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Abstract

Modeling the time-dependent responses of geotechnical materials under triaxial1

loading poses a dual challenge: capturing strongly nonlinear constitutive behavior2

while mitigating the influence of experimental noise. We present a two-model learn-3

ing benchmark that jointly predicts Displacement, Load, and Deviator Strain from4

elapsed time, comparing a transparent LinearRegressor baseline with a Physics-5

Informed Neural Network (PINN). The PINN encodes two physically grounded6

priors, (i) monotonic displacement progression and (ii) non-negative incremental7

work as differentiable penalty terms embedded directly in the training objective.8

This design ensures physically admissible trajectories without constraining the9

network’s capacity to model nonlinear temporal patterns. The pipeline incorporates10

precise preprocessing time normalization, feature alignment, z-score standardiza-11

tion and a fixed train–test split for reproducible benchmarking. Across all target12

channels, the PINN achieves substantial gains in mean absolute error and R2, with13

Deviator Strain showing the largest improvement due to its inherently nonlinear14

dynamics. All evaluations are reported in denormalized physical units to preserve15

engineering interpretability. Results confirm that integrating minimal, interpretable16

physics priors into neural predictors significantly improves fidelity in time-series17

modeling of laboratory geomechanics, offering a scalable, domain-adaptable frame-18

work for triaxial testing and related applications.19

1 Introduction20

Predicting the coupled responses of geomaterials under controlled loading remains a central challenge21

in rock and soil mechanics. This difficulty arises from the nonlinear nature of constitutive laws22

[28], intrinsic material heterogeneity [25, 35, 39], and pervasive measurement noise [32, 17, 31].23

Data-driven models offer flexibility in capturing complex dependencies [37], yet they often fail to24

generalize beyond the training regime [6] and may produce outputs that violate known physical25

principles [21]. Physics-informed learning provides a principled alternative by embedding domain26

knowledge into machine learning architectures [32], thereby enhancing both extrapolation and27

interpretability [9].28

In this work, we investigate a minimal-feature, physics-informed framework for predicting Dis-29

placement, Load, and Deviator Strain in quasi-static triaxial tests using elapsed time (sec) as the30

sole input variable [3, 23]. Two predictive paradigms are considered. The first is a standard linear31

regression baseline, which captures dominant monotonic trends but is limited in representing nonlin-32

earities [19]. The second is a compact Physics-Informed Neural Network (PINN) that augments a33

feed-forward architecture with two soft physics constraints: (i) displacement must be non-decreasing,34

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



and (ii) incremental work must remain non-negative [8, 13, 27]. These constraints are encoded as35

differentiable penalty terms within the loss function and jointly optimized with MSE [24].36

Our central hypothesis is that embedding such constraints suppresses non-physical predictions while37

allowing the model to capture essential nonlinear behaviors [16], thus improving predictive accuracy38

without sacrificing transparency [34]. To ensure reproducibility and fair comparison, both models39

are trained under an identical pipeline involving time conversion [36], channel selection [1], z-score40

normalization [30], and fixed train–test splits [4]. This study bridges machine learning and geome-41

chanics by showing that even minimal yet physically meaningful priors can enable high-fidelity,42

interpretable predictions of time-dependent material responses.43

2 Methodology44

2.1 Data and Preprocessing45

The dataset, originating from open-source controlled triaxial compression tests on Kaggle, includes46

timestamped sequences of Displacement (mm), Load (N), and Deviator Strain, characterizing soil47

stress–strain behavior.48

Preprocessing involved transforming timestamps to elapsed seconds, excluding incomplete records,49

and standardizing target channels using the training subset’s mean and variance. To prevent data50

leakage, test set predictions were denormalized using these same stored training statistics.51

A fixed random seed generated a single 80/20 train-test partition to mitigate stochastic effects and52

ensure identical, non-shared data splits for training and evaluation. This identical preprocessed dataset53

was supplied to all competing models, ensuring a fair and reproducible comparison. [14, 18, 7]54

2.2 Model Architectures55

Two modeling paradigms were examined to evaluate predictive performance across contrasting levels56

of model complexity.57

(i) Baseline: Linear Regression. As a reference point, we employed a standard linear regression58

model, which maps the scalar input variable (time t) to a three-dimensional output vector representing59

the target channels [12]. This baseline serves primarily to capture monotonic temporal trends, thereby60

highlighting the limitations of purely linear approaches in representing the nonlinear stress–strain61

responses typical of geomechanical systems [4].62

(ii) Physics-Informed Neural Network (PINN). To capture richer dynamics, a compact physics-63

informed neural network (PINN) was implemented. The network comprises a fully connected feed-64

forward architecture that accepts the scalar input t and produces the three target responses. Nonlinear65

activation functions were introduced in the hidden layers to accommodate temporal curvature and66

more complex dynamics [29]. The depth and width of the architecture were deliberately constrained67

to remain within a shallow-to-moderate range, reflecting the balance between expressive capacity and68

the relatively limited size of experimental datasets in geomechanics [32, 38].69

A key feature of the PINN lies in the incorporation of domain knowledge through physics-based70

regularization. Specifically, two constraint terms derived from geomechanical principles were71

embedded into the loss function as differentiable penalties. This design enables the network to72

simultaneously optimize predictive accuracy and adherence to physical plausibility, thereby enhancing73

generalizability while preserving interpretability [20].74

2.3 Physics constraints75

The physics-informed component augments the standard mean-squared error (MSE) objective with76

two penalty terms [5]:77

1. Monotonic Displacement Constraint. Displacement δ(t) is physically required to be non-78

decreasing over time under quasi-static loading [10, 28]. This is enforced via:79

Lmono =
1

N − 1

N−1∑
i=1

ReLU
(
−∆δi

)
(1)

where ∆δi = δi+1 − δi is the discrete increment between successive predictions [2].80
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2. Non-Negative Incremental Work Constraint. Incremental mechanical work, approximated via81

trapezoidal integration of predicted load over displacement [33], must remain non-negative [26]:82

wi ≈
Fi + Fi+1

2
·∆δi;Lwork =

1

N − 1

N−1∑
i=1

ReLU(−wi) (2)

The total PINN loss is: LPINN = LMSE + λ1Lmono + λ2Lwork, where λ1 and λ2 are tunable penalty83

weights, selected to balance fidelity to the observed data against adherence to physical constraints.84

Both penalties are fully differentiable, preserving end-to-end trainability with standard backpropaga-85

tion [15].86

2.4 Training, Evaluation and Visualization87

The baseline linear regressor was trained using the Adam [22] optimizer (lr = 10−2) for 3000 epochs.88

The PINN was trained using Adam (lr = 10−3) for up to 5000 epochs, with early stopping based on89

validation loss to mitigate overfitting and accommodate fluctuations in the composite loss landscape.90

Training was monitored via periodic logging of loss components and metrics. PINN loss convergence91

typically exhibited two phases: initial rapid MSE reduction, followed by gradual refinement driven92

by the physics penalties, leading to a stable low-loss regime.93

Figures 1a–2a present model predictions versus ground truth for all three target channels. The94

PINN consistently reproduces local curvature and fluctuation patterns absent in the linear baseline95

[11]. Figure 2b contrasts training loss trajectories, highlighting the stabilizing effect of the physics96

constraints. Aggregate performance metrics are summarized in Table 1 and visualized in Figure 3,97

showing consistent gains in both MAE and R2 across channels, with the largest improvements98

observed for Deviator Strain.99

(a) Prediction: Deviator Strain (b) Prediction: Displacement (mm)

Figure 1: Prediction results for (a) Deviator Strain and (b) Displacement (mm).

(a) Prediction: Load (b) Training Loss

Figure 2: (a) Prediction results for Load and (b) Training Loss for Linear vs Physic Informed Model.
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Figure 3: Performance

Table 1: Regression test metrics

Model MAE R2 Max Error
Linear Displacement 2.74 0.46 6.32
Phys-NN Displacement 0.56 0.97 1.80
Linear Load 3.15 0.68 25.86
Phys-NN Load 1.39 0.95 9.97
Linear Deviator Strain 0.69 −0.04 8.96
Phys-NN Deviator Strain 0.51 0.27 7.57

3 Results and Discussion100

The comparative evaluation demonstrates a consistent advantage of the physics-informed neural101

network (PINN) over the baseline linear regressor across all response channels. The linear model102

converges rapidly during early epochs, reflecting its ability to capture a dominant temporal trend.103

However, its predictions lack fidelity to the nuanced curvature and localized fluctuations present in104

the experimental data. In contrast, the PINN maintains a lower composite loss throughout training105

and achieves closer alignment with ground truth by leveraging dual physics priors that enforce106

displacement monotonicity and non-negative incremental work. These constraints not only suppress107

non-physical artifacts but also enable the network to represent nonlinear temporal behavior more108

effectively.109

Channel-specific analyses further highlight the improvements achieved by the PINN. For Devia-110

tor Strain, the ground-truth trajectory exhibits nonlinear fluctuations that the linear model largely111

smooths out, whereas the PINN reproduces these variations with higher fidelity. For Displacement,112

the PINN tracks the ground-truth envelope more closely, particularly in regions of curvature and113

inflection, where the linear model tends to underestimate the response. Similarly, for Load, the PINN114

demonstrates superior ability to capture localized fluctuations absent in the baseline predictions.115

Quantitative results corroborate these observations. Table 1 summarizes mean absolute error (MAE)116

and coefficient of determination (R2) for all channels. The PINN achieves substantial reductions in117

MAE and consistent increases in R2, with the largest relative improvements observed for Deviator118

Strain and Displacement. These results validate the central hypothesis that incorporating interpretable119

physics priors into a predictor enhances predictive accuracy while ensuring physical plausibility.120

The visual evidence is consistent with the numerical findings. Figures 1a–2a illustrate the improved121

alignment of PINN predictions with experimental trajectories across all channels. Training dynamics122

(Figure 2b) demonstrate the stability of the physics-informed optimization process, while the compar-123

ative performance summary (Figure 3) highlights the systematic gains achieved over the baseline.124

Together, these results underscore the value of embedding minimal yet meaningful physics constraints125

in data-driven models for time-dependent geotechnical responses.126

4 Concluding Remarks127

In this study, we demonstrate that combining a physics-informed neural network (PINN) with a128

linear baseline provides a robust framework for predicting time-dependent geotechnical responses129

from triaxial test data. Three contributions stand out. First, a transparent data-processing workflow130

ensures reproducibility through explicit normalization and denormalization. Second, a two-penalty131

physics-informed objective enforces monotonic displacement and non-negative incremental work,132

embedding physical plausibility into the learning process. Third, a comprehensive evaluation across133

Displacement, Load, and Deviator Strain shows that the PINN consistently outperforms the baseline134

in MAE and R2, with the greatest gains for Deviator Strain, where nonlinear effects dominate.135

Empirical results and visual analyses confirm that physics priors enhance accuracy, stabilize training,136

and improve trajectory fidelity. The framework remains interpretable and computationally tractable,137

supporting application to other laboratory-scale geotechnical datasets.138

Future work could incorporate additional priors from energy conservation or constitutive modeling,139

extend inputs beyond elapsed time, and test across diverse geomaterials and loading conditions.140

Such extensions would clarify the broader role of physics-informed learning in linking experimental141

geomechanics with predictive modeling.142
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