
Under review for RLC 2025, to be published in RLJ
∣∣ Cover Page

Your Learned Constraint is Secretly a Backward
Reachable Tube

Anonymous authors
Paper under double-blind review

Keywords: Constraint Inference, Learning from Demonstration, Safe Control

Summary
Inverse Constraint Learning (ICL) is the problem of inferring constraints from safe (i.e.,

constraint-satisfying) demonstrations. The hope is that these inferred constraints can then be
used downstream to search for safe policies for new tasks and, potentially, under different dy-
namics. Our paper explores the question of what mathematical entity ICL recovers. Somewhat
surprisingly, we show that both in theory and in practice, ICL recovers the set of states where
failure is inevitable, rather than the set of states where failure has already happened. In the
language of safe control, this means we recover a backwards reachable tube (BRT) rather than
a failure set. In contrast to the failure set, the BRT depends on the dynamics of the data col-
lection system. We discuss the implications of the dynamics-conditionedness of the recovered
constraint on both the sample-efficiency of policy search and the transferability of learned con-
straints. Code is available in our anonymized repository.

Contribution(s)
1. This paper establishes a connection between Inverse Constraint Learning and Hamilton-

Jacobi (HJ) Reachability from safe control theory, providing a new theoretical perspective
on learning constraints from demonstrations.
Context: None

2. We prove theoretically and verify experimentally that the mathematical set encoded by the
learned constraint is a dynamics-dependent Backward Reachable Tube (BRT) and not the
dynamics independent Failure Set.
Context: Prior works implicitly assume that the constraint learned via ICL is dynamics
independent. In this paper we show that the constraint will actually depend on the dynamics
of the expert demonstrators.

3. We discuss the implication of this observation in terms of the sample-efficiency of policy
search and transferability of the learned constraint.
Context: None

https://anonymous.4open.science/r/ICL-BRT-0E78

Your Learned Constraint is Secretly a Backward Reachable Tube

Your Learned Constraint is Secretly a Backward
Reachable Tube

Anonymous authors
Paper under double-blind review

Abstract

Inverse Constraint Learning (ICL) is the problem of inferring constraints from safe1
(i.e., constraint-satisfying) demonstrations. The hope is that these inferred constraints2
can then be used downstream to search for safe policies for new tasks and, potentially,3
under different dynamics. Our paper explores the question of what mathematical entity4
ICL recovers. Somewhat surprisingly, we show that both in theory and in practice, ICL5
recovers the set of states where failure is inevitable, rather than the set of states where6
failure has already happened. In the language of safe control, this means we recover7
a backwards reachable tube (BRT) rather than a failure set. In contrast to the failure8
set, the BRT depends on the dynamics of the data collection system. We discuss the9
implications of the dynamics-conditionedness of the recovered constraint on both the10
sample-efficiency of policy search and the transferability of learned constraints. Code11
is available in our anonymized repository.12

1 Introduction13

Constraints are fundamental for safe robot decision-making (Stooke et al., 2020; Qadri et al., 2022;14
Howell et al., 2022). However, manually specifying safety constraints can be challenging for com-15
plex problems, paralleling the reward design problem in reinforcement learning (Hadfield-Menell16
et al., 2017). For example, consider the example of an off-road vehicle that needs to traverse un-17
known terrains. Successful completion of this task requires satisfying constraints such as “avoid18
terrains that, when traversed, will cause the vehicle to flip over” which can be difficult to spec-19
ify precisely via a hand-designed function. Hence, there has been a growing interest in applying20
techniques analogous to Inverse Reinforcement Learning (IRL) — where the goal is to learn hard-21
to-specify reward functions — to learning constraints (Liu et al., 2024). This is called Inverse Con-22
straint Learning (ICL): given safe expert robot trajectories and a nominal reward function, we aim23
to extract the implicit constraints that the expert demonstrator is satisfying. Intuitively, these con-24
straints forbid highly rewarding behavior that the expert nevertheless chose not to take (Kim et al.,25
2023). However, as we now explore, the question of what object we’re actually inferring in ICL has26
a nuanced answer that has several implications for downstream usage of the inferred constraint.27

Consider Fig. 1a , in which an expert (e.g., a human driver) drives a car through a forest from a start-28
ing position to an end goal, without colliding with any trees. Assume that the expert has an internal29
representation of the true constraint, c⋆, which they use during their planning process to generate30
demonstrations (Fig. 1b). Here, c⋆ encodes the location of the trees or, equivalently, the failure set:31
the set of states which encode having already failed the task. Given expert demonstrations that sat-32
isfy c⋆, we can run an ICL algorithm to obtain an inferred constraint, ĉ. Our key question is whether33
the learner actually recovers the constraint the expert used (i.e. is ĉ = c⋆?). In other words, does ĉ34
encode the true failure set (e.g., where the trees are)? As we prove below, the answer to this question35
is, surprisingly enough, often “no."36

1

https://anonymous.4open.science/r/ICL-BRT-0E78

Under review for RLC 2025, to be published in RLJ 2025

Expert’s Problem
Representation

Expert’s Safe
Demonstrations

Inverse Constraint
Learning (ICL)

ሶ𝑠 = 𝑓(𝑠, 𝑎, 𝑑, 𝑡)

𝑟1

𝑟2

𝑟3

𝑟𝑘=4
𝒟

(a) (b) (c)

Figure 1: In this work we show theoretically and empirically that inverse constraint learning (ICL)
recovers a backwards reachable tube rather than the true failure set as commonly assumed in the
literature. (a) ICL models the expert demonstrator as optimizing reward functions (potentially for
different tasks) while satisfying a shared true constraint c⋆ (e.g. don’t hit a tree) with an associated
unsafe set C⋆. (b) ICL takes as input expert demonstrations and the reward functions r1 . . . rK and
aims to recover the shared true constraint c⋆. (c) ICL infers a constraint ĉ and it’s associated unsafe
set Ĉ, from the demonstrations. However, we show that ĉ encodes a different object than the true
failure set. In particular, ĉ encodes the the backward reachable tube of the true failure set under
system dynamics f(x, a, d, t): the set of states from which violating c⋆ is inevitable (e.g. positions
/ velocities for which we can’t avoid crashing).

This motivates the key question of our work:37

When learning constraints from demonstrations,38
what mathematical entity are we actually learning?39

We show theoretically and empirically that, rather than inferring the set of states where the robot40
has already failed at the task, ICL instead infers where, under the expert’s dynamics, failure is41
inevitable. For example, rather than inferring the location of the tree, ICL would infer the larger42
set of states for which the expert will find that avoiding the tree is impossible (illustrated in Fig.43
1c). More formally, we prove that ICL is actually approximating a dynamics-conditioned backward44
reachable tube (BRT), rather than the the dynamics-independent failure set. The observation that we45
are recovering dynamics-conditioned BRTs rather than failure sets has two important implications.46
On one hand, it means that we can add ICL algorithms to the set of computational tools available to47
us for computing BRTs, given a dataset of safe demonstrations. On the other hand, it means that one48
cannot hope to easily transfer the constraints learned via ICL between different dynamics naively.49

We begin by exploring the relationship between ICL and BRTs before discussing implications.50

2 Problem Setup51

Dynamical System Model. We consider continuous-time dynamical systems described by the or-52
dinary differential equation ṡ = f(s, a, d, t), where t is time, s ∈ S is the state, a ∈ A is the control53
input, and d ∈ D is the disturbance that accounts for unmodeled dynamics (e.g., wind or friction).54

Environment and Task Definition. A task k is defined as a specific objective that our robot needs55
to complete. For example, in Fig. 1, a mobile robot might be tasked with reaching a specific target56
pose from a starting position while avoiding environmental obstacles. In this work, we assume this57
task objective to be implicitly defined using a reward function rk : S × A → R. Let K be a set of58
tasks {k} with a shared implicit constraint c⋆ which can be a function of the state and action or of59
the state only—in other words, c⋆ : S × A → R or c⋆ : S → R. While the task-specific reward rk60
assigns a high reward when the robot successfully completes the objective, the constraint c⋆ assigns61
a high cost to state-action pairs (or states) that violate the true shared constraints. In other words,62
c⋆ = ∞ if a state-action pair (or state) is unsafe and c⋆ = −∞ otherwise. For example, in Fig. 1a,63

2

Your Learned Constraint is Secretly a Backward Reachable Tube

the set C⋆ = {s ∈ S | 1[c⋆(s) = ∞]} represents the true location of the obstacle (i.e., the tree).64
Furthermore, let’s define ĉ : S × A → R or ĉ : S → R as the constraint learned through ICL.65
Similarly, ĉ = ∞ if a state-action pair (or state) is deemed unsafe by the algorithm and ĉ = −∞66
otherwise. For example, in Fig. 1c, Ĉ = {s ∈ S | 1[ĉ(s) = ∞]} represents the inferred set of67
unsafe states calculated by ICL.68

Safe Demonstration Data from an Expert. In the ICL setting, an expert provides our algorithm69
with safe demonstrations from K different tasks, each satisfying a shared constraint. Take, for70
instance, a mobile robot operating in a single environment as shown Fig. 1. Each task k might71
involve navigating according to a different set of start and end poses while still avoiding the same72
static environmental obstacles C⋆, which, here, refers to the location of the tree. For each task k,73
we assume access to expert demonstrations, i.e., trajectories ξ = {(s, a)} that are sampled from an74
expert policy πE

k ∈ Π. All such trajectories are assumed to maximize reward rk while satisfying the75
constraint c⋆(s, a) < ∞ (or c⋆(s) < ∞).76

77

3 Background on Inverse Constraint Learning and Safe Control78

3.1 Prior Work on Inverse Constraint Learning79

One can think of inverse constraint learning (ICL) as analogous to inverse reinforcement learn-80
ing (IRL). In IRL, one attempts to learn a reward function that explains the expert agent’s behavior81
Ziebart et al. (2008a;b); Ho & Ermon (2016); Swamy et al. (2021; 2022; 2023); Sapora et al. (2024);82
Ren et al. (2024); Wu et al. (2024). Similarly, in ICL, one attempts to learn the constraints that an83
expert agent implicitly satisfies. The main differentiating factors between prior ICL works come84
from how the problem is formulated (e.g., tabular vs. continuous states), assumptions on the dy-85
namical system (e.g., stochastic or deterministic), and solution algorithms (Liu et al., 2024). Liu86
et al. (2024) also note that a wide variety of ICL algorithms can be viewed as solving the underlying87
game multi-task ICL game (MT-ICL) formalized by Kim et al. (2023), which we therefore adopt in88
for our theoretical analysis. Kim et al. (2023)’s formulation of ICL readily scales to modern deep89
learning architectures with provable policy performance and safety guarantees, broadening the prac-90
tical relevance of our theoretical findings. We note that our primary focus is not the development of91
a new algorithm to solve the ICL problem, but on what these methods actually recover.92

We now briefly discuss a few notable other prior ICL works. Chou et al. (2020) formulate ICL as93
an inverse feasibility problem where the state space is discretized and a safe/unsafe label is assigned94
to each cell in attempt to recover a constraint that is uniformly correct (which can be impractical95
for settings with high-dimensional state spaces). Scobee & Sastry (2019) adapt the Maximum En-96
tropy IRL (MaxEnt) framework by selecting the constraints which maximize the likelihood of expert97
demonstrations. This approach was later extended to stochastic models by McPherson et al. (2021)98
and to continuous dynamics by Stocking et al. (2022). Lindner et al. (2024) define a constraint99
set through convex combinations of feature expectations from safe demonstrations, each originating100
from different tasks. This set is utilized to compute a safe policy for a new task by enforcing the101
policy to lie in the convex hull of the demonstrations. Hugessen et al. (2024) note that, for certain102
classes of constraint functions, single-task ICL simplifies to IRL, enabling simpler implementation.103

3.2 A Game-Theoretic Formulation of Multi-Task Inverse Constraint Learning104

Kim et al. (2023)’s MT-ICL formulates the constraint inference problem as a zero-sum game be-105
tween a policy player and a constraint player and is based on the observation that we want to recover106
constraints that forbid highly rewarding behavior that the expert could have taken but chose not to.107
Equivalently, the technique can be viewed as solving the following bilevel optimization objective108
(Liu et al., 2024; Qadri et al., 2024; Qadri & Kaess; Huang et al., 2023), where, given a current esti-109
mate of the constraint at iteration n, we train a new constraint-satisfying learner policy for each task110
k. Given these policies, a new constraint is inferred (outer objective) by picking the constraint ĉ ∈ C111

3

Under review for RLC 2025, to be published in RLJ 2025

that maximally penalizes the set of learner policies relative to the set of expert policies, on average112
over tasks. This process is then repeated at iteration n+1 – we refer interested readers to Kim et al.113
(2023) for the precise conditions under which convergence rates can be proved. More formally, let114
n be the current number of outer iterations performed and πk,n ∈ Π be the learner policy associated115
with task k at outer iteration step n. Then, we have:116

Outer Objective: ĉ = argmax
c∈C

1

K
Ei∼[n]

[
K∑

k=1

J(π⋆
k,i, c)− J(πE

k , c)

]
(1)

Inner Objective: π⋆
k,n = min

πk∈Π
J(πk, rk)

s.t. J(πk, ĉ) ≤ δ ∀ k ∈ [K],

where δ ≥ 0 is the constraint satisfaction threshold and J(π, f) = E(s,a)∼π[f(s, a)], i.e., the value117
of policy π under some reward/cost function f ∈ {rk, c} with (s, a) being the state-action pair. We118
assume all reward and cost functions have bounded outputs throughout this paper. The inner loop119
can be solved using a standard constrained RL algorithm, while the outer loop can be solved via120
training a classifier to maximally discriminate between the state-action pairs visited by the learner121
policies computed in the inner loop versus the states-action pairs in the demonstrations.122

3.3 A Brief Overview of Safety-Critical Control123

Safety-critical control (SCC) provides us with a mathematic framework for reasoning about failure124
in sequential problems. Most critically for our purposes, SCC differentiates between a failure set125
(the set of states for which failure has already happened) and a backward reachable tube (BRT) (the126
set of states for which failure is inevitable as we have made a mistake we cannot recover from).127
Connecting back to ICL, observe that the safe expert demonstrations can never pass through their128
BRT, as it is impossible to avoid violating the true constraint under their own dynamics. Formally129
understanding BRTs will help us precisely understand why the constraint we infer with ICL does not130
generally equal the true constraint c⋆. In particular, we will show in Section 4 that in the best-case,131
ĉ approximates the BRT rather than the true failure set. We now provide an overview of BRTs.132

Backward Reachable Tube (BRT). In safe control, the set defined by the true constraint c∗ and133
denoted by C⋆ = {s ∈ S | 1[c⋆(s) = ∞]} is generally referred to as the failure set and is often134
denoted by F in the literature. If we know the failure set a priori, F ⊂ S , we can characterize135
and solve for the safe set, Ssafe ⊆ S: a subset of states from which if the robot starts, there exists a136
control action u it can take that guarantees it can avoid states in F despite a worst-case disturbance137
d. Let the maximal safe set and the corresponding minimal unsafe set be:138

Ssafe := {s0 ∈ S | ∃πa;∀πd | ∀t ≥ 0, ξπa,πd
s0 (t) /∈ F} (2)

Sunsafe := (Ssafe)c = BRT(F) (3)

where S is the state space, πa and πd are respectively the control and disturbance policies, ξπa,πd
s0139

is the system trajectory starting from state s0 and following πa, πd, and “(·)c" indicates that the set140
complement of Ssafe is the unsafe set Sunsafe ⊆ S . In the safe control community, the unsafe set141
is often called the Backward Reachable Tube (BRT) of the failure set (i.e., the true constraint) F142
(Mitchell et al., 2005). In general, obtaining the BRT is computationally challenging but has been143
studied extensively by the control barrier functions (CBFs) (Ames et al., 2019; Xiao & Belta, 2021)144
and Hamilton-Jacobi (HJ) reachability (Mitchell et al., 2005; Margellos & Lygeros, 2011) communi-145
ties. We ground this work in the language of HJ reachability for a few reasons. First, HJ reachability146
is guaranteed to return the minimal unsafe set – when studying the best constraint that ICL could147
ever recover, the BRT obtained via HJ reachability gives us the tightest reference point. Second, HJ148
reachability is connected to a suite of numerical tools for computationally constructing the unsafe149
set given the true failure set and is compatible with arbitrary nonlinear systems, nonconvex failure150
sets F , and also incorporate robustness to exogenous disturbances.151

4

Your Learned Constraint is Secretly a Backward Reachable Tube

Hamilton-Jacobi (HJ) Reachability computes the unsafe set from Eq. 3 by posing a robust op-152
timal control problem. Specifically, we want to determine the closest our dynamical system153
ṡ = f(s, a, d, t) could get to F over some time horizon t ∈ [0, T] (where T can approach ∞)154
assuming the control expert tries their hardest to avoid the constraint and the disturbance tries to155
reach the constraint. This can be expressed as a zero-sum differential game between the control a156
and disturbance d, in which the control tries to steer the system away from failure region while the157
disturbance attempts to push it towards the unsafe states. Solving this game is equivalent to solv-158
ing the Hamilton-Jacobi-Isaacs Variational Inequality (HJI-VI) (Margellos & Lygeros, 2011; Fisac159
et al., 2015):160

min
{
h(s)− V (s, t), ∇tV (s, t) + max

a∈A
min
d∈D

∇sV (s, t) · f(s, a, d, t)
}
= 0 (4)

V (s, 0) = h(s), t ≤ 0

where h(s) encodes the failure set F = {s | h(s) ≤ 0}, and ∇tV (s, t),∇sV (s, t) are respectively,161
the gradients with respect to time and state. The HJI-VI in (4) can be solved via dynamic program-162
ming and high-fidelity grid-based PDE solvers (Mitchell, 2004) or function approximation (Bansal163
& Tomlin, 2021; Hsu et al., 2023). As t → −∞, the value function no longer changes in time and164
we obtain V ⋆(s) which represents the infinite time control-invariant BRT, which can be extracted165
via the sub-zero level set of the value function:166

BRT(F) := Sunsafe = {s ∈ S : V ⋆(s) < 0}. (5)

4 What Are We Learning in ICL?167

One might naturally assume that an ICL algorithm would recover the true constraint c⋆ (e.g. the168
exact location of the tree, illustrated in Fig. 1b) that the expert optimizes under. However, we now169
prove that the set Ĉ, induced by the inferred constraint ĉ, is equivalent to the BRT of the failure set,170
BRT(F), where F ≡ C⋆. In other words, we prove that constraint inference ultimately learns a171
dynamics-conditioned unsafe set instead of the dynamics-independent true constraint.172

Throughout this section, we assume we are in the single-task setting (K = 1) for simplicity and173
drop the associated subscript. Let P (·) : Π → R be a function which maps a policy π to some174
performance measure. For example, in our preceding formulation of multi-task ICL, we had set175
Pk(πk) = J(πk, rk). We begin by proving that relaxing the failure set to its BRT does not change176
the set of solutions to a safe control problem. This implies that, from safe expert demonstrations177
alone, we cannot differentiate between the true failure set and its BRT.178

Lemma 4.1. Consider an expert who attempts to avoid the ground-truth failure set F under dynam-179
ics ṡ = f(s, a, d, t) while maximizing performance objective P : Π → R:180

π⋆
a = argmax

π∈Π
P (π) (6)

s.t. J(π,1[· ∈ F]) = 0.

Also consider the relaxed problem below, where the expert avoids the BRT of the failure set F:181

π⋆
b = argmax

π∈Π
P (π) (7)

s.t. J(π,1[· ∈ BRT(F)]) = 0.

Where 1[· ∈ F] and 1[· ∈ BRT(F)] are indicator functions that assign the value 1 to states s ∈ F182
and s ∈ BRT(F) respectively and the value 0 otherwise. Then, the two problems 6 and 7 have183
equivalent sets of solutions, i.e.184

π⋆
a = π⋆

b . (8)

5

Under review for RLC 2025, to be published in RLJ 2025

Proof. By the definition of the BRT in Eq. 3, we know that ∀s ∈ BRT(F), any trajectory ξ
π(·)
s (t)185

that starts from state s and then follows any policy π with π ∈ π⋆
a is bound to enter the failure set.186

Thus, we know that no policy in π⋆
a will generate trajectories that enter the BRT, i.e. ∀π ∈ π⋆

a,187
J(π,1[· ∈ BRT(F)]) = 0. This implies that π⋆

a ⊆ π⋆
b . Next, we observe that F ⊆ BRT(F). This188

directly implies that ∀π ∈ π⋆
b , J(π,1[· ∈ F]) = 0, which further implies that π⋆

b ⊆ π⋆
a. Taken189

together, the preceding two claims imply that π⋆
a = π⋆

b .190

Building on the above result, we now prove an equivalence between solving the ICL game and BRT191
computation. First, we define PH as the entropy-regularized cumulative reward, i.e.192

PH(π) ≜ J(π, r) +H(π), (9)

where H(π) = Eξ∼π

[∫ T

t
− log π(at|st)dt

]
is causal entropy (Massey et al., 1990; Ziebart, 2010).193

We now prove that a single iteration of exact, entropy-regularized ICL recovers the BRT.194

Theorem 4.2. Define πE = argmaxπ∈Π PH(π) s.t. J(π, c⋆) ≤ 0 as the (unique, soft-optimal)195
expert policy. Let ĉ0 = 0,∀s ∈ S , and define π̂0 = argmaxπ∈Π PH(π) s.t. J(π, ĉ0) ≤ 0 as the196
(unique) soft-optimal solution to the first inner ICL problem. Next, define197

ĉ1 = argmax
c∈{S→R}

Es+∼π̂0,s−∼πE [log(σ(c(s+)− c(s−)))], (10)

where σ(x) = 1
1+exp(−x) , as the optimal classifier between learner and expert states. Then,198

Ĉ = {s ∈ S | 1[ĉ1(s) = ∞]} = BRT(F). (11)

Proof. We use ρπ to denote the visitation distribution of policy π: ρπ(s′) = Es∼π[1[sh = s′]]. First,199
we observe that under a c0 that marks all states as safe, the inner optimization reduces to a standard,200
unconstrained RL problem. It is well know that the optimal classifier for logistic regression is201

ĉ1(s) = log

(
ρπ̂0(s)

ρπE(s)

)
. (12)

We then recall that because of the entropy regularization, π⋆
0 has support over all trajectories that202

aren’t explicitly forbidden by a constraint (Phillips & Dudík, 2008; Ziebart et al., 2008a). Because203
there is no constraint at iteration 0, this implies that ∀s ∈ S, ρπ̂0(s) > 0.204

By construction, we know πE will never enter the failure set F . By our preceding lemma, we know205
it will also never enter the BRT. This implies that ∀s ∈ BRT(F), ρπ

E
(s) = 0. Given these are the206

only moment constraints we have to satisfy, this also implies that πE will have full support over all207
states that aren’t in BRT(F), i.e. ∀s ∈ S\BRT(F), ρπ

E
(s) > 0.208

Taken together, this means that ∀s ∈ BRT(F), ĉ1(s) = ∞; and ∀s ∈ S\BRT(F), ĉ1(s) < ∞.209
Thus, {s ∈ S | 1[ĉ1(s) = ∞]} ≡ BRT(F).210

In summary, assuming access to a perfect solver, the ICL procedure recovers the BRT of the failure211
set, rather than the failure set itself under fairly mild other assumptions. Before we discuss the212
implications of this observation, we experimentally validate how well ICL recovers the BRT.213

5 Experimental Validation of BRT Recovery214

Our theoretical statements assumed access to a perfect ICL solver. We now empirically demonstrate215
that even when this assumption is relaxed, we see that ĉ approximates the BRT.216

5.1 Dynamical System217

In our experiments, we select a low-dimensional but dynamically-nontrivial system that enables us218
to effectively validate our theoretical analysis through empirical observation.219

6

Your Learned Constraint is Secretly a Backward Reachable Tube

Specifically, we investigate a Dubins’ car-like system with a state defined by position and heading:220
s = (x, y, θ). The continuous-time dynamics are modeled as:221

f(s, a, d, t) = f0(s, t) +Gu(s, t) · a+Gd(s, t) · d. (13)

The robot’s dynamics are influenced by its control inputs which are linear and angular velocity
a := [v, ω] ∈ A, an extrinsic disturbance vector d := [dx, dy] ∈ D acting on x and y, and open loop
dynamics f0 =

[
vnominal cos(θ), vnominal sin(θ), 0

]T
with nominal speed vnominal = 0.6. Finally,

Gu =

cos(θ) 0
sin(θ) 0

0 1

 , Gd =

1 0
0 1
0 0

are respectively the control and disturbance Jacobians.222

In our experiments, we study two dynamical systems: Model 1, an agile system with strong control223
authority v ∈ [−1.5, 1.5] and ω ∈ [−1.5, 1.5], and Model 2, a non-agile system with less control224
authority, v ∈ [−0.7, 0.7] and ω ∈ [−0.7, 0.7]. In all experiments, di ∈ [−0.6, 0.6], i ∈ x, y. This225
setup was selected to demonstrate how constraint inference can effectively “hide” the BRT when the226
dynamical system is sufficiently agile (see subsection 5.4.2).227

5.2 Constraint Inference Setup228

We use the MT-ICL algorithm developed by Kim et al. (2023). In our setup, task k consists of229
navigating the robot from a specific start sk to a goal state gk without hitting a circular obstacle230
with a radius of 1, centered at the origin of the environment. This circular obstacle will be the true231
constraint in the expert demonstrator’s mind, c⋆. We assume the constraint to be a function of only232
the state ĉ : s → [−∞,∞]. Note that in practice, the output of ĉ is constrained to be in the range233
[−1, 1]. Let C be the function class of 3-layer MLPs while Π is the set of actor-critic policies where234
both actor and critic are 2-layer MLPs. The inner constrained RL loop is solved using a penalty-235
based constraint handling method where a high negative reward is assigned upon violation of the236
constraint function ĉ. For each model, we train an expert policy using PPO (Schulman et al., 2017)237
implemented in the Tianshou library (Weng et al., 2022) given perfect knowledge of the environment238
(i.e., the obstacle location). Note that PPO uses entropy regularization as assumed in section 4. We239
collect approximately 200 expert demonstrations with different start and target poses to form two240
training sets, (Dagile and Dnon-agile). Each dataset is then used to train MT-ICL (equation 1) with only241
access to these demonstrations for 5 epochs. All models were trained using a single NVIDIA RTX242
4090 GPU.243

5.3 BRT Computation244

We solve for the infinite-time avoid BRT using an off-the-shelf solver of the HJI-VI PDE (eq. 4)245
implemented in JAX (Stanford ASL, 2021). We encode the true circular constraint via the signed246

distance function to the obstacle: h(s) := {s : ||
[
sx

sy

]
−

[
ox

oy

]
||22 < r2}. We initialize our value247

function with this signed distance function V (0, s) = h(s) and discretize full the state space (x, y, θ)248
into a grid of size 200× 200× 200. We run the solver until convergence.249

5.4 Results.250

We now discuss several sets of experimental results that echo our preceding theory.251

5.4.1 ICL Recovers an Approximation of the BRT252

First, we compute the ground truth BRTs for each model by solving the HJB PDE in Eq. 4. Fig-253
ures 2a and 2b show how each model induces a different BRT, with the BRT growing larger as the254

7

Under review for RLC 2025, to be published in RLJ 2025

Model 1 (agile) Model 2 (non-agile)

(a) Groundtruth BRT (b) Groundtruth BRT

(c) Computed constraint (d) Computed constraint

Figure 2: (a) and (b) show the Backward Reachable Tube (BRT) while (c) and (d) show the approx-
imated constraint for both the agile (model 1) and non-agile (model 2) systems.

control authority decreases. This indicates that less agile systems result in a larger set of states that255
are bound to violate the constraint.256

We then use MT-ICL to compute ĉagile(s) and ĉnon-agile(s), the inferred constraint for the agile and257
non-agile systems respectively.258

Figure 3: Classification metrics (mean and stan-
dard deviation averaged over three different seeds)
for the estimated unsafe set Ĉ vs. true failure set
C⋆. The plot presents performance scores (Ac-
curacy, Precision, Recall, and F1) for the two
models, with error bars indicating the variability
across the three seeds.

In figures 2c and 2d, we visualize the con-259
straints by computing the level sets ĉagile(s) >260
0.6 and ĉnon-agile(s) > 0.6, indicating a high261
probability of a state s being unsafe. We262
observe an empirical similarity between the263
ground truth BRTs and the learned constraints.264
Additionally, we report quantitative metrics for265
our classifiers in Fig. 3, averaged over three dif-266
ferent seeds. These quantitative and qualitative267
results support our argument that the inferred268
constraint ĉagile(s) and ĉnon-agile(s) are indeed269
approximations of the BRTs for model 1 (ag-270
ile dynamics) and model 2 (non-agile dynam-271
ics) respectively. We note that the classification272
errors can be attributed to limited expert cover-273
age in certain parts of the state space. This lim-274
itation arises from capping the number of start-275
goal states at K ≈ 200 (i.e., the total number276
of tasks) due to the high computational cost of277
the inner MT-ICL loop, which involves training278
a full RL model for each task.279

5.4.2 ICL Can “Hide” the BRT When the System is Agile280

Agile systems are commonly used in the existing ICL literature, leading to the impression that the281
set inferred from constraint ĉ (the set Ĉ = {s ∈ S | 1[ĉ(s) = ∞}) is always equal to the failure282
set F = C⋆. However, we note that this equivalence holds only when BRT(F) ≈ F—i.e., when283
the system possesses sufficient control authority to “instantaneously quickly” steer away from the284
failure set or “instantaneously” stop before entering failure (e.g. model 1 in Fig. 2). For general285
dynamics (e.g. model 2 in Fig. 2), Ĉ ̸= F when BRT(F) ̸= F .286

8

Your Learned Constraint is Secretly a Backward Reachable Tube

5.4.3 The Constraint Inferred via ICL Doesn’t Necessarily Generalize Across Dynamics287

The fact that ICL approximates a backwards reachable tube has direct implications on the transfer-288
ability of the learned constraint across different dynamics: since the BRT is inherently conditioned289
on the dynamics, the constraint computed by ICL will be as well. We discuss the implications of290
this observation on downstream policy optimization that uses the inferred constraint from ICL.291

Specifically, we study the following general formulation for learning a policy for dynamical system292
model a, using an ICL-derived constraint derived from a different dynamical system model, b:293

π⋆
a|BRTb

= argmax
π∈Π

P (π) (14)

s.t. J(π,1[· ∈ BRTb]) = 0.

We compare this solution against a policy learned for model a using a constraint derived from294
demonstrations given on the same dynamical system model, a:295

π⋆
a|BRTa

= argmax
π∈Π

P (π) (15)

s.t. J(π,1[· ∈ BRTa]) = 0.

Figure 4: Illustration of the relationship
between the three BRTs we want to an-
alyze: BRTM>

, BRTM and BRTM<
.

They satisfy the relationship in Eq. 16.

296

Let 1[· ∈ BRTa], 1[· ∈ BRTb] be indicator functions rep-297
resenting state membership in the respective BRTs. For298
this analysis, let dynamical system models a and b share299
the same state space, e.g., S = {(x, y, θ)}, and dynamical300
system evolution, e.g., a 3D Dubin’s car model where the301
robot controls both linear and angular velocity. However,302
they will differ in their control authority, i.e., the action303
space A. Let a, b ∈ {M<,M,M>} be the possible mod-304
els we could analyze:305

• M< denote a non-agile system; for example A signifi-306
cantly limits how fast the system can turn.307

• M is a moderately agile system.308

• M> is an agile system with sufficient control authority309
to always avoid the failure set; for example, A can turn310
extremely fast and stop instantaneously.311

The corresponding unsafe sets for each of these system312
models satisfy the following relation (see Fig. 4):313

F ≡ BRTM>
⊂ BRTM ⊂ BRTM<

(16)

Finally, we define the operator ga : P(S) → P(S), where P(S) is the power set of S. Here, ga takes314
as input any set of states that must be avoided and outputs the corresponding BRT for this failure315
set under dynamical system model a. For example, gM<(BRTM>) is the BRT computed for model316
M< with BRTM> as the target initial set (i.e. V (s, 0) in eq. 4 is defined such that V (s, 0) < 0 when317
s ∈ BRTM>

) .318

Transferring the Learned Constraint from the Agile to the Less-Agile Systems. This scenario319
is equivalent to setting model a = M or a = M< and b = M> in Eq. 14. Since the constraint320
learned for model M> is equivalent to the failure set (i.e. BRTM>

≡ F), then by Lemma 4.1, the321
policy which satisfies the inferred constraint π⋆

a|BRTb
will not be over-conservative. In other words,322

π⋆
a|BRTb

will be approximately the same as the policy obtained under the BRT computed on the same323
dynamical system, π⋆

a|BRTa
.324

9

Under review for RLC 2025, to be published in RLJ 2025

Transferring the Learned Constraint from the Non-Agile to more Agile Systems. This scenario325
is equivalent to setting model a = M or a = M> and b = M<, or setting a = M> and b = M326
in Eq. 14. Since the inferred constraint BRTb was retrieved from a less agile system, we know that327
it is larger than the failure set (F) and larger than the BRT of the target system a (BRTa) that we328
want to do policy optimization with. This means that if we use the constraint BRTb during policy329
optimization with a target system that is more agile, rollouts from the resulting policy π⋆

a|BRTb
will330

have to avoid more states than the failure set F or the target system’s true unsafe set, BRTa. Math-331
ematically, rollouts generated from the optimized policy π⋆

a|BRTb
will implicitly satisfy ga(BRTb),332

which is a superset of BRTa, and hence, yields an overly conservative solution compared to Eq. 15.333

Transferring the Learned Constraint from a Moderately-Agile to a Non-Agile System. This334
scenario is equivalent to setting model a = M< and model b = M in Eq. 14. In this case, rollouts335
generated from the optimized policy π⋆

a|BRTb
will implicitly satisfy ga(BRTb) which is a superset of336

BRTa. Again, this means that the robot will avoid states from which it could actually remain safe337
leading to suboptimal policies compared to rollouts of the solution policy to Eq. 15.338

6 Conclusion, Implications, and Future Work339

In this work, we have identified that inverse constrained learning (ICL), in fact, approximates the340
backward reachable tube (BRT) using expert demonstrations, rather than the true failure set. We now341
argue that this observation has a positive impact from a computational perspective and a negative342
impact from a transferability perspective.343

Implications. First, we note that we can add ICL algorithms to the set of computational tools344
available to us to calculate BRTs, given a dataset of safe demonstrations, without requiring prior345
knowledge of the true failure set. Computing a BRT is the first step in many downstream safe control346
synthesis procedures of popular interest. We also note that having access to a BRT approximator347
can help speed up policy search, as the set of policies that do not violate the constraint is a subset348
of the full policy space. Thus, a statistical method should take fewer samples to learn the (safe)349
optimal policy with this knowledge. However, any BRT (inferred by ICL or otherwise) is dependent350
on the dynamics of the system and hence cannot be easily used to learn policies on different systems351
without care. In this sense, learning a BRT rather than the failure set is a double-edged sword.352

We note that in some sense, learning a BRT rather than a failure set is analogous to learning a value353
function rather than a reward function. In particular, the BRT is the zero sublevel set of the safety354
value function. While value functions make it easier to compute an optimal policy, their dynamics-355
conditionedness makes them more difficult to transfer across problems.356

We also note that the above observations are somewhat surprising from the perspective of inverse357
reinforcement learning, where one of the key arguments for learning a reward function is transfer-358
ability across problems (Ng et al., 2000; Swamy et al., 2023; Sapora et al., 2024). However, such359
transfer arguments often implicitly assume access to a set of higher-level features which are indepen-360
dent of the system’s dynamics on top of which rewards are learned, rather than the raw state space361
as used in the preceding experiments for learning constraints. Thus, another approach to explore is362
whether the transferability of constraints would increase if we learn constraints on top of a set of363
features which are 1) designed to be dynamics-agnostic and 2) for which the target system is able to364
match the behavior of the expert system, as is common in IRL practice (Ziebart et al., 2008a).365

Future Work. Regardless, an interesting direction for future research involves recovering the true366
constraint (i.e., the failure set F) using constraints that were learned for different systems with367
varying dynamics. This process is synonymous to removing the dependence of the constraint on368
the dynamics by integrating over (i.e., marginalizing) the dynamical variables. This could allow369
disentangling the dynamics and semantics parts of the constraint, allowing better generalization and370
faster policy search independent of system dynamics. A potential approach to doing so would be371
to collect expert demonstrations under a variety of dynamics, learn a constraint for each, and then372
return an aggregate constraint that is the minimum of the learned constraints, implicitly computing373
an intersection of the BRTs. Such an intersection would approximate the true failure set.374

10

Your Learned Constraint is Secretly a Backward Reachable Tube

References375

Aaron D Ames, Samuel Coogan, Magnus Egerstedt, Gennaro Notomista, Koushil Sreenath, and376
Paulo Tabuada. Control barrier functions: Theory and applications. In 2019 18th European377
control conference (ECC), pp. 3420–3431. IEEE, 2019.378

Somil Bansal and Claire J Tomlin. Deepreach: A deep learning approach to high-dimensional379
reachability. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pp.380
1817–1824. IEEE, 2021.381

Glen Chou, Dmitry Berenson, and Necmiye Ozay. Learning constraints from demonstrations. In382
Algorithmic Foundations of Robotics XIII: Proceedings of the 13th Workshop on the Algorithmic383
Foundations of Robotics 13, pp. 228–245. Springer, 2020.384

Jaime F Fisac, Mo Chen, Claire J Tomlin, and S Shankar Sastry. Reach-avoid problems with time-385
varying dynamics, targets and constraints. In Proceedings of the 18th international conference on386
hybrid systems: computation and control, pp. 11–20, 2015.387

Dylan Hadfield-Menell, Smitha Milli, Pieter Abbeel, Stuart J Russell, and Anca Dragan. Inverse388
reward design. Advances in neural information processing systems, 30, 2017.389

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural390
information processing systems, 29, 2016.391

Taylor A Howell, Kevin Tracy, Simon Le Cleac’h, and Zachary Manchester. Calipso: A differ-392
entiable solver for trajectory optimization with conic and complementarity constraints. In The393
International Symposium of Robotics Research, pp. 504–521. Springer, 2022.394

Kai-Chieh Hsu, Duy Phuong Nguyen, and Jaime Fernandez Fisac. Isaacs: Iterative soft adversarial395
actor-critic for safety. In Learning for Dynamics and Control Conference, pp. 90–103. PMLR,396
2023.397

Peide Huang, Xilun Zhang, Ziang Cao, Shiqi Liu, Mengdi Xu, Wenhao Ding, Jonathan Francis,398
Bingqing Chen, and Ding Zhao. What went wrong? closing the sim-to-real gap via differentiable399
causal discovery. In Conference on Robot Learning, pp. 734–760. PMLR, 2023.400

Adriana Hugessen, Harley Wiltzer, and Glen Berseth. Simplifying constraint inference with inverse401
reinforcement learning. In The Thirty-eighth Annual Conference on Neural Information Process-402
ing Systems, 2024.403

Konwoo Kim, Gokul Swamy, Zuxin Liu, Ding Zhao, Sanjiban Choudhury, and Steven Z.404
Wu. Learning shared safety constraints from multi-task demonstrations. In A. Oh,405
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neu-406
ral Information Processing Systems, volume 36, pp. 5808–5826. Curran Associates, Inc.,407
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/408
file/124dde499d62b58e97e42a45b26d7369-Paper-Conference.pdf.409

David Lindner, Xin Chen, Sebastian Tschiatschek, Katja Hofmann, and Andreas Krause. Learning410
safety constraints from demonstrations with unknown rewards. In International Conference on411
Artificial Intelligence and Statistics, pp. 2386–2394. PMLR, 2024.412

Guiliang Liu, Sheng Xu, Shicheng Liu, Ashish Gaurav, Sriram Ganapathi Subramanian, and Pascal413
Poupart. A comprehensive survey on inverse constrained reinforcement learning: Definitions,414
progress and challenges. arXiv preprint arXiv:2409.07569, 2024.415

Kostas Margellos and John Lygeros. Hamilton–jacobi formulation for reach–avoid differential416
games. IEEE Transactions on automatic control, 56(8):1849–1861, 2011.417

James Massey et al. Causality, feedback and directed information. In Proc. Int. Symp. Inf. Theory418
Applic.(ISITA-90), volume 2, 1990.419

11

https://proceedings.neurips.cc/paper_files/paper/2023/file/124dde499d62b58e97e42a45b26d7369-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/124dde499d62b58e97e42a45b26d7369-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/124dde499d62b58e97e42a45b26d7369-Paper-Conference.pdf

Under review for RLC 2025, to be published in RLJ 2025

David L McPherson, Kaylene C Stocking, and S Shankar Sastry. Maximum likelihood constraint420
inference from stochastic demonstrations. In 2021 IEEE Conference on Control Technology and421
Applications (CCTA), pp. 1208–1213. IEEE, 2021.422

I. Mitchell. A toolbox of level set methods. http://www. cs. ubc. ca/mitchell/ToolboxLS/toolboxLS.423
pdf, Tech. Rep. TR-2004-09, 2004.424

Ian M Mitchell, Alexandre M Bayen, and Claire J Tomlin. A time-dependent hamilton-jacobi formu-425
lation of reachable sets for continuous dynamic games. IEEE Transactions on automatic control,426
50(7):947–957, 2005.427

Andrew Y Ng, Stuart Russell, et al. Algorithms for inverse reinforcement learning. In Icml, vol-428
ume 1, pp. 2, 2000.429

Steven J Phillips and Miroslav Dudík. Modeling of species distributions with maxent: new exten-430
sions and a comprehensive evaluation. Ecography, 31(2):161–175, 2008.431

Mohamad Qadri and Michael Kaess. Learning observation models with incremental non-432
differentiable graph optimizers in the loop for robotics state estimation. In ICML 2023 Work-433
shop on Differentiable Almost Everything: Differentiable Relaxations, Algorithms, Operators,434
and Simulators.435

Mohamad Qadri, Paloma Sodhi, Joshua G Mangelson, Frank Dellaert, and Michael Kaess. Incopt:436
Incremental constrained optimization using the bayes tree. In 2022 IEEE/RSJ International Con-437
ference on Intelligent Robots and Systems (IROS), pp. 6381–6388. IEEE, 2022.438

Mohamad Qadri, Zachary Manchester, and Michael Kaess. Learning covariances for estimation439
with constrained bilevel optimization. In 2024 IEEE International Conference on Robotics and440
Automation (ICRA), pp. 15951–15957. IEEE, 2024.441

Juntao Ren, Gokul Swamy, Zhiwei Steven Wu, J Andrew Bagnell, and Sanjiban Choudhury. Hybrid442
inverse reinforcement learning. arXiv preprint arXiv:2402.08848, 2024.443

Silvia Sapora, Gokul Swamy, Chris Lu, Yee Whye Teh, and Jakob Nicolaus Foerster. Evil: Evolution444
strategies for generalisable imitation learning. arXiv preprint arXiv:2406.11905, 2024.445

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy446
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.447

Dexter RR Scobee and S Shankar Sastry. Maximum likelihood constraint inference for inverse448
reinforcement learning. International Conference on Learning Representations, 2019.449

Autonomous Systems Lab Stanford ASL. Hj reachability. https://github.com/450
StanfordASL/hj_reachability, 2021. GitHub repository.451

Kaylene C Stocking, D Livingston McPherson, Robert P Matthew, and Claire J Tomlin. Maximum452
likelihood constraint inference on continuous state spaces. In 2022 International Conference on453
Robotics and Automation (ICRA), pp. 8598–8604. IEEE, 2022.454

Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning455
by pid lagrangian methods. In International Conference on Machine Learning, pp. 9133–9143.456
PMLR, 2020.457

Gokul Swamy, Sanjiban Choudhury, J Andrew Bagnell, and Steven Wu. Of moments and match-458
ing: A game-theoretic framework for closing the imitation gap. In International Conference on459
Machine Learning, pp. 10022–10032. PMLR, 2021.460

Gokul Swamy, Sanjiban Choudhury, J Bagnell, and Steven Z Wu. Sequence model imitation learn-461
ing with unobserved contexts. Advances in Neural Information Processing Systems, 35:17665–462
17676, 2022.463

12

https://github.com/StanfordASL/hj_reachability
https://github.com/StanfordASL/hj_reachability
https://github.com/StanfordASL/hj_reachability

Your Learned Constraint is Secretly a Backward Reachable Tube

Gokul Swamy, David Wu, Sanjiban Choudhury, Drew Bagnell, and Steven Wu. Inverse reinforce-464
ment learning without reinforcement learning. In International Conference on Machine Learning,465
pp. 33299–33318. PMLR, 2023.466

Jiayi Weng, Huayu Chen, Dong Yan, Kaichao You, Alexis Duburcq, Minghao Zhang, Yi Su, Hang467
Su, and Jun Zhu. Tianshou: A highly modularized deep reinforcement learning library. Journal of468
Machine Learning Research, 23(267):1–6, 2022. URL http://jmlr.org/papers/v23/469
21-1127.html.470

Runzhe Wu, Yiding Chen, Gokul Swamy, Kianté Brantley, and Wen Sun. Diffusing states and471
matching scores: A new framework for imitation learning. arXiv preprint arXiv:2410.13855,472
2024.473

Wei Xiao and Calin Belta. High-order control barrier functions. IEEE Transactions on Automatic474
Control, 67(7):3655–3662, 2021.475

Brian D Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal476
entropy. Carnegie Mellon University, 2010.477

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse478
reinforcement learning. In Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008a.479

Brian D Ziebart, Andrew L Maas, Anind K Dey, and J Andrew Bagnell. Navigate like a cabbie:480
Probabilistic reasoning from observed context-aware behavior. In Proceedings of the 10th inter-481
national conference on Ubiquitous computing, pp. 322–331, 2008b.482

13

http://jmlr.org/papers/v23/21-1127.html
http://jmlr.org/papers/v23/21-1127.html
http://jmlr.org/papers/v23/21-1127.html

