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Abstract
Spiking neural networks (SNNs) have made great progress
on both performance and efficiency over the last few years,
but their unique working pattern makes it hard to train a
high-performance low-latency SNN. Thus the development
of SNNs still lags behind traditional artificial neural networks
(ANNs). To compensate this gap, many extraordinary works
have been proposed. Nevertheless, these works are mainly
based on the same kind of network structure (i.e. CNN)
and their performance is worse than their ANN counterparts,
which limits the applications of SNNs. To this end, we pro-
pose a novel Transformer-based SNN, termed “Spikeformer”,
which outperforms its ANN counterpart on both static dataset
and neuromorphic dataset and may be an alternative archi-
tecture to CNN for training high-performance SNNs. First,
to deal with the problem of “data hungry” and the unsta-
ble training period exhibited in the vanilla model, we design
the Convolutional Tokenizer (CT) module, which improves
the accuracy of the original model on DVS-Gesture by more
than 16%. Besides, in order to better incorporate the atten-
tion mechanism inside Transformer and the spatio-temporal
information inherent to SNN, we adopt spatio-temporal at-
tention (STA) instead of spatial-wise or temporal-wise at-
tention. With our proposed method, we achieve competi-
tive or state-of-the-art (SOTA) SNN performance on DVS-
CIFAR10, DVS-Gesture, and ImageNet datasets with the
least simulation time steps (i.e. low latency). Remarkably, our
Spikeformer outperforms other SNNs on ImageNet by a large
margin (i.e. more than 5%) and even outperforms its ANN
counterpart by 3.1% and 2.2% on DVS-Gesture and Ima-
geNet respectively, indicating that Spikeformer is a promising
architecture for training large-scale SNNs and may be more
suitable for SNNs compared to CNN. We believe that this
work shall keep the development of SNNs in step with ANNs
as much as possible. Code will be publicly available.

Introduction
Inspired by biological neural functionality, spiking neural
network (SNN) is known as a promising bionic model with
low-power computation and has gained considerable atten-
tion in recent years. As the third generation of artificial neu-
ral network (ANN), SNN is computationally more powerful
than other neural networks with regard to the number of neu-
rons that are needed (Maass 1997). When embedded on neu-
romorphic hardware such as TrueNorth (DeBole et al. 2019)
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and Loihi (Davies et al. 2018), SNN shows great potential to
process spatio-temporal information effectively with low en-
ergy consumption due to its intrinsic spatio-temporal charac-
teristic and event-driven spike communication mechanism.
Nevertheless, owing to the lack of appropriate learning al-
gorithm, its performance is not as good as traditional neural
networks.

To tackle this problem, there are two main routes to train
a SNN with high performance. The first is the ANN-to-SNN
method, which obtains a SNN by simulating a pre-trained
ANN model’s behavior (Hu, Tang, and Pan 2018; Han,
Srinivasan, and Roy 2020; Sengupta et al. 2019). With ade-
quate simulation steps, the conversion method can achieve
almost lossless accuracy compared to its ANN counter-
part. However, extremely high latency is often required to
achieve satisfying accuracy and limits the practical appli-
cations of SNNs. The other approach is the surrogate gre-
dient (SG) method (Neftci, Mostafa, and Zenke 2019). To
handle the non-differentiability of the spiking mechanism,
the SG method utilizes surrogate gradients to approximate
the gradients of the non-differentiable activation function
on the backpropagation process. This method can directly
train SNNs with low latency, but it cannot achieve high per-
formance comparable to leading ANNs. Overall, SNNs ob-
tained by aforementioned methods suffer from either low
performance or high latency which hinders the development
of training large-scale SNN models.

To deal with it, there are several methods and models
proposed to train large-scale SNNs, such as tdBN (Zheng
et al. 2021) and SEW-ResNet (Fang et al. 2021a). These
methods and models are mainly based on convolutional neu-
ral networks (CNNs), such as ResNet (He et al. 2016) and
VGG (Simonyan and Zisserman 2015), which dominate the
field of computer vision for years. However, in the field of
computer vision, CNNs are gradually taken place by Vision
Transformers (ViT) because of their excellent capabilities
at capturing long-range dependencies. With the emergence
of Transformer (Vaswani et al. 2017) and ViT (Dosovitskiy
et al. 2020), they have been the dominant approaches in se-
quence modeling problems such as language modeling and
video understanding. Actually, the tasks of SNNs (e.g. DVS-
Gesture) can be viewed as sequence modeling problems
as well. Hence, it’s natural to integrate SNN with inherent
spatio-temporal information into ViT with spatio-temporal



attention (e.g. TimeSformer). However, due to the “data hun-
gry” property and the substandard optimizability of ViT, the
vanilla architecture suffers from poor performance (82.29%
on DVS-Gesture) and the training accuracy even does not
converge when integrated with spiking neurons.

To this end, we design the Convolutional Tokenizer (CT)
module, which is a SNN-oriented convolutional block. With
this module, we improve the top-1 accuracy of the original
model on DVS-Gesture from 82.29% to 95.83%. And its
SNN counterpart manages to converge and even obtains bet-
ter result (i.e. 98.96% on DVS-Gesture). To our best knowl-
edge, this is the first work to introduce spatio-temporal at-
tention (STA) into SNNs and directly train a Transformer-
based SNN with high performance and low latency. Al-
though there are a few works utilizing attention mechanism
in SNNs to improve performance, they are mainly studying
either spatial-wise attention (Cannici et al. 2019; Xie et al.
2016; Kundu et al. 2021) or temporal-wise attention (Yao
et al. 2021) separately. On the contrary, we integrate spa-
tial and temporal attention into SNNs at the same time and
achieve state-of-the-art SNN performance on DVS-Gesture,
DVS-CIFAR10 and ImageNet datasets with the least simula-
tion time steps (i.e. low latency). Prior to this work, (Mueller
et al. 2021) obtain a Transformer-based SNN by conversion
method. But their method requires relatively long time steps
and they only experiment on simple tasks, while ours de-
mands much fewer simulation time steps and achieves re-
markable result on the challenging ImageNet dataset. On
ImageNet, our Spikeformer obtains 7%/5% improvement
compared to the SOTA SNN models trained by SG/conver-
sion method and even outperforms its ANN counterpart by
2.2% for the first time.

We summarize our contributions as follows:
• To deal with the “data hungry” property and substandard

optimizability of ViT, we design the CT module and gain
essential improvement of accuracy (over 16%) on DVS-
Gesture.

• We integrate STA into SNN to better utilize the spatio-
temporal information inside the spiking neurons and
achieve high performance with low latency.

• We propose a directly trained Transformer-based SNN,
which may be an alternative scheme to CNN for training
large-scale SNNs.

• With extensive experiments, we demonstrate the robust-
ness of Spikeformer in terms of depth and time steps
and achieve competitive or state-of-the-art (SOTA) SNN
performance with low latency on DVS-CIFAR10, DVS-
Gesture, and ImageNet datasets.

Related Work
Large-scale SNN model In the past few years, as SNNs
have attracted increasing attention, lots of extraordinary
works on training large-scale SNN models have sprung up.
(Hu, Tang, and Pan 2018) are the first to build a SNN
deeper than 100 layers by conversion method. But it re-
quires hundreds or thousands of time steps, which results
in high latency. It is not until (Zheng et al. 2021) propose
the tdBN method that we can extend directly-trained SNNs

from fewer than 10 layers to 50 layers. They effectively alle-
viate gradient vanishing or explosion and balance the thresh-
old and input on each neuron to get appropriate firing rates
with a modified batch normalization method. (Fang et al.
2021a) further analyze the gradient and identity map issues
in SNNs, alter the connection of residual block, and pro-
pose SEW ResNet, which extends the depth to 152 layers.
These large-scale SNNs are mainly based on CNNs, while
Transformer-based architectures have gained great success
in various domains (e.g. NLP, CV).

Transformer Since the proposal of Transformer (Vaswani
et al. 2017), it has been a dominant approach in NLP due
to its extraordinary capabilities at capturing long-range de-
pendencies among words. (Dosovitskiy et al. 2020) are the
first to apply it in computer vision and achieve remarkable
results, which sets off a wave of research on ViT. (Doso-
vitskiy et al. 2020) note that ViT lacks inductive biases in-
herent to CNN, and therefore it requires more data to gain
superior results. This issue has subsequently led to a series
of studies to follow (Liu et al. 2021; Mehta and Rastegari
2021; Lee, Lee, and Song 2021; Hassani et al. 2021; Cao,
Yu, and Wu 2022). (Hassani et al. 2021) introduce induc-
tive biases into ViT with a convolutional head and success-
fully alleviate “data hungry”. Moreover, (Xiao et al. 2021)
propose that ViT exhibits substandard optimizability due to
the patchify stem of ViT. They empirically demonstrate that
early convolution can increase optimization stability of ViT
and also improve peak performance. Despite the rapid de-
velopment of Transformers in the field of ANNs, they are
rarely used in SNNs due to the “data hungry” property and
the substandard optimizability. (Mueller et al. 2021) convert
a pre-trained Transformer to SNN, but this method requires
relatively long time steps and has limited usages. Based on
these observations, we propose the CT module and success-
fully train a high-performance Transformer-based SNN with
low latency.

Attention mechanism in SNN The attention mechanism
enables the model to pay more attention to the most infor-
mative components of input. It has been applied in SNN as
spatial-wise attention (Cannici et al. 2019; Xie et al. 2016;
Kundu et al. 2021) or temporal-wise attention (Yao et al.
2021), but these works either capture dependencies inside
frames or utilize the statistical characteristics of the frames
input at different time steps, which may lose information
in spatial or temporal domain. Thus we integrate both spa-
tial and temporal attention into SNN in a divided way and
achieve state-of-the-art results.

Method
Spiking Neuron Model
In general, spiking neurons can be clssified into two classes
by their data transmission form. One is the spike-based neu-
ron, such as LIF (Burkitt 2006) and PLIF (Fang et al. 2021b),
which uses spike streams for communication. When em-
bedded on neuromorphic hardware, this kind of neurons
will skip computation if they haven’t received any input
spike, i.e. event-driven computation. Thus they can process
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Figure 1: An overview of Spikeformer.

spatio-temporal information in an energy-saving way. The
other is the analog-based neuron, such as LIAF (Wu et al.
2021), which uses the dynamic characteristics of spiking
neurons but transmits analog values. This kind of neurons
possesses strong representational capabilities due to their in-
herent spatio-temporal feature, but they cannot skip com-
putation, which makes them cost more energy than spike-
based neurons. Without loss of generality, we experiment
with both types of neurons. Formally, We use the following
equations to describe the dynamics of spiking neurons,

H[t] = V [t− 1] +
1

τ
(X[t]− (V [t− 1]− Vreset)) (1)

S[t] = Θ(H[t]− Vth), (2)
V [t] = H[t](1− S[t]) + VresetS[t], (3)

where H[t] and V [t] denote the membrane potential after
integrating input and after the trigger of a spike at time step
t, respectively. X[t] is the input at time-step t, and S[t] is
the output spike at time-step t. The input propagates to the
next layer is S[t] for LIF model and ReLU(H[t]) for LIAF
model. Θ(x) is the Heaviside step function, which is de-
fined by Θ(x) = 1 for x > 0, otherwise Θ(x) = 0. Vth

and Vreset denote firing threshold and reset potential, re-
spectively. τ represents the membrane time constant. When
τ is learnable, we have PLIF model (Fang et al. 2021b) and
PLIAF model. In this paper, the surrogate method is used in
the backpropagation process, and the surrogate function is
the same as (Fang et al. 2021a). The details are presented in
Supplementary Material A.

Model Architecture
An overview of Spikeformer is depicted in Fig. 1. Compared
to the standard ViT, we use a Convolutional Tokenizer (CT)

module to process a series of 2D frames and then reshape
them into a sequence of flattened token embeddings instead
of the original patchify stem. Furthermore, to better utilize
the spatio-temporal information and achieve a trade-off be-
tween accuracy and computational complexity, we adopt di-
vided Space-Time Attention (Bertasius, Wang, and Torre-
sani 2021) in Transformer block. Finally, as it is non-trivial
to deal with class token in divided Space-Time Attention and
the class token may lose information when discarding embe-
dings (Beyer, Zhai, and Kolesnikov 2022), we pool the se-
quential based information from the last transformer block
using a sequential pooling method (Hassani et al. 2021),
which may be a better choice than global average-pooling
as it can learn to assign more weights to more informative
tokens. We would elaborate each component in the follow-
ing subsections.
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Figure 2: Illustration of Convolutional Tokenizer. Note that
the part enclosed by the dotted line only appears when down-
sampling.

Convolutional Tokenizer In order to alleviate “data hun-
gry” and help stabilize the training period, we propose the
CT module to introduce inductive biases into Spikeformer.
The architecture of CT module is illustrated in Fig. 2. Given
a series of input frames x ∈ RT×H×W×C :

Conv(x) = SN(BN(Conv2d(x))), (4)

CTd(x) = Conv(Conv(x)) + Conv(AvgPool(x)), (5)

CT (x) = Conv(Conv(x)) + x, (6)

where Conv2d and BN denote convolutional layers and
batch normalization layers, which will process each time
step separately, and SN denotes spiking neurons that will in-
tegrate input and output spike trains. CTd(·) and CT (·) de-
pict downsample module and normal module respectively.
Multiple downsample modules and normal modules are
stacked together to encode input frames and output spike
trains to the following blocks. The design of the CT module
mainly follows the architecture of SEW block (Fang et al.
2021a) as it is proven to implement identity mapping and
is beneficial for training deep spiking neural networks. But



in the downsample module, we use a 2× 2 average pooling
layer with a stride of 2 and a stride-1 Conv1 × 1 instead of
a stride-2 Conv1× 1 in the shortcut connection in order not
to discard information (He et al. 2019). And this minimal
modification will not influence the functionality of identity
mapping, the theoretical analysis and further description are
presented in Supplementary Material A.
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Figure 3: Illustration of Transformer Block.

Transformer Block Our Spikeformer contains L encod-
ing blocks and the architecture of transformer block is
shown in Fig. 3. The output of the last CT module x̂ ∈
RT×H′×W ′×D is flattened into vectors â(p,t) ∈ RD, with
p = 1, ..., N denoting spatial locations and t = 1, ..., T de-
noting temporal locations. N = H ′ × W ′ and D depicts
the dimensionality of tokens. To encode the spatio-temporal
position of each token, we add a learnable positional embed-
ding epos(p,t) ∈ RD to each token:

z
(0)
(p,t) = â(p,t) + epos(p,t) (7)

Each encoding block l will compute a query/key/value
vector:

q
(l,h)
(p,t) = LN(z

(l)
(p,t))W

(l,h)
Q ∈ RDh (8)

k
(l,h)
(p,t) = LN(z

(l)
(p,t))W

(l,h)
K ∈ RDh (9)

v
(l,h)
(p,t) = LN(z

(l)
(p,t))W

(l,h)
V ∈ RDh (10)

where LN(·) denotes LayerNorm (Ba, Kiros, and Hin-
ton 2016), h = 1, ...,H is the index over multiple atten-
tion heads and Dh = D/H is the dimensionality of each
query/key/value vector. In Spikeformer, the attention mech-
anism is divided into spatial attention and temporal atten-
tion:

h
(l,h)space
(p,t) =

N∑
p′=1

SM(
q
(l,h)T

(p,t)√
Dh

[
{k(l,h)(p′,t)}p′=1,...,N

]
)v

(l,h)
(p′,t),

(11)

h
(l,h)time
(p,t) =

T∑
t′=1

SM(
q
(l,h)T

(p,t)√
Dh

[
{k(l,h)(p,t′)}t′=1,...,T

]
)v

(l,h)
(p,t′),

(12)

s
(l)
(p,t) = Concat(h

(l,1)
(p,t), ..., h

(l,H)
(p,t) ) ·WO, (13)

where SM(·) denotes the softmax activation function,
WO ∈ RH·Dh×D is the projection matrix, and s is the output
of temporal attention (TMSA) or spatial attention (SMSA).
Thus a transformer block in Spikeformer can be formulated
as:

z′l = TMSA(LN(zl−1)) + zl−1 (14)

z′′l = SMSA(LN(z′l)) + z′l (15)

zl = FC(SN(FC(LN(z′′l )))) + z′′l (16)

with l = 1, ..., L depicting an index over blocks.

frame Tframe T - δ frame T + δ

Figure 4: Illustration of Divided Space-Time Attention
scheme. We denote in white the query patch and show in
orange its self-attention space-time neighborhood. Patches
without color are not used for self-attention computation of
the white patch.

Intuitively, the divided Space-Time attention can be illus-
trated by Fig. 4. The query token in frame T first computes
its attention scores with other tokens that are at the same
location in other frames as temporal attention. And then it
computes its attention scores with other tokens that are in the
same frame as spatial attention. Not only can this scheme re-
duce memory cost and computational complexity, but it also
achieves satisfying accuracy.

FC

Softmax

mul

Figure 5: Illustration of Sequence Pooling.

Sequence Pooling In order to fully utilize the information
in the outputs of the last transformer block, instead of dis-
carding most of them (i.e. class token), we adopt Sequence
Pooling to compute the weighted sum of the outputs and
send the result to the classifier, as shown in Fig. 5. Given
the normalized output tensor of the last transformer block



Model #Layers #Heads Ratio Dim

Spikeformer-2 2 2 1 128
Spikeformer-4 4 2 1 128
Spikeformer-7 7 4 2 256

Spikeformer-7L 7 8 3 512

Table 1: Details of Spikeformer model variants. Ratio de-
notes the MLP expansion ratio.

zl ∈ RT×N×D, we feed zl to a fully connected (FC) layer,
apply softmax activation, and transpose it:

W = SM(FC(zl))T . (17)

The FC layer is equivalent to a matrix WFC ∈ RD×1 and
thus W ∈ RT×1×N . Then we multiply zl by W :

ẑ = W × zl ∈ RT×1×D, (18)

squeeze the second dimension and get z ∈ RT×D. Ulti-
mately, we send the weighted sum ẑ to the classifier with
a minimal loss of information.

Experiment
We evaluate our models on static dataset (ImageNet)
and neuromorphic datasets (DVS-CIFAR10, DVS-Gesture).
PLIAF neuron model and PLIF neuron model are adopted
for static dataset and neuromorphic datasets, respectively.
Extensive ablation experiments reveal the cruciality of CT
module and the robustness of our method in terms of depth
and time steps. And then we compare our results with state-
of-the-art methods and some concurrent works to demon-
strate the superiority of our method. The details about ex-
perimental setup and training strategy are presented in Sup-
plementary Material B.

Model Variants We base Spikeformer configurations on
those used for CCT (Hassani et al. 2021), as summarized in
Table 1. We use brief notation to indicate model variants and
the CT stem: for instance, Spikeformer-7/5×2×3 means the
Spikeformer-7 variant using 2 × 3 = 6 CT modules with
kernel size 5 and every 2 CT modules have 1 downsample
module. Note that every downsample CT module will reduce
the number of tokens by 4, which will be further discussed
in the ablation studies of CT module. Details of the model
architecture can be found in Supplementary Material C.

Datasets We verify our method on three popular datasets,
which consist of both static dataset and neuromorphic
datasets. The first is DVS-Gesture (Amir et al. 2017), which
contains 1342 records in the training set and 288 examples
for testing captured by DVS cameras. The second is DVS-
CIFAR10 (Li et al. 2017), which is converted from the fa-
mous CIFAR10 dataset to its dynamic form by scanning
each sample in front of DVS cameras. The last one is Im-
ageNet (Deng et al. 2009), which is the most popular bench-
mark dataset used for large-scale image classification.

CT SN Accuracy(%)

% % 82.29
% " N/A
" % 95.83
" " 98.96

Table 2: Ablation studies on the Convolutional Tokenizer
(CT) module and spiking neurons (SN) on DVS-Gesture
dataset. N/A denotes that the model does not converge.

Dataset Tokens Accuracy(%)

DVS-CIFAR10

4096 N/A
1024 73.10
256 80.0
64 79.6
16 75.4
4 73.0

DVS-Gesture

4096 N/A
1024 82.64
256 90.97
64 88.89
16 87.50
4 85.42

Table 3: Ablation on the CT architecture. Note that increas-
ing the number of tokens to 4096 causes a GPU memory
overflow.

Ablation Studies
We perform extensive ablation experiments to verify the im-
portance of the CT module and draw a empirical rule to de-
sign the CT module. And then we conduct experiments with
various time steps and layers of transformer block to further
demonstrate the robustness of our method. Note that the ab-
lation studies are not aimed at pushing SOTA results, so we
adopt realtively simple training recipes.

CT Module When using the patchify stem, the ANN ver-
sion performs poorly (82.29%) on DVS-Gesture. There is a
large gap between the training accuracy (100%) and the test-
ing accuracy (82.29%). The model is severely overfitted be-
cause of the lack of inductive biases. And the training accu-
racy of the SNN version even does not converge because of
the substandard optimizability caused by the patchify stem
(Xiao et al. 2021). To deal with it, we propose CT module
to help stabilize the training period, alleviate “data hungry”
and make the model generalize better. In Table 2, we can ob-
serve that CT module greatly boosts the accuracy. With CT
module, we obtain over 10% improvement for ANN version
and successfully train the SNN version (i.e. Spikeformer),
which further enlarges the gap to more than 16%. These re-
sults illustrate the indispensability of the CT module.

Moreover, the design of the CT module is crucial for
the performance of Spikeformer. The more the downsample



Work Model Time Steps Neuron Accuracy(%)

(Shen, Zhao, and Zeng 2022) ResNet-18 10 PLIF 96.75
(Fang et al. 2021b) 5Conv, 2Fc 20 PLIF 97.57
(Fang et al. 2021a) 7B-Net 16 PLIF 97.92

(Yao et al. 2021) TA-SNN 60 LIF 95.48
LIAF 98.61

This work Spikeformer-7/5×1×3 16 PLIF 98.96

Table 4: Comparison with the SOTA methods on DVS-Gesture dataset.

blocks, the fewer the number of tokens. And the number of
tokens determines the granularity of the feature map, which
will influence the performance of transformer blocks (Doso-
vitskiy et al. 2020). From Table 3, we note that Spikeformer
performs best with around 200 tokens. Thus, we follow this
rule to design our models in the following experiments.

Depth And Time Steps In addition to the CT module,
we also conduct depth analysis on transformer blocks. We
experiment with three model variants on DVS-Gesture and
DVS-CIFAR10 datasets, as shown in Table 5. Table 5 shows
that the accuracy on both datasets consistently increases
with the deepening of transformer blocks. And even with
shallow architecture (i.e. Spikeformer-2), our model still
performs well.

Dataset Model Acc.(%)

DVS-Gesture
Spikeformer-7/5×1×3 98.96
Spikeformer-4/5×1×3 97.22
Spikeformer-2/5×1×3 96.88

DVS-CIFAR10
Spikeformer-7/3×2×3 80.0
Spikeformer-4/3×2×3 78.6
Spikeformer-2/3×2×3 77.9

Table 5: Ablation on the depth of the transformer blocks.

To further demonstrate the robustness of our method, we
evaluate our model with different time steps, as shown in Ta-
ble 6. On DVS-CIFAR10 dataset, our method does not suf-
fer from severe degradation even with extremely low time
steps. We attribute this phenomenon to the dataset itself.
DVS-CIFAR10 is collected by scanning static images with
DVS cameras. Hence, this dataset inherently does not con-
tain much temporal information. Enlarging the time steps is
equivalent to making the network vote more times. The per-
formance on DVS-CIFAR10 is more relevant to the ability
to capture spatial relationships. Rather, DVS-Gesture dataset
contains abundant temporal information because it is a col-
lection of moving gestures performed by different individ-
uals. Thus, its performance is more sensitive to the simula-
tion time steps. The performance on DVS-Gesture is more
relevant to the ability to capture temporal relationships. And
our method achieves superior results on both datasets with
various time steps, which demonstrates the strong spatio-
temporal modeling capabilities of our method.

DVS-Gesture DVS-CIFAR10

T Acc.(%) T Acc.(%)

16 98.96 4 78.8
12 97.22 3 77.9
8 95.14 2 77.7
4 93.75 1 77.6

Table 6: Ablation on time steps.

Comparison With SOTA Methods
Following the “200 tokens” rule, we adopt three different
architectures. Since the input resolution of DVS-Gesture
and DVS-CIFAR10 is 128 × 128, we downsample the in-
put frames for 3 times, which results in 256 tokens. And for
ImageNet with an input size of 224 × 224, we downsample
the input for 4 times, which results in 196 tokens. Because
DVS-Gesture dataset contains rich temporal information, it
needs more time steps to gain better performance and takes
up more memory. To balance the memory cost, we adopt
Spikeformer-7/5×1×3 for DVS-Gesture and Spikeformer-
7/3×2×3 for DVS-CIFAR10. But the original Spikeformer-
7 variant is too simple for ImageNet dataset, we adopt
Spikeformer-7L/3×2×4 for ImageNet and compare these
methods with SOTA methods and concurrent works.

DVS-Gesture In Table 4, we compare our method with
SOTA methods on DVS-Gesture. (Fang et al. 2021a) achieve
97.92% top-1 accuracy with 16 time steps, while we ob-
tain 98.96% with the same time steps. Compared to (Yao
et al. 2021), we achieve better result with much lower la-
tency (i.e. less than one-third of their simulation time steps)
and spike-based neurons (i.e. lower energy consumption).
Since the performance on DVS-Gesture tends to saturate, the
capacity of our method is not fully demonstrated. Thus we
further conduct experiments on the more challenging DVS-
CIFAR10 dataset.

DVS-CIFAR10 Our method achieves remarkable result
on DVS-CIFAR10, as shown in Table 7. With the same time
steps as (Fang et al. 2021a), our method outperforms their
results by a large margin (i.e. 16.6%) and even achieves
better performance than (Meng et al. 2022), who use five
times as many time steps as ours and ten times more pa-
rameters. Our method gains comparable results to (Li et al.
2022) and (Shen, Zhao, and Zeng 2022) with fewer time



Work Model Time Steps Neuron Parameters(M) Accuracy(%)

(Fang et al. 2021b) 4Conv, 2Fc 20 PLIF 17.4 74.8
(Fang et al. 2021a) Wide-7B-Net 4, 8, 16 PLIF 1.19 64.8, 70.2, 74.4

(Yao et al. 2021) TA-SNN 10 LIF 2.10 71.1
LIAF 2.10 72.0

(Li et al. 2021) ResNet-18 10 LIF 11.69 75.4
(Meng et al. 2022) VGG-11 20 LIF 132.86 77.3

(Shen, Zhao, and Zeng 2022) ResNet-18 10 PLIF 11.69 81.45
(Li et al. 2022) VGG-11 10 LIF 132.86 81.7

This work Spikeformer-7/3×2×3 4 PLIF 9.28 81.4

Table 7: Comparison with the SOTA methods on DVS-CIFAR10 dataset.

Method Work Model T Par.(M) Accuracy(%)

ANN
(He et al, 2015)

ResNet-50 - 25.56 77.15
ResNet-101 - 44.55 78.25
ResNet-152 - 60.20 78.57

(Beyer, Zhai, and Kolesnikov 2022) ViT-S/16* - 22.04 67.1
ViT-S/16† - 76.1

ANN-to-SNN

(Sengupta et al. 2019) VGG-16 2500 138.36 69.96
(Hu, Tang, and Pan 2018) ResNet-50 350 25.56 72.75

(Han, Srinivasan, and Roy 2020) VGG-16 4096 138.36 73.09

Directly Training

(Zheng et al. 2021) ResNet-34(large) 6 86.13 67.05
(Fang et al. 2021a) SEW ResNet-152 4 60.19 69.26

(Li et al. 2021) VGG-16 5 138.36 71.24
(Meng et al. 2022) PreAct-ResNet-18 50 11.69 67.74

This work Spikeformer-7L/3×2×4 4 38.75 78.31

Table 8: Comparison with the SOTA methods on ImageNet dataset.*The original version without additional data and strong
data augmentation. †The original version without additional data but adopts strong data augmentation.

steps and parameters. These comparisons strongly support
that our Spikeformer is equipped with distinguished spatio-
temporal representational ability that can fully utilize limited
spatio-temporal information to extract key information.

ImageNet To explore the potential of Spikeformer to be
a large-scale SNN architecture, we conduct experiments on
ImageNet dataset with PLIAF model, as shown in Table 8.
Our Spikeformer outperforms other SNNs trained by SG
method or conversion method by a large margin with low
latency and medium parameters. Moreover, we even outper-
form ViT-S/16 that is not pretrained with additional data,
which further demonstrates that our CT module do help al-
leviate “data hungry”. To our best knowledge, this is the
first time directly trained SNNs achieve comparable results
to ANNs on ImageNet with fewer parameters. Given lim-
ited time steps and parameters, our model manages to focus
on the most informative components of the input and pos-
sesses the capability to fully utilize parameters to learn ro-
bust representation. These results indicate that Spikeformer
is a promising architecture for training large-scale SNNs.

Conclusion
In this paper, we introduce spatio-temporal attention (STA)
into spiking neural network (SNN) and directly train a
Transformer-based SNN (i.e. Spikeformer). Replacing the
original patchify stem with CT module, we manage to alle-
viate “data hungry”, stabilize the training period and obtain a
high-performance low-latency SNN. Based on extensive ab-
lation studies, we demonstrate the cruciality of CT module
and the robustness of Spikeformer in terms of depth and time
steps. Furthermore, we also propose an empirical rule to de-
sign CT module (i.e. the “200 tokens” rule). This module can
be further developed into a delicately designed multi-stages
network (e.g. ResNet) in future work. But in this paper, we
adopt simple design as not to overwhelm the importance of
transformer blocks, which may be a suboptimal choice. Ulti-
mately, our Spikeformer gains competitive or state-of-the-art
results on both neuromorphic datasets and large-scale static
dataset with low latency, which demonstrates its superior
capabilities to capture spatio-temporal information and the
potential to be an alternative architecture to CNN for train-
ing large-scale SNNs. We believe this architecture will bring
new insight into training large-scale SNNs and promote the
development of SNNs.
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Supplementary Material
A Methods and Theoretical Analysis

Methods
For all experiments, we adopt the same surrogate gra-
dient function to approximate the gradients of the non-
differentiable activation function on the backpropagation
process. The function can be formulated as follows:

σ(x) =
1

π
arctan (

π

2
αx) +

1

2
, (19)
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Figure 6: Visualization of the surrogate function and the
original activation function.

where α is the slope parameter controlling how steep the
function is. This parameter can be further set as a learnable
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Figure 7: Comparison of the original block in ResNet and the block in CT module.

parameter, but this is out of the scope of this paper. We set
α = 2, Vreset = 0 and Vth = 1 for all neurons. We de-
tach S[t] in Eq. (2) in the backward computational graph to
improve performance (Zenke and Vogels 2021). The origi-
nal activation function and surrogate gradient function are
visualized in Fig. 6. Note that with the increase of the value
of α, the surrogate function becomes steeper. The activation
function works fine during the forward propagation, but the
surrogate function takes its place in the computational graph.
And thus, we manage to backpropagate the gradients of the
non-differentiable activation function.

We adopt mixed precision training (Micikevicius et al.
2018) to accelerate training and save memory, but it may
result in slightly lower accuracy. For ImageNet, we train our
model on multi-GPU and adopt sync-BN technique (Zhang
et al. 2018) to reduce the influence of small batch size. Ad-
ditionally, we adopt Droppath (Huang et al. 2016) regular-
ization with hyperparameter set to 0.1 for all experiments.

Theoretical Analysis
The comparison of the original block in ResNet (He et al.
2016) and the block in CT module is shown in Fig. 7. As
discussed by (Fang et al. 2021a), the original design does not
fit into SNN. Take the basic block without downsampling as
an example:

X l+1 = ReLU(F l(X l) +X l), (21)

X l+1 = SN(F l(X l) +X l), (22)
where X l and F l(·) denote the input and the residual map-
ping in the lth block. Eq. (21) and Eq. (22) are the ANN ver-
sion and SNN version respectively. Assuming that the blocks
are zero-initialized (i.e. all weights equal to zero), we have:

X l+1 = ReLU(X l), (23)

X l+1 = SN(X l). (24)

In Eq. (23), X l has been processed by the ReLU function
of the l − 1th block, and thus X l+1 = X l, which is identity
mapping. As for Eq. (24), due to the leaky property of most
spiking neurons, it is hard to implement identity mapping
unless we change the neural dynamics equation Eq. (1) into:

H[t] = V [t− 1] +X[t], (25)

and assign a small enough value to Vth, which enables the
neurons to output a spike as soon as they receive a spike.
But this compromise limits the applications of SNNs, so the
original design of ResNet is not suitable for SNNs. To deal
with it, (Fang et al. 2021a) propose SEW block to achieve
identity mapping. We adopt ADD as element-wise opera-
tion and obtain:

X l+1 = SN(F l(X l)) +X l. (26)

Spikes are propagating through these blocks. With zero-
initialized, it can easily implement identity mapping. Be-
cause the ReLU function will not shrink input, this architec-
ture does not fit into its ANN counterpart. But the output of
spiking neurons is 0/1, so every time there is a downsample
block, the input will be no greater than 2, which effectively
tackles this issue. Besides, we modify the shortcut of down-
sample block as stride-2 convolutional layer with kernel size
1 may lose information (He et al. 2019). So we use a 2 × 2
average pooling layer with a stride of 2 to downsample the
feature map and a stride-1 convolutional layer with kernel
size 1 to expand the dimension. The average pooling layer
integrates inputs and transfers them to the following layers.
It will not hinder the transfer of information and have a min-
imal impact on identity mapping. Further discussions and
experiments can be found in (Fang et al. 2021a).



Spikeformer-4/5×1×3 Spikeformer-7/5×1×3 Spikeformer-7/3×2×3 Spikeformer-7L/3×2×3

block1
(
5× 5, 32
5× 5, 32

)
× 1

(
5× 5, 64
5× 5, 64

)
× 1

(
3× 3, 64
3× 3, 64

)
× 2

(
3× 3, 64
3× 3, 64

)
× 2

block2
(
5× 5, 64
5× 5, 64

)
× 1

(
5× 5, 128
5× 5, 128

)
× 1

(
3× 3, 128
3× 3, 128

)
× 2

(
3× 3, 128
3× 3, 128

)
× 2

block3
(
5× 5, 128
5× 5, 128

)
× 1

(
5× 5, 256
5× 5, 256

)
× 1

(
3× 3, 256
3× 3, 256

)
× 2

(
3× 3, 256
3× 3, 256

)
× 2

block4
(
3× 3, 512
3× 3, 512

)
× 2

Table 9: Architectures of the CT module.

B Details of Experiments
DVS-Gesture
The input resolution of DVS-Gesture is 128 × 128. We use
the same AER data pre-processing method as (Fang et al.
2021b) and do not adopt any data augmentation for this
dataset. We train our model using Adam (Kingma and Ba
2015) with β1 = 0.9, β2 = 0.999, a batch size of 16, and
apply a weight decay of 0.00015. We warm up for 20 epochs
and train the model for a total of 150 epochs with a learning
rate of 0.001.

DVS-CIFAR10
The input resolution and the AER data pre-processing
method of DVS-CIFAR10 are the same as DVS-Gesture.
Because DVS-CIFAR10 is more challenging than DVS-
Gesture, we adopt additional data augmentation. First, we
horizontally flip the input frames with a possibility of 0.5.
Then we sample two values a and b from an integer uniform
distribution U(−5, 5), horizontally move the input frames
for a pixels, and vertically move the input frames for b pix-
els. When a/b is positive, the frames are moved upward-
s/rightwards, and vice versa. Finally, we randomly select
two values l and h from an integer uniform distribution
U(1, 16) as length and height, mask off an area of the frames
with the selected l, and w, and adopt label-smoothing regu-
larization (Szegedy et al. 2016) with the hyperparameter set
to 0.14. We train our model using Adam (Kingma and Ba
2015) with β1 = 0.9, β2 = 0.999, a batch size of 32, and
apply a weight decay of 0.0001. We warm up for 25 epochs
and train the model for a total of 600 epochs with an ini-
tial learning rate of 0.001. Every 192 epochs, we decay the
learning rate from lr to 0.1lr.

ImageNet
We first randomly crop the images to 224×224 and horizon-
tally flip the images with a possibility of 0.5. Auto-Augment
(Cubuk et al. 2019) and label-smoothing regularization with
the hyperparameter set to 0.1 are adopted for further aug-
mentation. We train our model using SGD with a momen-
tum of 0.9, a total batch size of 160 on 8 GPUs, and apply a
weight decay of 0.0001. We warm up for 5 epochs and train
the model for a total of 130 epochs with an initial learn-
ing rate of 0.01 and a cosine learning rate decay scheduler
(Loshchilov and Hutter 2017). Besides, we manually decay

the learning rate by 0.1 when the training accuracy tends to
plateau (at epoch {94, 115, 118} respectively).

C Model Architecture
The detailed architectures of CT module are shown in Ta-
ble 9. The first convolutional layer of each block will down-
sample the input with a stride of 2 and each block will dou-
ble the dimension until it reaches the dimension of trans-
former block.

D Reproducibility
Our implementations are based on PyTorch (Paszke et al.
2019) and SpikingJelly (Fang et al. 2020). Our code will be
publicly available, and for reproducibility, we use the identi-
cal seed in all experiments and will detail our configurations
in our code repository.


