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Abstract

Recent advancements in speech synthesis technology have enriched our daily lives,
with high-quality and human-like audio widely adopted across real-world appli-
cations. However, malicious exploitation like voice-cloning fraud poses severe
security risks. Existing defense techniques struggle to address the production
large language model (LLM)-based speech synthesis. While previous studies have
considered the protection for fine-tuning synthesizers, they assume manually anno-
tated transcripts. Given the labor intensity of manual annotation, end-to-end (E2E)
systems leveraging automatic speech recognition (ASR) to generate transcripts
are becoming increasingly prevalent, e.g., voice cloning via commercial APIs.
Therefore, this E2E speech synthesis also requires new security mechanisms. To
tackle these challenges, we propose E2E-VGuard, a proactive defense framework
for two emerging threats: (1) production LLM-based speech synthesis, and (2) the
novel attack arising from ASR-driven E2E scenarios. Specifically, we employ the
encoder ensemble with a feature extractor to protect timbre, while ASR-targeted
adversarial examples disrupt pronunciation. Moreover, we incorporate the psy-
choacoustic model to ensure perturbative imperceptibility. For a comprehensive
evaluation, we test 16 open-source synthesizers and 3 commercial APIs across
Chinese and English datasets, confirming E2E-VGuard’s effectiveness in timbre
and pronunciation protection. Real-world deployment validation is also conducted.
Our code and demo page are available at https://wxzyd123.github.io/e2e-vguard/.

1 Introduction

High-quality synthetic speech based on deepfake techniques [1, 2] has been applied in daily scenarios,
such as video dubbing, and vehicle-mounted voice assistants. Large language models (LLMs) [3, 4]
have furthered the development of speech synthesis, i.e., text-to-speech (TTS). Current TTS models
enhance the synthesis performance by integrating LLMs as a core component for paralanguage
features, achieving human-level results. The most advanced technique can be based on an audio
foundation model [5]. TTS models can be divided into two categories, i.e., zero-shot [1] and fine-
tuning-based [6]. Zero-shot models utilize reference audio as the prompt to clone the voice. In
contrast, fine-tuning-based models require a few minutes of speech samples to replicate the target
speaker better. The advancements in speech synthesis, on the one hand, bring huge convenience;
on the other hand, they pose a potential security threat in the hands of pirate users. These pirate
users may conduct illegal speech synthesis for illegal purposes, such as telecommunication fraud.
Therefore, the prevention approach against unauthorized synthesis is of vital importance.
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Existing Defenses. Existing protective methods against voice cloning focus on two main types: (1)
Defense based on adversarial examples (AEs), e.g., AntiFake [7], and AttackVC [8]. (2) Defense
based on unlearnable examples (UEs), e.g., POP [9], and SafeSpeech [10]. AEs-based protection
generates audio AEs through TTS models’ encoders to prevent zero-shot voice cloning. In contrast,
UEs-based protection utilizes a universal objective to generate model-agnostic perturbation, which
disrupts the training phase of TTS models to achieve fine-tuning-based speech synthesis.

Limitations and Challenges. Prior studies have some limitations when considering broader scenarios:
(1) Industrial-level and LLM-based TTS. LLMs have advanced the previous deep neural network
(DNN)-based speech synthesis. Common approaches employ a speech tokenizer to encode the input
waveform into discrete tokens, which are fed into LLMs. The decoded outputs from LLMs then guide
the generation module, such as the flow-matching module [1]. The key distinction lies in decoding
audio signals into discrete tokens rather than continuous embeddings, a direction rarely explored in
this protection of LLM-based TTS research. Moreover, voice replication products have emerged in the
industry, where voice cloning via API constitutes the focus of this paper. (2) End-To-End Scenario.
The assumption in prior studies is that the text corresponding to the audio has been provided. A
more realistic scenario is that, for a customized dataset, the text needs to be obtained by the training
party itself. For example, the text transcripts are transcribed through an automatic speech recognition
(ASR) system, rather than relying on manually annotated open-source datasets. In fact, commercial
APIs typically accept only audio input and rely on an ASR on their backend.

Why is End-to-End Fine-Tuning Important? End-to-end fine-tuning aims to ensure that both input
and output data are exclusively of audio type and integrates an ASR system into the training process
for text recognition. Based on this, two research questions (RQ) should be considered. RQ1: Why
fine-tuning? On the one hand, some models, such as VITS [6], only support fine-tuning without zero-
shot capabilities. On the other hand, fine-tuning can achieve better synthetic performance than relying
solely on a single sample in zero-shot scenarios. RQ2: Why end-to-end fine-tuning? Adversaries
often collect audio data from public social platforms like YouTube and Bilibili, where the audio does
not come with corresponding text data. Manually annotating text is typically time-consuming and
labor-intensive. Therefore, leveraging an ASR system based on deep learning techniques is a more
practical choice due to its efficiency and high recognition accuracy. In the real world, the industrial
product for speech synthesis trains a new speaker via an API connection with only audio input. The
supplemental ASR system is utilized for automatic recognition in their service.

Our Solution and Contributions. To counter the LLM-based and end-to-end scenarios, we propose
E2E-VGuard, a proactive defense framework that disrupts both timbre and pronunciation. For the
timbre, we introduce untargeted and targeted speaker protection based on the proposed feature loss,
which utilizes ensembled encoders and a feature extractor to obtain audio features for LLM-based TTS,
resulting in dissimilar synthetic speeches to achieve identification protection. For the pronunciation,
E2E-VGuard generates the audio AEs to fool the ASR system with incorrectly recognized text and
disrupt model’s learning process of the text and pronunciation. Moreover, to realize imperceptibility,
we introduce the psychoacoustic model [11] to add the perturbation within a specific frequency
domain, reducing the detection by the human ears. For a comprehensive evaluation, we conduct
experiments on both English and Chinese datasets, verifying their effectiveness and transferability
across 16 open-source, 3 commercial models, and 7 ASR systems. E2E-VGuard is robust against
sophisticated data augmentation and perturbation removal techniques. Moreover, we have validated
the E2E-VGuard’s robustness in the real world. Our contributions can be summarized as follows:

• We introduce a more realistic and challenging scenario of end-to-end fine-tuning-based speech
synthesis, and we propose a proactive framework, E2E-VGuard, to protect individual information.

• We consider defensive waveform disruption from the perspectives of timbre and pronunciation. For
the timbre disruption, we propose a feature objective based on the encoder ensemble and feature
extractor. For the pronunciation disruption, we utilize AEs against ASR systems to fool TTS
models with incorrect text and impact pronunciation.

• We utilize the psychoacoustic model with ℓ2-norm to enhance the perturbation imperceptibility for
better human audible perception.

• We evaluate the effectiveness, transferability, and robustness of E2E-VGuard through compre-
hensive experiments across diverse settings: 19 TTS models (including 16 open-source and 3
commercial), 7 ASR systems, and 3 English and Chinese datasets.
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2 Related Work

Speech Synthesis. Modern speech synthesis can be primarily categorized into two types: DNN-based
and LLM-based architectures. The former mainly focuses on building a synthesizer [6, 12], while the
latter integrates the LLM with a synthesizer and encodes audio into discretized tokens [1]. The LLM
captures the prosody and semantic features, while the synthesizer captures timbre and environmental
information [1]. Recently, audio foundation models have advanced rapidly. During the pre-training
phase, models typically acquire basic question-answering capabilities. In the post-training phase,
they gain downstream tasks, e.g., TTS, through supervised fine-tuning (SFT). This emerging TTS
approach based on speech foundation models is also the focus of this paper, e.g., Step-Audio [5].

Voice Protection. Defenses against synthetic speech can be categorized into proactive and passive
defenses [7, 13, 14]. We primarily focus on proactive defense techniques, which aim to reduce
speaker similarity in synthesized audio at the data source. For example, Huang et al. [8] and Yu et
al. [7] utilized adversarial examples to disrupt voice cloning. Recently, Zhang et al. [9, 10] proposed
unlearnable samples to degrade the quality of speech synthesis systems, thereby defending against
fine-tuning-based voice synthesis. In addition, we note recent advances in passive defense techniques,
such as the robust deepfake audio detection method proposed by Zhang et al. [15], which aims to
mitigate the risks posed by synthetic audio. However, existing approaches remain ineffective against
more advanced TTS models and end-to-end scenarios at the data level.

3 E2E-VGuard Design

3.1 Threat Model

In this section, we analyze the necessity of end-to-end fine-tuning through two examples.

ByteDance’s API.1 Taking ByteDance’s voice cloning product as an example, third-party users
upload audio to the company’s server infrastructure via the API. First, the input audio is transcribed
into text using an ASR system. Then, both the transcribed text and audio information are fed into the
TTS model for voice training, enabling synthesis of target text using the trained voice timbre. This
commercial API-based speech synthesis approach also fits into the end-to-end scenario.

Open-sourced WebUI Operation. GPT-SoVITS [2] is an open-source zero-shot voice cloning
model and supports few-sample fine-tuning to improve voice similarity. The project provides a
WebUI-based fine-tuning workflow: the corresponding text is first obtained utilizing an ASR system,
i.e., Whisper by OpenAI [16]. Subsequently, fine-tuning is performed based on the text and audio,
which also satisfies the end-to-end scenario requirements.

From these two examples, we can observe that end-to-end speech synthesis is prevalent in real-world
applications. Moreover, ASR-based workflows are gradually becoming mainstream, which typically
run in model or server backends and are thus not directly accessible to end-users.

3.2 Problem Formulation

From the perspectives of timbre and pronunciation, we implement E2E-VGuard for voice anti-cloning.
At the timbre level, previous work has focused on targeted [8, 7] and untargeted [9] attacks, i.e.,
whether to select a specific target speaker for timbre perturbation. We consider two approaches to
timbre protection with a broader defensive selection: targeted and untargeted. For pronunciation
protection, adversarial targeted attacks are employed against ASR systems, ensuring that the ASR
system transcribes into a specific target text. This is because we aim for the transcribed text to be
meaningful rather than gibberish, thereby reducing the adversary’s detection of textual alterations.
The workflow is shown in Figure 1, and the objective function of E2E-VGuard can be expressed as:

L(x′) = Lasr(x
′) + α · Lfea(x

′) + β · Lpsy(x
′),

s.t. ||x′ − x||p≤ ϵ and x′ ∈ [−1, 1]T ,
(1)

where Lasr(·) represents the loss of the ASR system, Lfea(·) denotes the speech feature loss, and
Lpsy(·) is the perceptual optimization function for embedded perturbations, i.e., the psychoacoustic

1https://www.volcengine.com/docs/6561/133350
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Figure 1: The workflow of E2E-VGuard and the end-to-end speech synthesis pipeline with LLM.

model. α and β are weight coefficients for multi-task balance. Moreover, x and x′ represent the
original and protected audio, respectively, with features normalized to fall within the range [−1, 1].
The perturbation δ := x′ − x is bounded by an ℓp-norm constraint ϵ. T is the waveform length.

3.3 Timbre Prevention

TTS models typically generate high-quality timbre-similar audio using reference speech samples.
We implement timbre-level voice protection to achieve anti-cloning voice protection and ensure
cloned audio dissimilarity from the original speakers. Previous research [7, 8] primarily employs
encoders for timbre extraction and optimization to create timbre divergence between original and
target audio. Building upon the timbre encoder ensemble [7], we further incorporate acoustic features
by the MFCC [17] extractor to better perturb speaker identity features. In designing E2E-VGuard,
we propose two protection methods: targeted and untargeted timbre protection.

Untargeted Timbre Protection. Untargeted protection maximizes feature distance between original
audio x and protected audio x′, rendering synthesized audio unrecognizable as the original speaker.
Zero-shot TTS models typically employ an encoder to extract cloning-relevant features, e.g., timbre
in CosyVoice [1] and style in StyleTTS2 [12], combining them with pre-trained articulation patterns
for speech synthesis. Building on prior findings demonstrating enhanced transferability through
encoder ensemble [7, 18], we extract timbre and acoustic features through multiple encoders from
target TTS models to improve the protective generalizability against unseen models. Moreover, to
counter LLM-based TTS, we consider to protect at the audio’s original features by changing the
discrete tokens obtained by the audio tokenizer for the LLM component with the MFCC extractor to
protect articulation and prosodic patterns. The objective function can be formulated as:

Lfea(x
′) =

k∑
i=1

CS(Ei(x), Ei(x
′)) + CS(M(x),M(x′)), (2)

where k is the number of selected encoders, CS(·, ·) is cosine similarity with lower values indicating
reduced similarity [18], E(·) is the timbre encoder, and M(·) denotes the MFCC extractor.

Targeted Timbre Protection. Targeted protection steers original audio features toward a designated
target speaker xt, causing TTS models to synthesize target-like audio. For target selection, we
construct a speaker database following AntiFake [7], choosing the most dissimilar speaker by feature
distance for each protected audio. This systematically identifies the most dissimilar speaker in feature
space, contrasting with conventional random opposite-gender sampling. The optimization function is:

Lfea(x
′) = −

k∑
i=1

CS(Ei(xt), Ei(x
′))− CS(M(xt),M(x′)). (3)

Both methods can effectively protect the speaker’s identity. Untargeted protection enables broader
adversarial sample exploration due to undefined optimization targets. Targeted protection leverages
carefully selected feature-divergent samples for enhanced timbre disruption.

3.4 Pronunciation Prevention

Fine-tuning a TTS model requires pairs of text and audio data to achieve alignment between and
pronunciation. For instance, VITS utilizes the monotonic alignment search algorithm to search for
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the correspondence between time frames and characters. Text data can be obtained through manual
annotation or automatic recognition by an ASR system. The former consumes a lot of manpower,
time, and costs, therefore, it is more common to employ an ASR system to recognize text information.
Previous work [19, 20, 21] has shown that ASR systems are relatively vulnerable and susceptible
to adversarial examples that interfere with recognition accuracy. Based on this finding, we consider
utilizing adversarial examples to disrupt the ASR system’s recognition, causing the protected audio
to be recognized as a different text. Incorrect text-audio pairs will disrupt the pre-trained model’s
learning of the pronunciation, preventing the synthesis of audio with the corresponding pronunciation
based on the desired text, thereby effectively protecting personal unauthorized audio data.

Adversarial attacks on ASR systems can also be divided into targeted and untargeted types, differing
in whether a specific target text is provided when optimizing. The generated text by the untargeted
attack is incoherent, while targeted attacks ensure the readability of recognized text by specifying the
text, effectively reducing the adversary’s awareness of the anomalous recognition text. Therefore, we
choose targeted attacks against ASR systems. The selection of the target text affects the effectiveness
of adversarial examples. For instance, long audio paired with short target text may result in the
latter part of the recognized text retaining the original correct text, necessitating further optimization
considerations. Therefore, we need to consider the selected text and its length. In targeted attacks on
timbre in Section 3.3, since the chosen audio already contains specific pronunciation information
different from the original audio, and the application of MFCC also benefits the ASR system’s
recognition of the target audio text [19] in the optimization of adversarial examples, we select the
target audio’s text as the target text. For untargeted attacks on timbre, we select text of the same
length as the audio for different audio, which is more beneficial for adversarial attacks against ASR
systems. In summary, the perturbation of pronunciation information can be represented as:

Lasr(x
′) = F (ASR(x′), yt) , (4)

where F is the objective function of the ASR system, such as the connectionist temporal classification
(CTC) [22] loss for Wav2vec2 [23]. ASR(·) computes the input audio to obtain outputs, such as the
probability distribution of recognized words. Additionally, yt denotes the targeted text.

By optimizing Eq. (4), the adversary utilizes the ASR system and obtains incorrect text, thereby
interfering with text-pronunciation alignment, making the synthesized audio unintelligible.

3.5 Psychoacoustic Model

The perturbation embedded in a specific region will be masked, making it imperceptible for the
human ear to hear the sound in that region, which is known as the masking effect. Leveraging this
characteristic, we optimize the perception of the embedded perturbation utilizing the psychoacoustic
model to enhance the naturalness and imperceptibility. The masking effect can be divided into
temporal masking and frequency masking. Following the settings of V-Cloak [24], we employ the
frequency masking part to ensure perturbations are imperceptible to the human ear.

We set the original audio as the masker so that the perturbation (maskee) remains below the masking
threshold. Let F represent the total number of frequencies and θx represent the masking threshold of
the original audio x, with each element indicating the maximum acceptable perturbation at frequency
f . Assume px represents the log-magnitude power spectral density (PSD) of audio x. Therefore, the
objective function of the psychoacoustic model can be expressed as:

Lpsy(x
′) =

1

F

F∑
f=1

max (0, px′−x(f)− θx(f)) , (5)

where max(0, ·) ensures the value is non-negative.

Additionally, we impose constraints on the perturbation through ℓ2, as Duan et al. [25] found that ℓ2
performs optimally in correlation with human perception within the ℓp norm. Therefore, we further
reduce the perceptibility of the embedded perturbations by introducing L2, formulated as:

L2(x
′) = ||x′ − x||2. (6)

To ensure that the protected audio does not exceed the range it should belong to, after obtaining the
final protected audio, we map its range back to between -1 and 1 to guarantee it is a normal audio
waveform. In conclusion, the algorithm of E2E-VGuard has been provided in Appendix B.
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4 Experiments and Analyses

Experiment Organization. In this section, we introduce our experimental evaluation. We first
provide our experimental settings in Section 4.1. Then, we evaluate the effectiveness of end-to-end
fine-tuning-based speech synthesis in Section 4.2, zero-shot scenarios in Section 4.3, and commercial
API test in Section 4.4. Moreover, we explore the effect of each component in Section 4.5 and test
the robustness of E2E-VGuard in Section 4.6. In the Appendix, there is also an inevitable evaluation.
We validate the effect across multilingual and multi-speaker settings in Appendix F and various ASR
systems in Appendix E. Finally, we conduct a human survey of the effectiveness and perception
in Appendix G. All of our experiments are conducted on one NVIDIA 4090 GPU. Moreover, the
ethical considerations about human study and commercial test are provided in the Appendix, and
some limitations and discussions of the E2E-VGuard have been discussed in Appendix A.

4.1 Experimental Settings

In this section, we introduce the experimental settings utilized in our experiments.

Synthesizers. We select a total of 16 TTS models for evaluation. Section 4.2 includes 6 models:
GPT-SoVITS (GSV) [2], CosyVoice [1], Llasa-1B [26], Llasa-8B [26], StyleTTS2 [12], and VITS [6],
used for end-to-end fine-tuning tests. Section 4.3 includes 7 models: Index-TTS [27], FireRedTTS-
1S [28], Step-Audio-TTS [5], Spark-TTS [29], XTTS [30], FishSpeech [31], and Dia-1.6B [32], for
zero-shot validation. Moreover, we test 3 models based on in-context learning rather than speaker
encoder for feature extraction in Section 4.3: VALLE-X [33], E2-TTS [34], and F5-TTS [35]. Section
4.4 involves 3 commercial APIs: ByteDance, Alibaba, and MiniMax. Notably, Step-Audio-TTS is
developed through post-training of a speech foundation model. Further details about open-source
models’ architectures and sources have been provided in the Appendix D.1.

Encoders. In Section 3.3, six encoders serve as feature extractors: posterior encoders from VITS
and GSV, MFCC features, WavLM [36], CAM++ [37] from CosyVoice, and the style encoder from
StyleTTS2. Among these, MFCC represents traditional acoustic features, WavLM is a speaker
verification system, while the remaining four are timbre or style encoders from TTS systems. This
multi-encoder framework improves E2E-VGuard’s cross-model transferability in timbre preservation.

ASR Systems. Adversaries may employ different ASR systems to recognize text. We conduct model-
specific adversarial attacks against ASR systems and can effectively induce misclassification. Seven
ASR models are selected, namely Wav2vec2 [23], Whisper (base, small, medium, and large) [16],
Conformer [38], and CitriNet [39]. Appendix D.2 shows different structures in detail.

Datasets. We selected both single-speaker and multi-speaker datasets in English and Chinese to
verify E2E-VGuard’s protection performance across different scenarios, employing LibriTTS [40]
for English single-speaker evaluation following [10], CMU ARCTIC [41] for English multi-speaker
testing, and THCHS30 [42] for Chinese multi-speaker assessment. For each dataset, we have
randomly allocated 80% for training and 20% for testing. If the model requires a validation set, we
utilize 10% of the training set as the validation set.

Metrics. The strength and perception metrics are considered.

• Word Error Rate (WER) [9]. It represents the speech intelligibility. Higher WER reflects lower
speech quality. We utilize a pre-trained ASR model, OpenAI’s Whisper with medium size [16].

• Speaker Similarity (SIM) [10]. SIM measures the speaker similarity of two speeches. Lower SIM
reflects lower similarity between original and synthetic speeches. We employ ECAPA-TDNN [43]
to extract speaker embeddings and compute SIM values.

• Signal-to-Noise Ratio (SNR) [10]. SNR reflects the ratio of the embedded perturbation.

• Perceptual Evaluation of Speech Quality (PESQ) [18]: PESQ is an objective perceptual score of
the speech quality, ranging from -0.5 to 4.5.

• Mean Opinion Score (MOS) [9]. MOS is obtained through human interaction as a subjective
metric, which measures the human perception of speeches, ranging from 0 to 5.

Hyperparameter Settings. For fine-tuning, we keep the conventional settings with training details
in Appendix D.1. Moreover, the hyperparameters in Eq. (1) are set to balance the effectiveness and
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Table 1: Effectiveness and Perception Results of End-To-End Fine-tuning-based Speech Synthesis.
The best and second-best protective results are highlighted with bold and underlined, respectively.

Method GSV [2] CosyVoice [1] Llasa-1B [26] Llasa-8B [26] StyleTTS2 [12] VITS [6] Imperceptibility
WER(↑) SIM(↓) WER(↑) SIM(↓) WER(↑) SIM(↓) WER(↑) SIM(↓) WER(↑) SIM(↓) WER(↑) SIM(↓) SNR(↑) PESQ(↑)

clean 3.434 0.685 4.288 0.700 3.157 0.643 7.449 0.643 1.895 0.731 7.796 0.710 - -
AttackVC [8] 5.205 0.636 5.531 0.688 15.201 0.569 9.800 0.593 2.056 0.674 9.039 0.631 -2.456 3.890
AntiFake [7] 28.846 0.149 7.841 0.232 22.391 0.250 15.500 0.284 3.623 0.283 41.491 0.257 12.839 1.759

POP [9] 3.573 0.671 4.452 0.715 7.283 0.684 5.692 0.675 1.756 0.743 13.281 0.685 18.425 3.318
POP+ESP [9] 40.308 0.268 10.312 0.259 27.343 0.280 34.639 0.297 7.770 0.298 55.811 0.149 11.246 1.671

SafeSpeech [10] 44.777 0.339 8.596 0.459 9.367 0.288 16.970 0.269 5.215 0.366 105.524 0.180 7.647 1.412

E2E-VGuard (UT) 66.471 0.123 21.566 0.091 74.956 0.155 80.221 0.134 45.836 0.082 95.740 0.106 18.523 1.949
E2E-VGuard (T) 94.812 0.284 72.143 0.375 63.945 0.442 89.510 0.310 54.732 0.229 125.299 0.245 20.470 2.324

Table 2: Protective performance across industrial-level and LLM-based models of E2E-VGuard under
zero-shot end-to-end speech synthesis.

Method Index-TTS [27] FireRedTTS-1S [28] Step-Audio-TTS [5] Spark-TTS [29] XTTS-v2 [30] FishSpeech [31] Dia-1.6B [32]

WER(↑) SIM(↓) WER(↑) SIM(↓) WER(↑) SIM(↓) WER(↑) SIM(↓) WER(↑) SIM(↓) WER(↑) SIM(↓) WER(↑) SIM(↓)
clean 3.547 0.674 1.382 0.655 2.508 0.579 1.341 0.666 1.258 0.555 1.848 0.497 4.526 0.581

AntiFake [7] 3.685 0.147 3.152 0.276 2.395 0.206 4.214 0.243 7.115 0.193 8.495 0.178 5.471 0.283
POP+ESP [9] 3.730 0.282 4.491 0.366 5.845 0.312 30.667 0.180 7.059 0.358 6.998 0.129 6.266 0.315

SafeSpeech [10] 5.532 0.244 6.098 0.339 5.764 0.334 23.866 0.144 13.522 0.230 21.335 0.197 58.669 0.250

E2E-VGuard (UT) 4.474 0.196 6.528 0.226 8.156 0.008 33.357 0.174 5.761 0.173 9.746 0.127 83.200 0.208
E2E-VGuard (T) 2.667 0.441 40.338 0.367 3.245 0.128 72.522 0.260 3.014 0.455 7.633 0.218 35.811 0.248

imperceptibility of each component. We determine hyperparameters through experiments evaluating
both loss values and component effectiveness, ultimately selecting α = 500 and β = 5 × 10−3.
Additionally, the ϵ in Eq. (1) is 8/255, and we optimize perturbation for 500 iterations.

4.2 Effectiveness on End-To-End Fine-Tuning Scenarios

To assess the effectiveness and transferability, we utilize E2E-VGuard to protect the LibriTTS dataset
with the untargeted and targeted mode in Section 3.3 and set the target ASR system as Wav2vec2 [23].

Fine-tuning on Protected Dataset. After protecting the LibriTTS dataset, users can upload it
publicly to social platforms. Adversaries may require these samples unauthorizedly and utilize
advanced synthesizers for fine-tuning-based speech synthesis.

Speech Synthesis and Evaluation. TTS models possess the capabilities of speech synthesis after fine-
tuning. Fine-tuning-based models can generate speeches with speaker ID and synthesized text, while
zero-shot models require reference audio and synthesized text for feature extraction and cloning. Table
1 shows the experimental results across different TTS models after fine-tuning on datasets protected by
different strategies. We can find that our protected E2E-VGuard can achieve an outstanding protective
strength than baselines in terms of timbre (SIM) and pronunciation (WER). For fine-tuning-based
models, the E2E-VGuard achieves an average increase of 19.775% (targeted, T) in WER compared
to the best baseline values while reducing SIM by an average of 0.043 (UT), indicating lower speech
intelligibility and similarity. The protection effect improves more significantly on zero-shot models,
with WER increasing by an average of 32.841% (UT) and 50.060% (T) and SIM decreasing by
0.119 (UT). It demonstrates that audio protected by the E2E-VGuard effectively safeguards private
information, prevents high-quality speech synthesis, and exhibits strong transferability across models.

Perception Analyses. The embedded perturbation should not interfere with the normal utilization of
speeches. Table 1 presents the simulated perception metrics of different baselines. The SNR values
are higher than all baselines, representing the lowest noise ratio and quality disruption.

4.3 Effectiveness on End-To-End Zero-shot Scenarios

In this section, we conduct zero-shot end-to-end speech synthesis on seven industrial-level and
LLM-based TTS models. The reference audio transcripts are automatically obtained through an ASR
system. Table 2 presents the test results, where our E2E-VGuard (UT) achieves SOTA performance
in voice timbre preservation across all models than baselines. Regarding pronunciation prevention,
the average WER values of E2E-VGuard are 21.603% for UT and 23.604% for T, respectively,
outperforming AntiFake’s 4.932% and SafeSpeech’s 19.255%. This indicates the synthesized audio
demonstrates both dissimilar timbre characteristics and reduced pronunciation clarity.
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Table 3: Evaluation on ICL-based TTS models.
Method F5-TTS [35] E2-TTS [34] VALLE-X [33]

WER(↑) SIM(↓) WER(↑) SIM(↓) WER(↑) SIM(↓)
clean 4.268 0.676 5.401 0.678 14.450 0.519

AntiFake [7] 4.303 0.282 4.004 0.269 96.469 0.249

E2E-VGuard (UT) 10.776 0.053 7.064 0.138 129.483 0.175
E2E-VGuard (T) 70.034 0.319 84.913 0.372 88.707 0.176

Table 4: The ablation study of the E2E-VGuard.
w/ o

Effectiveness Imperceptibility
VITS GSV

WER(↑) SIM(↓) WER(↑) SIM(↓) SNR(↑) PESQ(↑)
Lpsy & L2 119.242 0.101 90.436 0.081 12.942 1.544
Lfea 101.407 0.177 65.446 0.409 15.065 1.811
Lasr 94.940 0.102 49.059 0.124 13.724 1.572

E2E-VGuard (UT) 95.740 0.106 66.471 0.123 18.523 1.949
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(b) E2E-VGuard mode.

Figure 2: Evaluation of protective performance on commercial APIs.

The experimental results from Section 4.2 and Section 4.3 demonstrate that our proposed E2E-VGuard
effectively protects the latest open-source industrial-level and LLM-based models from timbre and
pronunciation perspectives. The method achieves current SOTA performance levels in safeguarding
personal information security, regardless of whether fine-tuning-based or zero-shot speech synthesis.

Evaluation on ICL-based TTS models. Many existing TTS models extract timbre representations of
target speakers through a speaker encoder, and E2E-VGuard also utilizes this approach by integrating
multiple speaker encoders to achieve timbre-level prevention. Additionally, some models obtain
information such as timbre features through in-context learning (ICL) rather than using a speaker
encoder. Table 3 presents our experimental results on three ICL-based models. The results demon-
strate that E2E-VGuard maintains SOTA voice protection performance on ICL-based models and
exhibits strong transferability. This effectiveness stems from our speaker encoder ensemble technique,
which successfully hides or modifies the timbre information of the original speaker. Consequently,
the timbre prevention of the proposed E2E-VGuard does not rely on the specific speaker encoder.

4.4 Evaluation via Commercial APIs

Voice cloning through commercial APIs is relatively convenient, requiring only audio data input to
train the target speaker. Once the server generates the trained speaker ID, speech synthesis can be
readily implemented. This approach eliminates the need for local model deployment while achieving
high-quality synthesis, as the underlying models are black-box systems that demand robust defense
mechanisms. We select three common commercial products supporting voice replication, including
ByteDance, Alibaba, and MiniMax (represented by company names), for evaluation.

As shown in Figure 2, our experimental results reveal that compared with unprotected audio, E2E-
VGuard reduces the average SIM score from 0.689 to 0.203 while increasing WER values. This
demonstrates E2E-VGuard’s strong transferability, effectively safeguarding voiceprint information
even in black-box scenarios involving commercial APIs. These performance improvements across
similarity and pronunciation metrics confirm its practical effectiveness for real-world deployment.

4.5 Ablation Study

In the ablation study, we explore the functionality of our proposed optimization objectives and the
hyperparameter selection for the trade-off of the perturbative performance and imperceptibility.

Component Analyses. In this part, we explore the role of each component in Eq. (1). We separately
investigate the impacts of Lasr, Lfea, and Lpsy & L2 by removing each component from E2E-
VGuard and evaluating the resulting protection effectiveness. Table 4 presents the results of this
ablation study. We observe that removing the perceptual optimization module, i.e., Lpsy & L2,
achieves better protection but significantly increases perceptual disruption to the original audio due
to the lack of perceptual alignment of noise, resulting in a low SNR of 12.942. To directly examine
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the effects of Lasr and Lfea, we optimize each term individually. When Lfea is removed and only
Lasr is retained, the SIM value on the GSV model is relatively high at 0.409, indicating significant
leakage of voiceprint information. Conversely, when Lasr is removed and only Lfea is retained, the
disruption of text-pronunciation alignment diminishes, with the WER on the GSV model dropping to
49.059%. When all three components are present, they collectively provide effective protection at
both the pronunciation and timbre levels while maintaining better imperceptibility of perturbations.

Hyperparameter Selection. In the Eq. (1), we employ hyperparameters α and β to balance the
effectiveness of E2E-VGuard’s protection and the imperceptibility of the embedded, with values
empirically set to 500 and 5× 10−3 [24], respectively. The value of α = 500 is chosen to amplify
the loss for speaker identity protection, aligning its optimization scale approximately with that of
Lasr. β is used to trade off the protection effectiveness and the perception quality of the perturbation.
Specifically, a larger β (such as 5 × 10−2) yields better perception quality but weaker protection,
e.g., the speaker similarity degrading, whereas a smaller β (such as 5× 10−4) enhances protection at
the cost of reduced perception quality e.g., SNR lower than 15. Through empirical evaluation with
various β values, we find that β = 5× 10−3 satisfies an approximate trade-off between protection
and quality of perception.

4.6 Robustness Test

In real-world scenarios, strong adversaries can find the obtained dataset with specific modifications,
and adversarial techniques may be employed to improve synthesis quality. In this part, following [9,
10], we conduct the robustness test against perturbation removal and advanced data augmentation
techniques. Moreover, we evaluate the effectiveness and robustness of E2E-VGuard in the real world.

Perturbation Removal. High-quality speech synthesis often requires high-quality input audio
without audible perturbation [10]. Therefore, adversaries may utilize perturbation removal techniques
to improve the quality of training samples and weaken unknown strategies users adopt before
uploading. We refer to the use of two efficient denoising techniques [10], spectral gating (SG), and a
DNN-based model named denoiser [44] to denoise each protected audio sample. This experiment is
conducted on two models, i.e., VITS and GSV. For the SG method, the WER and SIM on the VITS
model are 51.005% and 0.224, respectively, while on the GSV model, the WER and SIM are 31.958%
and 0.251, respectively. The denoiser can nearly remove the audible background noise. We test the
protective performance utilizing the denoiser for denoising. On the GSV model, the WER and SIM
are 23.10% and 0.243, respectively. The WER and SIM on the GSV model are 34.10% and 0.261,
respectively. This shows that even after removing the audible noise, E2E-VGuard can still protect
speaker privacy, especially at the level of the speaker identity, with an average SIM value of only
0.238 and 0.252 across these two models using the SG and denoiser, respectively. The WER on the
VITS model exceeds 50% after denoising using the SG method, effectively disrupting pronunciation.

Data Augmentation. Data augmentation is used to alter the specific structures of embedded pertur-
bations, thereby reducing effects. We consider three categories of data augmentation techniques:

• Adversarial Defender [45]: Hussain et al. [45] discovered that in the audio field, certain adversarial
defense methods can effectively disrupt adversarial audio examples, e.g., proposed E2E-VGuard.
These adversarial techniques include: Down-sampling and Up-sampling (RS), Mel-spectrogram
Extraction and Inversion (Mel), Quantization-Dequantization (Q-D), and Filtering.

• Audio Processor [9]: We consider speech-processing techniques to simulate real-world operations,
following Zhang et al. [9], including Speed Adjustment (Speed), adding Gaussian noise (Gaussian),
Time Masking (TiM), Pitch Shifting (PS), MP3 compression, and Tanh Distortion (Tanh).

• Filters [9]: Filtering techniques are commonly used to alter perturbations. We consider three types
of filter techniques: Band-Pass Filter (BPF), Low-Pass Filter (LPF), and High-Pass Filter (HPF).

Table 5 shows the results of data augmentations. We observe that the Mel technique significantly
improves the intelligibility of synthesized audio, with WER values decreasing by 39.194% and
19.825% on the VITS and GSV models, respectively. However, the SIM values remain high.
Although data augmentation can disrupt the perturbation and reduce its protective effect, the embedded
perturbation persists, and transforming the audio inherently degrades its quality, e.g., Mel, and Filters.

Real-World Robustness. After users upload audio protected by E2E-VGuard, adversaries may
utilize various types of microphones to record and collect the played audio in the real world for voice
cloning. To verify the robustness of E2E-VGuard in over-the-air scenarios, we employed different
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Table 5: Results under data augmentation and defensive methods. The underline indicates the most
significant decreases in protection compared to training without augmentation (“w/ o” in the Table) .

Model Metric w/ o Adversarial Defender [45] Audio Processor [9] Filters [9]

Resample Mel Q-D Filtering Speed Gaussian TiM PS MP3 Tanh BPF LPF HPF

VITS WER(↑) 96.735 94.827 55.633 103.247 93.552 84.101 84.881 95.654 91.796 82.398 95.441 97.258 95.553 136.552
SIM(↓) 0.113 0.115 0.122 0.082 0.128 0.080 0.163 0.098 0.099 0.125 0.143 0.136 0.118 0.045

GSV WER(↑) 69.148 55.035 35.210 75.011 57.497 77.642 44.232 77.165 68.607 41.903 71.446 83.050 52.882 48.036
SIM(↓) 0.074 0.195 0.158 0.117 0.147 0.044 0.128 0.109 0.049 0.154 0.126 -0.046 0.135 0.229
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Figure 3: Robust test in the real world. (a) shows the experimental environment. (b) The experimental
results. “Lenovo+VIVO” represents the “speaker-microphone”.

speakers to play the audio as the speaker and different microphones to record the audio as adversaries.
We conduct experiments in a quiet environment with background noise averaging 22 dBA (measured
by taking the average over 10 seconds). We apply the built-in speaker of a Lenovo Laptop to play
the audio and record the audio using VIVO and XiaoMi phones placed approximately one meter
away from the speaker to simulate the adversaries as shown in Figure 3a. In each test, we play 10
audio samples and ensure that the speaker’s loudness averages 46 dBA. Finally, for the recorded
audio, we employ the GSV model for fine-tuning and cloning due to its excellent few-shot cloning
capability [2]. The original synthesized results without perturbation after recording are 16.837%
and 0.485 of WER and SIM values with high speaker consistency. The average WER and SIM are
72.615% and 0.068, respectively, in Figure 3b, indicating excellent protection of voice timbre and
pronunciation in real-world scenarios. Additionally, when we replace the speaker with a mobile
device, a XiaoMi phone, and use the VIVO phone as the recording device, the protective effect
remains high. This experiment demonstrates the robustness of E2E-VGuard in the real world, as the
over-the-air transmission acts as a form of data augmentation [18], and Section 4.6 illustrates the
effectiveness of E2E-VGuard in handling data augmentation.

5 Conclusion

This paper focuses on the current mainstream industrial-level and LLM-based TTS models. Consider-
ing the more practical scenario of end-to-end speech synthesis, we propose a protection technique,
E2E-VGuard, that effectively safeguards audio content from both timbre and pronunciation per-
spectives. We conduct extensive experiments on various speech synthesis models and multilingual
datasets for evaluation. Limitations and future work, e.g., time efficiency and the E2E-VGuard’s
reliance, are discussed in the appendix.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The contribution of this paper has been described in the method and experiment
sections.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss some limitations originating from our experiments in Appendix A,
e.g., subjective biases when conducting human survey.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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and how they scale with dataset size.
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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a complete (and correct) proof?
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Answer: [NA]
Justification: This paper contains no theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We detail the design of the method in Section 3, with details including the
hyperparameters used, the encoder selected, and the fine-tuning employed described in
Section 4.1 and Appendix D to ensure that the experiments can be reproduced.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The datasets we used are open-source, including LibriTTS [40], CMU ARC-
TIC [41], and THCHS30 [42], and do not contain private data. Our source code link is
available at https://github.com/wxzyd123/E2E-VGuard.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The training and test details have been provided in Section 4.1 and Appendix
D, e.g., devices, data splits, hyperparameters of training and perturbation generation.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We have considered the possible bias of human experiments in the subjective
experiments, so we introduce 95% confidence intervals to enhance the credibility of the
conclusions, and the specific results and descriptions are in the Appendix G, Table 10 and
Table 11.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We introduce the computing resources of all the experiments in Section 4.1
and the time of speech protection in Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have considered and followed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our experiments do not involve private data, all experiments are run locally, the
only calls to commercial APIs we have made in the Appendix A do not affect the company
in any way, and all deepfake audio will not be used for any other social activities.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We introduce a protective defensive framework to better protect our personal
information, and do not foresee any high risk for misuse of this work.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited them appropriately in this paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: The human perception is a vital perspective of our work, and we introduce
the details of participants, including the recruitment and filtering process, the demographic
group (e.g., ages), and the compensation (volunteer).

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: This paper has received approvals from the local Human Ethics Research, and
detailed ethical considerations about the human study have been discussed in Appendix A.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our research does not involve LLMs as any important, original, or non-standard
components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Discussions and Limitations

Ethical Considerations. To verify the subjective perception of E2E-VGuard in the protected and
synthesized audio for human ears, we conduct human subjective testing experiments in Appendix G.
These experiments have received approval from the local Human Ethics Research Committee. In the
questionnaire, all recruited volunteers are anonymous and consented to their answers being used only
for academic research. We do not collect any information beyond the content of the questionnaire,
and we maintain strict confidentiality regarding the responses. All synthesized audio is uniformly
discarded after the completion of the subjective survey to ensure no security risks through leakage.
Additionally, the experiments described in Section 4.4 involve testing with commercial APIs. Before
using the company’s products, we have completed real-name authentication and documented the
process. Our experimental testing is conducted internally and will not affect the company’s operations
or generate unintended usage impacts.

Broader Impacts. This paper primarily focuses on proposing a proactive defense technique. Our
intention is positive, aiming to protect individuals’ voices from infringement. We will open-source
the E2E-VGuard, grant users the right to use it, and sign relevant disclaimer clauses to ensure that
their usage behaviors are not related to the designer and publisher of the E2E-VGuard. According
to the licensing agreement, this will not affect the normal and positive usage of speech synthesis
technology. Additionally, our testing using commercial APIs is conducted solely for local user testing
and will not impact any company’s products or services. This paper will not result in any negative
societal impacts.

Subjective Bias. The conclusions of the subjective experiments are derived from human responses,
which can be influenced by the answering circumstances, potentially leading to subjective bias. To
reduce the bias in subjective experiments, we calculate the 95% confidence interval of the MOS values
following [9] and recruit a sufficient number of volunteers to enhance the reliability of the conclusions.
We also implement certain filtering measures to eliminate low-quality responses. According to the
conclusions of the subjective experiments, human subjective perception is generally aligned with
objective evaluations, indicating that we have minimized the interference of subjective bias on the
experimental results.

Limitations of the Target ASR System. In designing E2E-VGuard, we focus on protecting against a
specific ASR system, aiming to cause errors in the text recognized by the target ASR. This breaks the
alignment between text and pronunciation in the TTS model. The reason we do not pursue a universal
approach is that previous methods [19] based on universal attacks typically rely on clustering multiple
ASRs, which consumes more time and computing resources. We aim to simplify our system as much
as possible to improve the efficiency of the protection. Therefore, we conduct targeted protection
using the targeted ASR and then transfer the results to other models. The experiments in Appendix E
also demonstrate that our method remains effective when employing different targeted ASR systems.

Time Overhead and Acceleration Strategies. As the defender, we consider scenarios where users
upload audio to the internet after E2E-VGuard protects audio samples. We test the average time for
E2E-VGuard to protect audio on the LibriTTS dataset using a device equipped with one NVIDIA
4090 GPU with 24 GB of memory. On average, E2E-VGuard takes 97.982 seconds and 111.495
seconds to protect audio in untargeted and targeted settings, respectively. This protection time is on
the same level as the baselines, which are 44.871 seconds for AttackVC [8] and 203.248 seconds for
AntiFake [7]. The shorter optimization time may allow users to protect the target audio more quickly.
The additional time overhead for targeted protection with E2E-VGuard, compared to untargeted
protection, mainly comes from selecting a target speaker from the speaker database. Moreover, some
acceleration methods can reduce the time overhead, e.g., data batching and multi-GPU parallelization.

Adaptive Adversaries. In the Section 4.6, we evaluate the robustness of E2E-VGuard from three
aspects. The experiments demonstrate that E2E-VGuard can resist denoising techniques and remains
effective against the adversarial example defense techniques proposed by Hussain et al. [45] in
the audio domain. Additionally, we test various audio compression and filtering techniques and
simulate the adversary’s acquisition of audio using different speakers and microphones in real-world
scenarios. The E2E-VGuard can still effectively protect the audio. The reason for E2E-VGuard’s
strong robustness lies in its application of various feature encoders to capture information from the
latent space of the audio, enabling perturbations to be better embedded and thus resistant to being
disrupted by denoising techniques and others.
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Encoder Ensemble. TTS models, especially zero-shot ones, typically design a speaker encoder to
extract the timbre embedding of the reference audio. For a specific TTS model, one can perform
an adversarial attack on its speaker encoder to mislead the extraction of the target timbre, thereby
protecting the original speaker’s timbre. In practice, as defenders, we cannot know what type of
TTS model the adversary might employ, so our designed proactive defense framework, E2E-VGuard,
should possess transferability. Previous research has shown that clustering encoders from different
models can achieve outstanding transferability. Based on this, we utilize an encoder ensemble
approach and combine it with a feature encoder to better extract and protect the reference speaker’s
timbre. The encoders we selected are highly representative and can cover mainstream generative
architectures and backbones, such as VAE from VITS [6], diffusion model from StyleTTS2 [12], and
flow matching from CosyVoice [1].

Eliminating ASR System. In the scenario described in this paper, we have developed an end-to-end
fine-tuning method based on an ASR system that does not require manually labeled text. We propose
E2E-VGuard for timbre and pronunciation protection. However, assuming the adversary has enough
human resources to obtain text through manual labeling, the effectiveness of E2E-VGuard remains
a concern. We conduct experiments on the GSV model, using both untargeted and targeted audio
protection. For the reference text in fine-tuning, we provide the correct text instead of the text obtained
through ASR transcription. The experimental results show that the WER and SIM are 39.659%,
0.161 (T) and 73.784%, 0.278 (UT). This indicates that using clean text can still achieve effective
protection at the timbre level, and pronunciation will continue to be affected. This demonstrates that
the perturbations added by E2E-VGuard can interfere with the TTS model’s learning of pronunciation
information. Therefore, E2E-VGuard can still provide some protective effect even when manually
labeled correct text is used for fine-tuning.

“Imperceptibility” consideration. In the scenario of our paper, the embedded perturbations should
be “harmless” to the original audio, meaning that the original text content remains unaltered and
the normal usability of the protected audio is unaffected. “Usability” represents whether the audio
can be utilized normally in our daily lives. Rather than requiring perceptual indistinguishability
between the protected and original audio. We have verified through both objective (Section 4.2)
and subjective experiments (Appendix G) that the perturbations we generated do not cause huge
disruptions to the original audio. Moreover, from the robustness perspective, assuming strong adver-
saries can distinguish embedded perturbations, they can utilize adversarial techniques to improve the
performance of the synthesized speech, causing privacy leakage. However, the robustness validated in
Section 4.6 ensures that the adversary cannot effectively remove the embedded perturbation, thereby
enhancing protection efficacy against speech synthesis. Therefore, even if the adversary perceives the
perturbations, the robustness of E2E-VGuard ensures that privacy data is not completely leaked.

B Algorithm

Algorithm 1 provides a detailed illustration of each step that E2E-VGuard utilizes to protect audio.
The input data includes the audio to be protected x, a long text Y , the target ASR system, and the
optimization numbers max_epoch. The output data is the protected audio x′. Initially, the function
init_perturbation() is employed to randomly set the initial value of δ, ensuring it stays within
[−ϵ, ϵ]. Subsequently, perturbation optimization is performed for max_epoch steps. In each step,
C1 to C3 are calculated separately, and their weighted sum yields the objective function value C.
For calculating C2, E2E-VGuard offers two methods, with differing target texts for each case. If
untargeted protection is applied, the target text is a segment randomly extracted from the given long
text Y , matching the length of the original text y ← ASR(x). For targeted protection, the target
text corresponds to the transcription of the target audio xt. Using C, gradient information can be
computed to optimize δ, thereby generating the protected audio x′.

Regarding Perturbation Generation. Following the classical Projected Gradient Descent
(PGD) [46] algorithm in the adversarial attack domain, we compute the gradient of the loss func-
tion for variable x to derive the perturbation: δ = −sign(∇xL), where sign(·) denotes the sign
function and L represents the loss function. Subsequently, δ is projected onto the ϵ-ball constraint,
i.e., δ = Clamp(−sign(∇xL),−ϵ, ϵ). Using δ, the protected audio is updated at each step as
x′ = Clamp(x+ δ,−1, 1), as shown in Algorithm 1.
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Algorithm 1: E2E-VGuard.
Inputs: input audio x, text dict Y , ASR system ASR(·), optimization numbers max_epoch.
Parameters: perturbation boundary ϵ, weight coefficients in Eq. (1) α and β.
Output: protected audio x′.

1 δ ← init_perturbation(−ϵ, ϵ);
2 x′ ← x+ δ;
3 for j ← 1 to max_epoch do
4 C1 ← F (ASR(x′), yt);
5 if Untargeted_Sim then
6 yt ← Y[:|ASR(x)|];

7 C2 ←
k∑

i=1

CS(Ei(x), Ei(x
′)) + CS(M(x),M(x′));

else
8 xt ← select_target_speaker(x);
9 yt ← ASR(xt);

10 C2 ← −
k∑

i=1

CS(Ei(xt), Ei(x
′))− CS(M(xt),M(x′));

end

11 C3 ← 1
F

F∑
f=1

max (0, px′−x(f)− θx(f)) + ||x′ − x||2;

12 C ← C1 + α · C2 + β · C3;
13 δ ← Clamp(−sign(∇xC),−ϵ, ϵ);
14 x′ ← x+ δ;

end

Table 6: The detailed comparison of related works and E2E-VGuard.
Method Target Type Waveform Phrase Transferability Imperceptibility Robustness Pronunciation

AttackVC [8] Voice Protection of
Identification AEs % Inference % ℓ∞ constraint %

%AntiFake [7]

!

Encoder Ensemble Frequency Penalty and SNR

!

POP [9]
Voice Protection of

Synthesis Quality and
Identification

UEs Fine-tuning Pivotal Objective ℓ∞ constraint

SafeSpeech [10] STOI and STFT loss
!E2E-VGuard

(ours) AEs
E2E

Zero-shot &
Fine-tuning

Encoder Ensemble
with Feature Extractor Psychoacoustic Model

(1) Waveform: whether the perturbation is added on original waveform. (2) Transferability: the applied approach to enhance perturbation’s transferability.
(3) Robustness: whether the robustness has been validated.

C Comparison with Related Work

To provide a clearer comparison of the distinctions and advantages between E2E-VGuard and prior
works, we present Table 6. This table compares aspects including algorithmic design objectives,
types of data protection, whether perturbation is applied on the waveform, targeted speech synthesis
types (phrases), transferability, techniques for enhancing imperceptibility, robustness verification,
and consideration of pronunciation-level protection.

E2E-VGuard effectively safeguards end-to-end speech synthesis systems, covering both zero-shot
and fine-tuning-based scenarios. It integrates an MFCC extractor based on an encoder ensemble to
conceal speaker identity at the completed audio feature level. Specifically, E2E-VGuard demonstrates
strong adaptability to LLM-based speech synthesis models. Moreover, it employs a psychoacoustic
model to minimize human perception of injected noise. In summary, E2E-VGuard achieves a more
effective, robust, and perceptually superior audio protection algorithm.

D Details of Experimental Information

In this section, we illustrate the detailed information of selected synthesizers and ASR systems.
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Table 7: The detailed information and comparison of selected synthesizers.
VITS [6] GSV [2] CosyVocie [1] Llasa-1B [26] Llasa-8B [26] StyleTTS2 [12] Index-TTS [27] FireRedTTS-1S [28]

Type fine-tuning zero-shot zero-shot zero-shot zero-shot zero-shot zero-shot zero-shot

Industrial? ! ! ! % % % ! !

LLM? % ! ! ! ! % ! !

Backbone VAE GPT2 [3] Transformer Llama3-1B [4] Llama3-8B [4] diffusion model GPT2 [3] semantic LM
acoustic LM

Vocoder Hifi-GAN [47] Hifi-GAN Hifi-GAN HifiGAN
iSTFTNet [48]

HifiGAN
iSTFTNet [48] Vocos [49] BigVGAN2 [50] semantic decoder

RT 2021 2024 2024 2025 2025 2023 2025 2025

Fine-tune Full (100 / 200) Full (50 & 25) Full (20) LoRA (2) LoRA (2) Full (50) - -

Step-Audio-TTS [5] Spark-TTS [29] XTTS-v2 [30] FishSpeech [31] Dia-1.6B [32] F5-TTS [35] E2-TTS [34] VALLE-X [33]

Type zero-shot zero-shot zero-shot zero-shot zero-shot zero-shot zero-shot zero-shot

Industrial? ! % ! ! % % ! !

LLM? ! ! ! ! ! % % !

Backbone Step-Audio [5] Qwen2.5-0.5B [51] GPT2 [3] Llama [52] Transfomer DiT [53] Flow matching
Transformer Codec

Vocoder HifiGAN decoder HifiGAN Firefly-GAN [31] DAC decoder Vocos [49] BigVGAN [50] Codec decoder

RT 2025 2025 2024 2024 2025 2024 2024 2023

Fine-tune - - - - - - - -

(1) Type: whether this model can perform zero-shot TTS. (2) iSTFT: inverse Short-Time Fourier Transform. (3) LLM: whether LLM component is employed.
(4) Fine-tune: the fine-tuning type and epochs.

D.1 Details of Synthesizers

To provide a more comprehensive comparison of the models we adopted, we create Table 7, which
outlines the following aspects: model type, industrial origin, whether the model is LLM-based,
backbone architecture, vocoder used to convert latent variables into perceptible waveforms, release
time (RT), and parameter settings employed in the fine-tuning process described in Section 4.2.

In terms of model types, we select VITS, a classic and backbone model requiring fine-tuning, along
with other mainstream zero-shot models. Among the models, eight originate from the industry,
and most (12 out of 16) are LLM-based. The LLMs utilized include Qwen2.5, Llama 3, Llama,
Step-Audio, GPT2, a Transformer-based model, and a Neural Audio Codec. These language models
assist the synthesizer in better learning rhythm, prosody, and semantic features. The “Fine-tune”
column in the table indicates the implementation details used for validating the end-to-end fine-tuning
scenario in Section 4.2: “Full” denotes full-parameter training, while “LoRA” represents using an
auxiliary Low-Rank Adaptation (LoRA) adapter to learn input features. Notably, full-parameter
fine-tuning of Llasa-8B demands substantial computational resources, whereas LoRA maintains
low computational resource requirements while remaining effective. The second row of numbers
indicates training epochs, where “100 / 200” in the table represents training 100 iterations for the
single-speaker dataset and 200 for the multi-speaker datasets. “50 & 25” means training 50 epochs
for GPT and 25 epochs for SoVITS in the GPT-SoVITS model.

D.2 Details of ASR Systems

In real-world scenarios, adversaries may employ different ASR systems to recognize textual informa-
tion from audio. We briefly introduce the ASR systems considered in the experiments of Section 4.1,
and in this section, we present Table 8 to provide detailed comparisons of the ASR systems used in
the experiments described in the Appendix E. This includes differences in the acoustic models, loss
function types, and recognition performance measured by the WER metric.

From Table 8, we observe that the selected models incorporate two common backbone architectures,
i.e., Transformer and CNN, and employ diverse loss function types. We specifically include the
Whisper model [16], a multilingual ASR system known for its high recognition accuracy. The largest
variant, large-v3, achieves a WER of only 2.7%, making it the best-performing model among those
selected. These seven ASR systems across four categories effectively represent current mainstream
technologies in the field of automatic speech recognition.
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Table 8: The detailed information and comparison of selected ASR systems.

Models Acoustic Model Loss Type WER in test-clean (%)

Wav2vec2 [23] Transformer
& CNN CTC 3.4

Whisper [16] Transformer Cross Entropy 5.0 (base) 3.4 (small)
2.9 (medium) 2.7 (large)

Conformer [38] Transformer CTC 3.7

CitriNet [39] CNN CTC 4.4

(1) CNN: convolutional neural network. (2) WER in test-clean: WER
value on LibriSpeech test-clean dataset.

Table 9: The protective effectiveness and imperceptibility targeting adaptive ASR models.

Model
Effectiveness Imperceptibility

VITS GSV
WER(↑) SIM(↓) WER(↑) SIM(↓) SNR(↑) PESQ(↑)

Whisper-base [16] 99.598 0.144 101.082 0.088 19.362 2.053
Whisper-small [16] 93.996 0.164 103.518 0.138 19.000 2.077

Whisper-medium [16] 126.298 0.171 109.666 0.173 19.236 2.089
Whisper-large-v3 [16] 84.618 0.163 66.534 0.164 19.245 2.019

Conformer [38] 105.145 0.126 81.753 0.180 12.835 1.638
CitriNet [39] 89.520 0.137 59.921 0.302 12.948 1.629

E Adaptive ASR Systems

In Section 4.2, Section 4.3, and Section 4.6, we have evaluated the protected effectiveness against the
Wav2vec2 model. In the real world, adversaries can employ more types of ASR systems. Therefore,
E2E-VGuard should be effective when utilizing different ASR models for text recognition. In this
section, we test the protective performance across six other ASR models.

Table 9 shows the protection effectiveness and imperceptibility of E2E-VGuard across different ASR
models. The results demonstrate that our method provides strong protection for various ASR models,
with WER values consistently above 50%, indicating low intelligibility of synthesized audio, and SIM
values below the threshold of 0.25 [43], indicating low similarity to the original audio. Whisper-large-
v3, known for its superior text recognition accuracy, ease of utilization, and multilingual capabilities,
is widely adopted in the industry. E2E-VGuard also effectively protects against Whisper-large-v3,
achieving average WER and SIM values of 75.576% and 0.163, respectively, across two models.
Additionally, the imperceptibility of perturbations generated for different models outperforms strong
baselines i.e., AntiFake, POP+ESP, and SafeSpeech.

F Multilingual and Multi-Speaker Evaluation

In Section 4.2 and Appendix E, we evaluate the effectiveness and transferability of the proposed E2E-
VGuard on a single-speaker English dataset, LibriTTS. However, adversaries may encounter diverse
speech samples, including multi-speaker and multilingual scenarios. To address this, we further
validate our method on CMU ARCTIC, a multi-speaker dataset, and THCHS30, a multi-speaker
Mandarin dataset targeting the Wav2vec2 model. Specifically, we fine-tune VITS and GSV models
on CMU ARCTIC while using the GSV model for fine-tuning on THCHS30.

Figure 4a illustrates the experimental results on the multi-speaker dataset (“-o” represents fine-tuning
on the original dataset, and “-p” denotes fine-tuning on the protected dataset in the figure). We can
find that both models are capable of synthesizing high-quality audio with corresponding speaker
timbres on clean samples. After fine-tuning the audio protected by E2E-VGuard, the WER and SIM
averaged 103.021 and 0.144, respectively, indicating that E2E-VGuard can effectively prevent the
pronunciation and timbre information in a multi-speaker end-to-end fine-tuning scenario. Figure 4b
demonstrates the fine-tuning effect of GSV on the THCHS30 dataset, where the recognition ASR
system uses a multilingual recognition model, whisper-base, as the target for adversarial attacks.
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Figure 4: Test results of Multi-speaker and Mandarin datasets.

Table 10: The subjective evaluation of
the ground truth (GT) and E2E-VGuard-
protected dataset.

MOS(↑)
GT 4.788 ± 0.157

E2E-VGuard (UT) 3.522 ± 0.218

Table 11: Human perceptual evaluation of the qual-
ity and intelligibility of the synthesized speeches
by different training samples.

MOS(↓) Intelligibility(↓)
clean 4.842 ± 0.123 100.000%

AntiFake 2.055 ± 0.309 99.074%
POP+ESP 0.851 ± 0.364 89.814%

E2E-VGuard (UT) 2.615 ± 0.331 50.925%
E2E-VGuard (T) 3.060 ± 0.373 8.333%

G Human Study

In our previous experiments, we have validated the effectiveness of E2E-VGuard and its perception
through objective evaluation metrics. However, we also need to verify the subjective perception of
audio by human ears, as synthesized audio in the real world needs to interact with humans. Therefore,
this experiment conducts a subjective evaluation to validate human perception and discrimination of
synthesized audio, as well as the perception of protected audio.

Recruitment Process. This subjective survey has been approved by the Human Ethics Research
Committee at the first author’s institution. We create the questionnaire through Credamo and recruit
36 volunteers to participate in the survey, which is comparable to similar studies, such as AntiFake of
24 participants. All volunteers are over 18 years old and possess good English skills. Their average
response time is 200.194 seconds.

Filtering. We prohibit volunteers under 18 from participating in the questionnaire. Within the
questionnaire, we include two simple random arithmetic questions, and incorrect answers result in
rejection. We also filter out all non-serious responses, e.g., the same answers across all questions, or
excessively short response times.

Questionnaire Setup. We establish two sections for subjective testing for the synthesized audio and
protected audio, with a total of 22 samples.

Task 1: Study on Protected Speech. In the subjective test of protected audio, we select 3 audio
samples protected by E2E-VGuard to test naturalness and similarity to the original audio. In order to
improve the confidence level of the subjective experiment and reduce the potential bias, we calculate
the MOS by taking into account the 95% confidence intervals, which can be found in the previous
research [10]. Results in Table 10 show that the MOS of 3.522±0.218 suggests that the embedded
perturbations do not significantly reduce normal audio usability, and the distortions are acceptable to
human ears when the MOS value surpasses 3.0 [7].

Task 2: Study on Synthetic Speech. In this part, we select 3 synthesized audio samples trained
on original samples, baseline-protected methods, and E2E-VGuard-protected samples. Table 11
presents the experimental results for Task 2, revealing that compared to synthesis from the original
audio. For synthetic audio evaluation, we utilize audio quality (MOS) and pronunciation intelligibility.
Audio quality assesses noise levels and perceptual quality, calculated consistently with Task 1. The
ESP method exhibits the worst synthesis quality because its perturbation addition process causes
the most severe distortion to the original audio, rendering it unusable. Pronunciation intelligibility
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involves presenting participants with both audio and its corresponding prompt text to judge whether
the audio content matches the given text. The table results show that E2E-VGuard effectively disrupts
the model’s original pronunciation patterns: only 50.925% (UT) and 8.333% (T) of participants
perceived correct pronunciation alignment with the text, while most participants identified mismatches,
demonstrating significant improvement over previous baselines.

Through human study, we observe two key findings: (1) Human auditory perception aligns with
objective metrics from prior experiments; (2) Experimental results confirm that E2E-VGuard’s noise
injection not only bypasses human auditory detection but also substantially reduces the probability of
participants being deceived by deepfake audio.
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