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ABSTRACT

We introduce the asset foundation model (AFM), a generative framework for asset
performance management (APM) spanning high-value industrial assets and man-
ufacturing processes. The AFM is applicable across sectors such as energy, chem-
icals, manufacturing, and utilities by leveraging rich time series data and event
streams to provide a robust basis for next-generation APM solutions. A shared
transformer backbone with lightweight heads supports forecasting, anomaly de-
tection, and event querying. The model is pre-trained on operational and simulator
corpora, then fine-tuned on asset-specific histories for minimal effort adaptation,
using per-sensor discrete tokenization for robustness. Beyond sensors, the AFM
incorporates alarms, set-point changes, and maintenance logs via event tokens, en-
abling time-aligned “what/when” queries and high value applications such as root
cause triage, alarm suppression, and maintenance planning. In representative field
deployments (e.g., ESPs and compressors), the AFM exceeds prior gains, delivers
earlier warnings, and reduces false alarm minutes. Operator-oriented explanations
based on attention rollout and integrated gradients highlight which sensors/events
drove each alert, while natural language querying allow experts to “talk to the
data” features. Calibrated prediction intervals from discrete to continuous with
isotonic calibration support risk aware thresholds. On the theory side, we prove
closed form bounds on quantization error and a Lipschitz stability result for dis-
cretization noise through the encoder, justifying sample efficient adaptation with
frozen backbones. Field benchmarks corroborate competitive accuracy and cali-
brated coverage. The result is a versatile, scalable, and interpretable foundational
framework with significant business impact on industrial asset management.

1 INTRODUCTION

Across large industrial sectors such as energy, chemicals, manufacturing and utilities, asset perfor-
mance management (APM) still wrestles with three compounding problems at scale: excessive false
alarms, slow adaptation to new plants (from onboarding new equipment, processes or regimes), and
bespoke models that do not transfer across sites, leading to downtime and health, safety & envi-
ronmental (HSE) risks, as well as escalating operational and support costs. In practice, threshold
alarms miss subtle degradations, yet overwhelm operators during normal transients, despite estab-
lished alarm-management guidance. Meanwhile, organizations seek cross-asset value under ISO
55000-style asset management goals, but the analytics layer lags behind. The main challenge is
to maximize the value of existing CAPEX-intensive installations through optimization, end-to-end
scenario analysis, and collective intelligence across the value chain (e.g., from reservoir to pipeline
in an oil and gas setting).

The classical asset modeling approaches for APM suffer in multiple fronts and have been shown to
be difficult to scale across assets. Thresholds and one-off machine learning pipelines fail for recur-
ring field reasons: (i) intermittent and uneven data coverage; (ii) asset-specific feature engineering;
(iii) inability to treat alarms/events as first-class signals; (iv) dependence on scarce subject-matter
experts; (v) sensitivity to sensor noise and drift; (vi) poor generalization across sites; (vii) heavy
maintenance overhead; and (viii) high label demands. These realities explain why many “deployed”
systems degrade in months and why alarm KPIs (e.g., floods, chattering, standing alarms) remain
stubbornly off target in real plants. The interpretability of such results, even if they are accurate,
is questionable. Moreover, querying the right data for the event of interest (i.e., the root causes
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that have driven such events) is difficult to deduce, which has made the adoption of such predictive
models less widespread.

In this work, we build on our previously deployed time-series foundation model (TSFM) for rotating
equipment, and explore an asset foundation model (AFM) for cross-industry APM. The model con-
sists of a shared transformer backbone pretrained on operational and simulator corpora, fine-tuned
with minimal effort on asset histories; lightweight heads support forecasting, anomaly detection, and
event querying; and per-sensor discrete tokenization improves robustness and sequence modeling.
The AFM maintains a fit-for-purpose stance and explicitly extends beyond rotating equipment to
process units and multi-site fleets.

Beyond sensors, the AFM ingests alarms, set-point changes, and maintenance logs as time-aligned
event tokens, enabling “what/when” queries and powering high-value operator workflows: root-
cause triage (e.g., “What sensor/event drove an alert?”), alarm suppression, and maintenance plan-
ning by linking alerts to recent interventions. This directly targets field realities—irregular event
timing, class imbalance, and drift—that typically sink threshold-only systems. This is extremely
important as the AFM provides a way to naturally converse with the data and model for realistic use
cases such as equipment prognostics, process optimization, root cause analysis, etc.

The AFM provides operator-oriented explanations—attention rollout and integrated gradients
adapted to tokenized multivariate sensors and event channels—so teams can see which signals/events
drove each forecast or alert; a plain-English query layer lets experts “talk to the data.” For example,
a production engineer can interact with the AFM and ask questions such as “What was the com-
pressor discharge pressure when High Bearing Temperature was reported on 05/08/2025?”. These
interactions are not possible in the current state of the art models.

Our key contributions are summarized as follows:

1. We introduce the asset foundation model (AFM), a generative framework for cross-industry
APM. To our knowledge, we are among the first to successfully bring together ideas from
FMs and apply them to industrial time series data in a holistic way.

2. We produce quantization error analysis in Appendix A.1 as theoretical basis for our design.

3. We provide experimental evaluations across various tasks, demonstrating that the AFM
delivers consistently low squared error with median 0.008 across heterogeneous assets.

These advancements position the AFM as a robust solution for calibrated and interpretable decision-
making tailored to operators, thereby facilitating more scalable and high-performance deployments
of large-scale foundation models tied to industrial constraints.

2 RELATED WORK

Foundation models in time series analysis. The concept of foundation models (FMs)—large-
scale pretrained models that can be adapted to downstream tasks—has recently been extended to
time series data (Liang et al., 2024; Shi et al., 2025). Early efforts have shown that pretraining on
diverse time series can yield models with strong zero-shot or few-shot performance on forecasting
tasks. One of the first transformer-based frameworks for unsupervised representation learning on
multivariate time series demonstrated that a pretrained transformer encoder could be fine-tuned for
classification and regression tasks with improved accuracy over training from scratch (Zerveas et al.,
2020). More recently, Chronos proposed a transformer language-model approach to time series,
treating sensor readings as a sequence of tokens and pretraining on a large collection of time series
datasets (Ansari et al., 2024). Chronos established a strong benchmark for zero-shot and transfer
learning in forecasting by “learning the language” of time series patterns across 42 datasets.

Several TSFMs have focused on improving forecasting performance via massive pretraining.
TimesFM, a decoder-only transformer model pretrained on a corpus of real-world and synthetic
time series, achieves near state-of-the-art accuracy on diverse forecasting benchmarks without task-
specific training (Das et al., 2024). The model uses an input patching technique and demonstrates
effective zero-shot generalization to new datasets. In parallel, researchers have explored scaling up
TSFMs. Time-MoE is a mixture-of-experts transformer architecture with up to 2.4 billion param-
eters, which is pretrained on an extremely large dataset (∼300 billion points) spanning 9 domains
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(Shi et al., 2025). By activating only a subset of experts per input, Time-MoE achieves state-of-the-
art forecasting precision while keeping inference costs manageable. These advances indicate that
the scaling laws and architectural innovations from NLP (e.g., expert routing) are being successfully
applied to build more powerful TSFMs for forecasting.

Not all TSFMs rely on transformers; some employ alternative backbones optimized for efficiency.
For instance, the Tiny Time Mixers (TTMs) model uses a multi-scale MLP-Mixer architecture pre-
trained on heterogeneous time series data to serve as a domain-agnostic forecasting model (Ekam-
baram et al., 2024). TTMs emphasize lightweight design and fast adaptation, showing that even
simpler architectures can serve as FMs when trained on large data and carefully tuned (Liang et al.,
2024). Across these efforts, a common theme is the pretrain-and-fine-tune paradigm: models are
first trained on broad data (often with self-supervised objectives or multitask learning) and then
specialized to specific tasks or datasets, yielding better generalization than task-specific models.

Deep sequence modeling for time series. Recurrent neural network (RNNs) (Rumelhart et al.,
1986; Jordan, 1986), long short-term memory (LSTM) networks (Hochreiter & Schmidhuber, 1997),
temporal convolutions networks (TCNs) (Lea et al., 2016), and transformer-family models have
advanced forecasting and anomaly detection. Efficient transformer variants (e.g., Informer (Zhou
et al., 2021), Autoformer (Wu et al., 2022), FEDformer (Zhou et al., 2022), PatchTST (Nie et al.,
2023), TimesNet (Wu et al., 2023), DLinear (Zeng et al., 2022)) tackle long context and seasonal-
trend decomposition, while foundation-style models such as Chronos and TimeGPT pursue cross-
domain pretraining.

Tokenization and discretization. Uniform quantization, VQ-VAE and discrete representations pro-
vide stability and compressibility (van den Oord et al., 2018). Channel-aware tokenization (e.g.,
CHARM) explores cross-channel priors (Behrad et al., 2025). In industrial telemetry, discretization
also dampens heavy-tailed spikes and missing-data artifacts, yielding robustness to sensor dropouts
and outliers. Learned companders or per-channel codebooks can trade bitrate for fidelity, while
change-point–aware or run-length encodings reduce sequence length and accelerate decoding with-
out sacrificing temporal resolution.

Stability and generalization. Lipschitz control and spectral normalization bound sensitivity. Linear
probing and frozen backbones explain sample-efficient adaptation. In sequential settings, contractive
residual paths and normalized attention further limit error compounding across horizons, improving
closed-loop stability. Calibration layers (e.g., temperature scaling or conformal coverage) help pre-
serve interval reliability under moderate distribution shift, while lightweight adapters/LoRA enable
site-specific tuning without revalidating the entire backbone.

APM and alarm management. ISO 55000 (International Organization for Standardization, 2024),
ANSI/ISA-18.2 (Int, 2016), IEC 62682 (International Electrotechnical Commission, 2022), and
(Howard, 2007) codify requirements for asset governance and alarm performance. Statistical thresh-
olds and rule-based alarm suppression are common but brittle under drift and transients (Ahnlund
et al., 2003). Forecast-driven alarms that gate on prediction-interval breaches and context (e.g.,
state of maintenance, mode changes) reduce false annunciations while retaining interpretability de-
manded by standards. Multi-sensor fusion and deduplication further curtail nuisance minutes by
collapsing correlated alerts into a single actionable event path.

3 DESIGN

The AFM should provide a fit-for-purpose, scalable backbone that can adapt across a wide range
of industrial assets without retraining from scratch. By default, the backbone remains frozen after
pretraining, ensuring generalizability across different sites and asset types, while lightweight linear
or multi-layer perceptron (MLP) (Murtagh, 1991) heads allow per-asset customization with minimal
labeled data. The architecture is explicitly built to handle diverse time-series sensor data, irregular
events (e.g, alarms, set-point changes, maintenance logs), and potentially unstructured text inputs,
bringing them into a common tokenized and time-aligned representation.

Deployment emphasizes compute-aware windowing so that long time horizons can be modeled ef-
ficiently in real time, enabling both edge and server deployments without heavy overhead. This
approach reduces engineering effort, ensures robustness to noise and drift, and supports cross-asset
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transfer, making the AFM practical for forecasting, anomaly detection, and event-aware querying in
live industrial environments.

Figure 1: Pipeline diagram for the AFM.

The AFM comprises of the following components:

1. Per-sensor discrete tokenization. A uniform mid-rise quantizer with clipping maps each
scaled value z into one of Bc bins: given radius Rc and bin width ∆c = 2Rc/Bc, the k-th
bin covers [−Rc + k∆c,−Rc + (k + 1)∆c and is represented by its midpoint. A residual
MLP can optionally encode fine residuals r = z−z̃. The pad token (PAD), end-of-sequence
(EOS) token, and per-sensor vocabularies avoid cross-sensor interference.

2. Shared transformer encoder. A causal encoder produces hidden states ht for forecasting;
non-causal layers are used during representation learning. Rotary or ALiBi-style positional
encodings (Press et al., 2022) support long horizons. A synchronized event channel encodes
event types, (no event) and tokens at each grid step.

3. Lightweight heads. Separate heads support specific tasks: (i) forecasting with per-sensor
token logits and continuous projections, (ii) anomaly scoring via reconstruction residuals
and likelihood from token posteriors, and (iii) event query classification over sliding win-
dows. Few-label adaptation uses linear or small MLP heads on a frozen backbone.

4. Uncertainty calibration. Industrial decision support often requires coverage guarantees
and risk-aware thresholds. Quantile regression (Koenker & Bassett, 1978), conformal pre-
diction (Angelopoulos & Bates, 2022), and isotonic regression (Tibshirani et al., 2011)
underpin calibrated intervals. Token mixtures are converted to continuous prediction in-
tervals. Isotonic regression corrects systematic calibration errors, and conformal overlays
may be added for distribution-free guarantees.

5. Operator explanations. Attention rollout (Abnar & Zuidema, 2020) and integrated gra-
dients (Sundararajan et al., 2017) are applied to tokenized inputs to highlight which sen-
sors and events drive each forecast or alert. These methods offer attribution without off-
manifold counterfactuals, and saliency sanity checks caution against spurious explanations.

4 IMPLEMENTATION

The AFM implementation translates the design intent into a practical pipeline that can be deployed
across diverse assets and data sources. At its core, the model conditions raw multivariate time-series
signals and irregular events into a stable, tokenized representation that balances robustness with effi-
ciency. A shared transformer backbone then encodes these aligned sensor streams and event tokens,
while lightweight task-specific heads handle forecasting, anomaly detection, and event query clas-
sification with minimal labels. To ensure reliability in the field, the AFM augments its outputs with
calibrated uncertainty estimates, providing prediction intervals that operators can trust for safety-
critical thresholds. Finally, operator-oriented interpretability techniques—such as attention rollout
and integrated gradients—make the system transparent, highlighting which signals and events drive
each forecast or alert. Together, these components create a scalable, event-aware foundation model
that adapts efficiently across assets while supporting real-time decision making.

4.1 PROBLEM SETTING

Let X1:T ∈ RT×C be multivariate sensor streams with possibly irregular sampling, and E = (tj , ej)
time-stamped events (alarms, set-point changes, work orders). The AFM must (i) forecast X , (ii)
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detect anomalies and issue early warnings, and (iii) answer event queries (“did E occur in window
W ?”) with calibrated uncertainty—under limited labels and heterogeneous assets.

4.2 DATA CONDITIONING & PER-SENSOR TOKENIZATION

Resampling & scaling. Nonuniform sensor cadences are aligned to a grid {t}. For channel c, robust
scaling is defined by

zt,c =
xt,c − median

MAD
(1)

(or mean/MAE) and clipping to [−Rc, Rc] stabilize heavy tails.

Uniform mid-rise quantizer. With Bc bins and width ∆c = 2Rc/Bc, we map z 7→ k ∈
{0, . . . , Bc − 1} and dequantize at bin midpoints z̃ = −Rc +

(
k + 1

2

)
∆c. PAD and per-sensor

vocabularies avoid cross-sensor interference.

Hybrid residuals (optional). A small residual MLP encodes r = z − z̃ for fine corrections;
our bounds extend by adding residual approximation error. We stop–gradient through the quan-
tizer and train the residual head with a light ℓ1 penalty so the correction remains bounded and
entropy–friendly. In practice, we enable residuals on high–dynamic–range channels (e.g., flow, vi-
bration), which lowers dequantization MSE at a small bitrate/compute cost.

Positional encoding. Rotary or ALiBi-style encodings are used for long horizons. These relative
schemes extrapolate to longer inference windows without retraining and reduce error accumulation
under truncation. We also append calendar features (e.g., hour-of-day/day-of-week) and ∆t embed-
dings to capture weak seasonality and irregular sampling gaps.

Event channel. A synchronized event token stream encodes event types, and tokens at each grid
step. We represent durations via start/stop span tokens and align them with causal masking to avoid
future leakage. To handle sparsity, the event head uses a focal/label-smoothed objective, and its
probabilities are post-hoc calibrated (e.g., temperature or conformal) for reliable alarm rates.

4.3 HEADS FOR FORECASTING & ANOMALY DETECTION

Forecasting. The backbone outputs hidden states ht. Per-sensor token-logit heads predict

pθ(kt+τ,c | ht) (2)

for horizons τ = 1 : H . A continuous head projects the token mixture back to a real-valued
prediction x̂t+τ,c.

Anomaly detection. We combine predictive residuals

rt+τ,c = |xt+τ,c − x̂t+τ,c| (3)

and likelihood scores from token posteriors. Temporal smoothing (e.g., HMM or CRF) reduces
jitter; alarms fire when risk crosses calibrated thresholds. Field KPIs such as lead time and false-
alarm minutes are primary metrics.

4.4 EVENT TOKENS & TIME-ALIGNED QUERIES

We treat events as first-class tokens in a parallel channel. The event vocabulary is defined as Ve =
{E type} ∪ {NOE, PAD}. When an event e occurs at tj , we insert ⟨E = e⟩ at the aligned grid
step. For event querying, we add a dedicated head: given a sliding window W = [t, t + w), we
pool hu : y ∈ W (via mean or attention) and predict pϕ(e ∈ W ), using a multi-label sigmoid to
accommodate co-occurring events and an additional class to mitigate false positives. Finally, a
simple one-dimensional CRF smooths the window-wise posteriors into a time-of-event distribution
with associated uncertainty bands.

4.5 UNCERTAINTY: DISCRETE-TO-CONTINUOUS PREDICTION INTERVALS

Token mixtures induce a discrete distribution over bins; we convert them to continuous prediction
intervals for each sensor and horizon. Let lk denote token logits. For nominal level α, dequantized
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quantiles qα are obtained from the cumulative distribution, and raw intervals [qα/2, q1−α/2] are
formed. On a validation set, we fit a monotone mapping g : [0, 1] → [0, 1] such that observed
coverage at nominal u becomes calibrated g(u); final intervals are [qg(α/2), qg(1−α/2)]. Optional
conformal overlays can be layered atop the AFM forecasts for distribution-free guarantees.

4.6 OPERATOR-ORIENTED INTERPRETABILITY

For interpretability, we employ attention rollout with events, where per-layer attention matrices with
residual weights are multiplied to estimate token-to-output influence, with contributions aggregated
by channel and aligned to event markers. We also apply integrated gradients on embeddings: each
embedded token ek is treated as input, with the baseline set to a channel-median or PAD embed-
ding, and path-integral contributions are attributed to sensor and event tokens driving each alert.
Finally, we perform sanity checks using rank consistency under label-preserving jitter and synthetic
causal tests, and expose per-decision tables of the top-k contributing channels and events along with
saliency timelines in the operator UI.

5 EXPERIMENTS

5.1 DATASETS

To train and validate the AFM, we gathered a diverse dataset comprising multiyear operational
data from various equipment in the field, complemented by simulator-generated time-series data.
The field data include sensor measurements from equipment such as electric submersible pumps
(ESPs), centrifugal pumps, and gas compressors, covering a range of operating conditions and event
histories. Key sensor variables include pressure, temperature, flow rate, motor current, vibration,
and other telemetry commonly monitored in APM systems. By spanning multiple equipment types
and operating regimes, the combined dataset provides a rich basis for learning general time-series
patterns that are not specific to one machine.

Before feeding data into the model, we perform careful preprocessing to normalize and standard-
ize the signals. Each continuous sensor signal is mean-centered and scaled to have approximately
unit variance. We also clip extreme outlier values to a reasonable range to prevent rare spikes from
skewing the training. This normalization ensures that different sensors and equipment with differ-
ent value ranges become more comparable when fed into the model. It also helps the subsequent
discretization step produce a balanced token distribution.

We partition the data into 70-20-10 training, validation, and testing splits. For pretraining, we aggre-
gate data from all equipment classes in the training set, which may involve thousands of sequences
of varying lengths where our sequences are typically defined by operational cycles or fixed time
windows. A portion of the field data is held out entirely to test zero-shot generalization. Simulator-
driven data, which may include realistic failure scenarios or stress-test conditions, is primarily used
in training to expose the model to rare events that may be absent or scarce in historical data. All data
timestamps are aligned or resampled to a uniform time grid (e.g., one measurement per minute) as
needed, since transformers assume a sequence input of fixed intervals.

5.2 TRAINING

The model is conditioned for 5-10 epochs over the dataset using the Adam optimizer (Kingma & Ba,
2017) with a learning rate lr ∈ [10−3, 10−5] and batch size bs = 16. Parameterization is dependent
on model convergence. Linear warmup and cosine decay scheduling are applied, where the lr is
gradually increased during the initial epochs to stabilize training and then reduced to encourage
convergence. A StepLR scheduler decays lr by a factor of 0.1 every 3 epochs. To avoid overfitting
to the limited field datasets, we employ early stopping if the validation loss grew past a setpoint.
For strong representation learning, the model is trained to capture generalizable temporal and cross-
sensor structure, yielding embeddings that transfer effectively to downstream tasks with minimal
adaptation.

Each sensor channel is tokenized independently using quantile-based binning with 128 bins per
channel, resulting in a vocabulary size of 130 (i.e., 128 bins plus 2 special tokens). A context
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window length of 168 is utilized with tokenization and bin edges computed per channel for robust
discretization.

Training is performed on a cloud cluster of NVIDIA V100 GPUs with 32GB of HBM2 VRAM
(NVIDIA Corporation, 2017). Pretraining takes about 24 hours per epoch on a single GPU. All
models were implemented in PyTorch (Paszke et al., 2019) with multi-head attention modules for
efficiency and mixed precision training to speed up training and reduce memory usage.

5.3 RESULTS

In this section, we analyze forecasts generated by the AFM. We select four equipment types—as
described in Section 5.1—to demonstrate unique behavior in varying regimes.

Across all four assets in Figure 2, the AFM produces stable short-horizon forecasts after the 11:00
cutover with tight calibration within the 80% interval. In Figure 2a, the differential pressure and
bottom level series of the solvent contactor exhibit step-like regimes and short bursts of variability;
the model tracks these plateaus with minimal lag and widens its interval only when variance in-
creases near the foaming window. The contactor pressure also shows several set-point adjustments
after 12:30; forecasts adapt within a few minutes and the median trajectory stays centered on the
observed level, consistent with the low errors reported in Table 1.

Signals on the heat exchanger and solvent circulation pump illustrate distinct trend dynamics. Cold-
side inlet pressure drifts downward through the morning and then transitions to a mild uptrend after
cutover; the AFM anticipates the regime shift and maintains coverage through the oscillatory seg-
ment between 12:00–14:00. The hot-side inlet pressure behaves almost as a discrete control variable
with rapid toggling; despite the non-Gaussian, bi-modal structure, the model preserves amplitude
and duty-cycle characteristics, yielding very small point errors. For the pump, motor vibration
shows a gradual upward trend with superposed high-frequency noise; the interval expands appro-
priately with the noise floor, while suction pressure presents a near-constant baseline punctuated by
sharp negative spikes that are captured without excessive over-coverage.

(a) Solvent Contactor (b) Heat Exchanger

(c) Solvent Circulation Pump (d) Compressor

Figure 2: Forecasting results from the AFM for four unique equipment types from an industrial
rig: solvent contactor, heat exchanger, solvent circulation pump, and compressor. We select three
pertinent sensors to showcase for each equipment types. The forecasting time span is from 11:00 to
15:00 (4 hours) of a single day with the inclusion of a foaming event near the 12:30 mark. Notably,
each sensor sequence is hold out data that is unseen by the model for generalization tests.

Compressor temperatures provide a clean view of monotone trend plus noise. Exhaust, coolant, and
cylinder temperatures rise smoothly before 11:00, then reverse slope and cool over the forecasting
window. The AFM’s median follows the curvature with little phase lag, and the 80% band remains
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narrow on these low-noise channels; brief deviations near the green event window are absorbed
without sustained bias. This behavior contrasts with noisier rate-type measurements (e.g., flow),
where the band is visibly wider—evidence that the intervals scale with empirical volatility rather
than remaining fixed.

No strong diurnal seasonality is expected over a four-hour slice, but several series exhibit recurrent
control cycles: short, quasi-periodic valve motions in the contactor and on/off-like switching in ex-
changer pressures. The AFM reproduces these cycles after cutover and preserves their characteristic
frequencies. Importantly, event timing aligns with short-lived departures (i.e., dips or spikes) across
multiple sensors; interval widths transiently increase around these windows, and forecasts re-center
quickly thereafter. Taken together with the consistently low MAE/RMSE in Table 1, these plots sug-
gest the model generalizes across assets with different variance levels and regime structures, while
providing uncertainty that is sensitive to both noise and operating state.

Table 1: Forecasting evaluation metrics of the four equipment types seen in Figure 2.

Equipment Sensor MAE RMSE MSE MAPE

Solvent Contactor
Contactor Differential Pressure 0.001 0.001 0.000 0.0018
Contactor Pressure 0.127 0.156 0.024 0.0020
Contactor Bottom Level 0.128 0.155 0.024 0.0020

Heat Exchanger
Inlet Pressure (Cold) 0.049 0.062 0.004 0.0017
Outlet Pressure (Hot) 0.059 0.076 0.006 0.0020
Inlet Pressure (Hot) 0.002 0.002 0.000 0.0020

Solvent Circulation Pump
Motor Vibration NDE 0.009 0.011 0.000 0.0020
Suction Flowrate 0.195 0.236 0.056 0.0021
Suction Pressure 0.019 0.023 0.001 0.0020

Compressor
Engine Cylinder Exhaust 3l Temp 0.083 0.101 0.010 0.0019
Engine Coolant Temperature 0.097 0.118 0.014 0.0020
Compressor Cylinder Throw 2 Temp 0.092 0.111 0.012 0.0019

In addition to our experimentation, we provide a field case study in Appendix A.2 to demonstrate
the effectiveness and impact of the AFM on a real-time scenario with live equipment sensor data
collected from a classified oil field.

5.4 DEPLOYMENT

In deployment, the AFM operates in streaming mode with burst-tolerant buffering. Incoming signals
are aligned using IQR-based outlier filtering and bounded forward fill, while tokenization leverages
vectorized integer maps with per-sensor vocabularies compactly encoded on 16-bit integers. For
efficiency, models are exported via TorchScript (Paszke et al., 2019) or ONNX (Bai et al., 2019)
with cached hidden states to handle sliding windows, and lightweight heads can be quantized to
8-bit precision where feasible, yielding typical edge latencies on the order of tens of milliseconds.
Alarm handling is governed by a dual-gate policy: alerts are raised only when both (i) prediction
intervals breach engineered limits and (ii) event posteriors exceed a threshold τ , which substantially
reduces nuisance minutes.

Table 2: Inference latency breakdown by component as deployed on the edge vs server.

Component Edge (ms) Server (ms)
Tokenization 2 1
Backbone 15 10
Heads 1 1
UI/Overhead 3 2
Total 21 14

Governance is supported through model cards that document asset, site, and data-coverage metadata;
calibration drift monitors that track prediction interval coverage probability (PICP) (Sluijterman
et al., 2024); and human-in-the-loop overrides are provided for alignment with industry standards

8
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such as ANSI/ISA-18.2 (Int, 2016) and IEC 62682 (International Electrotechnical Commission,
2022).

6 CONCLUSION

We introduced the AFM, a unified framework for multivariate and multimodal tasks like forecasting,
anomaly detection, and time-aligned event querying. By focusing on event-aware calibration, we
revealed an interpretable backbone to power industrial APM workflows like root-cause triage, alarm
supression and maintenance planning, particularly in the oil and gas domain (e.g., ESPs, gas-lift,
compressor, dehydration trains). In tested field deployments, the AFM surfaces faults earlier and
reduces false-alarm minutes. We also demonstrate how to utilize (i) token logits with continuous
projections to produce point forecasts and calibrated prediction intervals; and (ii) decision logic
(e.g., residual-and-likelihood-based anomaly scores, temporal smoothing and dual-gate policy) to
cut nuisance minutes while preserving early-fault sensitivity.
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A APPENDIX

A.1 QUANTIZATION ERROR ANALYSIS

In this section, we show the following: (i) closed-form bounds on quantization error under clipping
with uniform mid-rise tokenization; (ii) a Lipschitz stability result for propagation of discretiza-
tion noise through the encoder—insights that guide bin counts, clip radii, and weight-norm control
for robustness on industrial data; and (iii) empirical scaling with pretraining tokens using a frozen
backbone and linear heads for few-label adaptation (i.e., industry-realistic).

A.1.1 PRELIMINARIES

To ground the AFM’s design in theory, we analyze the approximation error introduced when con-
tinuous sensor values are discretized into bins. By scaling and clipping each channel to a bounded
range and applying mid-rise quantization, we can bound how far the tokenized value deviates from
the original.

Lemmas and theorems provide closed-form guarantees on pointwise error, expected mean absolute
error (MAE), mean squared error (MSE), and mean absolute percentage error (MAPE) under safe
conditions. We also account for clipping effects when signals fall outside the chosen range, showing
how robust choices of bin count and radius balance quantization precision against saturation of
extreme values. These results provide practical guidance for selecting tokenization parameters and
justify the stability of the AFM’s discrete input representation across diverse assets.

Let z ∈ [−R,R] be a scaled, clipped value for a fixed channel (index c omitted) and ∆ = 2R/B.
Mid-rise quantization maps z to a midpoint z̃.

11

https://arxiv.org/abs/1703.01365
https://doi.org/10.1198/TECH.2010.10111
https://doi.org/10.1198/TECH.2010.10111
https://arxiv.org/abs/1711.00937
https://arxiv.org/abs/2106.13008
https://arxiv.org/abs/2106.13008
https://arxiv.org/abs/2210.02186
https://arxiv.org/abs/2210.02186
https://arxiv.org/abs/2205.13504
https://arxiv.org/abs/2010.02803
https://arxiv.org/abs/2012.07436
https://arxiv.org/abs/2201.12740
https://arxiv.org/abs/2201.12740


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Lemma A.1 (Pointwise error)

|z − z̃| ≤ ∆

2
(4)

The midpoint is at most half a bin width away from the original value.

Theorem A.1 (Expected MAE and MSE bounds) For any distribution supported on [−R,R],

E|z − z̃| ≤ ∆

2
, E(z − z̃)2 ≤ ∆2

12
(5)

Both bounds are tight for uniform mass within each bin. Integrating |u| and u2 over [−∆/2,∆/2]
and averaging across bins yields these expressions.

Corollary A.1 (Unscaled domain) If x = µ+ z/s and x̃ = µ+ z̃/s, then

E|x− x̃| ≤ R

sB
, E(x− x̃)2 ≤ R2

3s2B2
(6)

Theorem A.2 (APE bound with safe denominator) Define

MAPEm(x, x̃) =
|x− x̃|

max(|x|,m)
(7)

with m > 0. Then

EMAPEm(x, x̃) ≤ R

msB
(8)

The proof uses |x− x̃|/max(|x|,m) ≤ |x− x̃|/m together with Corollary A.1.

A.1.2 CLIPPING RESIDUALS

If the pre-scaled x has tails P(|x− µ|) > R/s = ϵ, the total absolute error splits into a quantization
component (bounded by R/(sB)) and a clipping component (bounded by the expected tail mass
plus the saturation term R/s). Robust choices of R (MAD/IQR based) trade saturation against
quantization. Appendix A.1 ablates B and R versus realized errors.

Figure 3: Empirical MAE/MSE vs. B and R (log-log)

A.1.3 LIPSCHITZ STABILITY

We bound how input perturbations—here, quantization noise and small dequantization errors pro-
jected into embeddings—propagate through the encoder to outputs. Let the token embeddings sat-
isfy x

(0)
t = E[tokt] ∈ Rd and let a perturbation et obey ∥et∥2 ≤ ϵ. Each transformer layer applies
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layer-normalization, multi-head self-attention (MHSA) with residual connection, and a feed-forward
network (FFN) with residual connection. Assuming layer-norm is 1-Lipschitz on bounded domains
and that spectral norms of projection matrices ∥WQ∥, ∥WK∥, ∥WV ∥, ∥WO∥ and FFN weights are
bounded, we obtain the following results.

A.1.4 SAMPLE-EFFICIENT ADAPTATION WITH FROZEN BACKBONES

Lemma A.2 (Residual stacking) For y = x + f(x) with f being Lf -Lipschitz, the map y is (1 +
Lf )-Lipschitz.

Proposition A.1 (Layer Lipschitz) For the l-th layer, the composition of MHSA-residual and FFN-
residual is Kl-Lipschitz with Kl ≤ (1+Lattn

l )(1+Lffn
l ), where Lattn

l ≲ Ls∥WQ∥∥WK∥∥WV ∥∥WO∥
and Lffn

l depends on the product of FFN spectral norms and activation Lipschitz constants. Here Ls

is the local Lipschitz constant of the softmax on bounded logits.

Theorem A.3 (Encoder stability) With L layers,

∥h(L) − h̃(L)∥2 ≤

(
L∏

l=1

KL

)
∥e∥2, (9)

and for a linear head W , the output deviation satisfies

∥o− õ∥2 ≤ ∥W∥

(
L∏

l=1

Kl

)
∥e∥2. (10)

The implication is that larger B (smaller quantization noise) and spectral control (smaller ∥W∥)
tighten stability.

Figure 4: Measured output deviation ∥o− õ∥2 versus injected embedding noise for different spectral
penalties.

A.1.5 SAMPLE-EFFICIENT ADAPTATION WITH FROZEN BACKBONES

Let ϕ :→ Rd be the pretrained AFM representation (frozen). Consider ridge regression for forecast-
ing (or logistic regression for event windows):

w = argminw

1

n

n∑
i=1

ℓ(yi, ⟨w, ϕ(xi)⟩) + λ∥w∥22. (11)
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Table 3: Spectral norms per layer vs. calibration error (uncalibrated).

Layer Spectral norm Coverage error (%)
Layer 1 3.5 2.0
Layer 2 4.0 2.5
Layer 3 4.2 3.0
Layer 4 5.0 3.5

Theorem A.4 (Generalization with effective dimension) Assume ∥ϕ(x)∥2 ≤ Rϕ and a Lipschitz
loss ℓ with constant Lℓ. Then with probability 1− δ,

E(ŵ)− E(w∗) ≲
LℓRϕ∥w∗∥2√

n

√
deff + λ∥w∥22, (12)

where deff = tr(Σ(Σ+λI)−1) is the effective dimension of ϕ under the data covariance Σ = E[ϕϕT ].
Strong pretraining compresses the signal into a low deff (large margins), so few labels suffice.

A.2 FIELD CASE STUDY

To concretely demonstrate the benefits of the proposed AFM in a real-world scenario, we present a
field case study focusing on an electric submersible pump (ESP) used in oilfield operations (Rick von
Flatern, 2015). ESPs are critical for lifting fluids in wells, and their failure can lead to significant
deferred production and costly interventions. They are instrumented with various sensors (e.g.,
intake pressure, motor temperature, vibration, current, etc.) and operators continuously monitor
these for signs of trouble. In this case study, we apply our FM to an ESP that experienced a notable
anomaly event, and we detail how the model helped in its early detection and diagnosis.

A.2.1 CASE BACKGROUND

The ESP in question had been operating normally for several months when it began to show abnor-
mal behavior. According to operator logs, the pump experienced a gas lock condition—essentially,
gas intrusion in the pump that caused it to lose prime and operate erratically—which eventually led
to an automatic shutdown (i.e., a protective trip) of the pump. Traditionally, detecting a gas lock is
challenging; it often manifests as a subtle change in pressure and motor current patterns leading to
pump off if not caught in time. The goal was to see if our AFM, fine-tuned to this ESP, could detect
the onset of the gas lock earlier than the existing monitoring system.

A.2.2 DEPLOYMENT

We fine-tuned the AFM on this ESP’s historical data and then ran it on streaming data from the pump
in an online fashion. The forecasting head was generating a one-hour ahead prediction continuously
for key sensors, and the anomaly detection head was computing an anomaly score in real-time. We
set an alert threshold for the anomaly score based on the validation data.

A.2.3 EARLY WARNING OF ANOMALY

As the pump began to gas lock, the intake pressure signal started fluctuating unpredictably and
trending downward, and the motor current showed spikes indicative of the pump struggling with
two-phase flow. The AFM’s forecast for intake pressure began to significantly deviate from the
actual readings about 90 minutes before the pump eventually tripped. Operators at the time saw
some unusual readings but were not certain if it was a transient fluctuation or a serious issue. The
AFM’s anomaly score crossed the threshold roughly at that point (90 minutes early), triggering an
alert. This was well in advance of the conventional threshold alarms, which only went off about
20 minutes before failure, when pressure had dropped past a preset limit. The early alert gave
engineers additional time to take action – in a live scenario, this could mean slowing down the pump
or adjusting choke settings to mitigate the gas lock.
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Figure 5: Residual-based anomaly score timeline on ESP data. An illustration of the anomaly score
produced by the fine-tuned AFM over time on the ESP pump test dataset. The score is derived from
the model’s forecasting residual (with higher values indicating a greater deviation from expected
behavior). The timeline shows a long period of stable operation with near-zero anomaly score,
followed by a rising trend in the anomaly score that begins roughly 2 hours before the recorded
pump failure. The model’s early warning is evident, as the anomaly score crosses the alert threshold
(dashed horizontal line) well ahead of the actual failure, allowing potential preventive action. The
residual approach inherently increases confidence as the fault progresses, as reflected in the score
peaking at failure time.

A.2.4 OUTCOME AND RESPONSE

With the advanced notice from the AFM system, in a real deployment scenario, the operations team
could have intervened earlier. For example, they may have reduced the pump speed or closed the
well’s choke momentarily to clear the gas lock, potentially preventing the full trip. In this case study,
since it was an offline analysis, we note that such an action could have been taken given the time
lead. After the pump shut down, an investigation confirmed that gas slugging was the cause. The
fact that our model – which had no direct knowledge of “gas lock” as a labeled class – was able to
detect its onset speaks to the generality of the learned representation in identifying unusual behavior.

Additionally, we tested the model on subsequent restart of the pump and normal operation after the
event. The anomaly scores returned to low levels, and the forecasting error decreased, indicating the
model had not drifted or permanently changed due to the anomaly (we effectively reset the model
state after the event). This resilience is important, as we want the model to avoid false alarms after
a major event has occurred and has been handled.

In summary, the ESP case study highlights the value of FMs in a high-stakes industrial context. The
model provided earlier and more confident detection of a developing failure than traditional methods
and did so by leveraging patterns learned from other equipment and simulations. This early warning
could translate to proactive maintenance actions that save time and cost. It also demonstrates that
even though the model is trained to be general, after fine-tuning, it can serve as an expert system on
a specific asset, with the advantage of having broader “experience” built in.

For completeness, we note that this is one case study; results may vary in other cases. Some anoma-
lies may be more subtle or faster-developing, challenging any model. However, this example pro-
vides a template for how the AFM can be deployed and the type of benefits it can offer in APM
workflows.

A.3 DISCLOSURE: USE OF GENERATIVE AI

We did not use generative AI to generate ideas, methods, or results. We used large-language-
model tools only to (i) help surface related work during the literature scan and (ii) suggest word-
ing/grammar edits and peer-review style comments. All technical content and conclusions were
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written and verified by the authors. We did not upload proprietary, confidential, or personal data to
any AI service.
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