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Abstract

The Branching Gaussian Process (BGP) model is a modification of the Overlapping Mixture
of Gaussian Processes (OMGP) where latent functions branch in time. The BGP model
was introduced as a method to model bifurcations in single-cell gene expression data and
order genes by inferring their branching time parameter. A limitation of the current BGP
model is that the assignment of observations to latent functions is inferred independently
for each output dimension (gene). This leads to inconsistent assignments across outputs
and reduces the accuracy of branching time inference. Here, we propose a multivariate
branching Gaussian process (MBGP) model to perform joint branch assignment inference
across multiple output dimensions. This ensures that branch assignments are consistent and
leverages more data for branching time inference. Model inference is more challenging than
for the original BGP or OMGP models because assignment labels can switch from trunk to
branch lineages as branching times change during inference. To scale up inference to large
datasets we use sparse variational Bayesian inference. We examine the effectiveness of our
approach on synthetic data and a single-cell RNA-Seq dataset from mouse haematopoietic
stem cells (HSCs). Our approach ensures assignment consistency by design and achieves
improved accuracy in branching time inference and assignment accuracy.

1 Introduction

Many algorithms have been developed to uncover trajectories from single-cell gene expression data (Saelens
et al., 2019). Genome-scale single-cell experiments are destructive, so that time information is lost, and tra-
jectory inference provides a useful approach to associate cells with inferred time labels (pseudotimes) to help
recover gene expression dynamics. The resulting trajectories are of great biological interest and branching
trajectories are of particular interest in systems where cells can differentiate into multiple alternative fates.

Pseudotime inference methods capture broad changes across high-dimensional gene expression data. For
example, a popular approach is the Monocle algorithm (Qiu et al., 2017), which combines dimensionality
reduction with minimal spanning tree estimation to order cells along trajectories. However, these algorithms
do not model differences in branching dynamics across individual genes. In this paper, we consider the
complementary problem of modelling gene-specific branching dynamics along pseudotime trajectories. This
is biologically important as it identifies the branching order of different genes, leading to a better under-
standing of gene networks involved in cellular differentiation. Two existing methods tackle the problem of
inferring gene-specific branching times: Branch Expression Analysis Modelling (BEAM) (Qiu et al., 2017)
and BGP (Boukouvalas et al., 2018). BEAM was the first method to tackle the branching time inference
problem by using a relatively straightforward spline-based approach. Boukouvalas et al. (2018) improved
on the branching time estimation with BGP, especially for early branching genes and genes with low signal-
to-noise. They achieved this improved performance by combining trajectory inference with branch label
inference to better identify gene-specific branching times.

The PseudotimeDE (Song & Li, 2021) and Tradeseq (Van den Berge et al., 2020) methods have also been
proposed to estimate which genes are branching. However, these methods do not infer the branching time
and cannot be used in ordering the branching times of different genes.
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BGP uses an approach inspired by the Overlapping Mixture of Gaussian Processes model (OMGP, Lázaro-
Gredilla et al., 2012) to probabilistically label cells with the branches they belong to. OMGP is a mixture
model developed for time-series data where each mixture component is a Gaussian Process (GP) function and
data points can be assigned to alternative mixture components. In the case of single-cell gene expression data,
pseudotimes represent cells’ progression through some developmental process and are analogous to time-series
labels. Therefore, each cell can be assigned to the mixture components of OMGP based on pseudotime, an
approach adopted by the GPfates method for trajectory inference (Lönnberg et al., 2017). However, in the
standard OMGP, mixture components are independent and are represented by a priori independent latent
GP functions, whereas cellular trajectories are typically branching as cells begin in the same state but later
differentiate into one of multiple alternative states during a developmental process. Therefore, Boukouvalas
et al. (2018) adapted the OMGP model by introducing dependence among the mixture components. Their
BGP model uses a branching kernel that forces latent GP functions representing mixture components to
intersect at a branching location and hence to become dependent on one another. Before the branching time
cells are assigned to a trunk function and after the branching time cells can be assigned to either of two child
functions. The branching time is a hyper-parameter of the model that can be inferred to distinguish early,
late and non-branching genes.

Trajectory inference methods such as Monocle can be used to provide cellular branch label information after
some global cellular branching time inferred from the reduced dimension gene expression data. However,
early-branching genes may be incorrectly assigned to the trunk according to this global assignment. The BGP
model allows the branching time for specific genes to be earlier than the global branching time and new branch
labels to be inferred after this time. Boukouvalas et al. (2018) showed the BGP approach outperformed
BEAM, especially with regards to such early branching genes for which no global branching information is
available. However, in the original BGP model the branch assignments were made independently for each
gene and could potentially be inconsistent across genes, which makes little biological sense. Here, we extend
the model to address this limitation. In the proposed multivariate BGP (MBGP) we perform joint inference
across all genes in a way that ensures consistency in cell assignments. This increases the power of the method
to infer branch labels, so that MBGP is better able to correct errors in the Monocle branch labelling and
can assign cells to branches with much weaker prior label information than BGP. An added benefit is that
a single fit of the model on many genes (MBGP) is faster than many fits on a single gene (BGP) due to the
label inference being shared.

In Section 2 we define the modelling problem. In Section 3 we demonstrate the limitations of the BGP model
on single cell gene expression data. In Section 4 we describe the MBGP model and in Section 5 we compare
its performance to the original BGP model on both synthetic and single-cell gene expression data.

2 Problem definition

Let Y ∈ RN×D be the gene expression levels of D genes in N cells. Each cell is associated with a time tn

where n = 1, 2, . . . , N . Without loss of generality, tn’s are monotonically increasing and lie in [0, 1]. The
cells of gene d have expression levels given by yd := Y:,d and the expression levels branch, or bifurcate, at
an unknown branching time bd ∈ [0, 1]. Problem 1 is to infer bd’s and we will refer to it as the branching
time inference problem.

Moreover, the cells in bifurcation branches are assigned to one of two global branches. More precisely, given
two genes d1, d2 and two cells in bifurcation branches with indices n, m (we note that this means tn, tm ≥ bd1

and tn, tm ≥ bd2), the following holds: if Yn,d1 and Ym,d1 belong to the same bifurcation branch, then so do
Yn,d2 and Ym,d2 . We will refer to the above property as “consistent cell labelling across genes”. Problem 2
is to infer which of the global branches each cell is assigned to. We will refer to this as the cell labelling
problem.

3 Branching Gaussian Process (BGP): Overview and limitations

We highlight some of the key equations and techniques used in the original BGP method (Boukouvalas et al.,
2018) that we will be building on in §4. We show how it is a good model for solving the branching time
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inference, but makes errors in the cell labeling problem and does not ensure cell labeling consistency across
genes.

The genes in BGP are modelled as independent and below we present the model for one gene. This makes
the extension from one gene to many genes straightforward (see §3.3 for details). However, as we will see in
§?? this mathematical convenience comes at a cost to modelling capabilities.

3.1 Model specification

Let y ∈ RN×1 be the expression data of a single gene with N cells conforming to the full problem definition
from §2. We use latent GP functions to represent the trunk and branches of the data.

We first discuss the kernel construction that captures the requirement that the trunk and branch latent
functions cross in a single location - the branching or bifurcation point. We then write down the model
likelihood, and finally we briefly discuss the inference.

3.1.1 Branching kernel

For clarity we restrict our attention to three latent GP functions {f1, f2, f3} that represent the trunk and
branches of the bifurcation. We will sometimes also write these three latent functions as {f, g, h} with f
denoting the trunk. For convenience, an evaluation of latent functions at N pseudotimes (corresponding to
cells in y) is denoted by F c ∈ R3×N where fi corresponds to the i-th row (1 ≤ i ≤ 3).

Notation: we use F c to describe the latent functions using OMGP-compatible matrix shapes. In Section
§3.3 we will define a reshaped but equivalent F that makes the variational inference equations simpler.

In order for the latent trunk and branch functions to capture bifurcations, we need to constrain them all to
cross at a given input point. Yang et al. (2016) described the joint probability density and the corresponding
GP covariance for two latent functions constrained to cross each other at a given input. This was extended
by Boukouvalas et al. (2018) to three latent functions crossing at a single point. We briefly re-state the key
governing equations.

We place the GP priors on f , g, h, constrain them to all cross at the branching time b, and restrict the prior
covariances to all have the same structure k:

f(t) ∼ GP(0, k(t, t′)),
g(t) ∼ GP(0, k(t, t′)),
h(t) ∼ GP(0, k(t, t′)),
f(b) = g(b) = h(b).

Let us consider a vector of times t and evaluate the covariance of the random variables f(t), g(t), h(t),
denoted by S. Since the individual covariance structures of f , g and h are identical, the diagonal blocks of
S are given by Ki,j := k(ti, tj), whereas off-diagonal blocks are given by

Li,j := k(ti, b)k(b, tj)
k(b, b) ,

giving us the overall covariance

S =

K L L
L K L
L L K

 . (1)

Figure 1 shows an example of this covariance structure. The diagonal blocks show the covariance structure
of kernel k (in this case, an exponentiated quadratic) whereas the off-diagonal blocks reflect the intersection
of latent functions at time b where the functions are constrained to be equal.
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Figure 1: Illustration of the covariance matrices used by Boukouvalas et al. (2018). The input t contains
100 evenly distributed time points within the range [0, 10] for each latent function, and the global branching
time is set to b = 4. For the joint covariance structure k we have used an exponentiated quadratic. Three
latent functions f, g and h are intersecting at the branching time b (left sub-panel) and the covariance matrix
from which these three functions have been sampled (right sub-panel). The covariance matrix is evaluated
at every point within the input domain [0, 10] for all three functions.

Note that the branching kernel can be extended to capture multiple bifurcations by extending the number of
latent functions considered. This general case can be treated in much the same way as the single bifurcation
case. However, here we restrict our attention to modelling a single bifurcation event.

3.1.2 Likelihood

Let Zc ∈ {0, 1}N×3 be a binary indicator matrix determining the assignment of N cells to precisely one of
the three latent functions. That is, each row of Zc has precisely one nonzero entry. The model likelihood is
given by

p(y|F c, Zc) := N (y; diag(ZcF c), σ2In). (2)

We note that the extension to multiple genes is done by employing a different Zc for each gene, all of which
are independent. This makes the likelihood factorise, so that the extension is mathematically straightforward
and we omit its discussion from this section.

As in Lázaro-Gredilla et al. (2012), a categorical prior was placed on the indicator matrix Zc:

P (Zc) =
N∏

n=1

3∏
i=1

Hc
n,i

Zc
n,i , (3)

where Hc ∈ RN×3 is the cell-latent function assignment probability. That is, Hc
n,i represents the probability

of cell n being assigned to latent function i, so that
∑3

i=1 Hc
n,i = 1 for all n. We note that in the many-genes

case there is a different Zc and Hc for each gene.

3.2 Equivalence with OMGP

Whilst BGP was inspired by OMGP, the use of somewhat different notation means that the model likelihood
equivalence is not obvious. Let us show it explicitly.
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Equation (4) from OMGP (Lázaro-Gredilla et al., 2012) defines p(y|F c, Zc) :=∏N
n=1

∏3
i=1 N (yn; F c

i,n, σ2)Zc
n,i . Recall that Zc has precisely one nonzero entry in each row. We

denote its index for row n to be in, so that Zc
n,in

= 1. Then
N∏

i=n

3∏
i=1

N (yn; F c
i,n, σ2)Zc

n,i =
N∏

n=1
N (yn; F c

in,n, σ2) =
N∏

n=1
N

(
yn;

3∑
i=1

Zc
n,iF

c
i,n, σ2

)
= N (y; diag(ZcF c), σ2)

(4)
thus establishing our claim. Note that we are considering only three branches, but the equivalence would
hold for more general branching kernels as well since the derivation above does not depend on the number
of branches.

3.3 Inference

The BGP inference scheme is based on an important re-statement of the model likelihood in (2). Let the
rows of F c be given by {f , g, h}. Define a reshaped F := (f1, g1, h1, f2, g2, h2, . . . , fN , gN , hN )T ∈ R3N×1.
Given Zc as above with Zc

n,in
= 1 (as in §3.2), define Z ∈ {0, 1}N×3N to be a binary indicator matrix with

0 everywhere except for one element on each row: Zn,3(n−1)+in
= 1 for n = 1, 2, . . . , N .

We highlight that the important consequence of the above definitions is that diag(ZcF c) = ZF since

diag(ZcF c)n =
3∑

i=1
Zc

n,iF
c
i,n = F c

in,n = F3(n−1)+in
=

3N∑
i=1

Zn,iFi = (ZF )n.

This gives us an alternative formulation of (2):
p(y|F , Z) := p(y|F c, Zc) = N (y; diag(ZcF c), σ2In) = N (y; ZF , σ2In). (5)

The log-likelihood of the model is not analytically tractable as it requires integrating out the indicator matrix
Z. Boukouvalas et al. (2018) used variational inference to derive an analytical solution for the lower bound
as in Lázaro-Gredilla et al. (2012). More precisely, they modelled the distributions of branch assignment Z
and latent processes F as independent: q(Z, F ) = Q(Z)q(F ); this is sometimes referred to as the mean-field
approximation. A standard variational lower bound on the marginal likelihood is derived using Jensen’s
inequality (see e.g. King & Lawrence, 2006)

log p (y|F ) ≥ EQ(Z) [log p (y|F , Z)] − DKL [Q (Z) ||P (Z)] . (6)

Boukouvalas et al. (2018) then chose to model cell assignments to latent branches Z as independent Bernoulli-
like variables for each cell. That is, Q (Z) :=

∏N
n=1

∏3N
i=1 U

Zn,i

n,i where Un,i is the posterior probability of
cell n being assigned to a particular branch in = 1, 2, 3 with i = 3(n − 1) + in (probability is 0 for all other
outcomes). The branch can be either the trunk state when tn ≤ b, or one of the branches after bifurcation
when tn > b. By denoting U := EQ(Z)[Z] they arrived at an important bound on the KL divergence for the
above choice of Q(Z) (see Equations (18)-(19) from Boukouvalas et al. (2018))

DKL [Q(Z)∥P (Z)] =
N∑

n=1

3N∑
i=1

Un,i log
(

Un,i

Hn,i

)
. (7)

where we have defined H as a counterpart to Hc from (3) in the obvious way. Next, F is integrated out to
derive an exact variational collapsed bound of the marginal log-likelihood log p(y) (Boukouvalas et al., 2018).
The model’s hyperparameters can be estimated by maximising a variational bound on the log-likelihood.

Boukouvalas et al. (2018) also derived a sparse approximation bound of their model using inducing points
that allows the BGP model to scale up to larger single-cell datasets.

An important aspect of the BGP is that the branching time posterior probability is not available analytically
and is calculated numerically using the approximate marginal likelihood evaluated at a uniformly spaced set
of candidate branching points. This approach would scale exponentially with the number of branching times
in the MBGP model that we introduce below and therefore we use an alternative gradient computation to
estimate only the mode of the branching posterior.
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3.4 Limitations of the method

BGP is a good model for solving the branching time inference problem as evidenced by comparisons with
the relevant methods, i.e. BEAM (Qiu et al., 2017) and the Mixture of Factor Analysers (Campbell & Yau,
2017), see Boukouvalas et al. (2018).

Having said that, its applicability is hindered by its shortcomings in solving the cell labelling problem. The
BGP model assigns cells to branches gene-by-gene without ensuring consistency across genes. That is, a cell
may be assigned to branch A for one gene and to branch B for another gene, which makes little biological
sense. Notably, when analysing early branching genes that branch before the global branching time identified
by a pseudotime algorithm, then no prior information on cell branch assignment prior to the global branching
time is available. In this case it is likely to be beneficial to leverage data from multiple genes to consistently
solve the cell labelling problem, since there will be high uncertainty given data from only one gene. We note
also that the gene-by-gene inference is computationally inefficient.

To explore these issues empirically, have applied the BGP method on a single cell mouse hematopoietic
stem cell dataset (Paul et al., 2015). The data contain 4423 cells and a global pseudotime and branching
structure was inferred using Monocle 2 (Qiu et al., 2016). Details of the experimental setup are given in the
supplementary material.

(a) MPO (b) CTSG

Figure 2: Mouse haematopoietic stem cells (Paul et al., 2015): Inconsistent cell assignment between the pair
of early branching genes MPO and CTSG. The 1000 randomly sub-sampled cells that have been used for
inference are coloured according to the posterior global branching pattern derived using the BGP algorithm.
The points are used to represent the cells have been assigned to the same branches, i.e. consistent across
these two genes. On the other hand, the triangles represent the inconsistent cell assignment, i.e. cells that
have been assigned to different branches across these two genes.

Boukouvalas et al. (2018) tried to mitigate the risk of inconsistent cell assignments by placing a strong global
prior over the cell assignments, but the problem can remain even when a strong prior is used. For instance,
Figure 2 shows the posterior cell assignment of randomly sub-sampled 1000 cells for two early branching
genes MPO and CTSG. To avoid the inconsistent cell assignment a very strong prior confidence 0.95 was
used in both cases. This strong prior assumes that cells after the global branching point in pseudotime
ordering are unlikely to switch their branching assignment away from the prior. Among the 1000 cells that
are used in the inference, we have found that 88 cells (triangle markers) have inconsistent cell assignments,
i.e. have been assigned to different branches in the posterior. The posterior cell assignment inconsistency on
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the eight biomarkers of HSCs that show very strong evidence of branching has been summarised in Table 1.
Posterior cell assignments have been calculated using a high confidence (0.80) for all eight genes. For each
gene, different numbers of cells show strong evidence of being assigned to the different branches. The cells
may actually belong to a particular branch or they have become biased towards that branch in case of the
gene under consideration. For each pair of genes, we identify the number of cells that have been assigned
to different branches in posterior by each gene. We find that among the 1000 cells used in the inference of
BGP, 468 cells show inconsistency across all eight genes.

Table 1: Number of cells (among 1000 cells used in the inference) inconsistently assigned to different branches
by BGP for each pair of the eight biomarkers of hematopoietic stem cells (HSCs)

MPO PRTN3 CALR CAR1 CAR2 GSTM1 ELANE

CTSG 88 99 75 230 156 158 76

MPO 81 127 288 201 213 115

PRTN3 147 299 219 226 136

CALR 223 146 147 72

CAR1 191 205 182

CAR2 159 94

GSTM1 105

The second limitation of the BGP model is computational complexity. Since BGP estimates the branching
time posterior by using the normalised approximated likelihood calculated at a set of candidate branching
points over the pseudotime domain, the computational requirements are high when analysing many genes.
Although the model inference can be done in parallel (per gene), this still requires significant compute. In
our experiments reported in Section 5, BGP takes around one hour per gene using 1000 cells for a total
of 8 hours across all 8 genes whilst MBGP takes around 30 mins for all genes1. Boukouvalas et al. (2018)
had to sub-sample the cells in order to minimise the per-gene computational time, but the computational
requirements still remain very high. This exceptionally high computational load makes the BGP model
impractical in many instances.

4 Multivariate Branching Gaussian Process (MBGP)

We propose a Multivariate Branching Gaussian Process (MBGP) model that performs inference jointly across
outputs (genes). This approach addresses BGP’s cell label inconsistency issue, is computationally faster and
improves the statistical power available to infer branch assignments by jointly considering all output genes.

The MBGP model builds on the BGP model discussed in §3.1. It uses the same branching kernel (see §3.1.1).
It also uses the same likelihood from (5), but with one modification – the Z and H assignment matrices and
prior probabilities are shared across all genes. This means the model no longer factorises across genes and
hence we develop a new variational approximation for the marginal likelihood. This change to the model
addresses the consistent cell labelling problem from §2 by ensuring consistent cell labelings across all genes.

Another change in MBGP is its treatment of branching times. Recall that §3.3 described how the branching
times were obtained by comparing approximate marginal likelihoods on a grid of candidate points. As
this does not scale to many genes due to the curse of dimensionality, we treat branching times as model
parameters that are optimised along with other hyper-parameters.

1System configuration: Intel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz 1.50 GHz, 16 GB RAM, 64-bit operating system,
x64-based processor.
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4.1 Model and variational bound

The likelihood factorises for multiple independent outputs so that the extension of the single-output likelihood
in (5) to multiple independent outputs is straightforward

p (Y |F , Z) =
D∏

d=1
N
(
yd; ZFd, σ2I

)
(8)

where D is the number of outputs or genes, yd is the dth column of the gene expression matrix Y =
{y1, ..., yD} and Fd denotes the dth column vector from the set of latent GP functions F = {F1, ..., FD} .

Crucially, the association matrix Z is shared by all genes with a categorical prior (equation 3) placed over
Z. We treat the branching time for each gene bd as an explicit parameter of this prior. The prior over the
latent functions Fd for each gene is a branching GP also parameterised by the branching time and kernel
hyper-parameters θd,

P (Z|bd) =
N∏

n=1

3N∏
i=1

Hn,i(bd)Zn,i ,

Fd|bd ∼ GP (0, k(θd)|bd) for d = 1, 2, . . . , D .

The categorical prior is adjusted in a gene-specific manner so that cells are either assigned to the trunk
or the two branches depending on the branching time. That is, H(b)n,3(n−1)+1 = 1 if tn < b, while
[H(b)n,3(n−1)+2, H(b)n,3(n−1)+3] = [hn, 1 − hn] otherwise, with all other entries in row n set to zero. The
variational approximation for the assignment probabilities Q(Z) has the same structure,

Q (Z|bd) =
N∏

n=1

3N∏
i=1

Un,i(bd)Zn,i (9)

with U(b)n,3(n−1)+1 = 1 if tn < b, while [U(b)n,3(n−1)+2, U(b)n,3(n−1)+3] = [un, 1 − un] otherwise, where un

is the inferred probability that cell n is assigned to the first branch.

The log likelihood terms also depend on the branching parameter. If we denote b ≜ (b1, ...bD) ∈ RD and
integrate over Q(Z|b), then - by using Jensen’s inequality in the standard way to bring log inside the integral
- we have

log p (Y |F , b) ≥
D∑

d=1

[
EQ(Z|bd) [log p (yd|Fd, Z, bd)]

]
−

D∑
d=1

DKL [Q (Z|bd) ||P (Z|bd)] . (10)

By plugging in the probability density function for the Normal distribution in the first term, we obtain

log p (Y |F , b) ≥ − ND

2 log(2πσ2) −
D∑

d=1

1
2σ2

(
y⊤

d yd + F ⊤
d AdFd − 2F ⊤

d U⊤
d yd

)
−

D∑
d=1

DKL [Q (Z|bd) ||P (Z|bd)] , (11)

where Ud ≜ EQ(Z|bd) (Z) and Ad ≜ EQ(Z|bd)
(
ZT Z

)
are the variational expectations conditioned on the

gene-specific branching time bd.
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We note that Ud is straightforward to compute given equation 9, but Ad is not. Computing it explicitly is
computationally prohibitive, so we establish a key identity.

(Ad)i,j = EQ(Z|bd)
[
(ZT Z)i,j

]
= EQ(Z|bd)

[
N∑

k=1
Zk,iZk,j

]

(separate out the i = j case) = EQ(Z|bd)

[
N∑

k=1
Zk,iZk,j

]
(1 − δij) + EQ(Z|bd)

[
N∑

k=1
Zk,iZk,i

]
δij

(Z2
k,i = Zk,i as it’s binary) = EQ(Z|bd)

[
N∑

k=1
Zk,iZk,j

]
(1 − δij) + EQ(Z|bd)

[
N∑

k=1
Zk,i

]
δij

(Zk,iZk,j = 0 when i ̸= j) = EQ(Z|bd)

[
N∑

k=1
Zk,i

]
δij . (12)

Therefore, Ad is diagonal and the individual terms are now easy to compute using equation 9 and equation 12.

Finally, we note that a counterpart of equation 7 holds via a straightforward computation

DKL [Q(Z|bd)∥P (Z|bd)] =
N∑

n=1

3N∑
i=1

Un,i(bd) log
(

Un,i(bd)
Hn,i(bd)

)
. (13)

By plugging equation 13 and equation 12 into equation 11, we finally obtain a computationally feasible
variational lower bound on the likelihood log p (Y |F , b). Finally, obtain a sparse collapsed variational bound
by integrating out the latent functions F and introducing an inducing point approximation. This is relatively
straightforward and well-known, so we only provide the full details in the appendix.

4.2 Inference

Although it is possible to estimate the lengthscale and process variance hyperparameters jointly with the
branching points, we prefer to estimate them prior to inferring branching locations. We set the branching
location of every gene at the starting of time (i.e. b → 0) and estimate the lengthscale and the process
variance hyperparameters for each gene by maximum likelihood. After estimating lengthscale and process
variance, the only remaining parameters to estimate are the branching time vector and cell associations
(Z). Using this approach we assume that the bifurcating functions have similar smoothness and variance
before and after the branching time. This allows us to simplify inference by reducing the number of effective
parameters that need to be estimated. We also employ multiple restarts to reduce the effect of local minima.

By doing gradient search we no longer infer the posterior over branching times as in the original BGP model.
If a full Bayesian posterior over branching times is required then an MCMC approach can be adopted,
although that would be computationally demanding.

5 Experimental results

We demonstrate our approach by fitting both MBGP and BGP models to noisy synthetic data. By fitting
models to realistic noisy samples, we will see that MBGP substantially improves the cell assignment and
improves the branching time learning when compared to BGP. We will also fit the MBGP model to real
data, namely, single-cell RNA-seq data from mouse hematopoietic stem cells (Paul et al., 2015) and see how
it resolves the cell label inconsistency problem whilst retaining biologically sensible fits.

5.1 Synthetic noisy data

In many real-world applications, there is no ground truth for cell assignments and branching times. This
can make it difficult to compare methods in a quantitative manner. In order to address this, we will draw
samples from a fixed MBGP model where both the ground truth branching points as well as cell assignments
are known. This allows us to provide quantitative comparisons of MBGP and BGP.
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Figure 3: An example of the MBGP model fit on noisy synthetic data with 4 genes. The data is represented
in a scatter plot with pseudotime along the x axis and colours indicating branch assignments. The model’s
mean predictions are the solid lines. The vertical blue dotted lines are the true branching times. The vertical
magenta dashed lines are the learned branching times.

5.1.1 Setup

We sample noisy data from realisations of MBGP and reject samples where the latent branches cross in more
than one location. The MBGP that we sample from has branching points set at target locations distributed
equidistantly on [0, 1] in order to cover the whole range of pseudotime. Each sample consists of 100 cells.
In all experiments that follow we employ the same cell label setup and use the same fitting procedure. This
holds true for both MBGP as well as BGP.

We initialise cell label probabilities for latent branches by sampling uniformly from [0.5, 1] for the true label.
We then set the cell label prior probabilities to 0.5 for pseudotime [0, 0.8] (that is, no prior knowledge) and
then 0.8 for the true label for pseudotime [0.8, 1], which we will refer to as the “informative prior". Note
that even this “informative prior" is weaker than some of the priors explored in the original BGP paper, see
§3.4 for details.

Unless explicitly stated otherwise, the fitting procedure is a multiple restart from 4 different branching points,
namely, 0.2, 0.4, 0.6, 0.8 applied uniformly to all genes. For each restart, we perform gradient descent along
the evidence lower bound surface using L-BFGS-B. We demonstrate a typical model fit in Figure 3.

5.1.2 MBGP assigns cell labels more accurately

One of the key hypothesised advantages of using a model that considers all genes at the same time is that
by avoiding assignment inconsistencies, namely the biologically impossible situation where cell A is assigned
to one branch in gene 0 and a different branch in gene 1, it should improve cell label assignment accuracy
as it uses information from all genes.

In order to test the hypothesis we drew 10 random noisy synthetic samples as described above. We then
constructed MBGP and BGP models with the ground truth branching times. In contrast to the other
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synthetic data experiments we kept the branching times fixed to their ground truth locations and only
optimised the other hyperparameters, most notably the cell assignment variational parameters.

We found that MBGP achieved a better mean percentage of correct cell labels at 96.7 ± 0.7% compared to
BGP’s 92.2±0.5% (the ± value is the standard error). For more detail, see Figure 4. We note that achieving
100% accuracy on cell assignment is a challenging task given the high dataset noise.

Figure 4: Boxplots of cell assignment correctness averaged over all genes for each of the 10 samples in
MBGP vs BGP. Reported as a percentage, so that 100% is the best score you can hope for. We can see
MBGP outperforming BGP and in fact being close to the theoretical highest score.

We also looked at the distribution of incorrect cell labels over pseudotime. It showed that MBGP performs
similarly to BGP at early and late pseudotimes, but holds a considerable advantage in the range of [0.3, 0.8],
see Figure 5. The equivalence on [0.8, 1] is not surprising as both models use the informative cell label prior
for these pseudotimes. The full per-sample results are reported in the appendix.

Overall, we note MBGP’s impressive performance on the cell labeling. It suggests that alongside an accurate
model fitting procedure for branching points MBGP would constitute a powerful tool for gene branching and
cell assignment analysis.

Figure 5: Histogram of all incorrect cell assignments across all samples and all genes. The x-axis is the
pseudotime of the incorrectly labeled cell. The y-axis is normalised to represent the incorrect cells in each
bin as a percentage of all cells in that bin. We see that MBGP significantly improves on the cell labeling
task and hardly makes any mistakes after pseudotime 0.5.
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5.1.3 MBGP improves branching time estimates

The final synthetic data experiment looks at the overall performance of MBGP vs BGP when we’re learning
both cell assignments and branching locations.

It also explores the inconsistently labelled cell problem in BGP. This happens when a cell is assigned to
different branches in e.g. gene 0 and gene 1, which is biologically unrealistic.

We draw 20 random noisy samples and fit MBGP as well as BGP models using the setup described in
Section 5.1.1. We measure (i) the root mean square error (RMSE) between the learned and ground truth
branching points, (ii) the number of correctly learned cell labels, and (iii) the number of inconsistently
labeled cells by BGP.

The overall RMSE and correct cell label performance for both models is summarised in Table 2, which shows
MBGP outperforming BGP on both measures. We further see in Table 3 that the difference in performance
is significant for both RMSE as well as the percentage of correctly learned cell labels.

Table 2: For each sample, we compute (i) the root mean square error (RMSE) between the true and
learned branching points (lower is better), and (ii) % - the percentage of correctly learned cell labels (higher
is better). We see that in both cases MBGP outperforms BGP, but we note that we see relatively high
standard deviations. We believe this is down to the high noise level in the synthetic data.

Mean Standard deviation
RMSEMBGP 0.178 0.074
RMSEBGP 0.222 0.070
%MBGP 86.4 5.1
%BGP 80.4 4.1

We note however that the absolute values of RMSE are quite high for MBGP and we hypothesise that this
is the key factor in the drop of correct cell label percentage from 96.7% in Section 5.1.2 (where we used the
ground truth branching locations) to 86.4% here. It therefore seems that improvements in learning branching
locations would be a worthwhile future research direction.

Table 3: For each sample, we compute (i) ∆RMSE := RMSEBGP −RMSEMBGP where RMSE is the root
mean square error between the true and learned branching points, and (ii) ∆% := %(MBGP ) − %(BGP )
where % denotes the percentage of correctly learned cell labels. In both cases, values above 0 mean that
MBGP is outperforming BGP, whereas values below 0 show the opposite. We report the mean and standard
error over the 20 samples. As the reader can see, MBGP outperforms BGP.

Mean Standard error
∆RMSE 0.0442 0.0193
∆% 5.98 1.40

Finally, we report that BGP on average has 32.0 ± 9.8 inconsistently assigned cells out of a total of 100.

We note that due to the high noise level in random samples, some of them can be extremely difficult to
model, see the appendix for some examples.

5.2 Hematopoiesis single-cell RNA-seq

We apply the MBGP model on the gene expression of mouse hematopoietic stem cells used in Paul et al.
(2015). As in Boukouvalas et al. (2018) we have used the Wishbone algorithm Setty et al. (2016) to derive
the pseudotime of each cell as well as the global branching structure. The model is also readily applicable
using pseudotime from other methods such as Monocle (Qiu et al., 2017).
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Boukouvalas et al. (2018) have given a branching time network of eight genes (Figure 6 (a)) for which they
found the highest evidence of branching. In the branching time network shown in Figure 6 (a), the most
probable branching time is annotated with each gene and directed edges are used to represent pairwise
ordering of genes based on the most likely gene-specific branching time. Boukouvalas et al. (2018) have
grouped genes based on the branching time order relationships. For instance, both PRTN3 and CTSG are
early branching genes and branch before ELANE, GSTM1, CAR2 and CAR1. On the other hand, MPO
and CALR (yellow group) are also early branching genes and branch before GSTM1, CAR2 and CAR1, but
not necessarily before ELANE. Finally, the third group consists of genes ELANE and GSTM1 (blue group)
that branch before the gene CAR1. The genes CAR1 and CAR2 have the latest branching time.

(a) Branching time gene network

G
en

e
E

xp
re

ss
io

n

Pseudotime

(b) Estimated branching time

Figure 6: Mouse haematopoietic stem cells (Paul et al., 2015): (a): Estimated gene branching time network
from Boukouvalas et al. (2018) : the most probable branching time of each gene is shown. The directed
edges are used to represent the pairwise ordering of genes based on their branching time. The edge colours
are representing group of genes having the same later branching genes. (b): The MBGP fit. The cells
(points) are coloured according to the global branching pattern derived using the Wishbone (Setty et al.,
2016) algorithm. The dashed line in each sub-figure represents the estimated branching time for each gene,
which is also depicted inside the parenthesis in each sub-figure caption.

Although BGP finds a plausible ordering of the genes for this data, we showed in Table 1 there are large
number of inconsistencies of cells to branches when using the original BGP algorithm. Therefore we have
applied the MBGP model on the expression profiles of these eight genes which ensures consistency of cell
to branch assignments. To speed up inference, we have randomly sub-sampled the data and have used 1000
cells for the inference and have used the sparse model with 60 inducing points.

Figure 6 (b) shows the MBGP model fit on this network of genes. In each sub-figure, the dashed line
represents the inferred gene-specific branching time. We reproduce the same pairwise ordering of genes
published in Boukouvalas et al. (2018) wherein it was found to be biologically meaningful. If we compare the
inferred gene-specific branching times from Figure 6 (b), we see that our model has successfully reproduced
the same branching time network of Figure 6 (a).

5.2.1 MBGP improves cell assignment accurately

In Appendix C we show examples of cell label inconsistency when applying the BGP algorithm to the mouse
haematopoietic stem cell data. In contrast, MBGP ensures by construction no such inconsistencies can
occur.

Additional while MBGP ensures the cell assignment consistency, it also improves the posterior cell assign-
ments. We have analysed the posterior cell assignment by MBGP which follows the global branching pattern
provided as prior. As the model has learned the gene-specific branching points for a number of genes earlier
than the global branching point (main paper Figure 6(b)), therefore, few cells from the trunk state become
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biased towards either of the branches to facilitate the identification of these pioneer genes. We have sum-
marised this result in Table 4 where a posterior cell assignment confidence of 0.80 is used to determine a cell
has been assigned to a branch.

Table 4: The number of cells switches states from prior to posterior as a result of the MBGP model inference
for the mouse haematopoietic stem cell data (Paul et al., 2015). A posterior cell assignment confidence of
0.80 is used to determine a cell has been assigned to a branch. The model learns the gene-specific branching
points for a number of genes earlier than the global branching point (main paper Figure 6(b)), therefore,
few cells from the trunk state become biased towards either of the branches to facilitate the identification of
these pioneer genes.

Number of cells

in prior in posterior

Trunk 278 187

Branch 1 423 466

Branch 2 299 347

6 Conclusion

The BGP model was developed to infer branching events from single-cell gene expression data. We uncov-
ered its main limitations, namely inconsistent cell assignments and heavy computational requirements. To
mitigate these limitations, we have presented the multivariate BGP (MBGP) model that extends BGP by
sharing cell-assignments across outputs (genes). On both simulated and mouse hematopoietic stem cell gene
expression data we have shown that the MBGP model achieves similar or better branching time accuracy
to the original BGP model whilst addressing the assignment inconsistency issue, making model inferences
more biologically relevant.

In Section 5.1.2 we showed that when the MBGP model does not have to infer the branching locations, it
performs the cell assignment task with impressive accuracy. However, we have also seen in Section 5.1.3
that it does not reach the same accuracy when it also has to learn the branching locations. Thus exploring
improvements in the learning of branching locations seems like a valuable future research direction.

Although MBGP is faster than the original BGP formulation, inference is still time-consuming for a large
number of outputs since a GP function has to be learned for each output. This also ignores dependencies
between gene expression profiles from different genes. Future work could develop a multiple output formula-
tion where individual genes are functional combinations of a smaller set of latent GPs (Wilson et al., 2011).
This would allow our approach to scale better to many thousands of outputs, making the approach more
practical for large scale single cell branching analysis.

References
Alexis Boukouvalas, James Hensman, and Magnus Rattray. BGP: identifying gene-specific branching dy-

namics from single-cell data with a branching gaussian process. Genome biology, 19(1):65, 2018.

Kieran R Campbell and Christopher Yau. Probabilistic modeling of bifurcations in single-cell gene expression
data using a bayesian mixture of factor analyzers. Wellcome open research, 2, 2017.

Nathaniel J King and Neil D Lawrence. Fast variational inference for gaussian process models through
kl-correction. In European Conference on Machine Learning, pp. 270–281. Springer, 2006.

Miguel Lázaro-Gredilla, Steven Van Vaerenbergh, and Neil D Lawrence. Overlapping mixtures of gaussian
processes for the data association problem. Pattern Recognition, 45(4):1386–1395, 2012.

14



Under review as submission to TMLR

Tapio Lönnberg, Valentine Svensson, Kylie R James, Daniel Fernandez-Ruiz, Ismail Sebina, Ruddy Mon-
tandon, Megan SF Soon, Lily G Fogg, Arya Sheela Nair, Urijah Liligeto, et al. Single-cell rna-seq and
computational analysis using temporal mixture modelling resolves th1/tfh fate bifurcation in malaria.
Science immunology, 2(9), 2017.

Franziska Paul, Ya’ara Arkin, Amir Giladi, Diego Adhemar Jaitin, Ephraim Kenigsberg, Hadas Keren-Shaul,
Deborah Winter, David Lara-Astiaso, Meital Gury, Assaf Weiner, et al. Transcriptional heterogeneity and
lineage commitment in myeloid progenitors. Cell, 163(7):1663–1677, 2015.

Xiaojie Qiu, Andrew Hill, Yi-An Ma, and Cole Trapnell. Single-cell mrna quantification and differential
analysis with census. Nat Meth, pp. 309–315, 2016.

Xiaojie Qiu, Qi Mao, Ying Tang, Li Wang, Raghav Chawla, Hannah A Pliner, and Cole Trapnell. Reversed
graph embedding resolves complex single-cell trajectories. Nature methods, 14(10):979, 2017.

Wouter Saelens, Robrecht Cannoodt, Helena Todorov, and Yvan Saeys. A comparison of single-cell trajectory
inference methods. Nature biotechnology, 37(5):547–554, 2019.

Manu Setty, Michelle D Tadmor, Shlomit Reich-Zeliger, Omer Angel, Tomer Meir Salame, Pooja Kathail,
Kristy Choi, Sean Bendall, Nir Friedman, and Dana Pe’er. Wishbone identifies bifurcating developmental
trajectories from single-cell data. Nature biotechnology, 34(6):637, 2016.

Dongyuan Song and Jingyi Jessica Li. Pseudotimede: inference of differential gene expression along cell
pseudotime with well-calibrated p-values from single-cell rna sequencing data. Genome biology, 22(1):
1–25, 2021.

Koen Van den Berge, Hector Roux de Bézieux, Kelly Street, Wouter Saelens, Robrecht Cannoodt, Yvan
Saeys, Sandrine Dudoit, and Lieven Clement. Trajectory-based differential expression analysis for single-
cell sequencing data. Nature communications, 11(1):1–13, 2020.

Andrew Gordon Wilson, David A Knowles, and Zoubin Ghahramani. Gaussian process regression networks.
arXiv preprint arXiv:1110.4411, 2011.

Jing Yang, Christopher A Penfold, Murray R Grant, and Magnus Rattray. Inferring the perturbation time
from biological time course data. Bioinformatics, 32(19):2956–2964, 2016.

A Sparse collapsed variational lower bound

We follow similar steps to Lázaro-Gredilla et al. (2012) to derive a sparse variation bound from the full data
variational bound derived in Section 4.1 and shown in equation 10

Starting from the bound in equation 10, we integrate out the latent GP functions F to derive the collapsed
variational bound for the marginal log likelihood.

logp (Y ) ≥
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where Kff |bd
denotes the covariance matrix dependent on the output branching parameter bd.

The sparse variation lower bound for our model Ls is

Ls ≜ − ND
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where we have defined

Pd ≜ I + L−1
d Ksf |bd
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d σ−2 ,
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U⊤
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and s is the set of inducing points and the Choleksy factors Ld and Rd are defined as

Kuud
≜ LdL⊤

d ,

Pd ≜ RdR⊤
d .

B Detailed experimental results on synthetic data

B.1 Labelling performance

The full per-sample results are reported in Table 5. We have already reported the key summary statistics
in the main part of the paper, so we omit further discussion. We also show in Figure 7 an example of the
MBGP model fit on the noisy synthetic data. We note again MBGP’s impressive performance on the cell
labeling.

B.2 Details on synthetic data branching performance

We provide more details on the synthetic data experiments discussed in Section 5.1.3. We remind the reader
that the final synthetic data experiment looks at the overall performance of MBGP vs BGP when we’re
learning both cell assignments and branching locations.

The per-sample RMSE and correct cell label performance for both models is provided in Table 6. We have
already reported the key summary statistics in the main part of the paper, so we omit further discussion.
However, we will now look at two different regimes: "easy" and "hard" to infer branching data, corresponding
to samples 2 and 14 respectively in Table 6.

The model fits on sample 2 from Table 6 are discussed in Figure 8 and Figure 9, for MBGP and BGP
respectively. See the captions for a discussion.

The model fits on sample 14 from Table 6 are displayed in Figure 10, which pertains to MBGP, and Figure 11,
which pertains to BGP. See the captions for a discussion.

Finally, for completeness, we also provide (i) the distribution of incorrect cell labels over pseudotime, see
Figure 12, and (ii) the mean percentage of correct cell labels, see Figure 13.
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Figure 7: An example of the MBGP model fit on noisy synthetic data with 10 genes. The data is represented
in a scatter plot with pseudotime along the x axis and colours indicating branch assignments. The model’s
mean predictions are the solid lines. The vertical magenta dashed lines are the true branching times - we do
not learn branching locations in this example.
We draw the reader’s attention to the data points around the true branching point and suggest that it is a
highly nontrivial problem to assign them to branches given the noise levels.
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Figure 8: This Figure shows the MBGP model fit on sample 2 from Table 6. The data is represented in a
scatter plot with pseudotime along the x axis and colours indicating branch assignments. The model’s mean
predictions are the solid lines. The vertical blue dotted lines are the true branching times. The vertical
magenta dashed lines are the learned branching times.
Overall the model does a good job of learning the true branching times and thus does well on cell assignment:
%MBGP = 93.7% vs %BGP = 81.3%, see Table 6. We hypothesise that this could be due to the early
branching genes, namely, gene 0 and gene 1 providing useful evidence for cell assignment that the other
genes then benefit from. Note, in particular, how MBGP learns the correct branching time for gene 7
whereas BGP learns incorrect dynamics, see Figure 9.
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Figure 9: This Figure shows the BGP model fit on sample 2 from Table 6. The data is represented in a
scatter plot with pseudotime along the x axis and colours indicating branch assignments. The model’s mean
predictions are the solid lines. The vertical blue dashed lines are the true branching times. The vertical
magenta dashed lines are the learned branching times.
See Figure 8 for the key discussion points.
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Figure 10: This Figure shows the MBGP model fit on sample 14 from Table 6. The data is represented
in a scatter plot with pseudotime along the x axis and colours indicating branch assignments. The model’s
mean predictions are the solid lines. The vertical blue dotted lines are the true branching times. The vertical
magenta dashed lines are the learned branching times.
Overall the model struggles with learning the true branching times and thus cell assignment suffers as well:
%MBGP = 79.4% vs %BGP = 79.8%, see Table 6. We hypothesise that this could be due to the early
branching gene 0 being hard to model due to the branches staying close to each other. In particular, this
means that gene 0 contributes incorrect cell assignment suggestions to the other genes thus making the
model’s task harder than it should be.
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Figure 11: This Figure shows the BGP model fit on sample 14 from Table 6. The data is represented in a
scatter plot with pseudotime along the x axis and colours indicating branch assignments. The model’s mean
predictions are the solid lines. The vertical blue dashed lines are the true branching times. The vertical
magenta dashed lines are the learned branching times.
See Figure 10 for the key discussion points.
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Figure 12: Histogram of all incorrect cell assignments across all samples and all genes. The x-axis is the
pseudotime of the incorrectly labeled cell. The y-axis is normalised to represent the incorrect cells in each
bin as a percentage of all cells in that bin.

Figure 13: Boxplots of cell assignment correctness averaged over all genes for each of the 20 samples in
MBGP vs BGP. Reported as a percentage, so that 100% is the best score you can hope for.

22



Under review as submission to TMLR

Table 5: This table contains the per-sample results for MBGP and BGP. Each row corresponds to a different
10 gene noisy synthetic dataset. incBGP only applies to the BGP model and describes how many cells have
inconsistent cell assignments across the genes, that is, for how many cells do we assign them to one branch
in gene A and to a different branch in gene B? We note that lower is better and 100 is the absolute worst
result you could get while 0 is the best result. % is the percentage of correctly learned cell labels (higher is
better). In this measure, we ignore inconsistent assignments and simply average over all genes.
We can see that the MBGP model is able to infer cell association with higher accuracy, although both models
are able to achieve accuracy > 90%. We suspect MBGP outperforms BGP due to its multivariate nature
allowing it to more accurately learn cell assignments around branching locations where there is significant
uncertainty.

incBGP %(MBGP ) %(BGP )
0 22 95.3 91.3
1 24 94.4 91.5
2 18 99.6 93.8
3 26 95.2 91.3
4 23 94.7 90.3
5 19 97.6 93.0
6 18 97.2 92.7
7 16 99.3 95.1
8 27 99.2 92.6
9 31 94.3 90.1

C Mouse haematopoietic stem cells: Inconsistent cell assignment by BGP

In the BGP model, the inference is performed independently per gene which causes inconsistent cell assign-
ments across different genes. To minimise cell assignment inconsistency we use a very strong cell assignment
prior probability of 0.95 as suggested by Boukouvalas et al. (2018), but the problems remains to a great
extent. Figure 14 shows the expression profiles as well as BGP fits of eight genes where triangle markers are
used to indicate the cells that have been assigned to different branches inconsistently. Among the 1000 cells
used in the inference of BGP, 468 cells show inconsistency across all eight genes. If we would have included
more genes this number would have been greater. Thus the cell assignment reported by the BGP is not
informative and likely to be misleading.

Figure 15 shows an example of the BGP model applied on an early branching gene from a mouse hematopoi-
etic stem cell dataset (Paul et al., 2015). The data contain 4423 cells. The log normalised data were
transformed to zero mean for each individual gene. The DDRTree algorithm from Monocle 2 (Qiu et al.,
2016) is used to infer the global cellular branching pattern as well as pseudotime for each cell. We have used
a sub-sample of 870 cells and 30 inducing points to speed up the model inference. Figure 15 (a) shows the
prior cell assignment of all 4423 cells which has been derived by running the Monocle 2 algorithm. This
global branching structure is used as the informative prior. Figure 15 (b) shows the posterior cell assignment
of 870 cells that have been used in the inference (top sub-panel). The cells that are away from the global
branching time (the black dashed line in Figure 15 (a)) have been assigned to either of the branches with high
confidence. On the other hand, the cells closer to or around the global branching point possess high level
of uncertainty. This is also the case for the cells equidistant from both branches. The bottom sub-panel of
Figure 15 (b) shows the inferred gene-specific branching dynamics along with the posterior probability of the
branching location. This uncertainty has been also reflected in Figure 15 (a) where the magenta background
depicts the uncertainty associated with the gene-specific branching time (the blue solid line). The uncertain
regions shown in both figures (magenta background in Figure 15 (a) and green dots near branching-time
in Figure 15 (b)) are indicative of how cell assignment uncertainty is incorporated into the gene-specific
branching-time posterior uncertainty. It emphasises one of the major benefits of developing probabilistic
methods like the BGP for downstream analysis. As single-cell data are noisy, the cell assignment to different
branches should be probabilistic while identifying the gene-specific branching dynamics.

23



Under review as submission to TMLR

1

0

1

2

3

4

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.5

0.0 0.2 0.4 0.6 0.8 1.0

(a) CTSG

2

0

2

4

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

0.0 0.2 0.4 0.6 0.8 1.0

(b) MPO

1

0

1

2

3

4

0.0 0.2 0.4 0.6 0.8 1.0
0

1

0.0 0.2 0.4 0.6 0.8 1.0

(c) PRTN3

2.5

0.0

2.5

5.0

7.5

10.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

0.0 0.2 0.4 0.6 0.8 1.0

(d) CALR

0

1

2

3

4

5

0.0 0.2 0.4 0.6 0.8 1.0
0

1

0.0 0.2 0.4 0.6 0.8 1.0

(e) CAR1

0

1

2

3

4

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

0.0 0.2 0.4 0.6 0.8 1.0

(f) CAR2

0

2

4

6

0.0 0.2 0.4 0.6 0.8 1.0
0

1

0.0 0.2 0.4 0.6 0.8 1.0

(g) GSTM1

0

2

4

6

0.0 0.2 0.4 0.6 0.8 1.0
0

1

0.0 0.2 0.4 0.6 0.8 1.0

(h) ELANE

Figure 14: Mouse haematopoietic stem cells (Paul et al., 2015): Inconsistent cell assignment across the top
eight branching genes. The 1000 randomly sub-sampled cells that have been used for inference are coloured
according to the posterior global branching pattern derived using the BGP algorithm. The points are used
to represent the cells have been assigned to the same branches, i.e. consistent across the eight genes. On
the other hand, the triangles represent the inconsistent cell assignment, i.e. cells that have been assigned to
different branches across the eight genes.
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Table 6: This table contains the per-sample results for MBGP and BGP. Each row corresponds to a
different 10 gene noisy synthetic dataset. The RMSE columns measure the root mean square error between
the learned and ground truth branching points. incBGP only applies to the BGP model and describes how
many cells have inconsistent cell assignments across the genes, that is, for how many cells do we assign them
to one branch in gene A and to a different branch in gene B? We note that lower is better and 100 is the
absolute worst result you could get while 0 is the best result. % is the percentage of correctly learned cell
labels (higher is better). In this measure, we ignore inconsistent assignments and simply average over all
genes. Finally, ∆% := %(MBGP ) − %(BGP ); above 0 means MBGP is learning cell assignment better,
below 0 means BGP is doing better.
As reported in the main body of the paper, MBGP outperforms BGP. In addition to that we highlight
that there’s a correlation between how well MBGP learns the branching points and how well it assigns cell
labels. When it learns the branching point locations better or equal to BGP, then it seems to consistently do
better at cell assignment. As before, this motivates exploring schemes for learning more accurate branching
locations.

RMSEMBGP RMSEBGP incBGP %(MBGP ) %(BGP ) ∆%

0 0.155656 0.161103 45 87.9 80.5 7.4
1 0.107528 0.172943 43 91.2 83.9 7.3
2 0.060403 0.248472 47 93.7 81.3 12.4
3 0.144460 0.209304 42 90.1 79.8 10.3
4 0.107687 0.122775 32 92.5 83.5 9.0
5 0.231522 0.171707 23 82.3 85.2 -2.9
6 0.145352 0.301008 43 87.7 75.0 12.7
7 0.125235 0.335639 34 89.2 77.8 11.4
8 0.277916 0.280737 27 80.4 78.1 2.3
9 0.149851 0.274390 37 89.7 76.9 12.8
10 0.249903 0.329334 41 81.2 69.4 11.8
11 0.239118 0.212270 25 79.8 81.2 -1.4
12 0.172359 0.123819 26 85.2 85.6 -0.4
13 0.149704 0.187880 13 87.1 85.0 2.1
14 0.329045 0.290695 20 79.4 79.8 -0.4
15 0.210808 0.230580 29 86.6 77.7 8.9
16 0.116043 0.114808 40 91.9 83.2 8.7
17 0.138261 0.296907 21 89.2 77.3 11.9
18 0.134857 0.165543 27 88.1 83.6 4.5
19 0.318348 0.218915 25 74.8 83.6 -8.8
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Figure 15: Mouse haematopoietic stem cells (Paul et al., 2015): BGP fit for the early branching gene MPO.
The DDRTree algorithm of Monocle 2 is used to estimate the pseudotime for each cell as well as the global
branching pattern. (a): Monocle 2 global assignment of cells to the trunk state (purple) and two branches
(green and red). The black dashed line is the global branching time. The most probable gene branching
time is shown by the blue solid line along with posterior uncertainty over the branching location (magenta
background). (b): The top sub-panel shows the posterior cell assignment uncertainty for the cells used in
the inference. Cell assignment to one of the branches is depicted. The bottom sub-panel represents the
posterior probability distribution over the gene-specific branching location.
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