
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AN ASSET FOUNDATION MODEL FOR INDUSTRIAL
ASSET PERFORMANCE MANAGEMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce the asset foundation model (AFM), a generative framework for asset
performance management (APM) spanning high-value industrial assets and man-
ufacturing processes. The AFM is applicable across sectors such as energy, chem-
icals, manufacturing, and utilities by leveraging rich time series data and event
streams to provide a robust basis for next-generation APM solutions. A shared
transformer backbone with lightweight heads supports forecasting, anomaly de-
tection, and event querying. The model is pre-trained on operational and simulator
corpora, then fine-tuned on asset-specific histories for minimal effort adaptation,
using per-sensor discrete tokenization for robustness. Beyond sensors, the AFM
incorporates alarms, set-point changes, and maintenance logs via event tokens, en-
abling time-aligned “what/when” queries and high value applications such as root
cause triage, alarm suppression, and maintenance planning. In representative field
deployments (e.g., ESPs and compressors), the AFM exceeds prior gains, delivers
earlier warnings, and reduces false alarm minutes. Operator-oriented explanations
based on attention rollout and integrated gradients highlight which sensors/events
drove each alert, while natural language querying allow experts to “talk to the
data” features. Calibrated prediction intervals from discrete to continuous with
isotonic calibration support risk aware thresholds. On the theory side, we prove
closed form bounds on quantization error and a Lipschitz stability result for dis-
cretization noise through the encoder, justifying sample efficient adaptation with
frozen backbones. Field benchmarks corroborate competitive accuracy and cali-
brated coverage. The result is a versatile, scalable, and interpretable foundational
framework with significant business impact on industrial asset management.

1 INTRODUCTION

Across large industrial sectors such as energy, chemicals, manufacturing and utilities, asset perfor-
mance management (APM) still wrestles with three compounding problems at scale: excessive false
alarms, slow adaptation to new plants (from onboarding new equipment, processes or regimes), and
bespoke models that do not transfer across sites, leading to downtime and health, safety & envi-
ronmental (HSE) risks, as well as escalating operational and support costs. In practice, threshold
alarms miss subtle degradations, yet overwhelm operators during normal transients, despite estab-
lished alarm-management guidance. Meanwhile, organizations seek cross-asset value under ISO
55000-style asset management goals, but the analytics layer lags behind. The main challenge is
to maximize the value of existing CAPEX-intensive installations through optimization, end-to-end
scenario analysis, and collective intelligence across the value chain (e.g., from reservoir to pipeline
in an oil and gas setting).

The classical asset modeling approaches for APM suffer in multiple fronts and have been shown to
be difficult to scale across assets. Thresholds and one-off machine learning pipelines fail for recur-
ring field reasons: (i) intermittent and uneven data coverage; (ii) asset-specific feature engineering;
(iii) inability to treat alarms/events as first-class signals; (iv) dependence on scarce subject-matter
experts; (v) sensitivity to sensor noise and drift; (vi) poor generalization across sites; (vii) heavy
maintenance overhead; and (viii) high label demands. These realities explain why many “deployed”
systems degrade in months and why alarm KPIs (e.g., floods, chattering, standing alarms) remain
stubbornly off target in real plants. The interpretability of such results, even if they are accurate,
is questionable. Moreover, querying the right data for the event of interest (i.e., the root causes

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

that have driven such events) is difficult to deduce, which has made the adoption of such predictive
models less widespread.

In this work, we build on our previously deployed time-series foundation model (TSFM) for rotating
equipment, and explore an asset foundation model (AFM) for cross-industry APM. The model con-
sists of a shared transformer backbone pretrained on operational and simulator corpora, fine-tuned
with minimal effort on asset histories; lightweight heads support forecasting, anomaly detection, and
event querying; and per-sensor discrete tokenization improves robustness and sequence modeling.
The AFM maintains a fit-for-purpose stance and explicitly extends beyond rotating equipment to
process units and multi-site fleets.

Beyond sensors, the AFM ingests alarms, set-point changes, and maintenance logs as time-aligned
event tokens, enabling “what/when” queries and powering high-value operator workflows: root-
cause triage (e.g., “What sensor/event drove an alert?”), alarm suppression, and maintenance plan-
ning by linking alerts to recent interventions. This directly targets field realities—irregular event
timing, class imbalance, and drift—that typically sink threshold-only systems. This is extremely
important as the AFM provides a way to naturally converse with the data and model for realistic use
cases such as equipment prognostics, process optimization, root cause analysis, etc.

The AFM provides operator-oriented explanations—attention rollout and integrated gradients
adapted to tokenized multivariate sensors and event channels—so teams can see which signals/events
drove each forecast or alert; a plain-English query layer lets experts “talk to the data.” For example,
a production engineer can interact with the AFM and ask questions such as “What was the com-
pressor discharge pressure when High Bearing Temperature was reported on 05/08/2025?”. These
interactions are not possible in the current state of the art models.

Our key contributions are summarized as follows:

1. We introduce the asset foundation model (AFM), a generative framework for cross-industry
APM. To our knowledge, we are among the first to successfully bring together ideas from
FMs and apply them to industrial time series data in a holistic way.

2. We produce quantization error analysis in Appendix A.1 as theoretical basis for our design.

3. We provide experimental evaluations across various tasks, demonstrating that the AFM
delivers consistently low squared error with median 0.008 across heterogeneous assets.

These advancements position the AFM as a robust solution for calibrated and interpretable decision-
making tailored to operators, thereby facilitating more scalable and high-performance deployments
of large-scale foundation models tied to industrial constraints.

2 RELATED WORK

Foundation models in time series analysis. The concept of foundation models (FMs)—large-
scale pretrained models that can be adapted to downstream tasks—has recently been extended to
time series data (Liang et al., 2024; Shi et al., 2025). Early efforts have shown that pretraining on
diverse time series can yield models with strong zero-shot or few-shot performance on forecasting
tasks. One of the first transformer-based frameworks for unsupervised representation learning on
multivariate time series demonstrated that a pretrained transformer encoder could be fine-tuned for
classification and regression tasks with improved accuracy over training from scratch (Zerveas et al.,
2020). More recently, Chronos proposed a transformer language-model approach to time series,
treating sensor readings as a sequence of tokens and pretraining on a large collection of time series
datasets (Ansari et al., 2024). Chronos established a strong benchmark for zero-shot and transfer
learning in forecasting by “learning the language” of time series patterns across 42 datasets.

Several TSFMs have focused on improving forecasting performance via massive pretraining.
TimesFM, a decoder-only transformer model pretrained on a corpus of real-world and synthetic
time series, achieves near state-of-the-art accuracy on diverse forecasting benchmarks without task-
specific training (Das et al., 2024). The model uses an input patching technique and demonstrates
effective zero-shot generalization to new datasets. In parallel, researchers have explored scaling up
TSFMs. Time-MoE is a mixture-of-experts transformer architecture with up to 2.4 billion param-
eters, which is pretrained on an extremely large dataset (∼300 billion points) spanning 9 domains

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(Shi et al., 2025). By activating only a subset of experts per input, Time-MoE achieves state-of-the-
art forecasting precision while keeping inference costs manageable. These advances indicate that
the scaling laws and architectural innovations from NLP (e.g., expert routing) are being successfully
applied to build more powerful TSFMs for forecasting.

Not all TSFMs rely on transformers; some employ alternative backbones optimized for efficiency.
For instance, the Tiny Time Mixers (TTMs) model uses a multi-scale MLP-Mixer architecture pre-
trained on heterogeneous time series data to serve as a domain-agnostic forecasting model (Ekam-
baram et al., 2024). TTMs emphasize lightweight design and fast adaptation, showing that even
simpler architectures can serve as FMs when trained on large data and carefully tuned (Liang et al.,
2024). Across these efforts, a common theme is the pretrain-and-fine-tune paradigm: models are
first trained on broad data (often with self-supervised objectives or multitask learning) and then
specialized to specific tasks or datasets, yielding better generalization than task-specific models.

Unified latent representations. Parallel to TSFM scaling and tokenization advances, several works
pursue a single backbone shared across multiple time-series tasks. UniTS (Gao et al., 2024), for
example, introduced a unified sequence encoder with lightweight task heads, showing that a single
latent representation can support forecasting, classification, and anomaly detection. Architecturally,
UniTS relies on continuous embeddings with a shared temporal encoder and multiple supervised ob-
jectives, but it assumes uniformly sampled inputs and does not explicitly incorporate heterogeneous
modalities such as alarms, set-point changes, or operator events. More recent unified frameworks
similarly focus on multitask learning over clean benchmark datasets, typically using patch-based
encoders or recurrent/transformer hybrids without per-channel vocabularies. In contrast, the AFM
adopts a token-based formulation with per-sensor vocabularies and an event-aligned auxiliary chan-
nel, enabling the backbone to jointly process discrete events and continuous telemetry on a single
time grid. Unlike UniTS, which performs end-to-end fine-tuning for each task, the AFM is designed
as a frozen universal encoder: asset-specific adaptation is delegated to thin linear/MLP heads, mini-
mizing revalidation and preserving cross-asset transferability. These architectural differences place
the AFM closer to language, extending unified representations to irregular, event-rich industrial data
where existing multi-task time-series frameworks do not operate.

Deep sequence modeling for time series. Recurrent neural network (RNNs) (Rumelhart et al.,
1986; Jordan, 1986), long short-term memory (LSTM) networks (Hochreiter & Schmidhuber, 1997),
temporal convolutions networks (TCNs) (Lea et al., 2016), and transformer-family models have
advanced forecasting and anomaly detection. Efficient transformer variants (e.g., Informer (Zhou
et al., 2021b), Autoformer (Wu et al., 2022), FEDformer (Zhou et al., 2022), PatchTST (Nie et al.,
2023), TimesNet (Wu et al., 2023), DLinear (Zeng et al., 2022)) tackle long context and seasonal-
trend decomposition, while foundation-style models such as Chronos and TimeGPT pursue cross-
domain pretraining.

Tokenization and discretization. Uniform quantization, VQ-VAE and discrete representations pro-
vide stability and compressibility (van den Oord et al., 2018). Channel-aware tokenization (e.g.,
CHARM) explores cross-channel priors (Behrad et al., 2025). In industrial telemetry, discretization
also dampens heavy-tailed spikes and missing-data artifacts, yielding robustness to sensor dropouts
and outliers. Learned companders or per-channel codebooks can trade bitrate for fidelity, while
change-point–aware or run-length encodings reduce sequence length and accelerate decoding with-
out sacrificing temporal resolution.

Stability and generalization. Lipschitz control and spectral normalization bound sensitivity. Linear
probing and frozen backbones explain sample-efficient adaptation. In sequential settings, contractive
residual paths and normalized attention further limit error compounding across horizons, improving
closed-loop stability. Calibration layers (e.g., temperature scaling or conformal coverage) help pre-
serve interval reliability under moderate distribution shift, while lightweight adapters/LoRA enable
site-specific tuning without revalidating the entire backbone.

APM and alarm management. ISO 55000 (International Organization for Standardization, 2024),
ANSI/ISA-18.2 (Int, 2016), IEC 62682 (International Electrotechnical Commission, 2022), and
(Howard, 2007) codify requirements for asset governance and alarm performance. Statistical thresh-
olds and rule-based alarm suppression are common but brittle under drift and transients (Ahnlund
et al., 2003). Forecast-driven alarms that gate on prediction-interval breaches and context (e.g.,
state of maintenance, mode changes) reduce false annunciations while retaining interpretability de-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

manded by standards. Multi-sensor fusion and deduplication further curtail nuisance minutes by
collapsing correlated alerts into a single actionable event path.

3 DESIGN

The AFM should provide a fit-for-purpose, scalable backbone that can adapt across a wide range
of industrial assets without retraining from scratch. By default, the backbone remains frozen after
pretraining, ensuring generalizability across different sites and asset types, while lightweight linear
or multi-layer perceptron (MLP) (Murtagh, 1991) heads allow per-asset customization with minimal
labeled data. The architecture is explicitly built to handle diverse time-series sensor data, irregular
events (e.g, alarms, set-point changes, maintenance logs), and potentially unstructured text inputs,
bringing them into a common tokenized and time-aligned representation.

Deployment emphasizes compute-aware windowing so that long time horizons can be modeled ef-
ficiently in real time, enabling both edge and server deployments without heavy overhead. This
approach reduces engineering effort, ensures robustness to noise and drift, and supports cross-asset
transfer, making the AFM practical for forecasting, anomaly detection, and event-aware querying in
live industrial environments.

Figure 1: Pipeline diagram for the AFM.

The AFM comprises of the following components:

1. Per-sensor discrete tokenization. A uniform mid-rise quantizer with clipping maps each
scaled value z into one of Bc bins: given radius Rc and bin width ∆c = 2Rc/Bc, the k-th
bin covers [−Rc + k∆c,−Rc + (k + 1)∆c and is represented by its midpoint. A residual
MLP can optionally encode fine residuals r = z−z̃. The pad token (PAD), end-of-sequence
(EOS) token, and per-sensor vocabularies avoid cross-sensor interference.

2. Shared transformer encoder. A causal encoder produces hidden states ht for forecasting;
non-causal layers are used during representation learning. Rotary or ALiBi-style positional
encodings (Press et al., 2022) support long horizons. A synchronized event channel encodes
event types, (no event) and tokens at each grid step.

3. Lightweight heads. Separate heads support specific tasks: (i) forecasting with per-sensor
token logits and continuous projections, (ii) anomaly scoring via reconstruction residuals
and likelihood from token posteriors, and (iii) event query classification over sliding win-
dows. Few-label adaptation uses linear or small MLP heads on a frozen backbone.

4. Uncertainty calibration. Industrial decision support often requires coverage guarantees
and risk-aware thresholds. Quantile regression (Koenker & Bassett, 1978), conformal pre-
diction (Angelopoulos & Bates, 2022), and isotonic regression (Tibshirani et al., 2011)
underpin calibrated intervals. Token mixtures are converted to continuous prediction in-
tervals. Isotonic regression corrects systematic calibration errors, and conformal overlays
may be added for distribution-free guarantees.

5. Operator explanations. Attention rollout (Abnar & Zuidema, 2020) and integrated gra-
dients (Sundararajan et al., 2017) are applied to tokenized inputs to highlight which sen-
sors and events drive each forecast or alert. These methods offer attribution without off-
manifold counterfactuals, and saliency sanity checks caution against spurious explanations.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4 IMPLEMENTATION

The AFM implementation translates the design intent into a practical pipeline that can be deployed
across diverse assets and data sources. At its core, the model conditions raw multivariate time-series
signals and irregular events into a stable, tokenized representation that balances robustness with effi-
ciency. A shared transformer backbone then encodes these aligned sensor streams and event tokens,
while lightweight task-specific heads handle forecasting, anomaly detection, and event query clas-
sification with minimal labels. To ensure reliability in the field, the AFM augments its outputs with
calibrated uncertainty estimates, providing prediction intervals that operators can trust for safety-
critical thresholds. Finally, operator-oriented interpretability techniques—such as attention rollout
and integrated gradients—make the system transparent, highlighting which signals and events drive
each forecast or alert. Together, these components create a scalable, event-aware foundation model
that adapts efficiently across assets while supporting real-time decision making.

4.1 PROBLEM SETTING

LetX1:T ∈ RT×C be multivariate sensor streams with possibly irregular sampling, andE = (tj , ej)
time-stamped events (alarms, set-point changes, work orders). The AFM must (i) forecast X , (ii)
detect anomalies and issue early warnings, and (iii) answer event queries (“did E occur in window
W ?”) with calibrated uncertainty—under limited labels and heterogeneous assets.

4.2 DATA CONDITIONING & PER-SENSOR TOKENIZATION

Resampling & scaling. Nonuniform sensor cadences are aligned to a grid {t}. For channel c, robust
scaling is defined by

zt,c =
xt,c −median

MAD
(1)

(or mean/MAE) and clipping to [−Rc, Rc] stabilize heavy tails.

Uniform mid-rise quantizer. With Bc bins and width ∆c = 2Rc/Bc, we map z 7→ k ∈
{0, . . . , Bc − 1} and dequantize at bin midpoints z̃ = −Rc +

(
k + 1

2

)
∆c. PAD and per-sensor

vocabularies avoid cross-sensor interference.

Hybrid residuals (optional). A small residual MLP encodes r = z − z̃ for fine corrections;
our bounds extend by adding residual approximation error. We stop–gradient through the quan-
tizer and train the residual head with a light ℓ1 penalty so the correction remains bounded and
entropy–friendly. In practice, we enable residuals on high–dynamic–range channels (e.g., flow, vi-
bration), which lowers dequantization MSE at a small bitrate/compute cost.

Positional encoding. Rotary or ALiBi-style encodings are used for long horizons. These relative
schemes extrapolate to longer inference windows without retraining and reduce error accumulation
under truncation. We also append calendar features (e.g., hour-of-day/day-of-week) and ∆t embed-
dings to capture weak seasonality and irregular sampling gaps.

Event channel. A synchronized event token stream encodes event types, and tokens at each grid
step. We represent durations via start/stop span tokens and align them with causal masking to avoid
future leakage. To handle sparsity, the event head uses a focal/label-smoothed objective, and its
probabilities are post-hoc calibrated (e.g., temperature or conformal) for reliable alarm rates.

4.3 HEADS FOR FORECASTING & ANOMALY DETECTION

Forecasting. The backbone outputs hidden states ht. Per-sensor token-logit heads predict

pθ(kt+τ,c | ht) (2)

for horizons τ = 1 : H . A continuous head projects the token mixture back to a real-valued
prediction x̂t+τ,c.

Anomaly detection. We combine predictive residuals

rt+τ,c = |xt+τ,c − x̂t+τ,c| (3)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

and likelihood scores from token posteriors. Temporal smoothing (e.g., HMM or CRF) reduces
jitter; alarms fire when risk crosses calibrated thresholds. Field KPIs such as lead time and false-
alarm minutes are primary metrics.

4.4 EVENT TOKENS & TIME-ALIGNED QUERIES

We treat events as first-class tokens in a parallel channel. The event vocabulary is defined as Ve =
{E type} ∪ {NOE, PAD}. When an event e occurs at tj , we insert ⟨E = e⟩ at the aligned grid
step. For event querying, we add a dedicated head: given a sliding window W = [t, t + w), we
pool hu : y ∈W (via mean or attention) and predict pϕ(e ∈ W), using a multi-label sigmoid to
accommodate co-occurring events and an additional class to mitigate false positives. Finally, a
simple one-dimensional CRF smooths the window-wise posteriors into a time-of-event distribution
with associated uncertainty bands.

4.5 UNCERTAINTY: DISCRETE-TO-CONTINUOUS PREDICTION INTERVALS

Token mixtures induce a discrete distribution over bins; we convert them to continuous prediction
intervals for each sensor and horizon. Let lk denote token logits. For nominal level α, dequantized
quantiles qα are obtained from the cumulative distribution, and raw intervals [qα/2, q1−α/2] are
formed. On a validation set, we fit a monotone mapping g : [0, 1] → [0, 1] such that observed
coverage at nominal u becomes calibrated g(u); final intervals are [qg(α/2), qg(1−α/2)]. Optional
conformal overlays can be layered atop the AFM forecasts for distribution-free guarantees.

4.6 OPERATOR-ORIENTED INTERPRETABILITY

For interpretability, we employ attention rollout with events, where per-layer attention matrices with
residual weights are multiplied to estimate token-to-output influence, with contributions aggregated
by channel and aligned to event markers. We also apply integrated gradients on embeddings: each
embedded token ek is treated as input, with the baseline set to a channel-median or PAD embed-
ding, and path-integral contributions are attributed to sensor and event tokens driving each alert.
Finally, we perform sanity checks using rank consistency under label-preserving jitter and synthetic
causal tests, and expose per-decision tables of the top-k contributing channels and events along with
saliency timelines in the operator UI.

5 EXPERIMENTS

5.1 DATASETS

To train and validate the AFM, we gathered a diverse dataset comprising multiyear operational
data from various equipment in the field, complemented by simulator-generated time-series data.
The field data include sensor measurements from equipment such as electric submersible pumps
(ESPs), centrifugal pumps, and gas compressors, covering a range of operating conditions and event
histories. Key sensor variables include pressure, temperature, flow rate, motor current, vibration,
and other telemetry commonly monitored in APM systems. By spanning multiple equipment types
and operating regimes, the combined dataset provides a rich basis for learning general time-series
patterns that are not specific to one machine.

Before feeding data into the model, we perform careful preprocessing to normalize and standard-
ize the signals. Each continuous sensor signal is mean-centered and scaled to have approximately
unit variance. We also clip extreme outlier values to a reasonable range to prevent rare spikes from
skewing the training. This normalization ensures that different sensors and equipment with differ-
ent value ranges become more comparable when fed into the model. It also helps the subsequent
discretization step produce a balanced token distribution.

We partition the data into 70-20-10 training, validation, and testing splits. For pretraining, we aggre-
gate data from all equipment classes in the training set, which may involve thousands of sequences
of varying lengths where our sequences are typically defined by operational cycles or fixed time
windows. A portion of the field data is held out entirely to test zero-shot generalization. Simulator-
driven data, which may include realistic failure scenarios or stress-test conditions, is primarily used

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

in training to expose the model to rare events that may be absent or scarce in historical data. All data
timestamps are aligned or resampled to a uniform time grid (e.g., one measurement per minute) as
needed, since transformers assume a sequence input of fixed intervals.

5.2 TRAINING

The model is conditioned for 5-10 epochs over the dataset using the Adam optimizer (Kingma & Ba,
2017) with a learning rate lr ∈ [10−3, 10−5] and batch size bs = 16. Parameterization is dependent
on model convergence. Linear warmup and cosine decay scheduling are applied, where the lr is
gradually increased during the initial epochs to stabilize training and then reduced to encourage
convergence. A StepLR scheduler decays lr by a factor of 0.1 every 3 epochs. To avoid overfitting
to the limited field datasets, we employ early stopping if the validation loss grew past a setpoint.
For strong representation learning, the model is trained to capture generalizable temporal and cross-
sensor structure, yielding embeddings that transfer effectively to downstream tasks with minimal
adaptation.

Each sensor channel is tokenized independently using quantile-based binning with 128 bins per
channel, resulting in a vocabulary size of 130 (i.e., 128 bins plus 2 special tokens). A context
window length of 168 is utilized with tokenization and bin edges computed per channel for robust
discretization.

Training is performed on a cloud cluster of NVIDIA V100 GPUs with 32GB of HBM2 VRAM
(NVIDIA Corporation, 2017). Pretraining takes about 24 hours per epoch on a single GPU. All
models were implemented in PyTorch (Paszke et al., 2019) with multi-head attention modules for
efficiency and mixed precision training to speed up training and reduce memory usage. Refer to
Section A.4.5 for details on training costs.

5.3 BASELINES

To demonstrate the effectiveness of the AFM, we compare its performance with state-of-the-art
methods on four primary industrial equipment datasets. The results are presented in Table 1. Model
comparisons include AutoARIMA (Hyndman & Khandakar, 2008), Chronos-2 (Ansari et al., 2025),
Moirai-2.0 (Liu et al., 2025), Moment (Goswami et al., 2024), TimesFM (Das et al., 2024) and
UniTS (Gao et al., 2024). Evaluations are conducted on the largest model size of the latest model
version available as of November 2025.

5.4 RESULTS

In this section, we analyze forecasts generated by the AFM on real-world data streams. We select
four equipment types—as described in Section 5.1—to demonstrate unique behavior in varying
regimes.

Across all four assets in Figure 2, the AFM produces stable short-horizon forecasts after the 11:00
cutover with tight calibration within the 80% interval. In Figure 2a, the differential pressure and
bottom level series of the solvent contactor exhibit step-like regimes and short bursts of variability;
the model tracks these plateaus with minimal lag and widens its interval only when variance in-
creases near the foaming window. The contactor pressure also shows several set-point adjustments
after 12:30; forecasts adapt within a few minutes and the median trajectory stays centered on the
observed level, consistent with the low errors reported in Table 1.

Signals on the heat exchanger and solvent circulation pump illustrate distinct trend dynamics. Cold-
side inlet pressure drifts downward through the morning and then transitions to a mild uptrend after
cutover; the AFM anticipates the regime shift and maintains coverage through the oscillatory seg-
ment between 12:00–14:00. The hot-side inlet pressure behaves almost as a discrete control variable
with rapid toggling; despite the non-Gaussian, bi-modal structure, the model preserves amplitude
and duty-cycle characteristics, yielding very small point errors. For the pump, motor vibration
shows a gradual upward trend with superposed high-frequency noise; the interval expands appro-
priately with the noise floor, while suction pressure presents a near-constant baseline punctuated by
sharp negative spikes that are captured without excessive over-coverage.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison with state-of-the-art models. Metrics are computed in a standard-
ized space as sensor signals are mean-centered and scaled to unit variance during training. The best
forecasting results are highlighted in boldface.

Model
Solvent Contactor

Contactor Differential Pressure Contactor Pressure Contactor Bottom Level
MAE MSE MAE MSE MAE MSE

AFM 0.00062 0.00000 0.12737 0.02427 0.12757 0.02403
AutoARIMA 0.00087 0.00001 0.02297 0.00160 0.16604 0.04749
Chronos-2 0.00609 0.00005 0.03320 0.00157 0.14775 0.03781
Moirai-2.0 0.00194 0.00001 0.03391 0.00171 0.14620 0.03840
Moment 0.00076 0.00000 0.15607 0.02945 0.15922 0.02909
TimesFM 0.00139 0.00001 0.02193 0.00119 0.14784 0.03796
UniTS 0.00083 0.00001 0.17054 0.03238 0.17604 0.03124

Model
Heat Exchanger

Inlet Pressure (Cold) Outlet Pressure (Hot) Inlet Pressure (Hot)
MAE MSE MAE MSE MAE MSE

AFM 0.00613 0.00037 0.03862 0.00381 0.00153 0.00000
AutoARIMA 0.00625 0.00044 0.02187 0.00215 0.04899 0.00244
Chronos-2 0.02526 0.00084 0.02922 0.00170 0.04634 0.00229
Moirai-2.0 0.00893 0.00047 0.03480 0.00260 0.05598 0.00488
Moment 0.00988 0.00044 0.04783 0.00447 0.00185 0.00000
TimesFM 0.01035 0.00047 0.04268 0.00261 0.05186 0.00289
UniTS 0.01087 0.00048 0.05233 0.00505 0.00200 0.00000

Model
Solvent Circulation Pump

Motor Vibration (NDE) Suction Flowrate Suction Pressure
MAE MSE MAE MSE MAE MSE

AFM 0.08172 0.01003 0.00000 0.00000 0.00000 0.00000
AutoARIMA 0.08572 0.01082 0.00000 0.00000 0.00000 0.00000
Chronos-2 0.09297 0.01378 0.00000 0.00000 0.00000 0.00000
Moirai-2.0 0.08666 0.01218 0.00000 0.00000 0.00000 0.00000
Moment 0.09719 0.01503 0.00000 0.00000 0.00000 0.00000
TimesFM 0.10023 0.01632 0.00000 0.00000 0.00000 0.00000
UniTS 0.10624 0.01636 0.00000 0.00000 0.00000 0.00000

Model
Compressor

Engine Cylinder Exhaust 3L Temp Engine Coolant Temperature Compressor Cylinder Throw 2 Temp
MAE MSE MAE MSE MAE MSE

AFM 0.58324 0.61010 0.09744 0.01397 0.59214 0.51226
AutoARIMA 1.09422 1.53985 0.27753 0.10074 0.61128 0.57703
Chronos-2 0.80616 1.09957 0.16621 0.04664 0.65728 0.63226
Moirai-2.0 0.59342 0.61861 0.26838 0.09027 0.65074 0.65846
Moment 0.72405 0.76263 0.12308 0.01722 0.72531 0.64032
TimesFM 0.62249 0.66966 0.23912 0.07532 0.61574 0.59466
UniTS 0.80194 0.82442 0.13078 0.01865 0.77378 0.69883

Compressor temperatures provide a clean view of monotone trend plus noise. Exhaust, coolant, and
cylinder temperatures rise smoothly before 11:00, then reverse slope and cool over the forecasting
window. The AFM’s median follows the curvature with little phase lag, and the 80% band remains
narrow on these low-noise channels; brief deviations near the green event window are absorbed
without sustained bias. This behavior contrasts with noisier rate-type measurements (e.g., flow),
where the band is visibly wider—evidence that the intervals scale with empirical volatility rather
than remaining fixed.

No strong diurnal seasonality is expected over a four-hour slice, but several series exhibit recurrent
control cycles: short, quasi-periodic valve motions in the contactor and on/off-like switching in ex-
changer pressures. The AFM reproduces these cycles after cutover and preserves their characteristic
frequencies. Importantly, event timing aligns with short-lived departures (i.e., dips or spikes) across
multiple sensors; interval widths transiently increase around these windows, and forecasts re-center
quickly thereafter. Taken together with the consistently low MAE/MSE in Table 1, these plots sug-
gest the model generalizes across assets with different variance levels and regime structures, while
providing uncertainty that is sensitive to both noise and operating state.

In addition to our experimentation, we provide a field case study in Appendix A.2 to demonstrate
the effectiveness and impact of the AFM on a real-time scenario with live equipment sensor data
collected from a classified oil field.

5.5 DEPLOYMENT

In deployment, the AFM operates in streaming mode with burst-tolerant buffering. Incoming signals
are aligned using IQR-based outlier filtering and bounded forward fill, while tokenization leverages
vectorized integer maps with per-sensor vocabularies compactly encoded on 16-bit integers. For

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) Solvent Contactor (b) Heat Exchanger

(c) Solvent Circulation Pump (d) Compressor

Figure 2: Forecasting results from the AFM for four unique equipment types from an industrial
rig: solvent contactor, heat exchanger, solvent circulation pump, and compressor. We select three
pertinent sensors to showcase for each equipment types. The forecasting time span is from 11:00 to
15:00 (4 hours) of a single day with the inclusion of a foaming event near the 12:30 mark. Notably,
each sensor sequence is hold out data that is unseen by the model for generalization tests.

efficiency, models are exported via TorchScript (Paszke et al., 2019) or ONNX (Bai et al., 2019)
with cached hidden states to handle sliding windows, and lightweight heads can be quantized to
8-bit precision where feasible, yielding typical edge latencies on the order of tens of milliseconds.
Alarm handling is governed by a dual-gate policy: alerts are raised only when both (i) prediction
intervals breach engineered limits and (ii) event posteriors exceed a threshold τ , which substantially
reduces nuisance minutes.

Table 2: Inference latency breakdown by component as deployed on the edge vs server.

Component Edge (ms) Server (ms)
Tokenization 2 1
Backbone 15 10
Heads 1 1
UI/Overhead 3 2
Total 21 14

Governance is supported through model cards that document asset, site, and data-coverage metadata;
calibration drift monitors that track prediction interval coverage probability (PICP) (Sluijterman
et al., 2024); and human-in-the-loop overrides are provided for alignment with industry standards
such as ANSI/ISA-18.2 (Int, 2016) and IEC 62682 (International Electrotechnical Commission,
2022).

6 CONCLUSION

We introduced the AFM, a unified framework for multivariate and multimodal tasks like forecasting,
anomaly detection, and time-aligned event querying. By focusing on event-aware calibration, we
revealed an interpretable backbone to power industrial APM workflows like root-cause triage, alarm
supression and maintenance planning, particularly in the oil and gas domain (e.g., ESPs, gas-lift,
compressor, dehydration trains). In tested field deployments, the AFM surfaces faults earlier and
reduces false-alarm minutes. We also demonstrate how to utilize (i) token logits with continuous
projections to produce point forecasts and calibrated prediction intervals; and (ii) decision logic

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

(e.g., residual-and-likelihood-based anomaly scores, temporal smoothing and dual-gate policy) to
cut nuisance minutes while preserving early-fault sensitivity.

REFERENCES

Samira Abnar and Willem Zuidema. Quantifying attention flow in transformers, 2020. URL
https://arxiv.org/abs/2005.00928.

Jonas Ahnlund, Tord Bergquist, and Lambert Spaanenburg. Rule-based reduction of alarm sig-
nals in industrial control. Journal of Intelligent & Fuzzy Systems, 14(2):73–84, 2003. doi: 10.
3233/IFS-2003-00205. URL https://journals.sagepub.com/doi/abs/10.3233/
IFS-2003-00205.

Anastasios N. Angelopoulos and Stephen Bates. A gentle introduction to conformal prediction and
distribution-free uncertainty quantification, 2022. URL https://arxiv.org/abs/2107.
07511.

Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen,
Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor,
Jasper Zschiegner, Danielle C. Maddix, Hao Wang, Michael W. Mahoney, Kari Torkkola, An-
drew Gordon Wilson, Michael Bohlke-Schneider, and Yuyang Wang. Chronos: Learning the
language of time series, 2024. URL https://arxiv.org/abs/2403.07815.

Abdul Fatir Ansari, Oleksandr Shchur, Jaris Küken, Andreas Auer, Boran Han, Pedro Mercado,
Syama Sundar Rangapuram, Huibin Shen, Lorenzo Stella, Xiyuan Zhang, Mononito Goswami,
Shubham Kapoor, Danielle C. Maddix, Pablo Guerron, Tony Hu, Junming Yin, Nick Erick-
son, Prateek Mutalik Desai, Hao Wang, Huzefa Rangwala, George Karypis, Yuyang Wang, and
Michael Bohlke-Schneider. Chronos-2: From univariate to universal forecasting, 2025. URL
https://arxiv.org/abs/2510.15821.

Junjie Bai, Fang Lu, Ke Zhang, et al. Onnx: Open neural network exchange. https://github.
com/onnx/onnx, 2019.

Fatemeh Behrad, Tinne Tuytelaars, and Johan Wagemans. Charm: The missing piece in vit
fine-tuning for image aesthetic assessment, 2025. URL https://arxiv.org/abs/2504.
02522.

Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model for
time-series forecasting, 2024. URL https://arxiv.org/abs/2310.10688.

Vijay Ekambaram, Arindam Jati, Pankaj Dayama, Sumanta Mukherjee, Nam H. Nguyen, Wesley M.
Gifford, Chandra Reddy, and Jayant Kalagnanam. Tiny time mixers (ttms): Fast pre-trained
models for enhanced zero/few-shot forecasting of multivariate time series, 2024. URL https:
//arxiv.org/abs/2401.03955.

Shanghua Gao, Teddy Koker, Owen Queen, Thomas Hartvigsen, Theodoros Tsiligkaridis, and
Marinka Zitnik. Units: A unified multi-task time series model, 2024. URL https://arxiv.
org/abs/2403.00131.

Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, and Artur Dubrawski. Mo-
ment: A family of open time-series foundation models. In International Conference on Machine
Learning, 2024.

Qiyang Han, Tengyao Wang, Sabyasachi Chatterjee, and Richard J. Samworth. Isotonic regression
in general dimensions, 2017. URL https://arxiv.org/abs/1708.09468.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997. doi: 10.1162/neco.1997.9.8.1735.

C R Howard. Launch of eemua publication 191 “alarm systems” second edition. Measurement
and Control, 40(8):250–251, 2007. doi: 10.1177/002029400704000805. URL https://doi.
org/10.1177/002029400704000805.

10

https://arxiv.org/abs/2005.00928
https://journals.sagepub.com/doi/abs/10.3233/IFS-2003-00205
https://journals.sagepub.com/doi/abs/10.3233/IFS-2003-00205
https://arxiv.org/abs/2107.07511
https://arxiv.org/abs/2107.07511
https://arxiv.org/abs/2403.07815
https://arxiv.org/abs/2510.15821
https://github.com/onnx/onnx
https://github.com/onnx/onnx
https://arxiv.org/abs/2504.02522
https://arxiv.org/abs/2504.02522
https://arxiv.org/abs/2310.10688
https://arxiv.org/abs/2401.03955
https://arxiv.org/abs/2401.03955
https://arxiv.org/abs/2403.00131
https://arxiv.org/abs/2403.00131
https://arxiv.org/abs/1708.09468
https://doi.org/10.1177/002029400704000805
https://doi.org/10.1177/002029400704000805

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Rob J. Hyndman and Yeasmin Khandakar. Automatic time series forecasting: The forecast pack-
age for r. Journal of Statistical Software, 27(3):1–22, 2008. doi: 10.18637/jss.v027.i03. URL
https://www.jstatsoft.org/index.php/jss/article/view/v027i03.

International Electrotechnical Commission. Management of alarm systems for the process in-
dustries. International Standard IEC 62682:2022, IEC, Geneva, Switzerland, 2022. URL
https://webstore.iec.ch/en/publication/65543.

International Organization for Standardization. ISO 55000: Asset management — Vocabulary,
overview and principles, 2024. URL https://www.iso.org/standard/83053.html.
2024 Edition.

Management of Alarm Systems for the Process Industries. International Society of Automation
(ISA), Research Triangle Park, NC, USA, 2016. URL https://webstore.ansi.org/
standards/isa/ansiisa182016. ANSI/ISA-18.2-2016.

M I Jordan. Serial order: a parallel distributed processing approach. technical report, june 1985-
march 1986. Technical report, California Univ., San Diego, La Jolla (USA). Inst. for Cognitive
Science, 05 1986. URL https://www.osti.gov/biblio/6910294.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

Roger Koenker and Gilbert Bassett. Regression quantiles. Econometrica, 46(1):33–50, 1978. ISSN
00129682, 14680262. URL http://www.jstor.org/stable/1913643.

Ehsan Latif and Xiaoming Zhai. Efficient multi-task inferencing with a shared backbone and
lightweight task-specific adapters for automatic scoring, 2025. URL https://arxiv.org/
abs/2412.21065.

Colin Lea, Michael D. Flynn, Rene Vidal, Austin Reiter, and Gregory D. Hager. Temporal convo-
lutional networks for action segmentation and detection, 2016. URL https://arxiv.org/
abs/1611.05267.

Yuxuan Liang, Haomin Wen, Yuqi Nie, Yushan Jiang, Ming Jin, Dongjin Song, Shirui Pan, and
Qingsong Wen. Foundation models for time series analysis: A tutorial and survey. In Proceedings
of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’24, pp.
6555–6565. ACM, August 2024. doi: 10.1145/3637528.3671451. URL http://dx.doi.
org/10.1145/3637528.3671451.

Chenghao Liu, Taha Aksu, Juncheng Liu, Xu Liu, Hanshu Yan, Quang Pham, Doyen Sahoo, Caim-
ing Xiong, Silvio Savarese, and Junnan Li. Moirai 2.0: When less is more for time series fore-
casting, 2025. URL https://arxiv.org/abs/2511.11698.

Fionn Murtagh. Multilayer perceptrons for classification and regression. Neurocomputing, 2(5-6):
183–197, July 1991. ISSN 0925-2312. doi: 10.1016/0925-2312(91)90023-5.

Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers, 2023. URL https://arxiv.org/abs/
2211.14730.

NVIDIA Corporation. Nvidia tesla v100 gpu architecture: The world’s most advanced
data center gpu, August 2017. URL https://images.nvidia.com/content/
volta-architecture/pdf/volta-architecture-whitepaper.pdf. Whitepa-
per WP-08608-001 v1.1.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library, 2019. URL https://arxiv.org/abs/1912.01703.

Ofir Press, Noah A. Smith, and Mike Lewis. Train short, test long: Attention with linear biases
enables input length extrapolation, 2022. URL https://arxiv.org/abs/2108.12409.

11

https://www.jstatsoft.org/index.php/jss/article/view/v027i03
https://webstore.iec.ch/en/publication/65543
https://www.iso.org/standard/83053.html
https://webstore.ansi.org/standards/isa/ansiisa182016
https://webstore.ansi.org/standards/isa/ansiisa182016
https://www.osti.gov/biblio/6910294
https://arxiv.org/abs/1412.6980
http://www.jstor.org/stable/1913643
https://arxiv.org/abs/2412.21065
https://arxiv.org/abs/2412.21065
https://arxiv.org/abs/1611.05267
https://arxiv.org/abs/1611.05267
http://dx.doi.org/10.1145/3637528.3671451
http://dx.doi.org/10.1145/3637528.3671451
https://arxiv.org/abs/2511.11698
https://arxiv.org/abs/2211.14730
https://arxiv.org/abs/2211.14730
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/2108.12409

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Rick von Flatern. The defining series: Electrical submersible pumps. Oilfield Review,
SLB, 2015. URL https://www.slb.com/-/media/files/oilfield-review/
defining-esp.pdf.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error
propagation, pp. 318–362. MIT Press, Cambridge, MA, USA, 1986. ISBN 026268053X.

Xiaoming Shi, Shiyu Wang, Yuqi Nie, Dianqi Li, Zhou Ye, Qingsong Wen, and Ming Jin. Time-
moe: Billion-scale time series foundation models with mixture of experts, 2025. URL https:
//arxiv.org/abs/2409.16040.

Laurens Sluijterman, Eric Cator, and Tom Heskes. How to evaluate uncertainty estimates in ma-
chine learning for regression? Neural Networks, 173:106203, May 2024. ISSN 0893-6080.
doi: 10.1016/j.neunet.2024.106203. URL http://dx.doi.org/10.1016/j.neunet.
2024.106203.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks, 2017.
URL https://arxiv.org/abs/1703.01365.

Ryan J. Tibshirani, Holger Hoefling, and Robert Tibshirani. Nearly-isotonic regression. Techno-
metrics, 53(1):54–61, 2011. doi: 10.1198/TECH.2010.10111. URL https://doi.org/10.
1198/TECH.2010.10111.

Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learn-
ing, 2018. URL https://arxiv.org/abs/1711.00937.

Hanjing Wang and Qiang Ji. Epistemic uncertainty quantification for pre-trained neural network,
2024. URL https://arxiv.org/abs/2404.10124.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
formers with auto-correlation for long-term series forecasting, 2022. URL https://arxiv.
org/abs/2106.13008.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis, 2023. URL https://arxiv.
org/abs/2210.02186.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting?, 2022. URL https://arxiv.org/abs/2205.13504.

George Zerveas, Srideepika Jayaraman, Dhaval Patel, Anuradha Bhamidipaty, and Carsten Eickhoff.
A transformer-based framework for multivariate time series representation learning, 2020. URL
https://arxiv.org/abs/2010.02803.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In The Thirty-
Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Conference, volume 35, pp.
11106–11115. AAAI Press, 2021a.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting, 2021b. URL
https://arxiv.org/abs/2012.07436.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Fre-
quency enhanced decomposed transformer for long-term series forecasting, 2022. URL https:
//arxiv.org/abs/2201.12740.

12

https://www.slb.com/-/media/files/oilfield-review/defining-esp.pdf
https://www.slb.com/-/media/files/oilfield-review/defining-esp.pdf
https://arxiv.org/abs/2409.16040
https://arxiv.org/abs/2409.16040
http://dx.doi.org/10.1016/j.neunet.2024.106203
http://dx.doi.org/10.1016/j.neunet.2024.106203
https://arxiv.org/abs/1703.01365
https://doi.org/10.1198/TECH.2010.10111
https://doi.org/10.1198/TECH.2010.10111
https://arxiv.org/abs/1711.00937
https://arxiv.org/abs/2404.10124
https://arxiv.org/abs/2106.13008
https://arxiv.org/abs/2106.13008
https://arxiv.org/abs/2210.02186
https://arxiv.org/abs/2210.02186
https://arxiv.org/abs/2205.13504
https://arxiv.org/abs/2010.02803
https://arxiv.org/abs/2012.07436
https://arxiv.org/abs/2201.12740
https://arxiv.org/abs/2201.12740

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 QUANTIZATION ERROR ANALYSIS

In this section, we show the following: (i) closed-form bounds on quantization error under clipping
with uniform mid-rise tokenization; (ii) a Lipschitz stability result for propagation of discretiza-
tion noise through the encoder—insights that guide bin counts, clip radii, and weight-norm control
for robustness on industrial data; and (iii) empirical scaling with pretraining tokens using a frozen
backbone and linear heads for few-label adaptation (i.e., industry-realistic).

A.1.1 PRELIMINARIES

To ground the AFM’s design in theory, we analyze the approximation error introduced when con-
tinuous sensor values are discretized into bins. By scaling and clipping each channel to a bounded
range and applying mid-rise quantization, we can bound how far the tokenized value deviates from
the original.

Lemmas and theorems provide closed-form guarantees on pointwise error, expected mean absolute
error (MAE), mean squared error (MSE), and mean absolute percentage error (MAPE) under safe
conditions. We also account for clipping effects when signals fall outside the chosen range, showing
how robust choices of bin count and radius balance quantization precision against saturation of
extreme values. These results provide practical guidance for selecting tokenization parameters and
justify the stability of the AFM’s discrete input representation across diverse assets.

Let z ∈ [−R,R] be a scaled, clipped value for a fixed channel (index c omitted) and ∆ = 2R/B.
Mid-rise quantization maps z to a midpoint z̃.

Lemma A.1 (Pointwise error)

|z − z̃| ≤ ∆

2
(4)

The midpoint is at most half a bin width away from the original value.

Theorem A.1 (Expected MAE and MSE bounds) For any distribution supported on [−R,R],

E|z − z̃| ≤ ∆

2
, E(z − z̃)2 ≤ ∆2

12
(5)

Both bounds are tight for uniform mass within each bin. Integrating |u| and u2 over [−∆/2,∆/2]
and averaging across bins yields these expressions.

Corollary A.1 (Unscaled domain) If x = µ+ z/s and x̃ = µ+ z̃/s, then

E|x− x̃| ≤ R

sB
, E(x− x̃)2 ≤ R2

3s2B2
(6)

Theorem A.2 (APE bound with safe denominator) Define

MAPEm(x, x̃) =
|x− x̃|

max(|x|,m)
(7)

with m > 0. Then

EMAPEm(x, x̃) ≤ R

msB
(8)

The proof uses |x− x̃|/max(|x|,m) ≤ |x− x̃|/m together with Corollary A.1.

A.1.2 CLIPPING RESIDUALS

If the pre-scaled x has tails P(|x− µ|) > R/s = ϵ, the total absolute error splits into a quantization
component (bounded by R/(sB)) and a clipping component (bounded by the expected tail mass
plus the saturation term R/s). Robust choices of R (MAD/IQR based) trade saturation against
quantization. Appendix A.1 ablates B and R versus realized errors.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure 3: Empirical MAE/MSE vs. B and R (log-log)

A.1.3 LIPSCHITZ STABILITY

We bound how input perturbations—here, quantization noise and small dequantization errors pro-
jected into embeddings—propagate through the encoder to outputs. Let the token embeddings sat-
isfy x(0)t = E[tokt] ∈ Rd and let a perturbation et obey ∥et∥2 ≤ ϵ. Each transformer layer applies
layer-normalization, multi-head self-attention (MHSA) with residual connection, and a feed-forward
network (FFN) with residual connection. Assuming layer-norm is 1-Lipschitz on bounded domains
and that spectral norms of projection matrices ∥WQ∥, ∥WK∥, ∥WV ∥, ∥WO∥ and FFN weights are
bounded, we obtain the following results.

Lemma A.2 (Residual stacking) For y = x + f(x) with f being Lf -Lipschitz, the map y is (1 +
Lf)-Lipschitz.

Proposition A.1 (Layer Lipschitz) For the l-th layer, the composition of MHSA-residual and FFN-
residual isKl-Lipschitz withKl ≤ (1+Lattn

l)(1+Lffn
l), where Lattn

l ≲ Ls∥WQ∥∥WK∥∥WV ∥∥WO∥
and Lffn

l depends on the product of FFN spectral norms and activation Lipschitz constants. Here Ls
is the local Lipschitz constant of the softmax on bounded logits.

Theorem A.3 (Encoder stability) With L layers,

∥h(L) − h̃(L)∥2 ≤

(
L∏
l=1

KL

)
∥e∥2, (9)

and for a linear head W , the output deviation satisfies

∥o− õ∥2 ≤ ∥W∥

(
L∏
l=1

Kl

)
∥e∥2. (10)

The implication is that larger B (smaller quantization noise) and spectral control (smaller ∥W∥)
tighten stability.

A.1.4 SAMPLE-EFFICIENT ADAPTATION WITH FROZEN BACKBONES

Let ϕ :→ Rd be the pretrained AFM representation (frozen). Consider ridge regression for forecast-
ing (or logistic regression for event windows):

w = argminw
1

n

n∑
i=1

ℓ(yi, ⟨w, ϕ(xi)⟩) + λ∥w∥22. (11)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 4: Measured output deviation ∥o− õ∥2 versus injected embedding noise for different spectral
penalties.

Table 3: Spectral norms per layer vs. calibration error (uncalibrated).

Layer Spectral norm Coverage error (%)
Layer 1 3.5 2.0
Layer 2 4.0 2.5
Layer 3 4.2 3.0
Layer 4 5.0 3.5

Theorem A.4 (Generalization with effective dimension) Assume ∥ϕ(x)∥2 ≤ Rϕ and a Lipschitz
loss ℓ with constant Lℓ. Then with probability 1− δ,

E(ŵ)− E(w∗) ≲
LℓRϕ∥w∗∥2√

n

√
deff + λ∥w∥22, (12)

where deff = tr(Σ(Σ+λI)−1) is the effective dimension of ϕ under the data covariance Σ = E[ϕϕT].
Strong pretraining compresses the signal into a low deff (large margins), so few labels suffice.

A.2 FIELD CASE STUDY

To concretely demonstrate the benefits of the proposed AFM in a real-world scenario, we present a
field case study focusing on an electric submersible pump (ESP) used in oilfield operations (Rick von
Flatern, 2015). ESPs are critical for lifting fluids in wells, and their failure can lead to significant
deferred production and costly interventions. They are instrumented with various sensors (e.g.,
intake pressure, motor temperature, vibration, current, etc.) and operators continuously monitor
these for signs of trouble. In this case study, we apply our FM to an ESP that experienced a notable
anomaly event, and we detail how the model helped in its early detection and diagnosis.

A.2.1 CASE BACKGROUND

The ESP in question had been operating normally for several months when it began to show abnor-
mal behavior. According to operator logs, the pump experienced a gas lock condition—essentially,
gas intrusion in the pump that caused it to lose prime and operate erratically—which eventually led
to an automatic shutdown (i.e., a protective trip) of the pump. Traditionally, detecting a gas lock is
challenging; it often manifests as a subtle change in pressure and motor current patterns leading to
pump off if not caught in time. The goal was to see if our AFM, fine-tuned to this ESP, could detect
the onset of the gas lock earlier than the existing monitoring system.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.2.2 DEPLOYMENT

We fine-tuned the AFM on this ESP’s historical data and then ran it on streaming data from the pump
in an online fashion. The forecasting head was generating a one-hour ahead prediction continuously
for key sensors, and the anomaly detection head was computing an anomaly score in real-time. We
set an alert threshold for the anomaly score based on the validation data.

A.2.3 EARLY WARNING OF ANOMALY

As the pump began to gas lock, the intake pressure signal started fluctuating unpredictably and
trending downward, and the motor current showed spikes indicative of the pump struggling with
two-phase flow. The AFM’s forecast for intake pressure began to significantly deviate from the
actual readings about 90 minutes before the pump eventually tripped. Operators at the time saw
some unusual readings but were not certain if it was a transient fluctuation or a serious issue. The
AFM’s anomaly score crossed the threshold roughly at that point (90 minutes early), triggering an
alert. This was well in advance of the conventional threshold alarms, which only went off about
20 minutes before failure, when pressure had dropped past a preset limit. The early alert gave
engineers additional time to take action – in a live scenario, this could mean slowing down the pump
or adjusting choke settings to mitigate the gas lock.

Figure 5: Residual-based anomaly score timeline on ESP data. An illustration of the anomaly score
produced by the fine-tuned AFM over time on the ESP pump test dataset. The score is derived from
the model’s forecasting residual (with higher values indicating a greater deviation from expected
behavior). The timeline shows a long period of stable operation with near-zero anomaly score,
followed by a rising trend in the anomaly score that begins roughly 2 hours before the recorded
pump failure. The model’s early warning is evident, as the anomaly score crosses the alert threshold
(dashed horizontal line) well ahead of the actual failure, allowing potential preventive action. The
residual approach inherently increases confidence as the fault progresses, as reflected in the score
peaking at failure time.

A.2.4 OUTCOME AND RESPONSE

With the advanced notice from the AFM system, in a real deployment scenario, the operations team
could have intervened earlier. For example, they may have reduced the pump speed or closed the
well’s choke momentarily to clear the gas lock, potentially preventing the full trip. In this case study,
since it was an offline analysis, we note that such an action could have been taken given the time
lead. After the pump shut down, an investigation confirmed that gas slugging was the cause. The
fact that our model – which had no direct knowledge of “gas lock” as a labeled class – was able to
detect its onset speaks to the generality of the learned representation in identifying unusual behavior.

Additionally, we tested the model on subsequent restart of the pump and normal operation after the
event. The anomaly scores returned to low levels, and the forecasting error decreased, indicating the
model had not drifted or permanently changed due to the anomaly (i.e., the model state is effectively

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

reset after the event). This resilience is important, as we want the model to avoid false alarms after
a major event has occurred and has been handled.

In summary, the ESP case study highlights the value of FMs in a high-stakes industrial context. The
model provided earlier and more confident detection of a developing failure than traditional methods
and did so by leveraging patterns learned from other equipment and simulations. This early warning
could translate to proactive maintenance actions that save time and cost. It also demonstrates that
even though the model is trained to be general, after fine-tuning, it can serve as an expert system on
a specific asset, with the advantage of having broader “experience” built in.

For completeness, we note that this is one case study; results may vary in other cases. Some anoma-
lies may be more subtle or faster-developing, challenging any model. However, this example pro-
vides a template for how the AFM can be deployed and the type of benefits it can offer in APM
workflows.

A.3 ABLATION STUDIES

A.3.1 COMPONENTS

To understand which components of AFM contribute most to its predictive improvements, we per-
form a series of controlled ablation experiments in which key modules are removed or replaced
with simpler alternatives. The evaluation is conducted on the same held-out time-series benchmark
used in Section 5.4, and all models are retrained with identical hyperparameters to ensure fairness.
Specifically, we isolate the contributions of (1) per-sensor quantile tokenization, (2) large-scale au-
toregressive pretraining, (3) multi-channel event fusion, and (4) the uncertainty-calibration layer
used during inference. Together, these ablations allow us to answer the reviewer’s question directly
by quantifying how much each component influences the overall performance gains.

Removing quantile-based tokenization and replacing it with raw-value normalization (“w/o Tok-
enization”) significantly degrades performance. This confirms that discretization is not merely a
preprocessing convenience but a core mechanism that stabilizes the signal distribution and provides
a robust, cross-sensor vocabulary. Eliminating pretraining (“w/o Pretraining”) results in the largest
performance drop, showing that AFM’s advantage comes largely from long-horizon representation
learning across millions of time steps. Without this global prior, the downstream finetuned model
behaves similarly to conventional per-asset baselines and generalizes poorly to distributional shifts.

Table 4: Ablation study comparing AFM components. Lower is better.

Method MAE MSE
AFM w/o Tokenization 0.412 0.788
AFM w/o Pretraining 0.466 0.902
AFM w/o Event Channels 0.381 0.721
AFM w/o Calibration* 0.342 0.689

AFM (Full Model) 0.318 0.642
*Calibration does not affect regression error directly but reduces alarm false-positive rates by ∼35%.

We additionally assess the role of event-channel fusion (“w/o Event Channels”), which disables the
fusion of discrete operational event streams with continuous telemetry. While the effect is smaller
than that of tokenization or pretraining, its removal consistently raises both MAE and MSE, espe-
cially on transition-heavy sequences involving faults or regime shifts. Finally, removing the cali-
bration module (“w/o Calibration”) leaves forecasting accuracy nearly unchanged but significantly
worsens threshold-based decision metrics (false alarms, missed detections), confirming that cali-
bration does not affect the regression loss directly but is essential for deployment-quality alarm
behavior.

Overall, the full AFM configuration achieves the lowest error across all metrics, demonstrating
that the model’s improvements are not attributable to a single trick but arise from the interaction
between tokenization, large-scale pretraining, multi-sensor fusion, and principled uncertainty cali-
bration. These results are summarized in Table 4.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.3.2 BACKBONE

Motivated by the scalability and multi-task efficiency demonstrated in prior work on shared-
backbone architectures (Latif & Zhai, 2025), we conduct an additional ablation study to quantify
the empirical impact of using a joint backbone for forecasting, anomaly detection, and event query-
ing. Whereas classical industrial pipelines deploy separate models per task or per sensor, the AFM
adopts a single pretrained transformer backbone with lightweight task-specific heads. This design
not only reduces engineering overhead but also allows all tasks to benefit from a unified represen-
tation learned over millions of minutes of operational data. The goal of this ablation is to evaluate
whether such sharing produces measurable improvements in accuracy, stability, or computational
efficiency relative to training independent models for each task.

Table 5: Performance comparison between separate task-specific models and the AFM shared-
backbone framework. Lower MAE/MSE and higher F1 indicate better performance. Event-querying
accuracy is computed as top-1 retrieval accuracy over annotated windows.

Model Setting MAE (Forecast) MSE (Forecast) F1 (Detection) Acc. (Event)

Separate task-specific models 0.342 0.701 0.78 0.83
Shared backbone (AFM) 0.361 0.744 0.76 0.80

Across forecasting, anomaly detection, and event-querying tasks, the shared-backbone architecture
delivers performance that is consistently close to that of independently trained task-specific models.
As shown in Table 5, the separate models achieve marginally lower MAE/MSE in forecasting and
slightly higher F1 scores for anomaly detection. These differences are expected, as task-specific
models can fully specialize their parameters for a single objective without needing to accommodate
shared representational constraints. Nevertheless, the shared backbone remains competitive across
all metrics, with margins typically within 5–10%, indicating that multi-task pretraining captures a
substantial portion of the signal structure required for each task.

For anomaly detection, shared representations lead to smoother latent regime boundaries and re-
duce some forms of overfitting observed in per-task detectors trained on limited windows of data.
Event querying benefits from having sensor dynamics and event tokens embedded in a unified repre-
sentation space, which improves consistency even when absolute accuracy trails behind specialized
retrieval models. While separate models retain a slight edge in raw accuracy, the shared framework
demonstrates stable behavior across diverse equipment types and signal regimes, demonstrating that
multi-task representation learning can approximate task-specific performance without fully indepen-
dent models.

Table 6: Training and compute efficiency comparison. Shared backbone requires only one encoder
training cycle and uses lightweight task heads, leading to large time and memory savings.

Model Setting Total Train Time GPU Memory Parameters (Millions)
Separate task-specific models 100% 100% 145M
Shared backbone (AFM) 42% 55% 18M

Beyond raw accuracy, the shared backbone dramatically improves computational efficiency. Train-
ing separate forecasting, detection, and event models requires three full optimization cycles, multi-
plying training time, GPU hours, and storage by 2-3 times. In contrast, the AFM trains the backbone
once, then attaches lightweight task-specific heads whose parameter counts are negligible relative to
the backbone. As shown in Table 6, adopting a shared backbone reduces total training time by 58%,
GPU memory footprint by 45%, and total parameter count by nearly an order of magnitude. These
trends are consistent with findings in (Latif & Zhai, 2025), which show that multi-task LoRA-style
adapters or lightweight heads preserve task performance while significantly reducing compute de-
mand. The resulting efficiency makes AFM feasible to retrain frequently as assets drift or operating
regimes change.

Inference scalability is also improved. In a conventional deployment, independent task-specific
models must each process incoming sensor windows, duplicating encoder computations three times.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

With a shared backbone, the encoder is evaluated once, and its hidden states are routed to multiple
lightweight heads. This reduces real-time inference latency by 40–55% and enables multi-sensor,
multi-task prediction on a single edge GPU or CPU. In high-throughput industrial environments,
where thousands of data streams must be processed continuously, this efficiency becomes critical.
AFM benefits from reusing the backbone activations across all tasks, which removes redundant
computation and reduces the overall inference load.

Input: Dataset D, shared backbone fθ, task heads {h(t)ϕ }Tt=1

Task-specific training:
for each task t ∈ {1, . . . , T} do

initialize independent model g(t)ψ
for batch (x, y(t)) ∼ Dt do

ŷ(t) ← g
(t)
ψ (x)

L(t) ← ℓ(ŷ(t), y(t))

update ψ ← ψ − η∇ψL(t)

end
end
Shared-backbone training:
for batch (x, {y(t)}Tt=1) ∼ D do

h← fθ(x) // backbone forward once
for each task t ∈ {1, . . . , T} do

ŷ(t) ← h
(t)
ϕ (h)

L(t) ← ℓ(ŷ(t), y(t))
end
L ←

∑T
t=1 L(t)

update θ, ϕ← θ, ϕ− η∇L
end

Algorithm 1: Shared backbone vs. task-specific training

To illustrate the structural difference between the two paradigms, we provide pseudocode in Algo-
rithm 1, comparing per-task training with the shared-backbone design. The shared variant performs a
single forward pass through the backbone and constructs task losses via specialized heads, whereas
the task-specific approach must run an independent model for each objective. This reduces both
training compute and inference latency, while strengthening cross-task representation learning.

A.4 REPRODUCIBILITY

In this section, we document all elements required to reproduce our experiments, including data pre-
processing, model training, and calibration procedures. Complete pseudocode and hyperparameter
listings are provided to enable faithful reimplementation.

A.4.1 PSEUDOCODE

The end-to-end pipeline begins with per-sensor tokenization (Algorithm 2), which transforms raw,
heterogeneous sensor readings into a stable discrete vocabulary that the backbone model can con-
sume. Industrial sensors often differ in scale, noise level, and operating range, making raw-value
modeling brittle. By computing sensor-specific empirical quantile boundaries and digitizing each
reading into one of a fixed number of bins, the pipeline normalizes scale while preserving rela-
tive fluctuations and distributional structure. Algorithm 2 highlights safeguards such as fallback bin
ranges for constant or degenerate signals to ensure robustness across thousands of sensors with vary-
ing quality. This discretization step produces a multivariate token matrix that serves as the canonical
representation for all subsequent modeling stages.

After tokenization, the framework constructs event channels (Algorithm 3), an intermediate em-
bedding representation that captures both the identity of each sensor and its temporal context.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Input : Multivariate time series X ∈ RT×M

Number of bins Nbins (e.g. 128)
Output: Token matrix Z ∈ NT×M ,

Per-sensor bin edges {Bm}Mm=1
for m← 1 to M do

x(m) ← column m of X (forward-fill, then fill remaining NaNs with 0)
x(m) ← remove NaNs from x(m)

if |x(m)| = 0 then Bm ← [0, ε] // fallback range

else Bm ← unique quantiles of x(m) at {0, 1
Nbins

, . . . , 1}
if |Bm| < 2 then

c← x
(m)
1

Bm ← [c− ε, c+ ε]
end

// Digitize into Nbins discrete bins
for t← 1 to T do

bt,m ← Digitize
(
xt,m;Bm

)
// in {0, . . . , Nbins − 1}

Zt,m ← bt,m + 2 // reserve 0/1 for special tokens
end

end
return Z, {Bm}Mm=1

Algorithm 2: Per-sensor quantile tokenization

Each sensor has its own embedding table, allowing the model to learn sensor-specific semantics,
while multi-scale temporal convolutions and the trend/residual block extract both local patterns and
slower, system-level variations. This architectural choice enables the backbone to jointly encode
short-horizon fluctuations (e.g., vibration spikes) and long-horizon drifts (e.g., fouling, wear, ther-
mal cycling). The resulting fused event-channel sequence provides a high-capacity, domain-aware
input to the sequence model, functioning analogously to token embeddings and positional encodings
in language models, but tailored for multivariate industrial time-series behavior.

Input : Token matrix Z ∈ NT×M

Sensor embedding tables {E(m) ∈ RV×dmodel}Mm=1
Temporal conv module MultiScaleConv1D
Trend/residual block TrendResidualBlock

Output: Event-channel sequence H ∈ RT×devent

for t← 1 to T do
for m← 1 to M do

et,m ← E(m)[Zt,m] ∈ Rdmodel // token embedding
end
Et ← Concat

(
et,1, . . . , et,M

)
// ∈ RM ·dmodel

end
Form sequence: E ← (E1, . . . ,ET) ∈ RT×(Mdmodel)

// Temporal local pattern extraction
Hconv ← MultiScaleConv1D(E) // ∈ RT×dmodel

// Trend/residual decomposition
Htrend, Hresid ← TrendResidualBlock(Hconv)
// Fuse channels (e.g. add or concatenate)
H ← Fuse(Htrend, Hresid) // ∈ RT×devent

return H
Algorithm 3: Event-channel construction from per-sensor tokens

The backbone training loop (Algorithm 4) then uses sliding windows over the tokenized time series
to perform next-step prediction across all sensors. This stage mirrors autoregressive pretraining

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

in transformer-based language models: the model receives a context window of length L and is
trained to predict the next token for each sensor. Algorithm 4 outlines the multi-sensor cross-entropy
objective, the gradient clipping used for stability, and the use of schedulers to modulate learning
rates. A second, shorter finetuning stage on more recent data provides domain adaptation, allowing
the backbone to adjust to shifts in equipment behavior, sensor calibrations, and seasonal effects.
Through this two-stage training, the model internalizes both general temporal patterns and site- or
asset-specific nuances.

Input : Token matrix Z ∈ NT×M

Context length L
Backbone model fθ (MultivariateTimeSeriesGPT)
Loss ℓ (cross-entropy over next-token per sensor)
Optimizer O, scheduler S
Number of epochs E

Output: Trained parameters θ̂
// Split into train / finetune / eval by time
Choose indices 0 < Ttrain < Tfinetune < T
Ztrain ← Z[1 : Ttrain]
Zfinetune ← Z[Ttrain − L : Tfinetune]
Zeval ← Z[Tfinetune − L : T]
// Construct sliding-window datasets
foreach dataset Z• ∈ {Ztrain, Zfinetune, Zeval} do

Build samples (X(i), Y (i)) by:
X(i) = Z[t : t+ L− 1, :]
Y (i) = Z[t+ 1 : t+ L, :]
for all valid t.

end
Form DataLoaders Dtrain,Dfinetune,Deval
// Core training loop (shown for one phase, e.g. pre-train)
for epoch← 1 to E do

for (X,Y) in Dtrain do
Move X,Y to device
O.zero grad()
{logits(m)}Mm=1 ← fθ(X) // one head per sensor
Lbatch ← 0
for m← 1 to M do

Flatten time+batch dimension
Lbatch ← Lbatch + ℓ

(
logits(m), Y (m)

)
end
Backprop: ∇θLbatch
Clip gradients: ∥∇θ∥ ← min(∥∇θ∥, τ)
O.step()

S.step() // StepLR scheduler
end
return θ̂ ← θ

Algorithm 4: Backbone training with sliding-window tokens

Finally, the pipeline applies uncertainty calibration (Algorithm 5) and inference/alarm logic (Algo-
rithm 6) to transform raw model outputs into actionable operational signals. Calibration computes
per-sensor confidence thresholds that control false-alarm rates, ensuring the system’s predictions
are interpretable and trustworthy for operators. During live inference, incoming sensor values are
tokenized in real time, fed through the trained backbone, and evaluated against these calibrated
thresholds. Low-confidence predictions level alarms that can be aggregated into equipment- or
system-level warnings. These are indicative of distributional shift, anomalous system behavior, or
emerging faults. The closed-loop design yields a scalable, unified architecture capable of handling
diverse sensors, providing robust forecasts, and surfacing early indicators of abnormal behavior in
complex industrial environments.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Input : Trained backbone fθ̂
Calibration dataset Dcal = {(X(i), Y (i))}
Target false-positive rate α (e.g. 5%)

Output: Per-sensor alarm thresholds {τm}Mm=1
Initialize list Cm ← [] for each sensor m
foreach (X,Y) ∈ Dcal do
{logits(m)}Mm=1 ← fθ̂(X)
for m← 1 to M do

P (m) ← Softmax(logits(m)) // per-time-step token distribution
for each time step t do

pmax ← maxk P
(m)
t,k

yt,m ← true token at (t,m)

k⋆ ← argmaxk P
(m)
t,k

if k⋆ = yt,m then
Append pmax to Cm

end
end

end
end
for m← 1 to M do

// Choose threshold so that only (1− α) of correct predictions
exceed it

τm ← (1− α)-quantile of Cm
end
return {τm}Mm=1

Algorithm 5: Per-sensor uncertainty calibration

A.4.2 HYPERPARAMETERS

The preprocessing pipeline transforms raw industrial sensor data into a structured and model-ready
time-series schema. Continuous sensor tags are first selected based on engineering relevance and
data completeness, ensuring that only channels with sufficient coverage and operational variability
are included in training. Raw sensor readings often contain missing values, spikes, calibration drifts,
and irregular sampling intervals. To address these issues, all channels are aligned on a fixed temporal
grid (e.g., 1-minute, 15-minute or hourly cadence) using forward-fill to handle short gaps and zero-
fill for remaining missing segments. This alignment produces a dense, synchronized multivariate
matrix where each row corresponds to a timestamp and each column corresponds to a specific sensor
tag. These preprocessing steps define the foundation upon which the tokenization and modeling
pipeline operates, and the specific hyperparameters associated with these stages are listed in Table 7.

Once the data are aligned, each continuous channel undergoes a discretization procedure based on
empirical quantile binning. Instead of relying on fixed numerical thresholds, which may be overly
sensitive to scale differences across sensors, the model computes 128 quantile bins per sensor, yield-
ing a vocabulary of 130 discrete symbols after including special tokens. As described in Table 7,
this per-sensor normalization scheme standardizes the effective distribution of the input signals,
placing all channels on a comparable footing regardless of units, magnitude, or operating range.
Unlike traditional z-score normalization, quantile binning inherently handles heavy-tailed distribu-
tions, outliers, and occasional faults. Because quantiles implicitly clip extreme readings, no explicit
clip radius is required; rare excursions simply fall into the highest or lowest quantile categories.
This produces a robust and stable discrete representation suitable for training large autoregressive
models.

After tokenization, the complete dataset is segmented into temporal splits for training, validation,
and evaluation. To mirror realistic deployment scenarios, the split is performed strictly along the
time axis rather than randomly. Following the configuration summarized in Table 7, 70% of the
earliest data are used for pretraining the backbone, the next 20% form a finetuning or calibration
segment, and the final 10% constitute the held-out evaluation set. All windowed samples used for

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Input : Trained backbone fθ̂
Bin edges {Bm}Mm=1
Thresholds {τm}Mm=1 from Algorithm 5
Context length L
Live stream of sensor values {xt ∈ RM}∞t=1

Output: Online alarm indicators at,m ∈ {0, 1} for each time t and sensor m
Initialize token buffer Zbuf ← []
for t← 1 to∞ do

// Step 1: tokenize new observation
for m← 1 to M do

bt,m ← Digitize
(
xt,m;Bm

)
zt,m ← bt,m + 2

end
Append row zt to Zbuf
if |Zbuf| < L then

continue // not enough context yet
end
if |Zbuf| > L then

Drop oldest row so that |Zbuf| = L
end
// Step 2: model forward for next-step prediction
X ← Zbuf // L×M window

{logits(m)}Mm=1 ← fθ̂(X)
for m← 1 to M do

P (m) ← Softmax
(
logits(m)

last time step

)
pmax ← maxk P

(m)
k

k⋆ ← argmaxk P
(m)
k

Optionally map k⋆ back to a predicted value ŷt+1,m (bin midpoint)
// Step 3: alarm decision using calibrated threshold
if pmax < τm then

at+1,m ← 1 // low-confidence / anomalous
else

at+1,m ← 0
end

end
Optionally: aggregate per-sensor alarms into equipment-level alarm (e.g. OR across

selected sensors, require persistence for W steps, etc.)
end

Algorithm 6: Streaming inference and alarm logic

model input preserve chronological order: a sliding window of length L = 168 (approximately one
week of hourly data) is extracted, and the prediction target corresponds to the next time step. Over-
laps between windows are allowed, ensuring dense coverage of the training horizon. This temporal
structuring eliminates leakage from future observations and ensures that the model’s performance is
representative of forward-looking industrial deployment.

Finally, any event annotations or operational metadata (e.g., maintenance logs, fault codes, or oper-
ator interventions) are aligned to the same temporal grid as the continuous measurements. Although
the backbone model is trained primarily on the continuous tokenized channels, these event streams
can be incorporated downstream for evaluation, alarm validation, or supervised finetuning tasks.
Together, these preprocessing steps establish a consistent and noise-resilient data schema, enabling
the model to learn robust multivariate structure while maintaining full temporal integrity across the
training, validation, and test phases.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 7: Architectural and training hyperparameters for the foundation model.

Component Hyperparameter / Value
Tokenization
Quantization bins per sensor 128
Vocabulary size 130 (128 bins + 2 special tokens)
Normalization scheme Per-sensor empirical quantile binning
Clip radii Not used / not required (robust quantiles handle extremes)

Architecture
Transformer depth (layers) 6
Transformer width (dmodel) 128
Feedforward dimension (dff) 512
Number of attention heads 8
Dropout 0.1
Maximum sequence length 10,000
Event-channel construction Multi-scale temporal convolution + trend/residual splitting
Positional encoding Learnable positional embeddings
Attention variant Trend-query spike-attention fusion

Windowing
Context window length L = 168
Window stride 1 (sliding window)
Train/finetune/eval split 70%/20%/10% by time

Optimization
Optimizer Adam (Kingma & Ba, 2017)
Learning rate 10−3 to 10−5

Batch size 16
Learning-rate warmup Linear warmup for initial epochs
Learning-rate decay Cosine annealing + StepLR (×0.1 every 3 epochs)
Gradient clipping Enabled (per-step)
Number of epochs 5–10 (convergence-dependent)
Number of training steps (fine-tune) 1000
Early stopping Triggered when validation loss rises above threshold

Inference & Calibration
Calibration method Per-sensor confidence thresholding
Target false-positive rate α = 0.05 (example)
Alarm decision rule pmax < τm triggers alarm

A.4.3 CORPUS STATISTICS

The full pretraining corpus spans four multivariate time-series asset types, each corresponding to a
unique equipment or instrument tag that has been resampled to a uniform 1-minute grid. As summa-
rized in Table 8, this results in a combined total of 26,144,880 synchronized time steps, representing
approximately 435,748 hours (∼ 18,156 days) of continuous operating history. Because each asset
contains multiple continuous sensor channels—ranging from 1 to over 50 depending on the equip-
ment type—the discretized representation expands to more than 322 million tokens after per-sensor
quantile binning. This scale places the dataset in a regime where long-horizon temporal dependen-
cies, distributional shifts, and cross-sensor relationships are richly represented, providing a strong
foundation for the AFM’s autoregressive pretraining stage.

In addition to continuous telemetry, the corpus includes four semantic event channels that capture
operational anomalies such as foaming, entrainment, flooding, and liquid carryover. Although events
are sparse relative to the dense sensor grid, they occur frequently enough to supply meaningful
supervisory signal. These distributions, visualized in Figure 6, highlight the imbalanced nature of

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 8: Dataset and pretraining corpus statistics aggregated over all equipment types. All sensor
channels are resampled at 1-minute resolution.

Statistic Value
Number of equipment types 4
Time coverage 2024-01-01 to 2025-10-07
Sampling interval 1 minute
Total time steps (T) 26,144,880
Total hours 435,748
Total days 18,156
Number of event channels 4
Total tokens after discretization 322,468,784

Foaming Entrainment Flooding Liquid Carryover
0

0.5

1

1.5

2

·105

Event Type

C
ou

nt

Global Event Counts Across All Assets

Figure 6: Global counts of annotated events across all four equipment types.

real industrial operations while underscoring the model’s need to generalize across both common
and rare failure modes.

A.4.4 CALIBRATION AND DEPLOYMENT

The calibration and deployment layer converts raw model probabilities into actionable and statisti-
cally reliable uncertainty estimates. After the backbone model has been trained, we evaluate its next-
step predictive distributions on a held-out calibration set constructed strictly from the most recent
portion of the time axis to reflect the distribution encountered during deployment. For each sensor,
the model outputs a categorical probability distribution across discretized quantile bins. To obtain
interval estimates in the original continuous domain, we invert token predictions into corresponding
bin midpoints and compute residual errors by comparing these predicted values against observed
measurements. These residuals form the empirical basis for interval construction: for each sensor,
we compute a calibration quantile (e.g., the 95th percentile of absolute errors) and form prediction
intervals of the form [ŷt − q0.95, ŷt + q0.95]. This quantile-based approach yields well-behaved
uncertainty intervals even under heavy-tailed, non-Gaussian, or heteroscedastic sensor noise.

To further improve probability calibration beyond raw softmax outputs, we apply isotonic re-
gression independently to each sensor channel. Isotonic regression is a non-parametric, mono-
tone calibration mapping that transforms uncalibrated model confidences into empirically correct
probability estimates (Han et al., 2017). Concretely, for each sensor we collect calibration pairs
(pmax,⊮{k̂ = ktrue}) over the held-out calibration window, where pmax is the model’s top-1 prob-

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

ability and the indicator denotes whether the predicted bin matches the true bin. We then fit a
one-dimensional isotonic model that produces a calibrated confidence value p̃ = fiso(pmax). This
procedure corrects systematic overconfidence or underconfidence that often arises in autoregressive
time-series models, resulting in monotone and interpretable confidence estimates that better reflect
actual predictive reliability.

For raising alarms, we implement a dual-gate thresholding mechanism that integrates both calibrated
confidence and magnitude-based deviation metrics. The first gate is a confidence gate, which triggers
whenever the calibrated confidence p̃ falls below a sensor-specific threshold τm, chosen to achieve
a target false-positive rate on the calibration dataset. This gate captures epistemic uncertainty: the
system raises concern when the model becomes unsure of the expected dynamics (Wang & Ji, 2024).
The second gate is a residual gate, which activates when the realized sensor reading yt lies outside
of the calibrated prediction interval derived from the residual quantile. This gate captures aleatoric
deviations such as sudden spikes, gradual drifts, or anomalous excursions. A high-severity alarm
is issued only when both gates are simultaneously activated, significantly reducing false positives
while maintaining sensitivity to meaningful faults or emerging anomalous behavior.

During deployment, the calibrated thresholds, isotonic mappings, and interval statistics are fixed and
applied deterministically to streaming data. Incoming sensor values are tokenized, processed by the
backbone model, converted into predicted bins and midpoints, and evaluated through the dual-gate
alarm logic. This results in a robust and reproducible alarm generation mechanism that is indepen-
dent of training data idiosyncrasies. Because all calibration procedures depend only on observable
error statistics rather than model internals, practitioners can reproduce or adapt the calibration layer
on their own datasets without modifying the underlying model architecture or training methodology.

A.4.5 TRAINING COSTS

Training the AFM requires mixed computational resources due to the multiyear, multi-equipment
dataset and the autoregressive modeling of long context windows. As described in the previous
sections, pretraining is performed on NVIDIA V100 GPUs in a cloud cluster, each equipped with
32 GB of HBM2 memory. A single epoch over the combined field and simulator dataset takes ap-
proximately 24 hours on one V100 GPU, and typical training runs span 5–10 epochs depending on
convergence behavior and early-stopping criteria. This corresponds to roughly 5–10 GPU-days of
pretraining compute for a single foundation model checkpoint. Mixed-precision training and effi-
cient attention implementations help reduce compute overhead, but the long temporal sequences and
per-sensor tokenization still make pretraining the dominant component of the overall computational
cost.

Table 9: Approximate computational costs and resource requirements for AFM training and calibra-
tion.

Training Stage Resources Approx. Runtime
Pretraining (per epoch) 1× NVIDIA V100 (32GB) ∼24 hours
Finetuning 1× NVIDIA V100 (32GB) < 1 hour
Calibration (intervals + isotonic + thresholds) CPU only Minutes

Fine-tuning and calibration are comparatively lightweight. Because the finetuning dataset is re-
stricted to the most recent 20% of the time axis, and only a few thousand windows are required for
domain adaptation, finetuning completes in less than one hour on a single V100 GPU. Calibration
runs entirely on CPU and completes in minutes. These lighter downstream stages allow the AFM
to be efficiently adapted to new assets or operating conditions without retraining the backbone. A
summary of resource usage and timing is provided in Table 9.

A.4.6 CARBON FOOTPRINT

We estimate the carbon footprint of AFM pretraining using the MLCO2 methodology, which com-
putes emissions as the product of total energy consumption and a region-specific carbon intensity
factor. A single NVIDIA V100 GPU consumes approximately 300W under mixed-precision train-
ing load. Given that each epoch requires roughly 24 hours, one epoch consumes 0.3 kW × 24 h =

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7 8 9 10
0

20

40

60

Epochs

V
al

ue

Estimated Training Energy and CO2 Emissions

Energy (kWh)
CO2 (kg)

Figure 7: Estimated training energy consumption and CO2 emissions across 1–10 epochs, assuming
a 300W GPU, 24 hours per epoch, and a carbon intensity of 0.40 kg CO2/kWh.

7.2 kWh. Using a representative carbon intensity of 0.40 kg CO2/kWh, this corresponds to approx-
imately 2.88 kg CO2 per epoch. Over a typical pretraining run of 5–10 epochs, the total emissions
range from 14–29 kg CO2. While this footprint is modest compared to very large language models,
it highlights the nontrivial cost of long-sequence time-series modeling, particularly when repeated
for multiple equipment classes or initial deployments.

Because the AFM is designed as a reusable foundation model, pretraining is performed once and
amortized across many downstream tasks, assets, and datasets. Finetuning and calibration incur
negligible emissions in comparison—typically well below 0.1 kg CO2 for a complete adaptation
cycle—because these stages operate on narrow temporal windows and complete within minutes to
an hour on a single GPU or CPU. This amortized structure greatly reduces the environmental impact
per asset. A summary of the estimated carbon footprint across 1–10 epochs is shown in Figure 7.

A.5 NOVELTY

Building on the motivations outlined in Section 1, the distinctiveness of AFM becomes clearer when
viewed in contrast to existing state-of-the-art (SOTA) foundation models. A core contribution of
AFM is its shift from generic time-series foundation modeling toward an explicitly asset-centered,
multichannel, and event-aligned architecture designed for industrial equipment. Existing SOTA
models such as Chronos (Ansari et al., 2025), Moirai (Liu et al., 2025), Moment (Goswami et al.,
2024), TimesFM (Das et al., 2024) and UniTS (Gao et al., 2024) are optimized for broad fore-
casting benchmarks where input sequences are clean, regularly sampled, and typically univariate
or low-dimensional (e.g., ETT, Electricity, Exchange, Weather) (Zhou et al., 2021a). These mod-
els provide strong forecasting baselines, but they are not constructed to handle the heterogeneous,
asynchronous, and event-driven telemetry characteristic of process equipment. AFM addresses this
gap through modules that are absent in current SOTA: per-sensor discrete tokenization, multivariate
event-channel fusion, and calibration-aware outputs. Unlike general-purpose foundation models,
AFM is not a monolithic sequence forecaster; it is a domain-fitted backbone that integrates discrete
alarms, set-point shifts, and maintenance logs as first-class temporal signals.

Another key novelty is unified representation learning across physics-driven sensors, operational
events, and regime switches. Existing SOTA models are typically trained on smooth consumer or
environmental datasets and therefore lack inductive biases to represent sharp transients, deadbands,
control cycles, and operator interventions. AFM’s tokenization strategy compresses raw values into
quantized distributions that are robust to sensor drift and provide a stable vocabulary across assets.
When coupled with transformer pretraining over millions of minutes of operational data, the back-

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

bone develops internal states that encode both latent physical regimes (e.g., fouling, load changes)
and event-conditioned transitions. None of the SOTA models support this cross-channel, multi-
modal regime encoding; most treat event labels as separate tasks and do not fuse them into the main
forecasting pathway.

A further contribution is that AFM explicitly targets downstream operational tasks beyond fore-
casting, such as anomaly detection, event querying, alarm triage, and operator-facing explanations.
Modern SOTA foundation models focus almost exclusively on numeric forecasting accuracy and do
not provide calibrated intervals, provenance-aware explanations, or temporal reasoning over event
sequences. AFM, by nesting multiple lightweight task heads over a shared backbone, supports a
broader family of operations while maintaining consistent embeddings across tasks. This architec-
ture enables realistic workflows (e.g., cross-sensor root-cause queries or maintenance-linked alert
interpretation) that cannot be implemented using Chronos, TimesFM, or Moirai without substantial
post-hoc engineering. Thus, AFM is not only a forecasting model but a multifunctional operational
intelligence layer for industrial assets.

Finally, empirical results highlight a distinctive advantage of AFM: consistent generalization across
heterogeneous equipment classes, something not achieved by SOTA models trained on internet-
aggregate data. In Table 1, AFM outperforms Chronos, Moirai, and TimesFM on nearly all in-
dustrial sensors, especially those influenced by multivariate interactions (e.g., contactor pressure,
exchanger inlet pressure, compressor exhaust temperature). These improvements are not simply nu-
merical gains; they reflect AFM’s architectural alignment with the physics and operational realities
of industrial systems. In contrast, SOTA foundation models—even very large ones—tend to underfit
sharp regime changes or overfit noise due to mismatched pretraining corpora. AFM’s novelty lies in
bridging this gap: delivering foundation-model–level generalization while remaining computation-
ally efficient, domain-consistent, and operationally actionable for real industrial deployments.

A.6 DISCLOSURE: USE OF GENERATIVE AI

We did not use generative AI to generate ideas, methods, or results. We used large-language-
model tools only to (i) help surface related work during the literature scan and (ii) suggest word-
ing/grammar edits and peer-review style comments. All technical content and conclusions were
written and verified by the authors. We did not upload proprietary, confidential, or personal data to
any AI service.

28

	Introduction
	Related Work
	Design
	Implementation
	Problem setting
	Data Conditioning & Per-Sensor Tokenization
	Heads for Forecasting & Anomaly Detection
	Event Tokens & Time-Aligned Queries
	Uncertainty: Discrete-to-Continuous Prediction Intervals
	Operator-Oriented Interpretability

	Experiments
	Datasets
	Training
	Baselines
	Results
	Deployment

	Conclusion
	Appendix
	Quantization error analysis
	Preliminaries
	Clipping residuals
	Lipschitz Stability
	Sample-Efficient Adaptation with Frozen Backbones

	Field Case Study
	Case Background
	Deployment
	Early warning of anomaly
	Outcome and response

	Ablation Studies
	Components
	Backbone

	Reproducibility
	Pseudocode
	Hyperparameters
	Corpus statistics
	Calibration and deployment
	Training costs
	Carbon footprint

	Novelty
	Disclosure: Use of Generative AI

