
How to Provably Improve Return Conditioned
Supervised Learning?

Zhishuai Liu1, Yu Yang1, Ruhan Wang2, Pan Xu1, Dongruo Zhou2

1Duke University
2Indiana University Bloomington

{zhishuai.liu,yu.yang,pan.xu}@duke.edu, {ruhwang, dz13}@iu.edu

Abstract

In sequential decision-making problems, Return-Conditioned Supervised Learning
(RCSL) has gained increasing recognition for its simplicity and stability in modern
decision-making tasks. Unlike traditional offline reinforcement learning (RL) algo-
rithms, RCSL frames policy learning as a supervised learning problem by taking
both the state and return as input. This approach eliminates the instability often
associated with temporal difference (TD) learning in offline RL. However, RCSL
has been criticized for lacking the stitching property, meaning its performance is
inherently limited by the quality of the policy used to generate the offline dataset.
To address this limitation, we propose a principled and simple framework called
Reinforced RCSL. The key innovation of our framework is the introduction of a
concept we call the reinforced return. This mechanism leverages our policy to iden-
tify the best achievable in-dataset future return based on the current state, avoiding
the need for complex return augmentation techniques. Our theoretical analysis
demonstrates that Reinforced RCSL can consistently outperform the standard
RCSL approach. Empirical results further validate our claims, showing significant
performance improvements across a range of benchmarks.

1 Introduction

Reinforcement Learning (RL) has emerged as a powerful paradigm for decision-making and sequential
learning [27], achieving remarkable successes across domains such as robotics [13, 25], healthcare
[19, 36, 20], games [21, 29], and training large language models [9]. Among the various RL
paradigms, offline RL [18, 12, 6] has gained substantial attention due to its ability to learn policies
from pre-collected datasets without requiring interaction with the environment, which is particularly
appealing in scenarios where exploration is costly, unsafe, or impractical. A key advantage of offline
RL lies in its ability to leverage data generated by many existing policies, enabling the discovery of
robust and effective behavior patterns.

Within offline RL, return-conditioned supervised learning (RCSL) has recently attracted significant
traction [15, 16, 2, 3, 30]. RCSL reframes the policy learning problem as a supervised learning
problem: the input consists of the state and the return from the current state, while the output is the
optimal action for that state. Compared to classical offline RL algorithms, which primarily rely on
dynamic programming (DP) approaches [17, 15], RCSL is easier to train, more straightforward to
tune, and often achieves competitive performance across a variety of tasks. Notable RCSL methods
include Decision Transformer (DT) [2] and Reinforcement Learning via Supervised Learning (RVS)
[3]. However, a critical limitation of RCSL lies in its lack of stitching ability—that is, its inability
to derive a policy that exceeds the performance of the policies used to generate the offline dataset.
This limitation arises because RCSL tends to follow trajectories from the dataset without effectively
combining the best parts of different trajectories, which is essential for achieving superior performance.

2nd Workshop on Aligning Reinforcement Learning Experimentalists and Theorists (ARLET 2025).

This limitation has been rigorously analyzed and demonstrated in [1], suggesting that RCSL’s lack of
stitching ability may be an inherent property of the approach.

Recently, several works have taken initial steps toward addressing this limitation and exploring
potential solutions. For example, [34] proposed the QDT method, which relabels returns using a
pre-learned optimal Q-function; [32] introduced the Elastic Decision Transformer, which dynamically
adjusts the input sequence length; and [40] developed the Reinformer, which incorporates expectile
regression into the Decision Transformer framework. These works have empirically demonstrated
some level of stitching ability, indicating that enhancing stitching ability within RCSL methods is
indeed possible. However, the theoretical understanding of RCSL remains underdeveloped compared
to dynamic programming-based RL methods, where theoretical guarantees are more mature and
extensively studied. Bridging this gap between empirical success and theoretical guarantees remains
an open challenge. In this context, we pose the following critical question:

Can we improve return-conditioned supervised learning to have provable stitching ability?

Our main contributions are listed as follows.

• We introduce reinforced RCSL (R2CSL), an advancement over RCSL that strictly improves its
performance. The key innovation of R2CSL is a new concept called the in-distribution optimal
return-to-go (RTG), which characterizes the highest accumulated reward a RCSL method can
achieve under the offline trajectory distribution. This quantity can be directly learned via supervised
learning, thereby avoiding the need for dynamic programming, which is commonly used in classical
offline RL methods [17]. We demonstrate that R2CSL, by incorporating the in-distribution optimal
RTG, learns an in-distribution optimal stitched policy that surpasses the best policy achievable by
traditional RCSL methods. To the best of our knowledge, this is the first work to provably surpass
RCSL without dynamic programming.

• We provide a sample complexity analysis for various environments, including tabular MDPs and
MDPs with general function approximation. We show that the sample complexity of R2CSL to
achieve the in-distribution optimal stitched policy is of the same order as classical RCSL methods
[1], while R2CSL converges to a superior policy. We further propose two realizations of R2CSL
using expectile regression [22] and quantile regression [14] for the in-distribution optimal RTG
estimation and analyze their theoretical guarantees.

• We conduct comprehensive experimental studies under a simulated point mass environment, the
D4RL gym and Antmaze environments to showcase the effectiveness of the R2CSL algorithm.
Experiment results demonstrate that (1) R2CSL achieves the stitching ability, and outperforms
RCSL-type algorithms like RvS and DT; (2) The R2CSL framework is also flexible enough to
incorporate dynamic programming components, and it achieves performance comparable to the
state-of-the-art QT algorithm [10], while maintaining its simplicity.

2 Problem formulation

Reinforcement learning. We consider episodic Markov Decision Processes (MDPs) in this work,
where each MDP is represented by a tuple (S,A, P, r,H, ρ). Here, S denotes the state space, A is
the action space, P (s′|s, a) specifies the probability of transitioning to state s′ after taking action a
at state s, and the reward function |rh(s, a)| ≤ 1 assigns a reward to taking action a at state s. The
horizon length H indicates the fixed number of steps in each episode, and ρ(s) defines the initial
state distribution, giving the probability of starting with state s.

The agent interacts with the environment with a policy π : S × [H] → ∆(A) in a policy class
Π. At each timestep h, the agent observes the current state sh ∈ S, selects an action ah ∈ A
according to its policy πh, and transitions to the next state sh+1, which is sampled from the transition
dynamics P (·|sh, ah). Simultaneously, the agent receives a reward rh = rh(sh, ah) ∈ [0, 1]. The
objective of the agent is to learn a policy π : S → A that maximizes the expected cumulative
reward over an episode: EP

π

[∑H
h=1 r(sh, ah)

]
, where the expectation is taken over the randomness

in the initial state distribution ρ, the policy π, and the transition dynamics P . The value function
V π
h (s) = Eπ

[∑H
t=h rt(st, at) | sh = s

]
represents the expected cumulative reward starting from

state s at timestep h and following policy π thereafter. The Q-function is given by: Qπ
h(s, a) =

rh(s, a) + Es′∼Ph(·|s,a)
[
V π
h+1(s

′)
]
. The optimal value function V ∗

h (s) and the optimal Q-function

2

Q∗
h(s, a) are defined similarly but correspond to the optimal policy π∗, which maximizes the expected

cumulative reward. Finally, we define J(π) = Es1∼ρV
π
1 (s1).

The offline setting. We consider an offline dataset D collected by a behavior policy β, where
the dataset size is |D| = N . D consists of trajectories: D = {τk}Nk=1, with each trajectory τk

represented as τk = (sk1 , a
k
1 , r

k
1 , · · · , skH , akH , rkH), where sk1 ∼ ρ is the initial state drawn from the

initial state distribution ρ, akh ∼ β(·|skh) is the action selected by the behavior policy β at step h,
and skh+1 ∼ P (·|skh, akh) is the next state sampled from the transition dynamics P . We use dβh(s) to
denote the state distribution of state s under the behavior policy β at step h. Our goal is to leverage
this offline dataset D to learn an effective policy that performs well in the underlying environment.

The RCSL framework The RCSL framework aims to learn a policy by modeling the distribution
of actions conditioned on the state, the stage and the return of the trajectory, denoted by π : S ×
[H]× R → ∆(A). Specifically, RCSL algorithms optimize the policy by minimizing the empirical
negative log-likelihood loss over the offline dataset D: π̂ = argminπ∈Π L̂(π), where

L̂(π) = −
∑

τ∈D
∑H

t=1 log π(at | st, t, g(τ, t)), (2.1)

where g(τ, h) =
∑H

t=h rt computes the return-to-go (RTG, [2]) along τ , starting from step h. This
optimization aligns the learned policy π with the observed behavior in the offline dataset, incorporating
both the states and return-based context. At test time, the RCSL algorithms utilize the learned policy π̂
along with a test-time conditioning function f(s, h), which determines the desired return to condition
the policy. The resulting test-time policy πf is then defined as πf (a|s, h) := π̂(a|s, f(s, h)), where
πf produces actions conditioned on the current state s and the test-time return determined by f(s, h).
This design enables flexible adaptation of the policy to different test-time objectives by modifying
the conditioning function f(s, h).

3 The reinforced RCSL

In this section, we introduce our algorithm, R2CSL, discussing its core intuition and the reasons
it should be preferred. To provide context, we first revisit existing analyses of the failure modes
encountered by classical RCSL, highlighting the limitations that motivate the design of R2CSL.

Why does RCSL fail to stitch? We revisit the findings in [1], which suggest that the policy
returned by the default RCSL framework is unable to outperform the behavior policy used to
generate the dataset D. Given a pretrained RCSL policy π̂, classical RCSL approaches such as
Decision Transformer (DT) [2] and Return-Conditioned Supervision (RVS) [3] effectively rely on a
conditioning return function f that satisfies the following conditions [1]:

• In-distribution condition: The initial return f(s1, 1) must be achievable with non-zero probability
under the behavior policy β.

• Consistency condition: For any trajectory, the return function must satisfy f(sh, h) = f(sh+1, h+
1) + rh(sh, ah), ensuring consistency across steps.

These conditions are crucial for ensuring that, at each step h, there is no out-of-distribution (OOD)
issue with the inputs to the policy πf . While these conditions guarantee the validity of the learned
policy, they significantly restrict the range of feasible conditioning functions f . Specifically, this

Figure 1: An example when RCSL
fails to stitch.

implies that the value domain of f can only be selected as
g(τ, h), where τ represents any trajectory that could appear in
the dataset D generated under the behavior policy β. Therefore,
the return of trajectories generated by πf will also be upper
bounded by g(τ, 1), which performs no better than the best
trajectory in the dataset D. For illustration, we provide a toy ex-
ample in Figure 1 to show RCSL fails to stitch. In this example,
A = {a1, a2, a3}, H = 3 and S = {s}. The state is unique
and remains unchanged across stages. Each row represents
a trajectory. The number outside (inside) the parentheses are
rewards (return-to-go). For RCSL, we can only simply choose
f to be 80, 81 or 75 as the conditioning return at the initial stage, and the ‘optimal’ RCSL policy

3

would choose a2 at each stages, i.e., the trajectory in the red box. However, a better trajectory can be
obtained by stitching, e.g. taking the action sequence (a2, a3, a3).

3.1 Algorithm description

To address the non-stitching issue discussed above, we introduce R2CSL. R2CSL discards the
consistency condition, thereby allowing greater flexibility in the selection of the conditioning function
f . To achieve the stitching ability, at each time step h, R2CSL looks ahead to search for the maximum
in-distribution RTG as its conditioning function, instead of following the original return-to-go in
trajectory τ . This increased flexibility and ‘optimal conditioning’ enable R2CSL to achieve superior
results by overcoming the limitations of classical RCSL approaches.

Formally, we begin by introducing the feasible set of trajectories under the behavior policy β,
Tβ := {τ | Pβ(τ) > 0}, where Pβ is the trajectory distribution induced by β under the transition
dynamics P . Based on this, we can define the feasible set of conditioning functions: ∀τ ∈ Tβ and
(sh, gh) ∈ τ , there must exist a conditioning function f such that f(sh, h) = gh. The feasible
conditioning function set Fβ is defined as:

Fβ := {f : S × [H] → [0, H] | ∀(s, h) ∈ dom(f),∃ τ ∈ Tβ s.t. sh = s and f(s, h) = gh},

where dom(f) is the domain of f . Notably, the conditioning functions in Fβ are not constrained
by the consistency assumption. At any stage h ∈ [H], the feasible set of states is defined as
Sβ
h := {s ∈ S | dβh(s) > 0}. For any feasible state s ∈ Sβ

h at stage h, the local feasible conditioning
function set is defined as Fβ(s, h) := {f : S × [H] → [0, H] | f ∈ Fβ and (s, h) ∈ dom(f)}.

In-distribution optimal stitched policy. Using Fβ , we define the in-distribution optimal RTG
f⋆ as f⋆(s, h) := argmaxf∈Fβ(s,h)

f(s, h) which represents the maximum in-distribution RTG
starting from (s, h) in the offline dataset. Based on this, we define the in-distribution optimal stitched
policy π⋆

β as π⋆
β(a | s, h) := Pβ(a | s, h, f⋆(s, h)), where the policy is conditioned on the optimal

return-to-go f⋆(s, h). As an extension, we define a broader class of return-conditioned policies
πf (a | s, h) := Pβ(a | s, h, f(s, h)),∀f ∈ Fβ . We denote the subset of conditioning functions
that satisfy the consistency condition as FC

β ⊂ Fβ . Using this, we present our first theorem, which
highlights the superiority of the optimal stitched policy. Here, we assume a deterministic transition
P and deterministic rewards rh. The initial state distribution ρ and the behavior policy β remain
stochastic.

Theorem 3.1. For any f ∈ FC
β , we have J(π⋆

β) ≥ J(πf) for all f ∈ FC
β . In a word, the value

achieved by the optimal stitched policy π⋆
β , equipped with f⋆ ∈ Fβ , is always at least as good as that

of policies constrained by the classical RCSL consistency condition.

Theorem 3.1 shows that conditioning function-optimal in-distribution RTG f⋆ enables stitching with
a better trajectory at each time step. However, in practice, the optimal in-distribution RTG f⋆ is
unknown, and consequently, so is the in-distribution optimal stitched policy π⋆

β .

We propose our algorithm R2CSL in Algorithm 1 to construct the maximum in-distribution RTG

Algorithm 1 The Reinforced RCSL (R2CSL)

Require: The offline dataset D.
1: Set π̂ = argminπ∈Π L̂(π) following (2.1)
2: Obtain the maximum in-distribution RTG function

estimation, f̂⋆(s, h).
3: Receive the initial state s1.
4: for h = 1, · · · , H do
5: Establish π̂⋆

D(·|sh, h) = π̂(·|sh, h, f̂⋆(sh, h)).
6: Implement ah ∼ π̂⋆

D(·|sh, h) and receive the
next state sh+1.

7: end for

estimation and estimate the in-distribution
optimal stitched policy. During training,
R2CSL first follows the RCSL framework
by minimizing the empirical negative log-
likelihood loss defined in (2.1). Then
it additionally estimates the maximum in-
distribution RTG function (Line 2). Here
we do not specify a particular f̂ estimation
procedure. It should be instantiated under
specific settings. During inference, R2CSL
uses the maximum in-distribution RTG es-
timation as the condition to construct the
in-distribution optimal stitched policy esti-
mation π̂⋆

D.

4

4 Finite-sample analysis of R2CSL

4.1 Warm-up analysis for deterministic environments

In this section, we study R2CSL realization under different environment setups, and provide finite-
sample guarantees for variants of R2CSL. We start with a deterministic environment, under which
we instantiate and analyze R2CSL to provide clearer insights into its behavior and advantages.
We assume finite state and action spaces. For notational simplicity, we redefine a trajectory as
τ = (s1, a1, g1, s2, a2, g2, . . . , sH , aH , gH), where gh represents the RTG at stage h.

Given the current state sh at stage h, we define TD(sh) = {k ∈ [N] | skh = sh}, representing the
empirical feasible index pool at sh. We set f̂⋆(sh, h) = argmaxk∈TD(sh)

gkh in Algorithm 1, say,
it assigns the empirical in-distribution optimal RTG from the dataset to the conditioning function.
It subsequently determines the empirical in-distribution optimal stitched policy: π̂⋆

D(·|sh, h) =

π̂(·|sh, h, f̂⋆(sh, h)). Thus, Algorithm 1 effectively follows the steps outlined in Section 3.1 to learn
the in-distribution optimal stitched policy π∗

β using an empirical dataset D instead of the behavior
policy itself.

Theoretical guarantee. The policy learned by Algorithm 1, denoted as π̂⋆
D, is an estimate of π⋆

β . We
now analyze its finite-sample theoretical guarantee. At a high level, achieving a reliable estimation
requires: 1) the empirical in-distribution optimal RTG, f̂⋆, to be accurate, and 2) sufficient coverage
of the offline dataset over the trajectories induced by the in-distribution optimal stitched policy.

We begin by stating a standard assumption on the regularity of the policy class Π, following [1].
Assumption 4.1. For the policy class Π, we assume it is finite, and

• For all (a, s, g, h, a′, s′, g′, h′), π ∈ Π, we have | log π(a | s, h, g)− log π(a′ | s′, h′, g′)| ≤ c.
• The approximation error of MLE is bounded by δapprox, i.e., minπ∈Π L(π) ≤ δapprox, where
L(π) = Es∼Pβ

Eg∼Pβ(·|s)
[
DKL(Pβ(· | s, g)∥π(· | s, g))

]
is the expected loss.

Next, we introduce an assumption on the data distribution, which characterizes how well the offline
dataset covers the target policy.
Assumption 4.2. Given the behavior policy β, we assume:

• There exists a constant c̃ > 0 such that for all (s, h) ∈ dom(f⋆), Pβ(gh = f⋆(s, h) | sh = s) ≥ c̃.
• There exists a constant c⋆β > 0 such that for all (h, s) ∈ [H]× Sβ

h , we have d⋆,βh (s)/dβh(s) ≤ c⋆β ,
where d⋆,βh is the occupancy measure on states at step h induced by π⋆

β .

Assumption 4.2 imposes a partial-type coverage assumption: it only requires the behavior policy
(or offline dataset) to cover both the maximum in-distribution return-to-go and the state visitation
distribution induced by the optimal stitched policy π⋆

β . Comparing Theorem 4.3 with Corollary 3
of [1], the term c⋆β plays a role analogous to Cf := supf∈FC

β
PπRCSL

f
(s)/Pβ(s), which captures the

worst-case distribution mismatch. Similarly, our term c̃ corresponds to αf , the lower bound on return
coverage, ensuring that Pβ(g = f(s, h) | sh = s) ≥ αf for all f ∈ FC

β .

Let dβmin := minh,s
{
dβh(s) | d

β
h(s) > 0

}
denote the smallest positive entry of the distribution dβ .

Next, we formally state the theoretical guarantee for Algorithm 1.

Theorem 4.3. Under Assumptions 4.1 and 4.2, if we set f̂⋆(sh, h) = argmaxk∈TD(sh)
gkh in Algo-

rithm 1, then for any δ ∈ (0, 1), when N > log(SH/δ)/ log(1− dβmin · c̃), with probability at least
1− 2δ, we have

J(π⋆
β)− J(π̂⋆

D) ≤ O
(c⋆βH2

c̃

(√
c
(log |Π|/δ

N

)1/4

+
√
δapprox

))
.

Theorem 4.3 shows that R2CSL converges to π⋆
β , which outperforms the policies πf for f ∈

FC
β studied by [1]. It also indicates that the sample complexity of Algorithm 1 depends on the

approximation error of MLE. This error can be eliminated by selecting a sufficiently expressive
function class, such as deep neural networks. Additionally, the convergence rate is N−1/4, which is

5

slower than the standard rate of N−1/2 commonly established in the offline RL literature. We believe
this discrepancy is due to a limitation in the current analysis, and we aim to refine it in future work.

4.2 Analysis for stochastic environments

Next, we consider a more general setting where the state and action spaces are large, and the
underlying environment is stochastic. In this case, we can no longer determine the empirical in-
distribution optimal RTG by directly selecting the RTG from offline datasets. To address this
challenge, we propose to estimate f̂⋆ by general function approximation. For now, we do not specify
the estimation method for f̂⋆, it can be instantiated using expectile regression or quantile regression in
later sections. We now outline the assumptions necessary for the theoretical guarantee of Algorithm 1
with general function approximation of the optimal in-distribution RTG.

Assumption 4.4. For the conditioning function f̂⋆ and the policy class Π, we assume:

• There exists an error function Err(N, δ, c̃) that depends on the sample size N and failure probability
δ, such that Es∼dβ

h

[
(f⋆(s, h)− f̂⋆(s, h))2

]
≤ Err(N, δ, c̃),∀h ∈ [H].

• For any (s, h, π) ∈ S × [H] × Π, given g1 ̸= g2, there exists a constant γ > 0 such that
TV(π(· | s, h, g1)∥π(· | s, h, g2)) ≤ γ|g1 − g2|, where TV(·∥·) denotes the total variation distance.

The first condition in Assumption 4.4 ensures that the estimation of the conditioning function is
sufficiently accurate. It is not meant to introduce additional constraints, but rather to provide a
general and abstract formulation—captured via terms like Err(N, δ, c̃)—that subsumes a wide range
of cases. The second condition guarantees that small errors in the conditioning function do not result
in significant divergence in the estimated return-conditioned policy. Next we state our theorem.
Theorem 4.5. Assume Assumptions 4.1 and 4.2 hold. Additionally, if the conditioning function
f̂⋆ and the policy class Π satisfy Assumption 4.4, then for any δ ∈ (0, 1), with probability at least
1− 2δ, the policy π̂⋆

D learned by Algorithm 1 satisfies

J(π⋆
β)− J(π̂⋆

D) ≤ O
(c⋆βH2

c̃

(√
c
(log |Π|/δ

N

)1/4

+
√

δapprox

)
+ c⋆βH

2γ
√

Err(N, δ, c̃)
)
.

Compared to Theorems 4.3 and 4.5 introduces an additional approximation error term, Err(N, δ, c̃).
While we retain the flexibility to choose our estimation method, we are particularly interested in
approaches such as expectile regression [32] and quantile regression [14], which can potentially
achieve error bounds of order O(1/N). We further analyze their properties in the next section.

5 Practical implementation: expectile v.s. quantile regression

In this section, we study how different function approximation procedure-especially those utilized in
literature-of the conditioning function f̂∗ would affect the learned algorithm, under the simple tabular
setting. Existing literature [32, 40] leverage the expectile regression [22] due to its simplicity. It
returns the empirical conditioning function by f̂⋆ = argminf̃∈F

∑K
k=1

[
Lα
2 (g

k
h − f̃

(
skh, h

))]
, where

Lα
2 (u) = |α − 1(u < 0)|u2 and α is the hyperparameter in order to control how close expectile

regression is to the vanilla L2 regression. However, it is trivial to show that the expectile estimator
with α ̸= 1 could lead to out of distribution RTG. Formally, there exists a tabular MDP and a behavior
policy β such that the R2CSL with the expectile regression for f̂⋆ estimation can not find the optimal
policy π⋆

β for sure. We postpone the proof to Appendix C.4. The take away message is that the L2

loss of the expectile regression leads to out-of-distribution returns when α ̸= 1, due to the fact that
L2 loss is less robust to the noise.

To address this issue, we consider the quantile regression [14], which returns the empirical condition-
ing function by f̂⋆ = argminf̃∈F

∑K
k=1 L

α
1 (g

k
h − f̃

(
skh, h

))
, where Lα

1 (u) = |α− 1(u < 0)| · |u|
is the L1 loss. Generally speaking, the L1 loss is more robust to the noise of the return, which makes
Algorithm 1 with quantile regression for f̂⋆ estimation better than its expectile regression counterpart.
In the following theorem, we state that with a large sample size, the R2CSL with quantile regression
can exactly recover the maximum in-distribution RTG, finding the optimal policy. In contrast, R2CSL
with expectile regression introduces bias in f⋆ estimation, learns out-of-distribution RTGs, and fails
to find the optimal policy. We make the following assumption here.

6

Assumption 5.1. We assume that the environment is deterministic. Besides, we assume there is no
tie in the RTG: for any h ∈ [H], ∀τ1, τ2 ∈ Tβ , such that s1h = s2h and a1h ̸= a2h, we have g1h ̸= g2h.

Assumption 5.1 essentially suggests a setting where all trajectories generated by the behavior policy β
can be ‘ranked’ based on their RTG. Under Assumption 5.1, the optimal policy π⋆

β can be represented
by a trajectory starting from the initial state, which enables a simplified analysis of how various
training methods influence f̂ .

Theorem 5.2. Assume that for all (s, h) ∈ dom(f⋆), there exists an constant c̃, such that Pβ(gh =
f⋆(s, h)|sh = s) ≥ c̃. We set α > 1 − c̃/2 in the Lα

2 loss with quantile regression. Then for any
δ ∈ (0, 1), when N ≥ max{ 2

dβ,2
min

log 2SH
δ , 4

c̃2dβ
min

log 2SH
δ } with probability at least 1− δ, we have

J(π⋆
β) = J(π̂⋆

D), where π̂⋆
D is the policy learned by Algorithm 1.

Finally, to further extend the notion of in-distribution optimal RTG, we study the multi-step in-
distribution optimal RTG. We prove that by increasing the number of steps considered in the in-
distribution optimal RTG, R2CSL is capable of finding the optimal in-distribution policy, a result that
was previously only achievable by dynamic programming-based algorithms [17]. Due to space limit,
we postpone related content to Appendix B.

6 Experiments

In this section, we conduct several numerical experiments to answer the following two questions:
How does different choice of hyperparameter α affect R2CSL’s stitching ability? and How does
R2CSL compare to existing extensions of RCSL in literature?

6.1 An illustration of R2CSL’s stitching ability

To answer the first question, we conduct a simulation study in PointMaze to showcase the stitching abil-
ity of Algorithm 1 with expectile regression and quantile regression, and study how different choices
of α affect stitching. The simulated environment is a point-mass navigation task. Red dots represent

Figure 2: The simulated PointMaze
environment

starting points and the green dot is the goal state. The agent
learns a policy to reach the goal from various starting positions.
The offline dataset contains two types of trajectories: Type
I: starting from the left red point and going directly to the
goal; Type II: starting from the bottom red point and moving
upward without reaching the goal. To succeed when starting
from the bottom red point, the agent must learn to stitch—i.e.,
combine information from Type II and Type I trajectories to
reach the goal. We also inject action noise at each step to
evaluate generalization.

We vary the proportion of Type I trajectories to simulate differ-
ent levels of coverage of the optimal return-to-go in the offline
dataset, which corresponds to c̃ in Assumption 4.2. To analyze
how this affects performance, we test Algorithm 1 leveraging
expectile regression and quantile regression with various val-
ues of the hyperparameter α for f̂⋆ estimation. We find that
with 10% Type I trajectories, α = 0.95 enables successful stitching (Figures 3(b) and 3(d)), while
α = 0.85 fails (Figures 3(a) and 3(c)); With 1% Type I trajectories, a higher α = 0.99 is required to
achieve stitching (Figures 4(b) and 4(d)), whereas α = 0.90 fails (Figures 4(b) and 4(c)). Thus, the
results are consistent with our theoretical findings in Theorem 5.2, the hyperparameter α should be
chosen according to the underlying coverage factor c̃.

6.2 D4RL benchmark

To answer the second question, we test several R2CSL variants under the D4RL Gym (halfcheetah,
hopper and walker2d) and Antmaze environments [5]. Due to space limit, details on experiment
setup, implementation and additional results are postponed to Appendix E.

7

(a) Expectile (α = 0.85) (b) Expectile (α = 0.95) (c) Quantile (α = 0.85) (d) Quantile (α = 0.95)

Figure 3: Illustration of the stitching ability of R2CSL - Proportion of type I trajectories in the dataset
is set to 0.1. R2CSL with α = 0.85 fails to stitch, while with α = 0.95 succeeds to stitch.

Table 1: Normalized score on D4RL Gym for RvS and R2CSL with expectile (α = 0.99) and quantile
(α = 0.99) regression respectively. The inference of RvS is conditioned on three target RTGs. We report the
mean and standard deviation of the normalized score for five seeds.

Dataset RVS R2CSL-Expectile R2CSL-Quantile
0.7 0.9 1.1

halfcheetah-medium 43.10±0.64 36.78±3.04 25.47±4.67 42.09±0.50 42.24±0.35
halfcheetah-medium-replay 15.24±7.60 9.59±6.12 5.17±4.72 38.07±0.91 38.71±0.46
halfcheetah-medium-expert 85.48±1.32 90.97±1.26 91.09±1.11 90.95±1.18 92.25±0.62

hopper-medium 52.05±3.90 47.91±4.72 38.49±13.57 54.49±4.18 53.00±9.62
hopper-medium-replay 52.53±22.07 53.49±29.42 34.30±14.06 46.83±14.55 53.27±20.74
hopper-medium-expert 65.00±6.82 96.18±20.65 106.54±8.25 106.62±8.17 100.75±10.92

walker2d-medium 70.94±4.11 72.25±2.88 68.82±3.79 71.18±4.22 71.66±4.33
walker2d-medium-replay 41.24±12.86 47.25±17.79 26.58±20.09 36.34±10.52 44.85±9.00
walker2d-medium-expert 65.06±1.15 69.23±3.70 106.22±0.58 101.03±6.29 105.18±0.70

Total 490.62 523.66 502.68 587.61 601.91

R2CSL with RvS. We implement Algorithm 1 with expectile regression and quantile regression
based on the RvS [3], heuristically motivated from the algorithm design and theoretical results
developed, that can deal with large state and action spaces leveraging powerful function approxi-
mations. Experiment results are shown in Table 1. We can conclude that R2CSL outperforms the
RvS framework across all fixed target RTG fraction ratios. This demonstrates the effectiveness and
robustness of our approach.

Ablation study The hyperparameter α in both expectile and quantile regression controls how these
methods emphasize different regions of the return distribution. Our experiments systematically varied
α across 0.9, 0.99, 0.999 to study its impact on policy performances. As shown in Table 2, the
performance of our methods initially increases as α increases, but with α = 0.999, the performance
of R2CSL-Quantile does not improve further. Predicting higher RTGs generally leads to better
performance when the conditioning function is learned within a reasonable range. However, extreme
outliers such as those introduced with α = 0.999 in R2CSL-Expectile can hurt the performance.

R2CSL with DT We extend our R2CSL framework to DT based methods. In particular, we use
the transformer architecture of DT to learn the policy π in Line 1 of Algorithm 1. We use MLP to
conduct quantile regression and expectile regression to learn the conditioning function in Line 2 of
Algorithm 1. We call this method DT-R2CSL. Experiment results are shown in Table 3. We can
conclude that in most cases the best performance belongs to our proposed DT-extensions.

R2CSL incorporating dynamic programming We extend our framework to hybrid methods that
incorporate dynamic programming components. In particular, we implement a new method, DP-
R2CSL, which integrates the policy learning module from QT [10]. QT remains, to the best of our
knowledge, the state-of-the-art on D4RL benchmarks. This module leverages a pre-learned Q-value
to regularize the cross-entropy loss used in policy estimation. Experiment results are shown in Table 3.
We observe that DP-R2CSL significantly outperforms DT-R2CSL, and performs comparably to QT
across all settings except hopper-medium and halfcheetah-medium-expert. This is expected, as QT
shares a key feature with our RCSL framework—namely, the use of an optimal conditioning function.

8

Table 2: Normalized score on D4RL Gym for our methods with different α in expectile and quantile. We report
the mean and standard deviation of the normalized score for five seeds.

Dataset R2CSL-Expectile R2CSL-Quantile
0.9 0.99 0.999 0.9 0.99 0.999

halfcheetah-medium 42.04±0.36 42.08±0.49 42.42±0.39 42.28 ± 0.26 42.24±0.35 42.47±0.42
halfcheetah-medium-replay 35.89±0.29 38.07±0.91 38.13±1.81 37.93±0.30 38.71±0.46 38.77±0.52
halfcheetah-medium-expert 89.85±1.58 90.95±1.18 90.90±1.09 91.70±1.09 92.25±0.62 91.81±0.98

hopper-medium 57.01±1.73 54.49±4.18 46.44±4.42 57.24±2.63 53.00±9.62 55.62±8.49
hopper-medium-replay 32.26±10.57 46.83±14.55 53.90±13.73 34.08±4.96 53.27±20.74 72.60±14.08
hopper-medium-expert 102.58±4.93 106.62±8.17 98.57±16.39 104.04±7.67 100.75±10.92 92.24±30.77

walker2d-medium 71.29±3.61 71.18±4.22 71.13±2.31 70.23±5.04 71.66±4.33 71.94±4.75
walker2d-medium-replay 29.87±7.25 36.34±10.52 39.46±19.24 16.60±5.60 44.85±9.00 55.62±5.00
walker2d-medium-expert 60.26±15.55 101.04±6.29 105.08±0.93 104.73±1.79 105.18±0.70 102.21±5.14

Total 521.05 587.61 586.03 558.84 601.91 623.29

Table 3: Normalized score on D4RL Gym for DT, QT, DT-R2CSL and DP-R2CSL with expectile (α = 0.99)
and quantile (α = 0.99) regression respectively. We report the mean and standard deviation of the normalized
score for five seeds.

Dataset DT-R2CSL-Expectile DT-R2CSL-Quantile DT DP-R2CSL-Expectile DP-R2CSL-Quantile QT
halfcheetah-medium 43.23±0.26 43.21±0.09 42.6±0.1 50.71±0.11 51.11±0.32 51.4±0.4

halfcheetah-medium-replay 38.17±1.10 37.17±1.68 36.6±0.8 48.40±0.48 48.42±0.30 48.9±0.3
halfcheetah-medium-expert 88.03±2.14 88.56±1.99 86.8±1.3 82.86±4.99 83.78±7.11 96.1±0.2

hopper-medium 68.95±11.70 70.24±11.80 67.6±1.0 74.58±13.68 71.01±5.56 96.9±3.1
hopper-medium-replay 83.21±4.53 82.86±5.93 82.7±7.0 98.92±0.43 98.45±0.93 102±0.2
hopper-medium-expert 104.13±3.45 105.50±2.53 107.6±1.8 112.31±0.61 112.73±0.28 113.4±0.4

walker2d-medium 82.88±1.70 81.50±1.37 74±1.4 87.82±0.27 89.50±4.94 88.8±0.5
walker2d-medium-replay 70.03±3.23 69.69±4.15 66.6±3.0 97.37±2.41 98.11±1.26 98.5±1.1
walker2d-medium-expert 109.59±0.66 109.09±0.83 108.1±0.2 110.09±0.51 111.45±1.21 112.6±0.6

Total 688.22 687.83 672.6 763.11 764.55 808.2

Specifically, QT selects the return-to-go (RTG) that maximizes the Q-value as its conditioning
input (see Section 3.3 of [10] for details), which aligns with our principle of selecting the optimal
in-distribution RTG.

7 Conclusion

We explore methods to provably enhance RCSL for effective trajectory stitching in offline datasets.
To this end, we introduce R2CSL, which leverages an in-distribution optimal RTG quantity. We
show that R2CSL can learn the in-distribution optimal stitched policy, surpassing the best policy
achievable by standard RCSL. Furthermore, we provide a theoretical analysis of R2CSL and its
variants. Comprehensive experiment results demonstrate the effectiveness of the R2CSL framework.

A notable limitation of the RCSL-type algorithms is that they can fail in stochastic environments.
Specifically, Theorem 4.5 shows that the R2CSL algorithm can effectively recover the underlying
objective policy π⋆

β , which is defined by the stochastic environment and the behavior policy. Prior
works [4, 1] suggest that this objective policy π⋆

β can be arbitrarily suboptimal, and we note that this
is a fundamental limitation of RCSL-style algorithms. It remains an open problem to theoretically
address this limitation based on the RCSL framework.

References
[1] David Brandfonbrener, Alberto Bietti, Jacob Buckman, Romain Laroche, and Joan Bruna.

When does return-conditioned supervised learning work for offline reinforcement learning?
Advances in Neural Information Processing Systems, 35:1542–1553, 2022. 2, 3, 5, 9, 13, 14, 21

[2] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling. Advances in neural information processing systems, 34:15084–15097,
2021. 1, 3, 13, 21

9

[3] Scott Emmons, Benjamin Eysenbach, Ilya Kostrikov, and Sergey Levine. Rvs: What is essential
for offline rl via supervised learning? arXiv preprint arXiv:2112.10751, 2021. 1, 3, 8, 13, 21

[4] Benjamin Eysenbach, Soumith Udatha, Russ R Salakhutdinov, and Sergey Levine. Imitating
past successes can be very suboptimal. Advances in Neural Information Processing Systems,
35:6047–6059, 2022. 9

[5] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for
deep data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020. 7, 21, 22

[6] Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021. 1

[7] Hiroki Furuta, Yutaka Matsuo, and Shixiang Shane Gu. Generalized decision transformer for
offline hindsight information matching. arXiv preprint arXiv:2111.10364, 2021. 13

[8] Chen-Xiao Gao, Chenyang Wu, Mingjun Cao, Rui Kong, Zongzhang Zhang, and Yang Yu. Act:
empowering decision transformer with dynamic programming via advantage conditioning. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages 12127–12135,
2024. 13

[9] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025. 1

[10] Shengchao Hu, Ziqing Fan, Chaoqin Huang, Li Shen, Ya Zhang, Yanfeng Wang, and Dacheng
Tao. Q-value regularized transformer for offline reinforcement learning. arXiv preprint
arXiv:2405.17098, 2024. 2, 8, 9, 22

[11] Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big
sequence modeling problem. Advances in neural information processing systems, 34:1273–
1286, 2021. 13

[12] Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl? In
International Conference on Machine Learning, pages 5084–5096. PMLR, 2021. 1

[13] Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey.
The International Journal of Robotics Research, 32(11):1238–1274, 2013. 1

[14] Roger Koenker and Kevin F Hallock. Quantile regression. Journal of economic perspectives,
15(4):143–156, 2001. 2, 6

[15] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. arXiv preprint arXiv:2110.06169, 2021. 1

[16] Aviral Kumar, Xue Bin Peng, and Sergey Levine. Reward-conditioned policies. arXiv preprint
arXiv:1912.13465, 2019. 1

[17] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for
offline reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–
1191, 2020. 1, 2, 7, 14

[18] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:
Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020. 1

[19] Ying Liu, Brent Logan, Ning Liu, Zhiyuan Xu, Jian Tang, and Yangzhi Wang. Deep rein-
forcement learning for dynamic treatment regimes on medical registry data. In 2017 IEEE
international conference on healthcare informatics (ICHI), pages 380–385. IEEE, 2017. 1

[20] Zhishuai Liu, Jesse Clifton, Eric B Laber, John Drake, and Ethan X Fang. Deep spatial q-
learning for infectious disease control. Journal of Agricultural, Biological and Environmental
Statistics, 28(4):749–773, 2023. 1

10

[21] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015. 1

[22] Whitney K Newey and James L Powell. Asymmetric least squares estimation and testing.
Econometrica: Journal of the Econometric Society, pages 819–847, 1987. 2, 6

[23] Keiran Paster, Sheila McIlraith, and Jimmy Ba. You can’t count on luck: Why decision
transformers and rvs fail in stochastic environments. Advances in neural information processing
systems, 35:38966–38979, 2022. 13

[24] Juergen Schmidhuber. Reinforcement learning upside down: Don’t predict rewards–just map
them to actions. arXiv preprint arXiv:1912.02875, 2019. 13

[25] Bharat Singh, Rajesh Kumar, and Vinay Pratap Singh. Reinforcement learning in robotic
applications: a comprehensive survey. Artificial Intelligence Review, 55(2):945–990, 2022. 1

[26] Rupesh Kumar Srivastava, Pranav Shyam, Filipe Mutz, Wojciech Jaśkowski, and Jürgen
Schmidhuber. Training agents using upside-down reinforcement learning. arXiv preprint
arXiv:1912.02877, 2019. 13

[27] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018. 1, 13

[28] Gerald Tesauro et al. Temporal difference learning and td-gammon. Communications of the
ACM, 38(3):58–68, 1995. 13

[29] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Jun-
young Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. nature, 575(7782):350–354, 2019.
1

[30] Ruhan Wang, Yu Yang, Zhishuai Liu, Dongruo Zhou, and Pan Xu. Return augmented decision
transformer for off-dynamics reinforcement learning. arXiv preprint arXiv:2410.23450, 2024. 1

[31] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8:279–292, 1992.
13

[32] Yueh-Hua Wu, Xiaolong Wang, and Masashi Hamaya. Elastic decision transformer. Advances
in Neural Information Processing Systems, 36, 2024. 2, 6, 13

[33] Haoran Xu, Li Jiang, Li Jianxiong, and Xianyuan Zhan. A policy-guided imitation approach for
offline reinforcement learning. Advances in neural information processing systems, 35:4085–
4098, 2022. 13

[34] Taku Yamagata, Ahmed Khalil, and Raul Santos-Rodriguez. Q-learning decision transformer:
Leveraging dynamic programming for conditional sequence modelling in offline rl. In Interna-
tional Conference on Machine Learning, pages 38989–39007. PMLR, 2023. 2, 13

[35] Sherry Yang, Dale Schuurmans, Pieter Abbeel, and Ofir Nachum. Dichotomy of control: Sepa-
rating what you can control from what you cannot. In The Eleventh International Conference
on Learning Representations. 13

[36] Chao Yu, Jiming Liu, Shamim Nemati, and Guosheng Yin. Reinforcement learning in healthcare:
A survey. ACM Computing Surveys (CSUR), 55(1):1–36, 2021. 1

[37] Qinqing Zheng, Amy Zhang, and Aditya Grover. Online decision transformer. In international
conference on machine learning, pages 27042–27059. PMLR, 2022. 13

[38] Sirui Zheng, Chenjia Bai, Zhuoran Yang, and Zhaoran Wang. How does goal relabeling improve
sample efficiency? In Proceedings of the 41st International Conference on Machine Learning,
pages 61246–61266. PMLR, 2024. 13

11

[39] Hanlin Zhu and Amy Zhang. Provably efficient offline goal-conditioned reinforcement learning
with general function approximation and single-policy concentrability. Advances in Neural
Information Processing Systems, 36, 2024. 13

[40] Zifeng Zhuang, Dengyun Peng, Ziqi Zhang, Donglin Wang, et al. Reinformer: Max-return
sequence modeling for offline rl. arXiv preprint arXiv:2405.08740, 2024. 2, 6, 13, 21

12

A Related Work

Empirical Studies about RCSL Conditional sequence modeling [26, 11, 24] has emerged as a
promising approach to solving offline reinforcement learning through supervised learning. This
paradigm learns from the offline dataset a behavior policy with state and return-to-go (RTG) as input,
and then predicts subsequent actions by conditioning on the current state and a conditioning function
that encodes specific metrics for future trajectories. Existing methods within the RCSL framework
have demonstrated significant empirical success. In particular, DT [2, 7, 37] and RvS [3] adopt
the vanilla RTG as the conditioning function to predict the optimal action. However, vanilla RCSL
methods, such as DT and RvS, lack stitching ability [1], a crucial property of dynamic programming-
based methods like Q-learning [31] and TD [27, 28]. To address this limitation, [34] proposed QDT,
which enhances RCSL by relabeling RTGs in the dataset using a pre-trained optimal Q-function and
then training a DT on the relabeled data. [32] introduced the Elastic Decision Transformer, which
enables trajectory stitching during action inference by adjusting the history length used in DT to
discard irrelevant or suboptimal past experiences. [40] proposed Reinformer, which incorporates an
expectile regression model to estimate the maximum in-distribution RTG as the conditioning function.
[35, 23] studied the limitations of RCSL in stochastic environments. [8, 33] propose DT-based and
offline RL methods that utilize expectile regression Despite the empirical successes of these methods,
none of them provide any theoretical guarantees on the stitching ability.

Theoretical Studies of RCSL Compared to the extensive theoretical studies on dynamic program-
ming (DP)-based algorithms, the theoretical analysis of RCSL methods remains relatively limited.
From a theoretical perspective, [1] examined the finite-sample guarantees of RCSL methods, includ-
ing DT and RvS, and identified the fundamental challenge of sample complexity due to the need
for sufficient return and state coverage. [38] investigated the goal-conditioned supervised learning
(GCSL) setting and provided a regret analysis for a goal relabeling method. [39] also studied the
GCSL setting, offering a finite-sample analysis for GCSL with f -divergence regularization. Our
work falls within this line of research on RCSL, but we rigorously establish the sample complexity of
R2CSL, demonstrating that it achieves a policy superior to that of a classical RCSL method.

B Multi-Step vs. Single-Step Stitching

We have demonstrated that by incorporating a dataset-dependent optimal conditioning function f∗,
our algorithm, R2CSL, provably converges to the optimal stitched policy π⋆

β , which outperforms
classical RCSL, as verified by our experiments. However, unlike dynamic programming-based
algorithms, which can converge to the optimal policy π⋆ independently of the specific dataset, the
relationship between π⋆

β and π⋆ remains unclear. In this section, we extend the notion of the optimal
stitched policy and explore this relationship further.

Multi-Step In-Distribution Optimal RTG We introduce a multi-step RTG relabeling procedure
to enhance the R2CSL framework based on the in-distribution optimal RTG function f⋆. This
relabeling scheme iteratively predicts the optimal RTG from the current state. For any trajectory
τ = (s1, a1, g1, s2, a2, g2, . . . , sH , aH , gH) in the feasible set Tβ , we relabel the RTGs in a backward
fashion for k ≥ 1 iterations.

For the ease of discussion, we denote τ̃0 = (s1, a1, g̃
0
1 , s2, a2, g̃

0
2 , · · · , sH , aH , g̃0H) = τ , and T̃ 0

β =

Tβ . Then for any k ≥ 1, suppose we have T̃ k−1
β , we define the feasible conditioning function set

after k − 1 passes relabeling as:
F̃k−1

β := {fk−1 : S × [H] → R | ∀(s, h) ∈ dom(fk−1),

∃ τ̃k−1 ∈ T̃ k−1
β s.t. sh = s and fk−1(s, h) = g̃k−1

h },
where dom(fk−1) is the domain of fk−1. At any stage h ∈ [H], recall the feasible set of states is
Sβ
h := {s ∈ S | dβh(s) > 0}. For any feasible state s ∈ Sβ

h , the local feasible conditioning function
set after one-pass of relabeling is defined as:

F̃k−1
β (s, h) := {fk−1 : S × [H] → R | fk−1 ∈ F̃k−1

β and (s, h) ∈ dom(fk−1)}.
We then define the optimal conditioning function after k − 1 passes of relabeling as:

f⋆
k−1(s, h) := argmax

f∈Fβ(s,h)

fk−1(s, h),

13

where f⋆
k−1(s, h) represents the in-distribution optimal RTG from (s, h) in the relabeled feasible

set. Given the trajectory set T̃ k−1
β as well as the correspondingly defined multi-step in-distribution

optimal RTG function f⋆
k−1(s, a), the k-th pass of relabeling proceeds as follows. At the last stage H ,

set g̃kH = g̃k−1
H . Starting from stage H − 1, the return-to-go g̃k−1

h is recursively replaced as follows

g̃kh = max{rh + f⋆
k−1(sh+1, h+ 1), rh + g̃kh+1}. (B.1)

So the trajectory after k passes of relabeling is denoted as τ̃k =
(s1, a1, g̃

k
1 , s2, a2, g̃

k
2 , · · · , sH , aH , g̃kH), and the accordingly updated feasible set is denoted

as T̃ k
β . Finally we define the multi-step R2CSL policy, π̃k,⋆

β , corresponding to the k passes relabeling
process as

π̃k,⋆
β := P̃ k

β (·|s, h, f⋆
k (s, h)),

where P̃ k
β is the distribution on T̃ k

β induced by the behavior policy β and k passes relabeling.

We compare our key relabeling step (B.1) with dynamic programming. At first glance, (B.1) resembles
the classical Bellman-type update, where for any state s and action a, the optimal Q-function satisfies:

Q⋆
h(s, a) = rh(s, a) + Es′V

⋆
h+1(s

′),

which involves summing the immediate reward and the expected future return. However, a key
distinction is that dynamic programming requires V ⋆

h+1 to be the optimal value function, which is not
directly obtainable unless we iteratively apply the Bellman equation to Q⋆

h+1 down to the final stage
H . In contrast, our approach in (B.1) relies solely on an achievable quantity, f⋆

k−1, which is retained
from the (k − 1)-th relabeling. This distinction makes our relabeling method a natural extension of
RCSL towards dynamic programming-based algorithms.

Theoretical Guarantee We have the following theorem that suggests the multi-step relabeling scheme
endows the R2CSL with the capability of ‘deep stitching’: with a sufficient number of relabeling
passes, R2CSL utilizing return-to-go relabeling is guaranteed to achieve the optimal policy. To see this,
let Πβ = {π|∀(s, h) ∈ S × [H], π(·|s, h) ≪ β(·|s, h)}1 be the set of policies that are covered by the
behavior policy β, defined the optimal value function covered by β as V ⋆,β

1 (s) = maxπ∈Πβ
V π
1 (s).

Then we have the following theorem.

Theorem B.1. Under deterministic environments, we have J(π̃H−1,⋆
β) = Es∼ρV

⋆,β
1 (s).

Theorem B.1 establishes that after k = H − 1 relabeling passes, R2CSL recovers the optimal stitched
trajectory, akin to dynamic programming-based methods such as CQL [17]. Moreover, it implies that
the relabeling process enhances the worst-case performance of R2CSL. Since R2CSL is guaranteed to
recover at least the best k-step stitched trajectory from the initial state, increasing k further strengthens
this guarantee.

C Proof of Theorems

In this section, we provide proofs of the theorems in the main text.

C.1 Proof of Theorem 3.1

Proof. By the corollary 2 of [1], we have J(πRCSL
f) = Es∼ρ[f(s, 1)],∀f ∈ FC

β . By the definition of
f , we know that f(s, 1) is the return-to-go of a trajectory τ starting with s1 = s. Then Es∼ρ[f(s, 1)]
is the weighted average of trajectories corresponding to f . In order to show J(π⋆) ≥ J(πRCSL

f), we
argue in the following that for any s ∈ S , V π⋆

1 (s) corresponds to the weighted average of return-to-go
of a set of stitched trajectories with s1 = s. And the stitched trajectories are no worse than any other
trajectory in Tβ in terms of the cumulative reward (initial return-to-go). Thus we have

J(π⋆) = Es∼ρV
π⋆

1 (s) ≥ Es∼ρV
πRCSL
f

1 (s) = J(πRCSL
f),∀f ∈ FC

β .

1For two distributions P and Q, P ≪ Q means P is absolutely continuous w.r.t. Q.

14

Our goal is to show starting from any s ∈ S, any realization of trajectory τ⋆ =
(s, a⋆1, s

⋆
2, a

⋆
2, · · · , s⋆H , a⋆H) induced by π⋆

β has cumulative rewards no less than f̃(s, 1). Denote
s⋆1 = s, then the cumulative reward of τ⋆ is

∑H
h=1 rh(s

⋆
h, a

⋆
h). We instead prove a more general

claim: for any h ∈ [H], we have
∑H

t=h rt(s
⋆
t , a

⋆
t) ≥ f⋆(s⋆h, h), where we recall that

f⋆(s⋆h, h) = argmax
f∈Fβ(s⋆h,h)

f(s⋆h, h).

To facilitate proof, we define a feasible sub-trajectory starting with sh from step h as τh(sh) =
(sh, ah, gh, · · · , sH , aH , gH), such that Pβ(τh(sh)) > 0. Next, we prove the claim by induction.

• At the last step H , we have rH(s⋆H , a⋆H) = f⋆(s⋆H , H). This is the base case.

• Suppose the claim hold for step h+ 1, i.e.,
∑H

t=h+1 rt(s
⋆
t , a

⋆
t) ≥ f⋆(s⋆h+1, h+ 1), then at

step h, we have

H∑
t=h

rt(s
⋆
t , a

⋆
t) = rh(s

⋆
h, a

⋆
h) +

H∑
t=h+1

rt(s
⋆
t , a

⋆
t)

≥ rh(s
⋆
h, a

⋆
h) + f⋆(s⋆h+1, h+ 1)

≥ rh(s
⋆
h, a

⋆
h) + {f⋆

h(s
⋆
h, h)− rh(s

⋆
h, a

⋆
h)}

= f⋆
h(s

⋆
h, a

⋆
h),

where we use the fact that f⋆(s⋆h+1, h + 1) ≥ f⋆
h(s

⋆
h, h) − rh(s

⋆
h, a

⋆
h). This is because

f⋆(s⋆h+1, h + 1) is the maximum RTG of all feasible sub-trajectories starting with s⋆h+1,
and f⋆

h(s
⋆
h, h)− rh(s

⋆
h, a

⋆
h) corresponds the return to go of some particular sub-trajectories

starting with s⋆h+1. We complete the induction step.

Thus, when h = 1, we have
∑H

h=1 rh(s
⋆
h, a

⋆
h) ≥ f⋆(s, 1) = f̃(s, 1). We complete the proof.

C.2 Proof of Theorem 4.3

Proof. Under the assumption (1) and (2), we known that when the sample size is large enough,
the maximum returns will be included in the dataset with high probability, and thus f̂⋆(sh, h) =
f⋆(sh, h). In particular, we have

P
(
s, h, gh = f⋆(s, h)

)
≥ dβmin · c̃.

Then for any (sh, h), we want

P
(
∀k ∈ TD(sh), g

k
h ̸= f⋆(sh, h)

)
≤

(
1− dβmin · c̃

)N ≤ δ

SH
,

and this leads to

N ≥
log SH

δ

log(1− dβmin · c̃)
.

Then by union bound, when N > log(SH/δ)/ log(1− dβmin · c̃), with probability at least 1− δ, the
following event holds

E = {∀(sh, h),∃k ∈ TD(sh), s.t. g
k
h = f⋆(sh, h)}.

Under the event E , we have f̂⋆(sh, h) = f⋆(sh, h).

Second, we bound the suboptimality the event E . By the definition of the J(π), we have

J(π⋆
β)− J(π̂⋆

D) = H
[
Eπ⋆

β

P [r(s, a)]− Eπ̂⋆
D

P [r(s, a)]
]
≤ H

∥∥d⋆,β − d⋆,D
∥∥
1
,

15

where d⋆,β and d⋆,D are the occupancy measures on state induced by π⋆
β , and π̂⋆

D. By Lemma D.1,
we have

J(π⋆
β)− J(π̂⋆

D)

≤ 2H

H∑
h=1

Es∼d⋆,β
h

[
TV

(
π⋆
β(·|s, h)||π̂⋆

D(·|s, h)
)]

= 2H

H∑
h=1

Es∼d⋆,β
h

[
TV

(
Pβ(·|s, h, f⋆(s, h))||π̂(·|s, h, f̂⋆(s, h))

)]
= 2H

H∑
h=1

Es∼d⋆,β
h

[
TV

(
Pβ(·|s, h, f⋆(s, h))||π̂(·|s, h, f⋆(s, h))

)]
= 2H

H∑
h=1

Es∼d⋆,β
h

[∫
a

∣∣Pβ(a|s, h, f⋆(s, h))− π̂(·|s, h, f⋆(s, h))
∣∣]

= 2H

H∑
h=1

Es∼d⋆,β
h

[Pβ(f
⋆(s, h)|s, h)

Pβ(f⋆(s, h)|s, h)

∫
a

∣∣Pβ(da|s, h, f⋆(s, h))− π̂(da|s, h, f⋆(s, h))
∣∣]

= 2H

H∑
h=1

Es∼d⋆,β
h

[Pβ(f
⋆(s, h)|s, h)

Pβ(f⋆(s, h)|s, h)

∫
a

∣∣Pβ(da|s, h, f⋆(s, h))− π̂(da|s, h, f⋆(s, h))
∣∣]

≤
c⋆βH

c̃

H∑
h=1

Es∼dβ
h

[
Pβ(f

⋆(s, h)|s, h)
∫
a

∣∣Pβ(da|s, h, f⋆(s, h))− π̂(da|s, h, f⋆(s, h))
∣∣]

≤
c⋆βH

c̃

H∑
h=1

Es∼dβ
h

[∫
g

Pβ(dg|s, h)
∫
a

∣∣Pβ(da|s, h, g)− π̂(da|s, h, g)
∣∣]

=
2c⋆βH

c̃

H∑
h=1

Es∼dβ
h,g∼Pβ |s,h

[
TV

(
Pβ(·|s, h, g)||π̂(·|s, h, g)

)]
≤

c⋆βH
2

c̃

√
2L(π̂),

where the second equation holds under the event f̂⋆(sh, h) = f⋆(sh, h), the second inequality holds
by assumption (1), and the last step follows from the Pinsker’s inequality. Next, for any (π) ∈ Π,
we write L(π) = L̄(π)−Hβ , where Hβ = −E[logPβ(a|s, h, g)] and L̄(π) = −E[log π(a|s, h, g)].
Denoting π† ∈ argminπ∈Π L(π), we have

L(π̂) = L(π̂)− L(π†) + L(π†) ≤ L̄(π̂)− L̄(π†) + δapprox.

Denote L̂ as the empirical cross-entropy loss that is minimized by π̂, we have

L̄(π̂)− L̄(π†) = L̄(π̂)− L̂(π̂) + L̂(π̂)− L̂(π†) + L̂(π†)− L̄(π†)

≤ 2 sup
π∈Π

|L̄(π)− L̂(π)|.

Under Assumption 4.1, we bound this using McDiarmid’s inequality and a union bound. This
completes the proof.

C.3 Proof of Theorem 4.5

Proof. By the definition of the J(π), we have

J(π⋆
β)− J(π̂⋆

D) = H
[
Eπ⋆

β

P [r(s, a)]− Eπ̂⋆
D

P [r(s, a)]
]
≤ H

∥∥d⋆,β − d⋆,D
∥∥
1
,

where d⋆,β and d⋆,D are the occupancy measures on state induced by π⋆
β , and π̂⋆

D. By Lemma D.1,
we have

J(π⋆
β)− J(π̂⋆

D)

16

≤ 2H

H∑
h=1

Es∼d⋆,β
h

[
TV

(
π⋆
β(·|s, h)||π̂⋆

D(·|s, h)
)]

≤ 2c⋆βH

H∑
h=1

Es∼dβ
h

[
TV

(
Pβ(·|s, h, f⋆(s, h))||π̂(·|s, h, f̂⋆(s, h))

)]
≤ 2c⋆βH

H∑
h=1

Es∼dβ
h

[
TV

(
Pβ(·|s, h, f⋆(s, h))||π̂(·|s, h, f⋆(s, h))

)
+ TV

(
π̂(·|s, h, f⋆(s, h))||π̂(·|s, h, f̂⋆(s, h))

)]
≤ 2c⋆βH

H∑
h=1

Es∼dβ
h

[
TV

(
Pβ(·|s, h, f⋆(s, h))||π̂(·|s, h, f⋆(s, h))

)
+ γ

∣∣f⋆(s, h)− f̂⋆(s, h)
∣∣]

≤ 2c⋆βH

H∑
h=1

Es∼dβ
h

[
TV

(
Pβ(·|s, h, f⋆(s, h))||π̂(·|s, h, f⋆(s, h))

)]
+ 2c⋆βH

H∑
h=1

γ

√
Es∼dβ

h

(
f⋆(s, h)− f̂⋆(s, h)

)2
≤ 2c⋆βH

H∑
h=1

Es∼dβ
h

[
TV

(
Pβ(·|s, h, f⋆(s, h))||π̂(·|s, h, f⋆(s, h))

)]
+ 2c⋆βH

2γ
√

Err(N, δ)

≤ 2c⋆βH

H∑
h=1

Es∼dβ
h

[∫
a

∣∣Pβ(a|s, h, f⋆(s, h))− π̂(·|s, h, f⋆(s, h))
∣∣]+ 2c⋆βH

2γ
√

Err(N, δ)

= 2c⋆βH

H∑
h=1

Es∼dβ
h

[Pβ(f
⋆(s, h)|s, h)

Pβ(f⋆(s, h)|s, h)

∫
a

∣∣Pβ(da|s, h, f⋆(s, h))− π̂(da|s, h, f⋆(s, h))
∣∣]

+ 2c⋆βH
2γ

√
Err(N, δ)

≤
c⋆βH

c̃

H∑
h=1

Es∼dβ
h

[
Pβ(f

⋆(s, h)|s, h)
∫
a

∣∣Pβ(da|s, h, f⋆(s, h))− π̂(da|s, h, f⋆(s, h))
∣∣]

+ 2c⋆βH
2γ

√
Err(N, δ)

≤
c⋆βH

c̃

H∑
h=1

Es∼dβ
h

[∫
g

Pβ(dg|s, h)
∫
a

∣∣Pβ(da|s, h, g)− π̂(da|s, h, g)
∣∣]+ 2c⋆βH

2γ
√

Err(N, δ)

=
2c⋆βH

c̃

H∑
h=1

Es∼dβ
h,g∼Pβ |s,h

[
TV

(
Pβ(·|s, h, g)||π̂(·|s, h, g)

)]
+ 2c⋆βH

2γ
√

Err(N, δ)

≤
c⋆βH

2

c̃

√
2L(π̂) + 2c⋆βH

2γ
√

Err(N, δ),

where the last step follows from the Pinsker’s inequality. Next, for any (π) ∈ Π, we write L(π) =
L̄(π) −Hβ , where Hβ = −E[logPβ(a|s, h, g)] and L̄(π) = −E[log π(a|s, h, g)]. Denoting π† ∈
argminπ∈Π L(π), we have

L(π̂) = L(π̂)− L(π†) + L(π†) ≤ L̄(π̂)− L̄(π†) + δapprox.

Denote L̂ as the empirical cross-entropy loss that is minimized by π̂, we have

L̄(π̂)− L̄(π†) = L̄(π̂)− L̂(π̂) + L̂(π̂)− L̂(π†) + L̂(π†)− L̄(π†)

≤ 2 sup
π∈Π

|L̄(π)− L̂(π)|.

Under Assumption 4.1, we bound this using McDiarmid’s inequality and a union bound. This
completes the proof.

17

C.4 Proof of Hard Instances for R2CSL with Expectile Regression

Proof. We use the following toy example:

h = 1 h = 2 h = 3

a1 70(80) 0(10) 10(10)

a2 65(81) 15(16) 1(1)

a3 40(75) 20(35) 15(15)

In this toy example, A = {a1, a2, a3}, H = 3 and S = {s}. The state is unique and remains
unchanged across stages. At each stage, there are three actions that can be chosen. Each row
represents a trajectory induced by implementing the action listed at the beginning. The number
outside (inside) the parentheses are rewards (return-to-go). For RCSL, we can only simply choose f
to be 80, 81 or 75 as the conditioning return at the initial stage, and the ‘optimal’ RCSL policy would
choose a2 at each stages. Although there are only three suboptimal trajectories, these suboptimal
trajectories collectively cover a better trajectory. Let’s see: at the first stage we choose a2, at the
second stage we choose a3 and at the final stage we choose a3. This leads to a trajectory

h=1

a2 : 65(100) →
h=2

a3 : 20(35) →
h=3

a3 : 15(15).

This policy can ideally be inferred by the reinforced RCSL: during the inference process, at each stage,
we set the conditioning function as the largest return-to-go corresponding to that stage. Specifically,
at the first stage, the largest return-to-go, 81, comes from the second trajectory, thus we set f1 = 81
and πRCSL(f1, h = 1) = a2; at the second stage, the largest return-to-go, 35, comes from the third
trajectory, thus we set f2 = 35 and πRCSL(f2, h = 2) = a3; at the third stage, the largest return-to-go,
15, comes from the third trajectory, thus we set f3 = 15 and πRCSL(f3, h = 3) = a3. We highlight
that in this toy example, the trajectories implicitly have overlap since the underlying state is unique
and remains unchanged, and the dependence of the RCSL policy on the state is also omitted.

Consider policy learning, we set the behavior policy as the uniform distribution on the action space,
β = Uniform(A). Note that in the tabular MDP, the expectile regression is conducted at each
state-action pair. Next, let’s focus on the second stage. The return-to-go candidates are {10, 16, 35},
and our goal is to find the in-distribution optimal RTG, which is 35 at stage h = 2 coming from the
third trajectory

h=1

a3 : 40(75) →
h=2

a3 : 20(35) →
h=3

a3 : 15(15). (C.1)

However, due to the fact that the expectile regression uses L2 loss, as long as the offline dataset
includes a trajectory other than (C.1), the expectile regression with α < 1 would return a value less
than 35 and may not being among the candidates {10, 16, 35} (and thus being out-of-distribution).
Then Algorithm 1 with expectile regression fails at the second stage. On the other hand, if all
trajectories in the offline dataset is the trajectory (C.1), then the offline dataset does not contain any
information about the second trajectory, which is a necessary component of the optimal stitched
trajectory. In this case, Algorithm 1 with expectile regression will fail in the first stage. In conclusion,
Algorithm 1 with expectile regression will definitely fail in the first or the second stage. This
completes the proof.

C.5 Proof of Theorem 5.2

Proof. We only need to show that with probability at least 1 − 2δ, for any (s, h), we have
P (Xh(f

⋆(s, h)) ≥ N2
h · c̃/2). Then setting α > 1− c̃/2, the α-quantile is exactly f⋆(s, h).

By the Hoeffding inequality and the assumption that Pβ(gh = f⋆(s, h)|sh = s) ≥ c̃, we have

P (Xh(f
⋆(s, h)) ≤ Ns

h · c̃− t) ≤ P (Xh(f
⋆(s, h)) ≤ Pβ(gh = g|sh = s)− t) ≤ exp(−2t2/Ns

h).

Let t = c̃Ns
h/2, we have

P (Xh(f
⋆(s, h)) ≤ Ns

h · c̃/2) ≤ exp(−c̃2Ns
h/2) ≤

δ

2SH
.

18

This leads to Ns
h ≥ 2 log(2SH/δ)/c̃2. Note that Ns

h is also a random variable, next we study the
condition under which Ns

h ≥ 2 log(2SH/δ)/c̃2 holds with high probability. In particular, we have

P (Ns
h ≤ N · dβmin − t) ≤ P (Ns

h ≤ N · dβh(s)− t) ≤ exp(−2t2/N).

Let t = N · dβmin/2 and make the above inequality be less than δ/2SH , we derive that when

N ≥ 2

dβ,2min

log
2SH

δ
,

we have

P (Ns
h ≥ N · dβmin/2) ≥ 1− δ/2.

Moreover, we want N · dβmin/2 ≥ 2 log(2SH/δ)/c̃2, which leads to

N ≥ 4

c̃2dβmin

log
2SH

δ
,

thus we have

P
(
Ns

h ≥ 2 log(2SH/δ)/c̃2
)
≥ P

(
Ns

h ≥ N · dβmin

2

)
≥ 1− δ

2
.

By union bound, when

N ≥ max
{ 2

dβ,2min

log
2SH

δ
,

4

c̃2dβmin

log
2SH

δ

}
,

with probability at least 1− δ, we have P (Xh(f
⋆(s, h)) ≥ N2

h · c̃/2). This completes the proof.

C.6 Proof of Theorem B.1

Proof. Define the optimal Q-function covered by the behavior policy β as Q⋆,β
h (s, a) =

maxπ∈Πβ
Qπ

h(s, a). By bellman optimality equation, we know that V ⋆,β
h (s) =

maxa∈A,β(a|s)>0 Q
⋆,β
h (s, a). We prove Theorem B.1 by showing that the new label g̃H−1

h

is Q⋆,β
h (sh, ah), and the conditioning function f̃⋆

k serves as the maximum operator in defining the
value function.

To show this, let’s first answer the following easier question: After one-pass of the relabel-
ing procedure, what does the new RTG in the trajectory mean? Equivalently, what does the
return-conditioned policy based on modified data aim for? With the original trajectory τ =
(s1, a1, g1, · · · , sH , aH , gH), next we delve into the relabeling process. Starting from the last stage
H , we have g̃1H = gH , which is the reward obtained by adopting aH at sH . Then the trajectory
becomes τ = (s1, a1, g1, · · · , sH , aH , g̃1H). Moving one stage backward, we perform some real
relabeling at stage H − 1.

g̃H−1 = max{rH−1 + f⋆(sH , H)︸ ︷︷ ︸
I

, rH−1 + g̃1H︸ ︷︷ ︸
II

}.

From now on, at each stage, we answer the following two questions to find common patterns. Q1:
what are the term I and term II. Q2: what does the maximization operation mean?

We first focus on Q1. The relabeling consists of two parts. Term I: the current reward + the
maximum in-distribution RTG in the original data, and term II: the original RTG gH−1. In both
term I and term II, there are two parts: the current reward and the future cumulative reward. In
term I, the future cumulative reward is the maximum possible RTG at sH achieved by β. So term
I represents the cumulative reward we can get at sH−1 if we take aH−1 at the current stage and
then take the action associated to f⋆(sH , H). Term II represents the cumulative reward we can
get at sH−1 if we take aH−1 at the current stage and then take original action in the trajectory τ ,
which is aH . This answers Q1. We then focus on Q2. Note that at stage H − 1, there are two
cases can happen: (i) term I = term II, and (ii) term I > term II. For case (i), the tie means that
aH is the action that achieves the maximum RTG, which is the maximum reward at sH . For case

19

(ii), term I > term II means that there is a better action, which is associated with f⋆(sH , H), and
we better follow that action in at sH . Thus, it is clear that at stage H − 1, if case (ii) happens, we
actually would perform one-step stitching (because the action associated with f⋆(sH , H) differs
from aH , in order words it comes from other trajectories instead of τ itself), and the stitching
technically happens in the next stage H . This answers Q2. After relabeling gH−1, we have τ =
{s1, a1, g1, · · · , sH−2, aH−2, gH−2, sH−1, aH−1, g̃

1
H−1, sH , aH , g̃1H}. Before we move on, let’s

stop for a while to consider a question: What does g̃H−1 represent? Based on the answer to Q1 and
Q2 above, we can tell that g̃H−1 represents the return-to-go we can get if we follow the action in
the trajectory aH−1 at sH−1 and then take the optimal action supported by β at sH , i.e., the optimal
RTG we can get after following aH−1.

One stage backward, let’s consider the stage H − 2

g̃H−2 = max{rH−2 + f⋆(sH−1, H − 1)︸ ︷︷ ︸
I

, rH−2 + g̃1H−1︸ ︷︷ ︸
II

}.

Term I is the current reward plus maximum RTG at sH−1 achieved by β. Term II is the current
reward plus optimal RTG after following aH−1 at sH−1. This answers Q1. For Q2, the comparison
between term I and term II is to check if there is a better action for stage H − 1 at sH−1. To see
this, we analyze the following three possible cases: (i) term I = term II, (ii) term I > term II, and
(iii) term I < term II. For case (i), tie means that following action aH−1 at sH−1 would be fine;
for case (ii), there is a better choice of action than aH−1 which leads to a larger cumulative reward
(maximum in-distribution RTG at sH−1); for case (iii), we better follow aH−1 at sH−1 because after
checking the RTGs of all possible trajectories with sH−1 induced by β, no one is larger than g̃H−1,
which is the cumulative reward of a sub-trajectory starting with (sH−1, aH−1) and possibly involving
one-time stitching at sH . To sum up, the maximization operation actually gives us a chance to figure
out if the feasible set suggests a better choice of action at sH−1, which could lead to a new trajectory.
Note that the term ‘better’ is in the sense that it leads to a in-distribution RTG that is larger than the
cumulative reward of a sub-trajectory starting with (sH−1, aH−1) and possibly involving one-time
stitching at sH . We highlight that the in-distribution RTG is the RTG corresponding to a sequence of
actions in some original trajectory involved in Tβ , which does not involve stitching. If (ii) happens,
choosing term I as the relabeled RTG means that we perform one-step stitching at sH−1 by adopting
an action other than the original action aH−1 in the trajectory, and forget about the sub-trajectory
starting with (sH−1, aH−1) and possibly involving one-time stitching at sH . It will become clear
later that the relabeling process is effectively performing a form of shallow stitching/planning, as the
new label only remembers an one-time stitching.

Next, we focus on g̃1H−3, and we will answer the question we raised at the very beginning by providing
an exact meaning of g̃1H−3.

g̃H−3 = max{rH−3 + f⋆(sH−2, aH−2)︸ ︷︷ ︸
I

, rH−3 + g̃1H−2︸ ︷︷ ︸
II

}.

At sH−3, we follow aH−3. Then at the next stage H − 2 we either follow the action associated to
f⋆(sH−2, H − 2), or follow the original action aH−2, which could provide a better future stitching.
So choosing term I/term II basically means stitching at the next stage or stitching maybe in the further
future (after the next stage). Thus, the new label g̃h is the cumulative reward achieved by following
ah at the current stage and then follow the best one-time stitching trajectory afterwards. One pass
of the relabeling process incorporates information about the future best one-time stitching into the
new RTG label. Starting from τ̃ = (s1, a1, g̃

1
1 , · · · , sH , aH , g̃1H), the second pass of the relabeling

process endows the label g̃2h information about the future best two-time stitching trajectory. This is
exactly the dynamic programming in deterministic environments, and after H − 1 passes, we have
g̃H−1
h = Q⋆,β

h (sh, ah).

Lastly, the conditioning function f̃⋆
k is defined based on τ̃H−1. By definition, f̃⋆

k is the maximum
in-distribution RTG label

f̃⋆
k (sh, h) = max

a∈A,β(a|sh)>0
g̃H−1
h (sh, a) = max

a∈A,β(a|sh)>0
Q⋆,β

h (sh, ah),

which identifies the best action that achieves the optimal value function at sh. Thus, the reinforced
RCSL policy π̃H−1,⋆

β recovers the optimal policy.

20

D The Auxiliary Lemmas

Lemma D.1 (Lemma 1 of [1]). Let dπ refer to the marginal distribution of Pπ over states only. For
any two policies π and π′, we have

∥dπ − dπ
′
∥1 ≤ 2

H∑
h=1

Es∼dπ
h

[
TV

(
π(·|s, h)||π′(·|s, h)

)]
.

Proof. The proof follows the proof of Lemma 1 in [1]. Except that

∥dπ − dπ
′
∥1 ≤ 1

H

H∑
h=1

σh ≤ 1

H

H∑
h=1

h−1∑
j=1

σj ≤ H
1

H

H∑
h=1

σh = 2

H∑
h=1

Es∼dπ
h

[
TV

(
π(·|s, h)||π′(·|s, h)

)]
.

E Experiments Details

D4RL [5] is an offline RL benchmark which provide the pre-collected dataset such as Gym-MuJoCo,
AntMaze, and Kitchen. In this work, we evaluate our work in the Gym-MuJoCo with the medium,
medium-replay, and medium-expert three-level results. For AntMaze, we evaluate our methods on
umaze, umaze-diverse, medium-play and medium diverse. All experiments are based on five seeds:
1000, 2000, 3000, 4000 and 5000.

E.1 Implementation and Hyperparameters

In this section, we provide the implementation details and hyperparameters of our R2CSL-Expectile
and R2CSL-Quantile.

Implementation of R2CSL with RvS To validate our proposed algorithm, we follow the settings
in [3]. RvS leverages the vanilla RTG as the conditioning function to predict the optimal action. We
keep the training stage as the same as RvS and modify the inference stage. During the inference,
we first pre-train a condition function by expectile regression and quantile regression using MLP.
Then we use the pre-trained condition function to predict the max-return given the current state in the
inference. We use the RTG prediction to guide the action selection in RvS.

We evaluate our proposed R2CSL method using the RvS framework on the D4RL benchmark [5]. In
the RvS framework, achieving optimal performance during inference requires searching for the target
RTGs [3]. However, this process is often impractical in real-world scenarios. To address this, we
select three appropriate target RTG fraction ratios as 0.7, 0.9, 1.1 to guide the RvS instead, which
means the initial target RTG will be RTGinital = (RTGmax − RTGmin) ∗ fraction + RTGmin, where
RTGmax and RTGmin are the maximum RTG and minimum RTG from the random policy and expert
policy in this specific environment respectively. Unlike the RvS approach, our method does not
require additional searches for initial target RTGs, as these values are predicted by our pre-trained
condition function.

We follow the same implementation as the RvS during the training stage shown in Table 4. We also
illustrate our MLP condition function parameters in Table 5.

We run these experiments on the RTX2080Ti for around 8 hours for each setting.

Implementation of DT-R2CSL We also evaluate our proposed R2CSL method using the DT [2]
on the D4RL benchmark [5]. DT utilize the transformer model to learn the action given the past
trajectory and the target RTG. For the implementation, we follow the recently proposed Reinformer
[40] utilizing additional action entropy to regularize to have a more stable DT training. We formulate
the loss function as LDT−R2CSL = Eτ [− log πθ(·|τ)−λH(πθ(·|τ))]. In the vanilla DT, we also need
to give the target RTG during the inference stage. However, similar to the implementation on the RVS
framework, our method also does not require additional target RTGs to achieve good performance.

We use the same MLP condition function hyperparameters in Table 5. And we provide the hyperpa-
rameters of our DT-R2CSL in Table 6.

21

Table 4: Hyperparameters in RvS.
Hyperparameter Value

Hidden layers 2
Layer width 1024
Nonlinearity ReLU
Learning rate 1× 10−3

Epochs 2000
Batch size 16384
Dropout 0

Policy output Unimodal Gaussian

Table 5: Hyperparameters in Condion Function.
Hyperparameter Value

Hidden layers 3
Layer width 128
Nonlinearity ReLU
Learning rate 1× 10−4

Epochs 300
Batch size 256
Dropout 0.1

We run these experiments on the A5000 for around 3 hours for each setting.

Table 6: Hyperparameters in DT-R2CSL.
Hyperparameter Value
Number of layers 3

Number of attention heads 1
Embedding dimension 128
Nonlinearity function ReLU

Batch size 64
Context length K 20

Dropout 0.1
Learning rate 1× 10−4

Grad norm clip 0.25
Weight decay 1× 10−4

Action Entropy λ 0.1

Implementation of DP-R2CSL We also extend our empirical study into the RCSL with the
dynamic programming component. We evaluate our proposed DP-R2CSL method using the QT
framework [10] on the D4RL benchmark [5]. QT incorporates the Q value function learning in
the training stage and utilizes this function to guide the action selection in the inference stage. An
MLP-based conditioning function is used to model the distribution of RTG values conditioned on the
input state. Initial target RTGs are then sampled from this distribution and combined with several
given target RTGs during the evaluation process. At each inference step, the action is generated given
the predicted RTG and then selected by the critic component which is the Q value function.

The hyperparameters for the MLP-based QT model are provided in Table 7, and the training hyperpa-
rameters for DP-R2CSL are summarized in Table 8.

We run these DP-R2CSL experiments on the A5000 for around 15 hours for each setting.

22

Table 7: Hyperparameters in Condion Function in DP-R2CSL.
Hyperparameter Value

Hidden layers 3
Layer width 256
Nonlinearity ReLU
Learning rate 1× 10−4

Epochs 300
Batch size 256
Dropout 0.1

Table 8: Hyperparameters in DP-R2CSL.
Hyperparameter Value
Number of layers 4

Number of attention heads 4
Embedding dimension 256
Nonlinearity function ReLU

Batch size 256
Context length K 20

Dropout 0.1
Learning rate 3.0× 10−4

E.2 Additional Experiment results

In this section, we present the experiment results on AntMaze.

R2CSL with RvS. We implement Algorithm 1 with expectile regression and quantile regression
based on the RvS. Experiment results are shown in Table 9. We can conclude that R2CSL outperforms
the RvS framework across all fixed target RTG fraction ratios.

R2CSL with DT. Experiment results of the DT-extension of our methods, DT-R2CSL, are shown
in Table 10. We conclude that DT-R2CSL outperforms vanilla DT across all settings.

R2CSL incorporating dyamic programming. Experiment results of DP-R2CSL, which is a hybrid
method incorporating dynamic programming components, are shown in Table 11. We conclude
that DP-R2CSL significantly improves DT-R2CSL. DP-R2CSL outperforms QT on the umaze
environment, but is slightly worse on umaze-diverse and medium diverse environments. This is well
expected as QT shares a key feature with our reinforced RCSL framework—namely, the use of an
optimal conditioning function.

(a) Expectile (α = 0.9) (b) Expectile (α = 0.99) (c) Quantile (α = 0.9) (d) Quantile (α = 0.99)

Figure 4: Illustration of Stitching - Proportion of type I trajectories in the offline dataset is set to 0.01.
R2CSL with α = 0.85 fails to stitch, while with α = 0.95 succeeds to stitch.

23

Table 9: Normalized score on D4RL Gym for RvS and R2CSL with expectile (α = 0.99) and quantile
(α = 0.99) regression respectively. The inference of RvS is conditioned on three target RTGs. We report the
mean and standard deviation of the normalized score for five seeds.

Dataset RVS R2CSL-Expectile R2CSL-Quantile
0.7 0.9 1.1

umaze 54.5±5.83 57.2±8.64 60.2±10.26 61.4±5.97 64.8±3.82
umaze-diverse 54.6±6.71 56.5±4.65 53.7±3.95 57.9±2.99 57.8±3.19
medium-play 0.1±0.27 0.1±0.22 0.1±0.22 0.3±0.27 0.4±0.42

medium-diverse 0.2±0.27 0.2±0.27 0.2±0.27 0.2±0.27 0.5±0.35

Total 109.4 114.0 114.2 119.8 123.5

Table 10: Normalized score on D4RL Antmaze for DT, QT, DT-R2CSL and DP-R2CSL with expectile (α
= 0.99) and quantile (α = 0.99) regression respectively. We report the mean and standard deviation of the
normalized score for five seeds.

Dataset DT-R2CSL-Expectile DT-R2CSL-Quantile DT
umaze 72.8±3.90 71.4±3.51 59.2

umaze-diverse 63.2±6.06 62.4±4.10 53
medium-play 2.6±1.14 1.4±0.55 0

medium-diverse 2.4±1.52 3.4±1.14 0

Total 141.0 138.6 112.2

Table 11: Normalized score on D4RL Antmaze for QT, DP-R2CSL with expectile (α = 0.99) and quantile (α =
0.99) regression respectively. We report the mean and standard deviation of the normalized score for five seeds.

Dataset DP-R2CSL-Expectile DP-R2CSL-Quantile QT
umaze 97.8±3.03 97.4±2.88 96.7±4.7

umaze-diverse 84.6±5.08 88.2±8.14 96.7±4.7
medium-diverse 50.2±7.08 48.4±4.72 59.3±0.9

Total 232.6 234 252.7

24

	Introduction
	Problem formulation
	The reinforced RCSL
	Algorithm description

	Finite-sample analysis of R2CSL
	Warm-up analysis for deterministic environments
	Analysis for stochastic environments

	Practical implementation: expectile v.s. quantile regression
	Experiments
	An illustration of R2CSL's stitching ability
	D4RL benchmark

	Conclusion
	Related Work
	Multi-Step vs. Single-Step Stitching
	Proof of Theorems
	Proof of thm:superiority of the optimakl stitched policy
	Proof of thm:finite sample guarantee for reinforced RCSL - partial coverage
	Proof of thm:RCSL with general function approximation
	Proof of Hard Instances for R2CSL with Expectile Regression
	Proof of thm:theoretical guarantee for reinforced RCSL with quantile regression
	Proof of th:best stitching

	The Auxiliary Lemmas
	Experiments Details
	Implementation and Hyperparameters
	Additional Experiment results

