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Abstract
This work tackles the problem of blind online optimization with movement
costs, where a player must make sequential decisions to balance an unknown
dynamic hitting cost ft(x) against a metric penalty c(xt, xt−1) for changing actions
between consecutive rounds, while requiring to estimate ft’s structure. We study
this problem for general quadratic costs under a restrictive, noisy bandit feedback
model. In this setting, the player only observes the location of the hitting cost
before taking an action and receives a single, noisy value of the cost it suffers
post-action. To address this challenge, we provide the first algorithm for this setting
that provably achieves a sub-linear dynamic regret, by combining online matrix
estimation and the dynamic balancing of hitting and switching costs, within a
principled exploration-exploitation framework.

1 Introduction
Incorporating dynamic cost-function estimation in online sequential decision-making is critical for
enhancing the robustness and realism of models for complex behaviors. This capability is crucial
across diverse fields: in robotic manipulation for learning cost functions from human demonstrations
[26, 51, 11, 52], in cognitive and neural modeling for inferring the objectives behind biological
motion [57, 56, 46, 63], and in industrial automation for system identification [33].

A canonical framework for modeling such sequential decisions is smoothed online quadratic optimiza-
tion (SOQO). Here, over T rounds, a player selects an action xt ∈ Rd to minimize a quadratic hitting
cost ft(xt), while also needing to account for an additional penalty of 1

2∥xt − xt−1∥22 for switching
actions between consecutive rounds. This simple but powerful model helps model decision-making in
diverse systems including large scale of data-centers and grids [29, 61, 47, 7, 45, 38, 37, 44], online
video transmission [28, 17], and chip thermal management [72, 73].

Despite its wide applicability, algorithms for SOQO and the broader field of smoothed online
convex optimization (SOCO) rely on a ‘full information access’ paradigm. Specifically, the existing
frameworks predominantly assume (i) full knowledge of the current cost function ft(·) [15, 23, 74,
19, 21, 53, 9, 10], or (ii) partial structure [48, 31], or (iii) access to a gradient oracle∇ft(·)[58, 59].

In contrast, this work focuses on an information-agnostic setup, where the player is aware of only the
‘location parameter’ vt of the hitting cost at each round without any information about the matrix
A involved in the quadratic form. Thus, the player’s knowledge about the hitting cost structure
at time t must be inferred solely through (a) the location trajectory {vτ}tτ=1, (b) previous actions
taken {xτ}t−1

τ=1, and (c) the corresponding incurred noisy hitting costs observed, up to round t. This
information model where the underlying structure of hitting costs is never revealed, with the player
receiving only the (noisy) value of the penalty ft(xt) after taking an action xt, is known as rank-1
measurement model in statistical estimation literature [18, 12] and as (noisy) bandit feedback in the
online algorithms community.
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2 Motivation and Related Works

The past two decades have seen significant advances in the field of online optimization [43, 38, 2, 8,
3, 5, 19, 53, 9]. Clever techniques, for handling switching costs, that tap into adjacent fields of convex
body chasing [8, 23], optimal transport [19, 21] and distributed optimization [39, 30, 9] have been
developed, thanks to the structural assumptions on hitting costs and/or information-access model, the
absence of which leads to provably opaque negative results [4, 15].

Recent applications [17] of SOQO/SOCO, however, require foregoing of certain assumptions, specifi-
cally the apriori knowledge of hitting cost function for making an online decision. Existing algorithms
rely either on (i) full information model [13, 14, 15, 24, 25, 20, 21, 53, 9, 10] or (ii) a weaker gradient
oracle model but with boundedness assumptions on the action space [75, 16, 55, 54]. Few works
consider limited or delayed feedback from the environment [49, 31, 58, 59] but still assume noiseless
oracle access to hitting cost structure or gradient.

In the closely related field of online control and reinforcement learning, there has been a recent
surge in learning the underlying cost function parameters that are typically unknown in applications
like robot bio-physics [50, 22, 41, 69] and human-in-the-loop behavior learning [66, 62, 65, 32].
Significant progress has been made in recent years in the context of Linear Quadratic Regulation
(LQR), where the Q and R matrices of the state and action cost functions, respectively, are learned
through Inverse Optimal Control (IOC) [27, 36, 71, 34, 35]. However, even the state-of-the-art
algorithms rely on the use of hindsight optimal action trajectory [27, 36, 71, 34, 35, 1, 64, 67, 70, 6].
Similar limitations exist beyond LQR in recent literature, with works focusing on offline data-driven
approaches to learn underlying reward/cost function [68, 60, 42, 6].

SOQO and LQR are connected through their shared structure of balancing immediate costs against
switching costs between consecutive actions. In fact, LQR optimal control can be framed as an
instance of SOQO [25, 40, 9], linking the theory and methods of SOQO closely with LQR. With
applications of both SOQO and LQR demanding simultaneous cost function estimation and online
optimization, we aim to answer the following question in this work:

“How can an online policy perform online estimation of an unknown cost function
from only noisy bandit feedback while guaranteeing minimal dynamic regret?”

The challenge in addressing this question lies in a fundamental trade-off between online optimization
and data-driven learning as elaborated in Section 3.1. In the next section, we formally introduce our
problem set-up and highlight the technical challenges.

3 Model and Preliminaries

Consider an online game in an action space Rd, d ≥ 1, over a finite time horizon of T rounds. In each
round the player chooses an action xt and suffers a hitting cost of ft(xt) =

1
2 (xt − vt)

TA(xt − vt),
where A is a positive definite d× d matrix, and vt is a location parameter that is revealed in an online
fashion. In the following we will assume that {vt}Tt=1 forms a martingale sequence. Additionally, in
each round, the player incurs a switching cost of 1

2∥xt − xt−1∥22 for transitioning between actions.

Prior works [25, 9] predominantly assume that the player has complete knowledge of the matrix
A. We weaken this assumption in our information model in two distinct manners: In each round
t (i) the player is only aware of the location vt of quadratic hitting cost prior to choosing xt that
additionally needs to account for switching costs 1

2∥xt − xt−1∥22 (ii) after which it receives a noisy
value of the hitting cost incurred, that is, 1

2 (xt − vt)
TA(xt − vt) + ηt, where ηt can be random or

adversarial. Under this information model, the player computes an action xALG
t at each round t to

solve the following optimization problem:

argmin
x1,...,xT

T∑
t=1

1

2
(xt − vt)

TA(xt − vt) +
1

2
∥xt − xt−1∥22 (3.1)

The online sequence of actions (xALG
t )Tt=1 has to satisfy two objectives:

1. Minimize the total objective (3.1) without knowing A, which leads to the second objective,
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2. High fidelity estimation of underlying unknown matrix A at each round t, using noisy past
measurements

{
1
2 (x

ALG
τ − vτ )

TA(xALG
τ − vτ ) + ητ

}t−1

τ=1
.

Performance metric: We consider the following (dynamic) regret as the performance metric: For
any online algorithm ALG define

RegretALG[1, T ] := E[CostALG[1, T ]]− E[Cost∗[1, T ]],

where E[Cost∗[1, T ]] is the total cost of the online optimal algorithm that knows the A matrix
beforehand, established in [10]. Online algorithms have a particularly difficult time maintaining
a sub-linear dynamic regret, as seen in [76, 77, 75, 9] as the player needs to continuously track
and analyze the hitting cost. Maintaining such a guarantee becomes especially tricky in our bandit
feedback model. We illustrate this through an example in the following subsection.

3.1 A Fundamental Trade-off

Consider the action space Rd where the player starts at the origin. The time horizon is fixed as
T = 2d−1 and underlying A matrix is diagonal with d distinct positive entries. Now, the environment
supplies a sequence of minimizers {vt}2d−1

t=1 such that for the first d rounds (vt)2 = (vt)3 = . . . =
(vt)d = 0, and starting with round (d + 1), at t = (d + i)th round, vt is such that vt − xt−1 is
parallel to ei+1 for i ∈ {1, . . . , d − 1}. Such a sequence of minimizers can occur adversarially or
stochastically

(
for example, vd+i ∼ N (xt−1, ei+1e

T
i+1)

)
.

Most online algorithms in the SOCO literature [23, 25, 74, 53, 9, 10, 39] have the general form:

xALG
t = argmin

x∈Rd

ft(x) + c(x, xt−1) + g(x, vt, xt−1),

which for quadratic cost functions, place xt on the line between xt−1 and vt. This means that any
robust online algorithm ALG dictates that the player take a sequence of actions (xALG

1 , . . . , xALG
d )

parallel to e1 for the first d rounds. During these rounds, the bandit feedback model collects
information: {

(1/2) · (xALG
k − vk)

TA(xALG
k − vk)

}d

k=1
= {ckA1,1}dk=1 .

At round (d + 1), xALG
d+1 is supposed to be on the line between xd and vd+1, which is parallel to

e2. Consequently, xd+1 has direct dependence on A2,2, the second diagonal entry of the unknown
matrix A. The player now resorts to the above rank-1 data collected so far, as that is the only
information it has on matrix A.

However, as it turns out, the first d rounds only generated information about A1,1,, forcing the player
to make a blind guess regarding xd+1. In fact it gets worse, as this will happen repeatedly, with round
d+ i requiring the value of Ai+1,i+1 for computing a robust action but the player having knowledge
of only {A1,1,, . . . , Ai,i}. Alternatively, the player could have spent rounds {2, 3 . . . , d} probing the
hitting cost along the rest of the directions, collecting information on the entire matrix A. This data
collection operation, however, leads to high hitting and switching costs, due to significant deviation
from the minimizer trajectory.

“Collecting high-fidelity rank-1 data for matrix estimation incurs high online costs but
potentially pays off in the long-run. Solely following a robust online algorithm might have
initial benefit but leaves the player vulnerable should it require knowledge of the matrix A.”

In particular, the bandit feedback model allows only Following the Minimizer (FTM) as a possible
candidate for a robust online algorithm, where in each round t, xFTM

t = vt. Although it incurs low
cost initially, it has high regret accumulation over the horizon as established in [9]:

Remark 3.1. For a martingale minimizer sequence {vt}t, FTM incurs an Ω(T ) regret.

This illustrates that SOQO and data-driven learning are orthogonal tasks and are extremely difficult to
combine. To tackle this issue, we will be approaching this problem from an exploration-exploitation
trade-off, en-route to a dual-purpose algorithm.
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4 Randomized Exploration, Estimation, and Exploitation

We introduce Algorithm 1 as the first blind online algorithm that balances (i) live data collection, (ii)
matrix estimation and, (iii) trajectory optimization, simultaneously to ensure the following sub-linear
regret guarantee using only noisy rank-1 oracle:

Theorem 4.1. Consider the quadratic hitting costs ft(x) = 1
2 (x − vt)

TA(x − vt), where the
minimizer sequence {vt}Tt=1 forms a martingale sequence that is revealed in an online manner.
Under noisy bandit feedback {ft(xt) + ηt}t, Algorithm 1 has the following regret guarantee:

Regret[1, T ] = Θ(
√
T − c1d2)

with high probability (1− exp(−C0m)), where C0, c1 are universal constants from matrix estimation
theory [18, 12]. The constants depend on noise upper bar

√
η̄, smallest singular value of A, that is

σA
d , martingale process variance E[(vt − vt−1)(vt − vt−1)

T ] = Σ and dimension d.

Algorithm 1 SCaLE

Input: noise cap η̄, rank r, floor σA
r , horizon T

Initialize: m = c1rd, ĈT+1 = Id×d,
γ2 =

√
η̄max

{
T 1/2, 1

σA
r

}
1: for t = 1, 2, . . . ,m do
2: zt ∼ N (0, Id×d)
3: xt ← vt + γzt
4: yt ← ft(xt) + ηt
5: end for
6: ÂSCaLE ← argmin

M⪰0
∥Y−A(M)∥1≤η̄m

Tr(M)

7: Regenerate candidate sequence {xLAI(Â)
t }mt=1

8: xm+1 ← Ĉm+1x
LAI(ÂSCaLE)
m + (I − Ĉm)vm

9: for t = m+ 2, . . . , T do
10: xt ← Ĉtxt−1 + (I − Ĉt)vt
11: end for

The condition T > c1d
2 above is a direct

consequence of the following fundamental
limit in matrix recovery [12]:

Remark 4.2. At least m = Θ(d2) rank-
1 (noisy) measurements are required to en-
sure statististical consistency of the trace-
minimizing estimator. In its absence, any
estimator Â exhibits,

inf
Â

sup
A∈Rd×d

rank(A)=r

E∥Â−A∥2F =∞.

Notice that in such black-box online opti-
mization scenarios, one typically resorts to
Follow the Minimizer approach due to lack
of an information-rich oracle, suffering from
Ω(T ) regret. However, a careful combina-
tion of data collection, estimation and then
timely switch to online optimization, results
in a sub-linear dynamic regret.

The key to achieving such guarantees is to
strike a delicate balance between the two opposing processes in play: (i) useful rank-1 data collection
under noise and, (ii) minimizing online hitting and switching costs. Algorithm 1 achieves it by
prioritizing rank-1 data collection for the first m rounds. Although it suffers from a linearly increasing
regret during those rounds, it gets compensated by near-optimal estimate Â(m) achieved, which it
plugs in into the structure of the online-optimal LAI algorithm, to closely follow the benchmark
henceforth.

Proving the sub-linear regret in Theorem 4.1 entailed establishing a tight relationship between the
dynamic gap ∥Â(t) − A∥ and the dynamic regret against LAI. To that end, we quantify erroneous
knowledge of the A matrix in the stochastic SOQO problem by establishing a regret guarantee for the
general class of adaptive interpolation algorithms introduced in [9]:

Theorem 4.3. The sequence of actions with {Ĉt : Ĉ
−1
t = 2I + Â(t) − Ĉt+1 ∀ 1 ≤ t ≤ T}

xt = Ĉtxt−1 + (I − Ĉt)vt

has the following regret guarantee

Regret[1, T ] ≤ σ2(λA
min + 1)2

2(λA
min + 2)λA

min

T−1∑
s=1

∥Ms∥op

where ∥Ms∥op ∝ ∥Â(s) −A∥op.
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