
Zoom blur 23.42 39.43 +006 47.65 +o0.10 Zoom blur 45.12 48.50 +o0.11 57.84 +o.16
Snow 28.38 48.05 +0.04 55.89 +0.04 Snow 60.61 64.60 +020 71.70 +0.06
Frost 26.20 45.33 +004 53.56 +o0.17 Frost 56.14 58.43 +003 68.57 +0.02
Fog 28.66 46.98 +005 56.62 +0.02 Fog 68.34 70.03 +017  76.57 +0.06
Brightness 33.71 51.77 024  60.96 +0.08 Brightness 74.03 74.62 +o011 82.91 +0.04
Contrast 26.06 42.86 +008 53.55 +0.04 Contrast 58.98 61.69 +0.08 69.57 +o.10
Elastic transform 27.12 4592 o1 51.02 +o21 Elastic transform 52.29 56.45 002 65.05 +0.14
Pixelate 33.32 S1.11 4000  61.22 +0.09 Pixelate 75.56 76.66 009  82.99 +0.00
JPEG compression 31.64 49.76 +004 59.79 +0.06 JPEG compression 68.38 69.85 +0.12  78.69 +0.17
V21-C Average | 28.02 45.33 54.80 V21-C Average | 59.98 62.49 70.82

G.2 Comparison Across OVSS Methods

Our method is designed to be flexible and agnostic to the underlying open-vocabulary semantic
segmentation (OVSS) formulation. While all main experiments in the paper use NaCLIP as the
OVSS baseline—paired with No Adapt., TENT, TPT, CLIPArTT, WATT, and our MLMP—we further
evaluate the generality of our approach by applying MLMP to two alternative OVSS methods.

Specifically, we consider the original CLIP [1], adapted for pixel-wise segmentation via patch-level
similarity, and SCLIP [27], which incorporates spatial priors into the vision-language matching
process. As shown in Table[I2] applying MLMP on top of these OVSS baselines yields consistent
improvements across both clean and corrupted settings.

G.3 Generalization to Emerging VLMs

To further assess the generality of our approach, we evaluate MLMP on SigLIP v2 [47]], one of
the most recently introduced vision-language models. As shown in Table[I3] MLMP continues to
deliver consistent improvements across both natural and corrupted datasets, indicating that the core
components of our method—multi-level and multi-prompt aggregation—generalize well beyond
CLIP-based architectures.

H Effect of Longer Prompts

Recent studies such as Long-CLIP [48]] and TULIP [49] have explored extending the text length
capability of vision—language models, suggesting that richer linguistic descriptions may improve
alignment. Motivated by this, we investigated whether incorporating longer and more descriptive
prompts could further enhance MLMP’s performance.

To this end, we generated extended templates derived from our original seven class-agnostic prompts
using ChatGPT, together with extended class names where each category was expressed in full natural
language. For example, “a photo of the large {class}” becomes “a photograph of a very large {class},
where the size of the object dominates the frame or is shown in contrast to smaller elements,” while
“aeroplane” becomes “a powered flying vehicle with fixed wings and engines, designed to transport
people or cargo through the air over long distances.”

As summarized in Table[T4] all experiments were conducted using the Long-CLIP [48] backbone.
We evaluate three text variants: (1) the default short templates used throughout our main experiments,
(2) Extended Templates, where each template is replaced with a longer and more descriptive sentence,
and (3) Extended Classes, where category names are expanded into full natural-language descriptions.
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Table 13: Performance comparison of test-time adaptation using SigLIP-2 as the OVSS model.
Results are reported as mIoU scores on the V20 dataset. MLMP shows improvement over the baseline
in most corruption types.

OVSS Backbone: SigLIP-2 \ Adaptation Method

Dataset: V20 | No Adapt. MLMP

Original | 66.62 67.88 +0.32
Gaussian noise 39.74 41.05 +0.34
Shot noise 40.24 43.56 +0.07
Impulse noise 40.76 42.43 +0.22
Defocus blur 47.15 50.41 +0.02
Glass blur 38.64 40.60 +0.55
Motion blur 42.30 42.98 +0.39
Zoom blur 27.29 29.20 +0.03
Snow 3.85 4.84 +0.03
Frost 21.32 23.12 +0.02
Fog 70.73 70.86 +0.04
Brightness 18.45 19.14 +o.27
Contrast 70.88 70.35 +0.06
Elastic transform 38.41 38.71 +0.05
Pixelate 57.85 59.14 +0.07
JPEG compression 56.35 58.55 +o0.04
V20-C Average | 4093 42.33

Table 14: Effect of longer prompts and extended class descriptions on segmentation performance
(mlIoU). All experiments use Long-CLIP as the OVSS model. Each pair of columns shows results
without and with MLMP adaptation.

OVSS: Long-CLIP | Adaptation Setting
Dataset |  Default Templates | Extended Templates | Extended Classes

| No Adapt. +MLMP  No Adapt. +MLMP  No Adapt. +MLMP
V20 39.64 54.45 +0.09 35.55 53.43 +0.06 25.66 43.92 +0.04
V20-C Average 29.36 48.71 26.92 48.90 21.09 39.01
V21 16.83 19.54 +0.02 15.87 19.15 +0.04 11.27 15.25 +0.03
V21-C Average 13.64 18.57 12.98 18.27 10.23 14.66

For each variant, we report results with and without our MLMP adaptation (+ MLMP). All scores
correspond to mloU.

Overall, these results indicate that MLMP’s adaptation mechanism effectively handles both concise
and extended textual inputs without overfitting to prompt verbosity. We include this analysis to
provide a clearer picture of MLMP’s behavior under longer or more descriptive prompts.

I Effect of Adaptation Iterations

The number of adaptation iterations in TTA varies across the literature. While some studies evaluate
performance under a single adaptation step, others perform multiple iterations to improve convergence.
In our main experiments, we followed the common 10-iteration setup adopted in prior TTA works |8}
5,1377]], as it provides a consistent protocol for comparing vision—language adaptation methods such
as CLIPATTT and WATT. For fairness, we used identical hyperparameters across all methods.

To further examine the influence of the iteration count, we also evaluated MLMP under a stricter
one-iteration protocol, where only a single adaptation step is performed. As summarized in Table [I5]
MLMP still improves over the baseline and outperforms TENT even with just one iteration, which
demonstrates the effectiveness of our method even under a stricter setting.
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Table 15: Evaluation of MLMP under a single-iteration TTA protocol compared to standard baselines
(mIoU). All experiments use NACLIP as the OVSS model.

OVSS: NACLIP | Adaptation Method

Dataset | No Adapt. TENT MLMP
V20 7591 76.80 +001  79.88 +0.02
V20-C Average 69.01 70.15 73.91
V21 45.12 45.36 +000 50.24 +o0.01

V21-C Average 40.75 41.02 46.07

Table 16: Comparison of episodic (reset-based) and online adaptation settings for MLMP and TENT
(mIoU). All experiments use NACLIP as the OVSS model.

OVSS: NACLIP | Adaptation Setting

Dataset | No Adapt.  Episodic: TENT  Episodic: MLMP  Online: TENT  Online: MLMP
V20 7591 77.00 +0.04 83.76 +0.00 76.44 +0.21 79.19 +o.4s
V20-C Average 69.01 69.33 77.58 69.32 71.77

J Episodic vs. Online Adaptation

We further investigate the difference between episodic (reset-based) and online adaptation settings
in test-time adaptation (TTA). In our main experiments, all methods—including MLMP and base-
lines—were evaluated under the episodic setup, where the model is reset to its initial weights after
each batch. This protocol avoids cumulative error propagation and is widely used in prior TTA
works [8 137, 15]].

To analyze the impact of continuous updates, we also tested an online version of MLMP, where
model parameters are updated sequentially without resets and carried over to the next batch. We used
identical hyperparameters as in the episodic setting, and further experimented with lower learning
rates and fewer adaptation steps for stability.

As shown in Table [I6] we observe that while the online variant improves over baselines, it still
underperforms compared to the reset-based (episodic) setting. We believe this is primarily due
to error accumulation and model drift, as documented in prior work showing that some recent
classification TTA methods exhibit performance degradation in an online setting—even when the
distribution is static [50]. This issue is particularly pronounced in semantic segmentation, where dense,
spatial predictions make the model more sensitive to incorrect updates, and entropy minimization can
amplify early misclassifications. Over time, this leads the model to drift away from its well-initialized
source parameters, reducing its ability to generalize across the target domain.

Episodic (reset) adaptation avoids the runaway effects of carrying over errors, which is why it tends
to be safer [2]. In contrast, fully online adaptation—though attractive for its potential to continuously
refine the model—must confront these challenges.

We believe that online adaptation in segmentation can be improved through several future directions:
(1) introducing occasional resets or using exponential moving average (EMA) of model weights to
limit drift and reduce accumulated errors; (2) filtering high-entropy samples or gradients, which is
particularly important in segmentation due to its spatial granularity and sensitivity to local noise;
and (3) incorporating an auxiliary self-supervised objective, such as rotation prediction [1], to
provide a more reliable adaptation signal—though this may come with increased computational cost.
Notably, the fact that our method works effectively with very few test samples and does not rely on
accumulating state makes it efficient for real-world applications.

K Visualization of Layer-Wise Confidence Weights

In the main paper (Figure3)), we presented the layer-wise confidence weights for the V20, Cityscapes,
and COCO-Stuff datasets. Here, we extend the analysis by visualizing the weights for four additional
datasets: V21, P59, P60, and COCO-Object in Figure E} As with the earlier results, we plot the mean
and standard deviation of the learned weights across layers under various corruption types.
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Figure 5: Mean and standard deviation of weights of intermediate layers for several datasets.

The observed trends closely mirror those reported in the main paper. In particular, deeper layers
consistently receive higher confidence scores, while lower and mid-level layers still contribute
under corrupted conditions. This reweighting behavior reflects the adaptive nature of our fusion
strategy, which dynamically emphasizes the most reliable representations depending on the dataset
and corruption type. These results further support the robustness and generality of our layer-wise
uncertainty-aware fusion mechanism across diverse segmentation benchmarks.

L. Visualization of Segmentation Maps

Figure [6] presents qualitative segmentation results on the v20 dataset, comparing predictions from
the non-adaptive baseline, TENT, and our MLMP method. MLMP demonstrates stronger spatial
consistency and fewer semantic errors, particularly in challenging regions where both the baseline
and TENT struggle. The integration of intermediate-layer supervision appears especially beneficial
for refining small object boundaries and correcting fine-grained details.

In Figures [/H15| we provide additional qualitative examples across a range of corruption types, using
NaCLIP as the our OVSS backbone. These include both successful and failure cases under Gaussian
noise, defocus blur, snow, and JPEG compression. Overall, the results illustrate the robustness
of MLMP in mitigating noise-induced artifacts and improving prediction confidence, while also
highlighting failure modes that warrant further investigation.
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Ground Truth

No Adaptation

Figure 6: Qualitative results for No Adapt., TENT and MLMP on V20 Original.

Ground Truth No Adaptation

Figure 7: Failed Cases of MLMP on V20 Original.

Ground Truth No Adaptation TENT MLMP

Figure 8: Good Cases of MLMP on V20 for V20 gaussian noise corruption.
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Ground Truth

No Adaptation

Figure 9: Failed Cases of MLMP on V20 gaussian noise corruption.

Ground Truth No Adaptation

Figure 10: Good Cases of MLMP on V20 defocus blur corruption.

Ground Truth No Adaptation

Figure 11: Failed Cases of MLMP on V20 defocus blur corruption.
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Ground Truth No Adaptation

Figure 12: Good Cases of MLMP on V20 snow corruption.
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Image Ground Truth No Adaptation

/_

Figure 14: Good Cases of MLMP on V20 JPEG compression corruption.
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Ground Truth

No Adaptation

Figure 15: Failed Cases of MLMP on V20 JPEG compression corruption.

M Detailed Results of the Main Paper

This section provides complete versions of the experimental results that were summarized or partially
reported in the main paper. It includes full tables for ablation studies and detailed comparisons with
baseline adaptation methods across various datasets and evaluation settings. These results offer a
more comprehensive view of the effectiveness and robustness of our proposed approach.

M.1 Ablation Studies

We provide here the detailed versions of the tables referenced in the ablation section of the main
paper. Table[T7)shows the detailed results of using different layer ranges in the proposed multi-level
adaptation. Table [I8|reports results for different strategies to integrate different prompt templates.
Table [T9] presents a detailed analysis of the impact of the number of templates. Finally, Table 20]
presents results for the combination of all proposed components, showing individual and combined
contributions.

M.2 Comparison with Alternative Adaptation Methods

This section presents comprehensive tables with the full experimental results corresponding to those
summarized in the main paper. Table[21]reports detailed results for the V21 dataset, Table [22] for P59,
Table 23] for P60, and Table 24| for the Cityscapes dataset. In addition to the datasets reported above,
we also include detailed results on the ACDC [45]] dataset, which is specifically designed to capture
real-world adverse conditions such as fog, night, rain, and snow. It is worth mentioning that in ACDC,
approximately half of the adverse-condition images have corresponding reference (clean) views
captured at nearly the same locations. While these reference images are captured at approximately
the same location as the shifted ones, the scene content may differ (e.g., different vehicles or objects
present) due to real-world variability. Following our main protocol, we perform test-time adaptation
independently on both reference and adverse views, and report the mloU for each condition in
Table 23] The results show that MLMP consistently improves over TENT and the non-adapted
baseline across all conditions, confirming its robustness to real, non-synthetic distribution shifts.
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Table 17: mloU performance over different layer aggregation strategies. Maximum value in each row

is highlighted.

. Loy Loz 24 Loz 24 L1924 L1324 L7 24 Li24
VITL/14 Layer Range | 1,5 (lagt two) (last three) (last 25%) (last 50%) (last 75%) (all layers)
Original (V20) \ 77.00 £0.04 77.65 £0.02 77.66 £0.09 80.61 £0.05 80.50 4+0.03 81.67 +0.04 78.79 +0.02
Gaussian noise 63.02 +0.06 64.41 £0.05 65.39 +0.13 66.88 +0.18 66.88 £0.02 67.82 +0.01 63.06 £0.09
Shot noise 65.88 +£0.06 67.74 +0.11 68.43 +0.04 70.114+0.09 70.40 £0.02 70.52 +0.12 64.88 +0.02
Impulse noise 64.17 £0.04 65.53 £0.09 66.19 +0.12 67.24 +0.17 67.1540.09 68.10 +0.01 62.09 +0.05
Defocus blur 72.06 +0.12 72.93 £0.19 72.84 +0.02 76.10+0.16 76.37 £0.05 78.78 +0.02 77.56 £+0.09
Glass blur 70.74 +0.07 71.73 £0.06 72.53 +0.15 74.2040.12 75.53 £0.05 77.66 +0.05 75.85 +0.02
Motion blur 73.50+0.10 73.74 £0.08 74.62+0.09 76.83 +£0.07 77.50 £0.07 79.39 +0.16 77.22 +0.15
Zoom blur 61.36 +0.07 62.10 £0.01 62.56 40.00 63.99 +0.20 64.59 +0.14 66.50 +-0.16 64.79 +0.01
Snow 71.04 +£0.05 72.09 £0.04 72.56 +0.02 74.47 +0.12 74.41 £0.01 76.39 +0.02 73.72 +0.07
Frost 67.01 +0.02 66.92 +£0.02 67.23 +0.04 68.944+0.01 70.03 £0.01 71.17 +£0.00 68.23 £0.02
Fog 70.54 +£0.07 71.44 £0.07 71.5040.05 74.50+0.16 74.62 +0.08 76.55 +0.06 74.37 +0.03
Brightness 75.61 £0.02 76.27 £0.00 76.80 40.04 79.16 +£0.07 79.64 +0.16 81.34 +-0.04 79.11 £0.05
Contrast 70.51 +£0.04 71.72 +0.13 72.17 £0.00 74.58 £0.08 75.42 +0.09 76.87 +0.06 74.09 £+0.00
Elastic transform 65.78 40.05 66.08 £0.08 66.06 +0.06 68.62 40.15 70.38 £0.09 70.59 +0.14 67.91 +0.12
Pixelate 76.954+0.12 78.38 £0.02 78.46 +0.05 80.704+0.05 81.11 +0.03 83.02 +0.04 81.53 +0.02
JPEG compression 71.84 +0.15 73.88 £0.11 74.40 40.07 76.96 +£0.02 77.67 +-0.03 78.73 +-0.08 75.87 £0.19
V20-C Average \ 69.33 70.33 70.78 72.89 73.45 74.90 72.02

Table 18: mIoU performance comparison for different strategies to integrate different prompt tem-

plates.

Dataset: V20 ‘ Text Params Loss

Original \ 78.91 £0.07 74.46 +021 79.70 +0.06
Gaussian noise 66.27 £0.00 62.83 £0.04 66.75 £0.01
Shot noise 69.78 +£0.10 67.10 £0.12 70.03 +0.04
Impulse noise 66.73 £0.03 64.57 £0.52 67.88 £0.07
Defocus blur 74.05 +0.10 70.28 £0.16 74.31 +0.09
Glass blur 73.31+0.08 70.28 £0.34 74.38 +0.36
Motion blur 75.2040.09 71.56 £0.09 75.72 +0.04
Zoom blur 63.31 +0.11 61.294+0.09 64.61 +0.01
Snow 73.78 £0.02 70.10 £0.30 74.66 +0.01
Frost 68.90 +0.06 66.42 +0.04 69.50 +0.01
Fog 72.60 £0.03 67.63 £0.07 73.33 +0.03
Brightness 78.16 £0.02 74.05 +£0.03 78.69 +0.02
Contrast 73.7540.06 69.47 +£0.24 74.09 +0.01
Elastic transform | 68.41 £0.02 64.98 £0.09 69.14 +0.05
Pixelate 79.59 +0.06 75.54 £0.05 80.09 +0.03
JPEG compression | 74.98 +£0.05 70.55 4+-0.11 75.56 £0.02
V20-C Average \ 71.92 68.44 72.58
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Table 19: IoU performance of our method for different numbers of templates.

Dataset: V20 | 1 Template 3 Templates 7 Templates 20 Templates 80 Templates
Original \ 77.00 £0.04 79.48 £0.08 79.70 £0.06 79.17 £0.01  79.2540.02
Gaussian noise 63.024+0.06 66.51+£0.10 66.75+0.01 65.9440.09 66.02 +£0.02
Shot noise 65.88 +0.06 70.20 £0.03 70.03 £0.04 68.59 40.01 69.00 +0.01
Impulse noise 64.17 £0.04 67.57 £001 67.88+0.07 66.53+0.06 66.91 £0.02
Defocus blur 72.06 +0.12 74.66 +0.02 74.31 £0.09 73.89+0.12  74.09 £0.06
Glass blur 70.74 +0.07 74.38 +0.12 74.38 £0.36 73.78 £0.09  73.88 +£0.07
Motion blur 73.504+0.10 75.8040.08 75.72+004 75.1940.04  75.19 £0.04
Zoom blur 61.36 +£0.07 63.47 £0.02 64.61 +0.01 63.50+0.03  63.84 +0.04
Snow 71.04 +0.05 74.09+0.08 74.66 +0.01 73.78 £0.03  73.91 +o0.01
Frost 67.01 £0.02 69.09 £0.01 69.50 £0.01  69.08 £0.00  69.10 £0.02
Fog 70.54 £0.07 73.69 +0.01 73.33 +0.03 72.8740.03  72.86 +0.05
Brightness 75.614£0.02 78.49 £0.05 78.69 +0.02 77.86+002  78.06 £0.02
Contrast 70.51 +0.04 74.01 022 74.09 +0.01 73.48 £0.04  73.56 £0.09
Elastic transform | 65.78 £0.05 68.09 £0.01 69.14 £0.05 67.94 +0.02  68.31 £0.09
Pixelate 76.954+0.12 7991 4+0.04 80.09 £0.03 79.1540.06  79.41 £0.05
JPEG compression | 71.84 +0.15  75.00 £0.05  75.56 +0.02  74.45+£0.09  74.75 +0.01
V20-C Average \ 69.33 72.33 72.58 71.74 71.93

Table 20: Detailed mIoU comparison of MLMP components, showing individual and combined
contributions.

Multi-Level Fusion X 4 4 X X 4 4 v 4 X v v
Multi-Prompt Loss X X X 4 X 4 v X X v v v
Image-Level Entropy X x X X v X X v v v v v
Uncertainty-Aware Weight. X x v X x X v X v X X v
Original 77.00 £0.04  77.38£001 81.67 £0.04 79.70 £006 78.74+008 78.97+0.03 83.00+£0.03 77.69+001 82.70+001 81.15+002 79.13+000 83.76+0.00
Gaussian noise 63.024006 65424004 67.824001 66.75+001 65.66+004 65964004 69.13+£007 66.17 4004 69.00+005 69.624+0.01 67.3540.09 71.13+£0.09
Shot noise 65.884006 67.49+001 70.52+0.12  70.034£004 68.97 4003 69.05+003 72.31+001 69.50+006 73.22+003 72.894002 71.024005 75.02+0.03
Impulse noise 64.17 £0.04  65.11£017 68.10 001 67.88+£007 66.35+0.12 6539012 68.86+£0.13 65.16+0.10 68.77£0.15 70.31£0.09 67.17+009 7134011
Defocus blur 72.06 4012 76.65+023 78.78+0.02 74314009 75004007 76.46+015 78.78+0.10 77.294010 79.78+005 77.144005 77.7940.19 80.36 +0.06
Glass blur 70.74 4007 75244005 77.66+005 74.38+036 73.54+023 75464009 77484001 75714010 78.09+004 76.17+008 76.87 4007 78.84+0.05
Motion blur 73.5040.10 77.16 4013  79.39+0.16  75.724004 76.09+009 77724009 79.97 4004 78.81 4003 81.49+002 78.254005 79.00+0.07 81.41+0.05
Zoom blur 61.36 4007 64.2240.12  66.50+0.16  64.61 £0.01 64.04£002 6638 £0.15 68.41 £0.13 65124016 67.69 008 68.3240.17 67.61 £0.05 69.41 +0.12
Snow 71.044005  72.64 4007 76.39 4002 74.66+001 74164002 73254012 77.31+011 74.05+008 78.50+0.16 77.204002 74.94 4006 79.53 £0.05
Frost 67.01 £0.02  67.3040.03 71.17 4000 69.50 £0.01  69.31+£000 67.57+0.19 71734021 68.31+0.12 72.81+008 71.344002 68.69+0.11 73.20 £0.07
Fog 70.54 £0.07 7273 £003 76.55+006 73.33+003 73414000 75.06+008 78.38+003 73.4840.13 77.62+005 75.98:+002 75.81+002 79.81+0.06
Brightness 75.61 4002 7723007 81.34+004 78.69+002 77.34+001 77.69+002 82.00+003 77.204+005 82.16+003 80.63+005 78.27+006 83.51+0.01
Contrast 70.51 4004 73.36 4008 76.87 +0.06 74.09 £001 74.14+0.14 7357 +£005 77.42+4009 74.09+0.11 78.09+008 76.97 +0.01 74754006 79.06 +0.16
Elastic transform 65.78 4005 65384012 70.59 £0.14  69.14 £0.05 67.92+006 68.76 £004 72964002 66.78+£003 71.80+002 71.534+003 69.77 4007 74.03 +0.01
Pixelate 76.95+0.12  79.53 4003 83.02+004 80.09+003 79.09+003 80.77+£005 83.93+006 79.85+008 83.90+000 81.92+0.12 81.34+007 84.97 +0.04
JPEG compression 71.84 +0.15 74.38+0.12 7873008 7556002 74.77+0.11 76.77+000 80.81+£009 74.614+006 79.79+002 77.98+002 77.94+007 82.06-+0.01
V20-C Average ‘ 69.33 71.59 74.90 72.58 71.99 72.66 75.97 72.41 76.18 75.08 73.89 77.58

Table 21: mloU comparison of MLMP and baseline methods on the V21 dataset, evaluated on both
the original images and 15 corruption types.

OVSS Backbone: NACLIP \ Adaptation Method

Dataset: V21 \ No Adapt. TENT TPT WATT CLIPAITT MLMP
Original 45.12 45.65 +£0.02  45.17 000 28.58+0.05 39.50+0.04 50.78 +0.02
Gaussian noise 37.40 37.95+000 37.34+000 20.93+0.07 30.05+0.18 43.59 +0.01
Shot noise 39.33 39.17 £0.03  39.23 £0.00 22.06 +£0.06 32.07 £0.17  45.55 +0.02
Impulse noise 37.81 37.73 4004 37.78+£000 19.95+005 30.52+008 43.89 +0.01
Defocus blur 41.46 41464003 41.46+0.00 24.79+0.04 34274005 46.00 +0.00
Glass blur 41.76 41.55 4001 41.824000 24.614+003 34.55+0.16 46.83 +0.04
Motion blur 42.65 42.81 +£001  42.74 4000 25.66 +0.04 36.07 +0.11  47.72 +0.04
Zoom blur 34.46 34254000 34.444000 20.74+005 28.44+0.07 39.07 +0.02
Snow 40.13 40.47 £000 40.23 £0.01  25.02 £0.06 33.98 4003  46.30 +0.05
Frost 40.70 41.83 +£0.08 40.80 +£000 23.43 4005 34.09+001 46.78 +0.01
Fog 42.50 42.67 £000 42.474+000 24954005 36.37+£0.04 47.61 +0.06
Brightness 44.21 44.64 4003 44.274000 27.544007 38.44+0.11 49.89 +0.08
Contrast 40.44 40.14 £003  40.44 £0.00 23.89+£0.04 33.68 £0.05 45.22 +0.00
Elastic transform 40.63 41.78 £001  40.67 £0.00 24.40 £0.05 35.384+001 46.87 +0.02
Pixelate 44.70 44954003 44.79 +£000 27.74 4006 38.14 +006 50.11 +0.01
JPEG compression 43.05 42874004 43.05+0.00 26.04 £0.05 36.2940.10 48.27 +0.02
V21-C Average \ 40.75 40.95 40.77 24.12 34.16 46.25
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Table 22: mloU comparison of MLMP and baseline methods on the P59 dataset, evaluated on both
the original images and 15 corruption types.

OVSS Backbone: NACLIP \ Adaptation Method

Dataset: P59 \ No Adapt. TENT TPT WATT CLIPAITT MLMP
Original \ 28.23 28.73 £0.02 2826 +0.01 16.55+0.05 24.60 +0.00 31.95 +0.02
Gaussian noise 21.53 21.49 +0.01  21.59+001 11.27+£0.04 16424003 24.84 +0.00
Shot noise 22.35 22.31+0.01 22264000 11.80+0.04 17.47 £0.00 25.62 +0.01
Impulse noise 21.74 21.59 +0.01  21.72+000 11.244003 17.17 +0.00 24.75 +0.01
Defocus blur 25.42 25.14 £0.00 25.41+000 14.31+0.04 20.71 +£0.00 27.95 +0.03
Glass blur 25.03 2470 £0.01  25.01 £000 13.93 +£0.03 20.63 £0.00  27.66 +0.05
Motion blur 26.11 26.00 £0.02  26.13 +£0.01 15.13+0.03 21.72+000 29.12 +0.03
Zoom blur 19.20 19.49 £003  19.204+000 10.86+0.03 15.39+000 21.98 40.02
Snow 22.45 22.29 +0.02 22454000 13.60+0.04 19.17 £0.01  25.47 40.01
Frost 21.95 21.94 +000 21.97 +000 12.83+0.03 18.77 £0.04 24.52 +0.01
Fog 24.85 24914003 24.86+000 13.85+005 20.66+0.00 27.84 +0.01
Brightness 27.39 27.80 4001 27424000 15554004 23.564+000 30.63 +0.01
Contrast 23.55 23.58 £0.01  23.544000 13.38 £0.05 19.12+£0.00 26.95 40.00
Elastic transform 23.30 23.86 +0.02 23.30+001 12.88+0.04 20.28 £0.00 27.16 +0.01
Pixelate 27.61 27.55 +001 27.62+000 15.84+0.05 23.47+000 31.23 +0.01
JPEG compression 25.75 25.51 +0.05 25.754000 14.094003 21.20+000 29.66 40.02
P59-C Average \ 23.88 23.88 23.88 13.37 19.72 27.03

Table 23: mloU comparison of MLMP and baseline methods on the P60 dataset, evaluated on both
the original images and 15 corruption types.

OVSS Backbone: NACLIP | Adaptation Method

Dataset: P60 \ No Adapt. TENT TPT WATT CLIPAITT MLMP
Original \ 24.95 25.29 2498 001  14.77 £0.04 21.88 £0.01  27.99 +0.03
Gaussian noise 19.31 19.17 001 19.34 4001  10.29+0.03 14.91 £0.01  22.22 40.02
Shot noise 19.98 19.83 +0.02 19914001 10.82+0.03 15.824001 22.81 +0.01
Impulse noise 19.56 19.27 £0.01  19.54 £0.00 10.3440.03 15.58 £0.00  22.26 £0.01
Defocus blur 22.74 2238 £0.01 22724001 1279 +0.04 18.67 £0.00 24.92 +0.01
Glass blur 22.49 22.05+0.01 22484001 12.64+0.03 18.61 £0.00 24.71 40.05
Motion blur 23.28 23.01 £0.03  23.304001 13.53+0.03 19.51 £0.01  25.71 40.03
Zoom blur 17.42 17.58 £0.03  17.42+000  9.95+0.03 14.07 £0.01  19.70 +0.02
Snow 20.06 19.80 £0.01  20.06 £0.01  12.29 +0.04 17.20+0.02  22.64 £0.02
Frost 19.71 19.61 001 19.73 £0.01  11.59+0.03 17.02+0.04  22.02 +0.01
Fog 22.20 22.09 +0.02  22.20+001 12.50+0.03 18.53 +0.01  24.89 +0.00
Brightness 24.35 24.56 +0.01 2437 001 13.87+£004 21.054001  27.02 £0.00
Contrast 21.09 21.00 £0.03  21.08 £0.01  12.04 +£0.03 17.24 +0.01  24.17 £0.02
Elastic transform 21.17 21.46 +0.01  21.19+001 11.70+0.04 18.53 £0.01  24.27 £0.02
Pixelate 24.52 24.33 +0.01 24.544001 14.17 +004 21.01 £0.01  27.48 4+0.00
JPEG compression 22.99 22.65+0.02  24.54+001 12.654003 19.05+001  26.24 +£0.01
P60-C Average | 21.39 21.25 21.49 12.08 17.79 24.07
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Table 24: mIoU comparison of MLMP and baseline methods on the CityScapes dataset, evaluated on
both the original images and 15 corruption types.

OVSS Backbone: NACLIP | Adaptation Method

Dataset: CityScapes | No Adapt. TENT TPT WATT MLMP
Original | 29.49 30.54 4004 29.57+0.01 20.77 +£0.02  33.35+0.03
Gaussian noise 16.14 15.00+0.02  15.94+0.01 10.1940.01  15.3240.00
Shot noise 20.18 19.38 +0.01  20.1540.01 12.4140.02 20.57 +0.04
Impulse noise 16.37 14.59 4002 16354001 8564002  15.76 4+0.05
Defocus blur 23.34 23.504+0.02 23.46+001 15.63+0.02 24.86 +0.08
Glass blur 24.41 24.04 £004 24.29+000 15.44 +0.01  25.70 +0.02
Motion blur 24.73 2498 +0.00 24.91 +0.01 14.21 £0.03  26.02 +0.01
Zoom blur 14.08 14.57 +0.06  14.08 4-0.01 5.85 40.02 14.04 +0.04
Snow 19.88 20.14 £0.01  19.90 +0.01 9.27 £0.03  22.23 +0.03
Frost 16.78 16.47 £0.02  16.78 +0.01  10.69 +0.01  17.12 +0.07
Fog 22.47 22.87+005 22.254001 14.244001 23.98 +0.03
Brightness 28.45 29.30 £0.01  28.47 4001 1999 +0.02  31.88 +0.04
Contrast 16.10 16.3540.03 16.07 001 11.0540.01 17.04 10.00
Elastic transform 29.14 30.16 £0.02  29.024+0.01  19.99 +0.03  32.86 +0.00
Pixelate 28.67 29.59 +0.01  28.69 +0.01 18.30+0.01  32.72 +0.04
JPEG compression 23.69 23.62+0.01 23.67+0.01 1598 4+0.02 25.26 +£0.03
CityScapes-C Average | 21.63 21.64 21.60 13.45 23.02

Table 25: Detailed ACDC mloU (reference vs. adverse views). All experiments use NACLIP as the
OVSS model. MLMP consistently improves over TENT and the non-adapted baseline across all
weather conditions.

OVSS: NACLIP | Adaptation Method
Condition | No Adapt. TENT MLMP
Fog (ref) 24.80 26.52 +0.03  31.28 +0.03
Fog 23.88 26.89 £0.04  33.33 +0.04
Night (ref) 24.95 26.54 +£0.04 28.81+0.10
Night 22.12 24.17 +0.00  24.76 +0.03
Rain (ref) 24.79 26.62 +£0.00 31.10 +0.03
Rain 23.86 26.84 +0.04  32.44 +0.04
Snow (ref) 22.10 24.27 £0.04  28.22 +0.02
Snow 23.54 27.25+0.05  30.59 +0.03
Average (all ref) 24.16 25.99 29.85
Average (all domains) 23.35 26.29 30.28
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