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Abstract—Products manufactured in Telecommunications
companies need to go through a large number of test cases, often
running into thousands. These test cases have test specifications
and test limits decided by designers from their understanding
of the components and experience. Test limits used are usually
binary thresholds so that if a manufactured unit is on the correct
side of the test limit then the corresponding test is said to be
passed. The impact of variation in test performance on field
performance has not been extensively studied. To study this, we
consider the field performance of a large number of Remote
Radio Units (RRU) and try to correlate the field performance
with the test performance. We describe here a system which can
integrate data from production tests and field performance and
run large number of statistical experiments automatically. These
statistical experiments allow us to narrow down on a very small
number of production tests which are clearly correlated to system
performance. The process makes it feasible to bring down the
number of production test cases which need further analysis and
identify possible changes in thresholds. In particular, we look
at downlink performance degradation and linearization faults as
one set of field performance results and channel quality indicators
as another. Initial results on our system show orders of magnitude
difference in the number of test cases directly impacting field
performance results to the actual number of tests performed.
We believe that incorporation of such systems and checks would
lead to better telecommunications equipment performance across
the industry and therefore better end user experience.

1. BACKGROUND

Telecommunications manufacturing is a complicated pro-
cess because very high precision equipment needs to be built
and tested. In particular, Remote Radio Units (RRU) which are
the focus of our study, are manufactured globally by various
companies. Every manufactured Radio unit contains a large
number of components often sourced from different vendors.
Components could themselves be manufactured units like
power amplifiers or filter units and they can also be individual
components like capacitors which then go into a printed circuit
board (PCB). Every unit is then subjected to a very detailed
testing regimen often going into thousands of tests. These tests
include basic health checks, tests which indicate the unit’s
stated performance as well as tests required from regulatory
purposes. Examples of health check tests include testing of idle
current and voltages, testing of temperatures of equipment at
various load levels etc. Calibration of different components
like filter and Voltage Standing Wave Radio (VSWR) as well
as testing of gain accuracy and noise figure go into the set
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of performance tests mentioned earlier. In addition, some
performance tests maybe required for regulatory requirements
like those of Electromagnetic field (EMF) and Out of Band
Unwanted Emission (OBUE). Most of these tests are done
at the manufacturing factory itself. Almost all test cases
measure numerical values. Most manufacturing tests (except
some calibration tests) have one or more limits set by the
design community. The limits are almost exclusively decided
based on the stated performance of the unit in consideration
and regulatory requirements, if applicable. Test cases typically
have an order in which they must be executed. Tests which
have one limit are typically ones where the measured value
needs to be either larger than or smaller than the stated test
limits, whereas for tests which have two limits the measured
value needs to be between the two limits. A test case is said
to be passed if the measured value is in line with the defined
limits as explained above. Calibration test cases often do not
have a pass vs. fail criterion. Instructions for the order, limits
and re-run are available in test design documents. A unit must
pass all test cases to be considered for further verification
and shipping to customers which are in most cases telecom
operators around the world.

Once shipped to the telecom operators these equipment are
deployed on field and monitored at a regular basis based on
different performance parameters. Radio units need to main-
tain some Service Level Agreements (SLA) in the field. Many
of these SLAs are mandated by standards bodies like Third
Generation Partnership Project (3GPP), European Telecomuni-
cations Standards Institute (ETSI) etc. Others may be enforced
by national regulatory bodies like Federal Communications
Commission (FCC) , Telecom Regulatory Authority of India
(TRAI) etc. Other performance parameters may be chosen by
the telecom operator to give the level of promised customer
service to the end user.

While most equipment perform as per SLA, few of them
might display varying/degrading performance over their life-
time. Such variation in performance can be attributed to range
of factors, including operational network performance param-
eters and external factors like environment etc. Telecom opera-
tors continuously collect and record network performance data.
Original equipment manufacturer (OEMs) can leverage this
information and incorporate it as a feedback to enhance their
existing manufacturing process esp. redesigning or fine tuning
the existing test limits. In many cases, OEMs lack access to
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Fig. 1: Architecture diagram showing overall flow of the project.

the equipment operational data , unless these are returned by
operators to OEMs for trouble shooting, repair or maintenance
purpose. The concept of correlating field performance with
product design and testing improvements represents a mutually
beneficial scenario for both operators and OEMs.

In this study, we consider a case where we have access to
both manufacturing test results and field performance metrics.
Using this relatively unique opportunity to look at data across
the entire life cycle of radio units, we describe here a system
to integrate end to end information across them. In particular,
we describe a system which can run systematic statistical
experiments to understand the correspondences between field
performance and manufacturing test results. Our objective is to
build a scientifically robust system of identifying if certain test
limits or certain test results need more careful inspection. This
may involve identification of rules for specialized re-inspection
as well as suggested changes for test limits. As the number
of test cases often run into thousands, such specialized re-
inspection rules cannot be setup in any feasible way on the
full test set. However, our statistical system identifies a handful
of such test cases, which can therefore be subjected to further
scrutiny.

Other than the system description, we describe here two
types of field performance. First, we consider a case of
linearization faults which is available as an indicator on a
specific radio and a specific port. Second, we consider a case
where we look at field performance KPIs such as Channel
Quality Indicator (CQI), Signal-to-Inference-plus-Noise Radio
(SINR), Block Error Rate (BLER) etc. These are not available
as binary performance flags and we look at them from the
perspective of their measured values. It is not surprising
therefore that our results for the latter are less prescriptive
than those for the former. However, in both cases our system
provides a scientifically robust process to narrow down from
a large volume of test cases to a manageable subset, which
can then be handled by expert teams judiciously.

We would like to highlight two aspects of our study at the
outset. Firstly, our system only provides insights backed up
with statistical evidence for radio product engineers consider-
ation. The goal of the data driven approach is focused towards

assisting radio engineers in designing test criteria’s. Our results
are therefore purely prescriptive and consultative and any
decisions on changes in actual process or test limits remain
the sole discretion of the radio product design and engineering
teams. Secondly, our system is now setup for analysis of radio
equipment only. However this framework can be extended to
include any equipment within the telecommunication domain,
provided relevant data is available. We also believe that
certain aspects of our approach could hold relevance for other
industries as well and hence we would encourage colleagues
in other industries to explore its applicability within their
respective domains.

II. CAVEAT

We digress from the relatively standardized sections in aca-
demic literature to point out some caveats in this study. First,
we would need to keep the details of the radios in question,
specifics on test cases, test limits and KPIs anonymous for
confidentiality purposes. We would not be able, now or in the
future, to respond to any questions on specifics regarding the
above nor share even small samples of data or code to the
community.

One may therefore ask the rationale behind making this
study public. We would like to inform the broader telecom-
munications community the value of building data driven man-
ufacturing test cases as from our experience this is an opportu-
nity in many telecommunications products and manufacturers.
As each one of us are finally consumers of telecommunication
equipment in various ways in today’s digitally connected
world, a more scientific system leading to better manufacturing
processes would lead to a better experience for everybody. We
would also like to hear from our colleagues in the industry,
including our competitors, to understand their best practices in
manufacturing and testing. Finally, we would like to highlight
the value of combining data driven methods with domain
expertise - in a world where statistical techniques, machine
learning (ML), artificial intelligence (Al) and generative Al
(GenAl) is going to be dominant, this combination will be
more and more important and we would like to use to
highlight how a data driven and a domain expertise approach
complement each other in one use case.
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Fig. 2: Density plots for some test cases which have statistically significant differences between ports with
linearization fault in red ("bad port”) and those without in green (”good port”). These tests measure different
aspects related to Out of Band Unwanted Emissions (OBUE). Statistical test is KS test with p < 0.05

III. LITERATURE REVIEW

There is very little work on the correspondence between
field tests and network performance. Zeng at al [1] look
at the correlation between Error Vector Magnitude (EVM)
and various Key Performance Indicators (KPI) like SINR,
average cell spectrum efficiency (SSE), cell edge cell spectrum
efficiency (ESE) and Modulation Coding Scheme (MCS).
Hasan et al look at grouping of cells based on EVM to improve
channel state information(CSI) performance and in a separate
research [2] try to maximise spectral efficiency by optimizing
the EVM scheme.

IV. SYSTEM DESCRIPTION

In this section, we describe the source data, the types
of problems investigated and the statistical tests which are
relevant for the study.

A. Source Data Description

There are two main data sources used for this study. As
described above, every radio goes through large number of
test cases, often running into thousands. This data is stored
in a data warehouse and accessed via a pyspark system [3].
This data is at the grain of every test case run for every radio
- test cases which fail for a certain radio or need to be re-
run because of dependencies will have multiple records. Also
many test cases are run separately for every port of a radio -
this in turn sets the grain of the data for such test cases at the
level of the port.

The second data source consists of field performance
records. This in turn has two types - log file based and
KPI based. Multiple radio log files are collected and these
captures events, alarms, faults and regular measurements. Of
particular interest is linearization fault happenning due to
power amplifiers working in the non-linear operating zone
[4]. Such logs are event trigerred and therefore irregularly
spaced in time. KPI performance measures are measurements
of KPIs like throughput, SINR, CQI etc. These are computed
from low level telecom events at 15 minute intervals and are
therefore regularly spaced. Also unlike faults and alarms, these
events are collected for radios in both good and bad operating
conditions. Also, these KPIs are collected at a cell level - one
radio typically has more than one cell.

B. Types of Problems investigated

While our system is suitable for processing a wide variety
of problems, we looked at two important types of problems.

1) Linearization fault: Radio units have a Power Amplifier
(PA) which amplifies the input signal for better coverage in
a Over-The-Air (OTA) transmission. However, for maximum
efficiency power amplifiers need to operate in non-linear oper-
ating zone ( Type B, Type AB, Type C etc.) [5]. However, the
increased efficiency comes at the cost of linearity which in turn
introduces effects of loss of gain and intermodulation effects
[6]. To overcome this problem, power amplifiers are typically
preceded by a Digital Pre-Distortion (DPD) unit [7] which pre-
distorts the signal so that the net effect post the power amplifier
is a linear gain. Despite this, sometimes a radio unit works in
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Fig. 3: Change in conditional probability w.r.t baseline shown as 0 for linearization fault under various testing conditions for
one type of Radio. All ratios more than the baseline are statistically significant (p < 0.05) by a one-sided t-test. (a) Change in
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of a linearization fault for various different repair actions

the non-linear operating zone and this causes what is known
as a linearization fault. This typically happens on one port of a
radio and is identified as a hardware fault on the radio. Whilst
operating conditions like power settings and load do impact
the linearization issues, we would like to understand if there
is a correspondence on manufacturing issues for the same.
In particular, we would like to understand if some test cases
have a statistically significant correspondence with hardware
failures for linearization fault.

2) CQI and EVM correspondence: The error vector mag-
nitude (EVM) [8] is a key metric of the quality of digital
modulation in modern wireless communication systems. In the
Long-Term-Evolution (LTE) or 4G system, there is a certain
difference in amplitude, phase and frequency between the
digital modulated signal received by the user equipment and
the ideal signal due to the modulation error of the modulator.
The root mean square (RMS) of all error vector magnitudes
between the received symbol locations and their closest ideal
constellation locations constitute the EVM value of the device.
Manufacturing process tests for the EVM and checks that it
is below a certain threshold. EVM is tested at a port level.
As this is a measure of the modulation scheme, a higher
EVM will lead to a poorer modulation and therefore a poorer
channel quality. This may be reflected in various KPIs like
CQI, SINR, BLER etc. These KPIs can of course be poorer
because of location, load and other deployment parameters.
However, a larger EVM would contribute towards a generally
poorer performance of some or all of these channel quality
metrics. Hence we would like to to understand via statistical
methods if there is a significant correspondence between EVM
at manufacturing test time and field performance of KPIs.

C. Statistical Methods

We follow different statistical methods for the two problems
above - this is because of the variety of the data and the

necessary processing needed for statistical experiments. In
this section we would describe the processing and statistical
methods we followed for each of them.

1) Linearization Fault: We identified the port of the radio
on which linearization fault occurred and considered them as
”bad downlink (DL) performance ports” ("bad ports” in short)
and considered all other ports on the radio as ”good DL per-
formance ports” ("good ports” in short). We considered radios
without any linearization fault and considered all ports for
them as ”good DL performance ports”. We then looked at the
test case measurements for these ports from the manufacturing
test data. We ran a Kolmogorov—Smirnov (KS) statistical test
[9] to compare the performance for good and bad ports and
identified tests which have statistically significant differences
between good and bad ports. Radios standing out from the
normal distribution on these tests can thus be subjected to
more careful scrutiny and testing by experts before shipping
them to customers for deployment. These are valuable inputs
to the test design team to choose better test limits. This is
especially true for new radios being designed for which we
do not have any field results at all.

In addition, we looked at the number of re-tests, affected
component and repair action. For each of these parameters
individually we compared the baseline downlink failure (lin-
earization fault) probability vs. the conditional probability
of linearization fault given each of these criteria. For ex-
ample, for number of re-tests between 1 and 6, we com-
puted P(linearization faultlno of retests = k) where
k e {1,2,3,4,5,6} and compared this with the baseline
probability P(linearization fault). Similarly we looked at
P(linearization fault|repair action) where repair action
€ {'Replace’, Retune') Solder’ Reassamble’} and com-
pared it with the baseline probability. We also did similar
experiments for the individual test case identifier and the
affected component identifier.
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Fig. 4: Density plots for different pathloss, CQI and traffic KPIs averaged over 3 months for radios having average EVM in
the bottom and top quartiles. Bottom quartile is shown in purple and top quartile is shown in green

2) EVM and CQI: EVM is measured at port level on radio
units and KPIs are measured at cell level in the field. The
mapping between radio units and cell is known. In order to
be able to analyze the EVM with KPIs data, we used average
EVM value from all ports on a radio unit. A radio product
with large variation in the EVM measures from the testing
process was picked for the analysis. Two contrastive sets of
radio units were chosen from the EVM distribution - one
from the bottom quartile and the other from the top quartile.
These two sets were statistically compared for CQI, Traffic
and Pathloss. KPI measurements are usually available at 15
minutes interval. KPI data worth one month was analyzed for
this study. Average values over time of KPIs are computed
per cell for the statistical analysis. Statistical analysis showed
that radio units in the top EVM quartile have lower CQI
compared to the ones in the bottom EVM quartile. This was
the observation considering the influence of traffic and pathloss
on the channel quality.

V. EXPERIMENTAL RESULTS

Although the focus of this paper is describing a system
to combine data from manufacturing and field performance
and how manufacturing test limits can be tweaked using field
performance, we present some results on our experiments
so far to highlight the value of our approach. As discussed

in Section II we would not be able to identify exact radio
products etc. for confidentiality purposes. All of these radios
are for outdoor transmission in LTE spectrum.

Table I show the counts and proportions of linearization
faults for two different radios. As we can see, that the
proportion of radios having linearization faults are extremely
low. Figure 2 shows the difference in the density plots for
some test case measurements between ports with linearization
fault ("bad ports™) vs. those without linearization fault ("good
ports”). Fig. 3 shows the change in conditional probability
of linearization fault with respect to the baseline for various
testing conditions. Fig. 3a shows the same for various different
test counts and Fig. 3b or various different repair actions.

Our results are able to pin-point test cases (in single digits
out of thousands) which can be evaluated by the design team.
Similar recommendation is made for radios with more re-tests
and needing part replacement as a repair action. Thus our
system allows a very efficient way to identify important test
cases and test actions of relevance for evaluation by the design
team.

For testing relationship between EVM and CQI metrics, we
consider one radio and look at the test case measurements on
each port. The EVM is measured at manufacturing time and
CQI metrics are measured on field.

Considering radios having EVM, averaged across ports, in
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No of units | Prop. units with fault | Number of test Cases | No. of statistically significant test cases
Radio 1 28204 0.5 749 4
Radio 2 16846 1.0 967 4

TABLE I: Summary statistics for Linearization Fault Experiments - Number of units, approximate proportion (%) of units
with linearization fault, number of test cases and no of test cases with statistically significant (p<0.05) differences (KS test)

between “good ports” and “bad ports”

bottom and top quartiles we look at some of the KPI measures
for three months. Our results indicate negative correlation
between EVM and CQI considering the influence of network
behavior on the KPI. This means that the radio units tested
with high EVM measures tend to have lower CQI in the field
(Fig. 4). This is expected since EVM is a measure of error
whereas CQI metrics measure quality. CQI in the field may
also be influenced by other network factors such as traffic,
pathloss. In Figure 4 we plot in purple the distribution of radios
having average EVM across ports in the bottom quartile and in
green those having average EVM across ports in top quartile.
We observe that the traffic patterns for the two distributions
are not statistically different (p > 0.05) as per KS test.
However, the pathloss for the two distributions are different
(p < 0.05) according to KS test. Similar statistical differences
are observed for CQIL. However, the pathloss for the low EVM
is higher which should lead to a lower CQI distribution -
pathloss being a measure of loss and CQI being a measure of
quality. The observed variation can thus possibly be attributed
to the variation of the EVM. To test this, we regress the CQI
measurements with the EVM measurements and observe a
statistically significant (p < 0.05) correlation coefficient of
—0.55. This indicates there is a statistical correlation between
EVM measures and field performance. This gives the radio
engineers insight for choosing the appropriate test limits
especially for new radio products.

VI. DISCUSSION

In this section, we discuss our observations and limitations
of our study.

A. Observations and Limitations

To the best of our knowledge, there has been no published
study around the correspondence of field performance and
manufacturing test results for telecommunications products.
This approach provides a principled way to design test limits,
actions on specific scenarios like re-tests etc. This is especially
useful when building new radio products. Learning from
existing radios in field can be used onto the new radio roll
outs if the new products are using similar technology e.g.
similar power amplifiers. These correlations can be used to
find out EVM values at which CQI can hit threshold given
network conditions. We would like to highlight that all of
these equipment are working at high levels of performance
- but this approach would allow imporve it further leading to
better end user experience.

There are various further enhancements possible with our
study to make it more comprehensive. For example, we have

looked at statistical correlations of linearization faults with
respect to one test case at a time. A multivariate approach
is one obvious extension in this regard. In a similar way, we
look at re-tests and repair actions individually whereas one
can possibly look at them jointly. Similarly, instead of taking
average EVM values across ports for a radio and average KPIs
over time, one can look at a more fine grained approach. How-
ever, this would necessitate more advanced models including
use of machine learning models to identify correlations. Such
approaches would need a much larger sample of data having
various issues and therefore maybe impractical for real world
telecom products. In short, we describe the first step towards
relating field performance and manufacturing test results.

B. Future Work

Other than handling the limitations above, our approach can
be extended in the future to across different components in the
telecommunications environment like baseband units, transport
layer, core network etc.
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