

000 ENERGY-REGULARIZED SEQUENTIAL MODEL 001 EDITING ON HYPERSPHERES 002

003 **Anonymous authors**

004 Paper under double-blind review

005 ABSTRACT

006 Large language models (LLMs) require constant updates to remain aligned with
007 evolving real-world knowledge. Model editing offers a lightweight alternative to
008 retraining, but sequential editing that updates the LLM knowledge through mul-
009 tiple successive edits often destabilizes representations and induces catastrophic
010 forgetting. In this work, we seek to better understand and mitigate performance
011 degradation caused by sequential editing. We hypothesize that *hyperspherical*
012 *uniformity*, a property that maintains uniform distribution of neuron weights on a
013 hypersphere, helps the model remain stable, retain prior knowledge, while still ac-
014 commodate new updates. We use Hyperspherical Energy (HE) to quantify neuron
015 uniformity during editing, and examine its correlation with editing performance.
016 Empirical studies across widely used editing methods reveals a strong correlation
017 between HE dynamics and editing performance, with editing failures consistently
018 coinciding with uncontrolled HE fluctuations. We further theoretically prove that
019 HE dynamics impose a lower bound on the degradation of pretrained knowl-
020 edge, highlighting why HE stability is crucial for knowledge retention. Motivated
021 by these insights, we propose SPHERE (Sparse Projection for Hyperspherical
022 Energy-Regularized Editing), an HE-driven regularization strategy that stabilizes
023 neuron weight distributions, ultimately preserving prior knowledge while enabling
024 reliable sequential updates. Specifically, SPHERE identifies a sparse space com-
025 plementary to the principal hyperspherical directions of the pretrained weight
026 matrices and projects new knowledge onto it, attenuating perturbations on the prin-
027 cipal directions. Extensive experiments on LLaMA3 (8B) and Qwen2.5 (7B) show
028 that SPHERE outperforms the best baseline in editing capability by an average
029 of 16.41%, while most faithfully preserving general model performance, thereby
030 offering a principled path toward reliable large-scale knowledge editing.

031 1 INTRODUCTION

032 Large language models (LLMs) have demonstrated strong capabilities in knowledge storage, reasoning,
033 and generation (DeepSeek-AI et al., 2024; Meta AI, 2024; Yang et al., 2025; OpenAI, 2025).
034 However, the knowledge embedded in LLMs inevitably becomes outdated or incorrect, as real-world
035 facts continuously evolve (Ji et al., 2023; Huang et al., 2025). Retraining LLMs to incorporate such
036 updates is prohibitively expensive, motivating the development of *model editing* (also known as
037 *knowledge editing*) (Cao et al., 2021; Mitchell et al., 2022; Meng et al., 2023; Gu et al., 2024; Fang
038 et al., 2025). The most practical setting for model editing is *sequential editing*, where multiple
039 updates are applied over time. However, previous studies have shown that such interventions of-
040 ten suffer from significant performance degradation due to catastrophic forgetting (Gu et al., 2024;
041 Gupta et al., 2024). Consequently, reconciling the trade-off between preserving original pretrained
042 knowledge and integrating new editing knowledge remains an unresolved challenge.

043 In this work, we seek to better understand and mitigate the performance degradation caused by
044 sequential editing. We revisit model editing from the perspective of *hyperspherical uniformity* of
045 perturbed weights (Liu et al., 2021), motivated by the observation that sequential edits often disrupt
046 weight geometry, leading to degraded representations. Previous studies have shown that viewing
047 a weight matrix as a set of neurons on a hypersphere (as shown in Figure 1 (a)) and maintaining
048 their hyperspherical uniformity is crucial for stable training and effective generalization (Cogswell
049 et al., 2016; Xie et al., 2017a; Qiu et al., 2023). To investigate the applicability of these principles

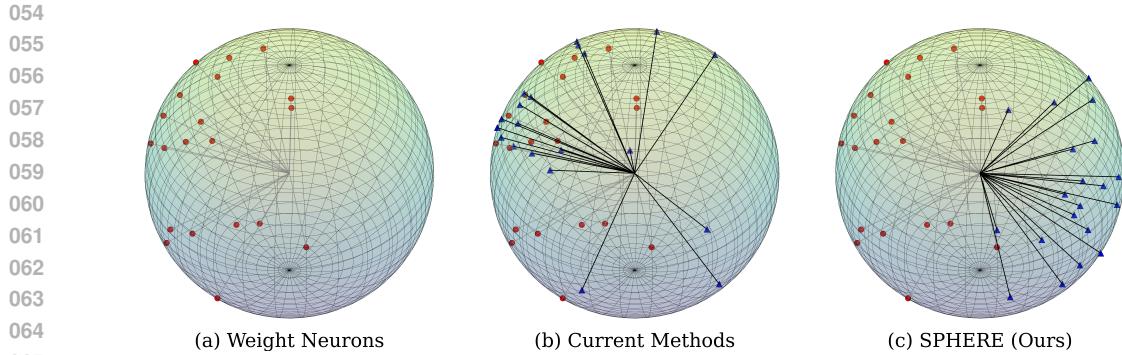


Figure 1: (a) A weight matrix is viewed as a set of neurons (red dots) on a hypersphere. (b) Current SOTA methods (Ma et al., 2025; Fang et al., 2025) introduce perturbations (blue triangles) that interfere with the principle hyperspherical directions of pre-edit weights. (c) SPHERE projects new knowledge onto a sparse space complementary to the principal hyperspherical directions.

to sequential editing, we adopt *hyperspherical energy (HE)* (Liu et al., 2018; Qiu et al., 2023) as a measure to quantify weight uniformity throughout sequential editing. HE calculates the dispersion of neuron weight vectors on a hypersphere, where lower energy corresponds to a more balanced distribution of neurons. By tracking HE dynamics throughout sequential editing, we can better understand how edits affect weight uniformity, identify early signs of destabilization, and even develop HE-driven regularization strategies to stabilize the editing process.

To reveal the mechanisms underlying successful editing strategies from the perspective of hyperspherical uniformity, we first empirically analyze how HE evolves throughout sequential editing and examine how these dynamics relate to editing performance across six widely used methods. Experimental results reveal a strong correlation between hyperspherical uniformity and editing performance, with editing failures consistently coinciding with its collapse. Meanwhile, more advanced editing methods have proven more effective at preserving hyperspherical uniformity. To complement these empirical findings, we further provide a theoretical analysis verifying that variations in HE establish a lower bound on the interference with the original pretrained knowledge. This result clarifies that state-of-the-art (SOTA) editing methods implicitly regulate hyperspherical uniformity and the lower bound on the interference, providing a principled explanation for their enhanced robustness.

Motivated by these empirical and theoretical findings, we propose SPHERE (Sparse Projection for Hyperspherical Energy-Regularized Editing), an HE-driven regularization strategy that stabilizes neuron weight distributions, ultimately preserving prior knowledge while enabling reliable sequential updates. The key insight is that, as shown in Figure 1 (b), current methods often introduce perturbations that interfere with the principal hyperspherical directions of the pretrained weight matrices, leading to instability, loss of uniformity, and eventual degradation of model performance. To counteract these side effects, as shown in Figure 1 (c), SPHERE identifies a sparse space complementary to the principal hyperspherical directions of the pretrained weight matrices and projects new knowledge onto it, attenuating perturbation components aligned with those principal directions. By doing so, SPHERE effectively preserves the hyperspherical uniformity and substantially extends the number of effective sequential edits.

To validate the effectiveness of our method, we evaluated SPHERE on **two LLMs**, including LLaMA3 (8B) (AI@Meta, 2024) and Qwen2.5 (7B) (Team, 2024), on **two editing datasets**, including CounterFact (Meng et al., 2022) and ZsRE (Levy et al., 2017). **Four downstream tasks** including reasoning (Cobbe et al., 2021), natural language inference (Dagan et al., 2005), open-domain QA (Kwiatkowski et al., 2019), and closed-domain QA (Clark et al., 2019) are employed to demonstrate the impact of editing on the general abilities of LLMs. Experimental results show that SPHERE sustains editing capacity under large-scale editing settings, outperforming the best baseline (Fang et al., 2025) by **16.41%** on average. Beyond editing capacity, it more effectively preserves the hyperspherical uniformity and the general abilities of edited models than all baselines. Furthermore, as a plug-and-play enhancement, SPHERE improves the editing performance of mainstream methods (Meng et al., 2023; Gu et al., 2024; Ma et al., 2025) by **38.71%** on average, offering a principled path toward reliable and scalable editing. To facilitate others in reproducing our results, we will publish all source code later.

108

2 PRELIMINARIES

109

2.1 MODEL EDITING

110 Sequential model editing aims to update the knowledge stored in LLMs through multiple successive
 111 edits. Each edit modifies the model parameter $\mathbf{W} \in \mathbb{R}^{d_1 \times d_0}$ by adding a perturbation $\Delta \in \mathbb{R}^{d_1 \times d_0}$
 112 in a locate-then-edit paradigm (Meng et al., 2022), where d_0 and d_1 represent the dimensions of
 113 the intermediate and output layers of the feed-forward network (FFN), respectively. Specifically,
 114 suppose each edit updates u pieces of knowledge in the form of (subject s , relation r , object o), e.g.,
 115 ($s = \text{United States}$, $r = \text{President of}$, $o = \text{Donald Trump}$). The perturbed parameter is expected to
 116 associate u new *key-value* (k - v) pairs, where k and v encode (s, r) and (o) of the new knowledge,
 117 respectively. We can stack these keys and values into matrices as follows:

$$118 \mathbf{K}_1 = [\mathbf{k}_1 | \mathbf{k}_2 | \dots | \mathbf{k}_u] \in \mathbb{R}^{d_0 \times u}, \quad \mathbf{V}_1 = [\mathbf{v}_1 | \mathbf{v}_2 | \dots | \mathbf{v}_u] \in \mathbb{R}^{d_1 \times u}, \quad (1)$$

119 where the subscripts of \mathbf{k} and \mathbf{v} represent the index of the to-be-updated knowledge. Therefore, the
 120 editing objective can be expressed as:

$$121 \Delta \mathbf{W} = \arg \min_{\Delta \hat{\mathbf{W}}} \|(\mathbf{W} + \Delta \hat{\mathbf{W}})\mathbf{K}_1 - \mathbf{V}_1\|^2, \quad (2)$$

122 where $\|\cdot\|^2$ denotes the sum of the squared elements in the matrix.

123 Additionally, current methods typically incorporate an error term to preserve the original knowledge.
 124 Let \mathbf{K}_0 and \mathbf{V}_0 represent the matrices formed by stacking the \mathbf{k} and \mathbf{v} corresponding to the original
 125 pretrained knowledge. Eqn. 2 is regularized by involving the error term as follows:

$$126 \Delta \mathbf{W} = \arg \min_{\Delta \hat{\mathbf{W}}} \left(\|(\mathbf{W} + \Delta \hat{\mathbf{W}})\mathbf{K}_1 - \mathbf{V}_1\|^2 + \|(\mathbf{W} + \Delta \hat{\mathbf{W}})\mathbf{K}_0 - \mathbf{V}_0\|^2 \right). \quad (3)$$

127 Since \mathbf{K}_0 and \mathbf{V}_0 encode the original pretrained knowledge, we have $\mathbf{W}\mathbf{K}_0 = \mathbf{V}_0$ (cf. Eqn. 1). By
 128 applying the normal equation, if the closed-form solution of Eqn. 3 exists, it can be written as:

$$129 \Delta \mathbf{W} = (\mathbf{V}_1 - \mathbf{W}\mathbf{K}_1)\mathbf{K}_T^\top (\mathbf{K}_0\mathbf{K}_0^\top + \mathbf{K}_1\mathbf{K}_1^\top)^{-1}. \quad (4)$$

130 Since the full scope of an LLM’s knowledge is generally inaccessible, \mathbf{K}_0 is difficult to obtain
 131 directly but can be approximated from abundant text input. See Appendix B for more details.

132

2.2 HYPERSPHERICAL ENERGY

133 Hyperspherical Energy (HE) serves as a quantitative metric for measuring *hyperspherical uniformity*.
 134 Given a group of neurons, HE characterizes their uniformity on a hypersphere by defining a
 135 generic potential energy based on their pairwise relationship. Lower energy represents that these
 136 neurons are more diverse and uniformly distributed, while higher energy reflects redundancy. Given
 137 a weight matrix $\mathbf{W} \in \mathbb{R}^{N \times (d+1)}$ represented as a set of N neurons (i.e., kernels), where each row
 138 $\mathbf{w}_i \in \mathbb{R}^{d+1}$ corresponds to a neuron, its HE is defined as:

$$139 \mathbf{E}_{s,d}(\hat{\mathbf{w}}_i |_{i=1}^N) = \sum_{i=1}^N \sum_{j=1, j \neq i}^N f_s(\|\hat{\mathbf{w}}_i - \hat{\mathbf{w}}_j\|) = \begin{cases} \sum_{i \neq j} \|\hat{\mathbf{w}}_i - \hat{\mathbf{w}}_j\|^{-s}, & s > 0 \\ \sum_{i \neq j} \log(\|\hat{\mathbf{w}}_i - \hat{\mathbf{w}}_j\|^{-1}), & s = 0 \end{cases} \quad (5)$$

140 where $\|\cdot\|$ denotes Euclidean distance, $f_s(\cdot)$ is a decreasing real-valued function, and $\hat{\mathbf{w}}_i = \frac{\mathbf{w}_i}{\|\mathbf{w}_i\|}$
 141 is the i -th neuron weight projected onto the unit hypersphere $\mathbb{S}^d = \{\mathbf{w} \in \mathbb{R}^{d+1} \mid \|\mathbf{w}\| = 1\}$. We
 142 also denote $\hat{\mathbf{W}}_N = \{\hat{\mathbf{w}}_1, \dots, \hat{\mathbf{w}}_N \in \mathbb{S}^d\}$, and $E_s = \mathbf{E}_{s,d}(\hat{\mathbf{w}}_i |_{i=1}^N)$ for short. There are plenty of
 143 choices for $f_s(\cdot)$, but in this paper we use $f_s(z) = z^{-s}$, $s > 0$, known as Riesz s -kernels. Since
 144 each $\hat{\mathbf{w}}_i$ lies on the unit hypersphere, the squared Euclidean distance between two neurons can be
 145 equivalently expressed in angular form as $\|\hat{\mathbf{w}}_i - \hat{\mathbf{w}}_j\|^2 = 2(1 - \cos \theta_{ij})$, where θ_{ij} is the angle
 146 between $\hat{\mathbf{w}}_i$ and $\hat{\mathbf{w}}_j$. Substituting this into Eqn. 5, we have:

$$147 \mathbf{E}_{s,d}(\hat{\mathbf{w}}_i |_{i=1}^N) = \sum_{i=1}^N \sum_{j=1, j \neq i}^N (2(1 - \cos \theta_{ij}))^{-s/2}. \quad (6)$$

148 This angular formulation highlights the geometric interpretation of HE: a higher value corresponds
 149 to neuron clustering with low angular diversity, while a lower value reflects a more uniform angular
 150 distribution across the hypersphere.

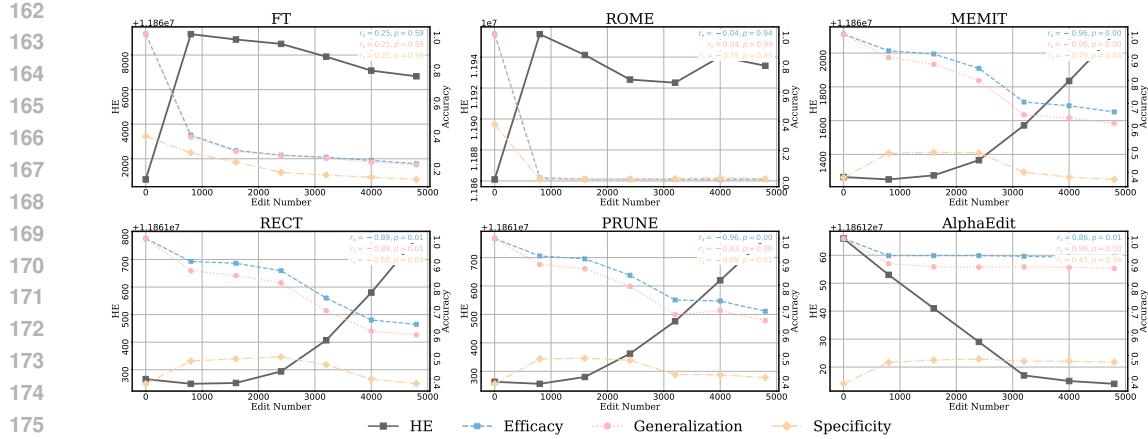


Figure 2: Trends of HE and editing performance throughout sequential editing. The Spearman correlation scores between HE and each editing metric displayed at the end of each curve.

3 CORRELATION BETWEEN HYPERSPHERICAL UNIFORMITY AND EDITING

HE and model editing are intrinsically connected through their shared focus on the geometry of high-dimensional parameter spaces. An optimal HE corresponds to more uniformly distributed representations on the unit hypersphere, typically reflecting well-conditioned parameters that enable reliable and stable sequential editing. We first present empirical evidence revealing a strong correlation between HE and editing stability (Section 3.1), followed by a formal theoretical analysis establishing the mathematical link between the two (Section 3.2).

3.1 EMPIRICAL ANALYSIS OF THE HE–EDITING STABILITY CORRELATION

To understand the failure modes of large-scale sequential editing, we examined how HE evolves throughout the editing process. We performed 5,000 sequential edits on ZsRE dataset (Levy et al., 2017) with a batch size of 100 on LLaMA3-8B (AI@Meta, 2024) using six widely used editing methods, including Fine-Tuning (FT) (Zhu et al., 2020), ROME (Meng et al., 2022), MEMIT (Meng et al., 2023), RECT (Gu et al., 2024), PRUNE (Ma et al., 2025), and AlphaEdit (Fang et al., 2025). After each edit, we computed the HE of the perturbed weights and evaluated the editing performance using well-established metrics, including **Efficacy** (edit success), **Generalization** (paraphrase success), and **Specificity** (neighborhood success). Readers can refer to Appendix D.2 for detailed definition of these metrics. We summarize our main observations as follows:

Observation 1: Collapse in sequential editing is closely tied to sharp fluctuations in HE. Figure 2 reveals a strong correlation between HE dynamics and editing performance. The Spearman correlation scores (Spearman, 1904) between HE and each editing metric, displayed at the end of each curve, consistently indicate a strong statistical dependence before model collapse¹. Most methods collapse well before 3,000 edits, whereas AlphaEdit demonstrates the strongest long-term editing capacity with the best preservation of hyperspherical uniformity. A closer examination of the metrics shows a consistent pattern in which each drop in performance is consistently accompanied by rapid shifts in HE, underscoring its central role in maintaining sequential editing stability.

Observation 2: Advanced editing methods suppress HE fluctuations effectively. Figure 3 illustrates the correlation between changes in HE (Δ HE) and editing performance (Δ Acc.), where each point denotes the difference between two consecutive batch edits: points near the origin indicate greater stability with minimal variation in both HE and accuracy, while points farther away reflect larger fluctuations and less stable editing. Most advanced methods exhibit tightly clustered distributions near the origin, indicating stable editing dynamics and minimal weight distortion. Furthermore, we fit a linear regression over all points across metrics, which demonstrates a statistically

¹Since FT and ROME rapidly collapse at the very beginning, we instead emphasize their correlations by examining the curve fluctuations.

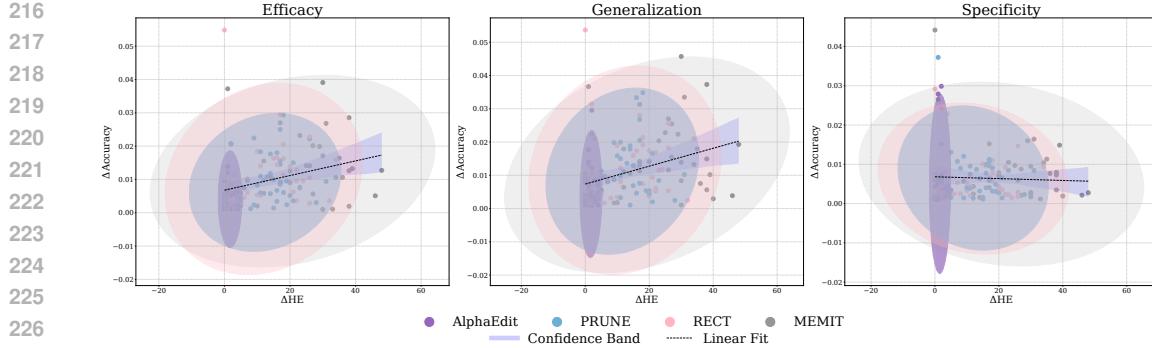


Figure 3: Correlation between changes in HE and editing performance across consecutive edited weights. Each point corresponds to a ΔHE – ΔAcc . pair for one method over five thousand sequential edits. Confidence ellipses and regression lines illustrate overall trends.

significant positive correlation between ΔHE and ΔAcc . in terms of Efficacy and Generalization. This suggests a strong positive correlation between editing stability and HE stability, implying that the effectiveness of SOTA approaches may stem from their ability to suppress HE fluctuations.

3.2 THEORETICAL ANALYSIS OF HE’S IMPACT ON EDITING STABILITY

We further turn to a theoretical analysis of how HE impacts editing stability, aiming to provide a principled explanation for the patterns observed in practice. Given the editing objective in Eqn. 2, it inevitably perturbs the original pretrained knowledge in LLMs, which can be expressed as:

$$\Delta\mathbf{V} = (\mathbf{W} + \Delta\mathbf{W})\mathbf{K}_1 - \mathbf{V}_1 = \Delta\mathbf{W}\mathbf{K}_1, \quad (7)$$

where $\mathbf{W}\mathbf{K}_1 = \mathbf{V}_1$ (cf. Eqn. 1), as \mathbf{K}_1 and \mathbf{V}_1 represent the new editing knowledge. Additionally, from the HE definition in Eqn. 5, the change in HE after editing can be written as:

$$\Delta\mathbf{HE} = \sum_{i < j} (\|\mathbf{w}_i - \mathbf{w}_j\|^{-2} - \|\mathbf{w}_i + \Delta\mathbf{w}_i - \mathbf{w}_j - \Delta\mathbf{w}_j\|^{-2}), \quad (8)$$

where $\Delta\mathbf{w}_i$ denotes the perturbation to \mathbf{w}_i . This term $\Delta\mathbf{HE}$ measures how angular separation among weight vectors changes after editing.

Our theoretical analysis, detailed in Appendix C.1, culminates in a key result that formally links the geometric change in weight space $\Delta\mathbf{HE}$ to the output perturbation $\Delta\mathbf{V}$, derived from Proposition 2.

Theorem 1 (Lower Bound on Output Perturbation). *Under the assumptions of orthonormal inputs and small perturbations, the output perturbation $\Delta\mathbf{V}$ is lower-bounded by squared change in HE:*

$$|\Delta\mathbf{V}| \geq \left(\frac{\Delta\mathbf{HE}}{K} \right)^2, \quad K = 4 \left(\sum_{k=1}^p \left(\sum_{j \neq k} \|\mathbf{w}_k - \mathbf{w}_j\|^{-3} \right)^2 \right)^{1/2}. \quad (9)$$

where K is a constant dependent on the original weight matrix geometry.

This theorem reveals a key insight: the change in HE ($|\Delta\mathbf{HE}|$) inevitably induces a substantial output perturbation ($\Delta\mathbf{V}$), meaning that edits that significantly distort the geometric arrangement of neurons are bound to corrupt pretrained knowledge. This result provides a solid theoretical foundation for our empirical findings and underscores HE as a fundamental indicator of editing stability.

4 SPHERE

On account of the above findings, we argue that ideal sequential editing should preserve the hyperspherical uniformity of edited weights. Accordingly, we introduce SPHERE, an HE-driven regularization strategy designed to mitigate HE fluctuations while integrating new knowledge.

SPHERE first estimates the principal hyperspherical directions of pretrained knowledge and then defines their orthogonal complement as the sparse space. Projecting editing perturbations onto this space enables knowledge injection while minimizing interference with original knowledge.

270 **Principal Space Estimation** To identify the principal hyperspherical directions in \mathbf{W} , we seek a
 271 unit vector $v \in \mathbb{R}^d$ that maximizes the variance of all neurons in \mathbf{W} when projected onto v as:
 272

$$273 \quad \mathbf{v} = \arg \max_{\|\hat{\mathbf{v}}\|=1} \left(\frac{1}{n} \|\mathbf{W} \hat{\mathbf{v}}\|^2 \right) = \arg \max_{\|\hat{\mathbf{v}}\|=1} \left(\frac{1}{n} \hat{\mathbf{v}}^\top (\mathbf{W}^\top \mathbf{W}) \hat{\mathbf{v}} \right). \quad (10)$$

275 According to the Rayleigh quotient theory (Horn & Johnson, 1985; Parlett, 1998), the maximum of
 276 $\frac{1}{n} \hat{\mathbf{v}}^\top (\mathbf{W}^\top \mathbf{W}) \hat{\mathbf{v}}$ corresponds to the largest eigenvalue λ^* of $\frac{1}{n} \mathbf{W}^\top \mathbf{W}$, with the associated eigenvector
 277 $\hat{\mathbf{v}}^*$ as the principal direction. Extending this to the top- r principal directions enables us to capture a
 278 richer low-dimensional space of the weight geometry, so we collect the eigenvectors associated with
 279 the r largest eigenvalues to form the principal space matrix, which can be expressed as:
 280

$$280 \quad \mathbf{U} = [\mathbf{v}_{d-r+1}, \dots, \mathbf{v}_d] \in \mathbb{R}^{d \times r}, \quad (11)$$

281 where r satisfies $\sum_{i=d-r+1}^d \lambda_i \geq \eta \sum_{i=1}^d \lambda_i$, with the cumulative ratio η (see Appendix D.4.1).
 282

283 **Sparse Space Definition** This space is defined as the orthogonal complement of \mathbf{U} in Eqn. 11 as:
 284

$$285 \quad \mathbf{P}_\perp = \mathbf{I} - \alpha \mathbf{U} \mathbf{U}^\top \in \mathbb{R}^{d \times d}, \quad (12)$$

286 where α controls the suppression strength of the components along the subspace spanned by \mathbf{U} (see
 287 Appendix D.4.1). Specifically, $\alpha = 1$ corresponds to a hard orthogonal projection that completely
 288 removes the contribution of \mathbf{U} , while $0 < \alpha < 1$ yields a soft projection that only attenuates it.
 289

290 **Sparse Space Projection** Given a perturbation matrix $\Delta \mathbf{W}$ produced by any editing method, we
 291 project it onto the sparse space using \mathbf{P}_\perp , and then combine it with the original weight matrix as:
 292

$$293 \quad \hat{\mathbf{W}} = \mathbf{W} + \Delta \mathbf{W}_{\text{proj}} = \mathbf{W} + \Delta \mathbf{W} \mathbf{P}_\perp. \quad (13)$$

295 In summary, SPHERE suppresses perturbations aligned with the principal weight directions to pre-
 296 serve hyperspherical uniformity, enabling more stable, longer-lasting performance without compro-
 297 mising general abilities. For theoretical completeness, we also provide a mathematical proof that
 298 SPHERE suppresses the $\Delta \mathbf{H} \mathbf{E}$, ensuring bounded variations in the hidden representations $\Delta \mathbf{V}$
 299 and justifying its effectiveness during editing (see Appendix C.2). More details in Appendix D.5

300 5 EXPERIMENTS

303 In this section, we aim to address the following research questions:

- 304 • **RQ1:** How does SPHERE perform on sequential editing tasks compared to baseline methods?
- 305 • **RQ2:** Can SPHERE effectively preserve the hyperspherical uniformity of edited weights?
- 306 • **RQ3:** How does SPHERE-edited LLMs perform on general ability evaluations?
- 307 • **RQ4:** Can baseline methods be significantly improved with plug-and-play SPHERE?

309 5.1 EXPERIMENTAL SETUP

310 **Base LLMs and Baseline Methods.** Experiments were conducted on LLaMA3 (8B) (AI@Meta,
 311 2024) and Qwen2.5 (7B) (Team, 2024). We compared our approach against a range of representative
 312 sequential editing baselines, including Fine-Tuning (FT) (Zhu et al., 2020), MEMIT (Meng et al.,
 313 2023), RECT (Gu et al., 2024), PRUNE (Ma et al., 2025), and AlphaEdit (Fang et al., 2025).

314 **Datasets and Evaluation Metrics.** Two widely used benchmarks were adopted: Counter-
 315 Fact (Meng et al., 2022) and ZsRE (Levy et al., 2017). Following prior work (Meng et al., 2022),
 316 five evaluation metrics were reported: **Efficacy** (edit success), **Generalization** (paraphrase suc-
 317 cess), **Specificity** (neighborhood success), **Fluency** (generation entropy), and **Consistency** (refer-
 318 ence score). For rigorous evaluation, we adopt the **average top-1 accuracy** as the metric for both
 319 datasets. Readers can refer to Appendix D for more detailed experimental setup.

321 5.2 PERFORMANCE OF SEQUENTIAL MODEL EDITING (RQ1)

323 Table 1 presents the results under a commonly used sequential editing setup, using 15,000 samples
 324 with 100 edits each for LLaMA3 (8B), while Qwen2.5 (7B) is restricted to 5,000 edits as further

324 Table 1: Comparison of SPHERE with existing methods on sequential editing. *Eff.*, *Gen.*, *Spe.*, *Flu.*
 325 and *Consis.* denote Efficacy, Generalization, Specificity, Fluency and Consistency, respectively. The
 326 best results are highlighted in bold, while the second-best results are underlined.

328 Method	329 Model	330 ZSRE			331 Counterfact				
		332 Eff.↑	333 Gen.↑	334 Spe.↑	335 Eff.↑	336 Gen.↑	337 Spe.↑	338 Flu.↑	
330 Pre-edited	331 FT 332 MEMIT 333 PRUNE 334 RECT 335 AlphaEdit 336 SPHERE	35.42 \pm 0.30	34.17 \pm 0.30	38.02 \pm 0.27	0.49 \pm 0.07	0.44 \pm 0.05	18.09 \pm 0.24	634.84 \pm 0.12	22.06 \pm 0.08
		15.27 \pm 0.21	14.78 \pm 0.21	5.06 \pm 0.10	<u>8.40\pm0.28</u>	<u>2.54\pm0.13</u>	0.03 \pm 0.01	409.80 \pm 0.67	19.35 \pm 0.13
		0.00 \pm 0.00	0.00 \pm 0.00	0.06 \pm 0.01	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	318.19 \pm 0.24	4.19 \pm 0.04
		10.35 \pm 0.18	10.08 \pm 0.18	9.55 \pm 0.15	1.19 \pm 0.11	0.34 \pm 0.04	<u>0.62\pm0.03</u>	618.72\pm0.08	49.24\pm0.13
		0.01 \pm 0.00	0.01 \pm 0.01	0.04 \pm 0.01	0.57 \pm 0.08	0.29 \pm 0.04	0.10 \pm 0.01	438.83 \pm 0.18	9.40 \pm 0.05
		86.64 \pm 0.23	<u>81.28\pm0.28</u>	<u>28.78\pm0.22</u>	4.37 \pm 0.20	1.71 \pm 0.10	0.57 \pm 0.03	482.36 \pm 0.44	4.71 \pm 0.04
337 Pre-edited	338 FT 339 MEMIT 340 PRUNE 341 RECT 342 AlphaEdit 343 SPHERE	90.01\pm0.21	84.67\pm0.26	45.40\pm0.29	52.89\pm0.50	32.07\pm0.39	5.01\pm0.10	551.51 \pm 0.53	30.89 \pm 0.13
		35.29 \pm 0.29	34.10 \pm 0.28	38.44 \pm 0.27	0.42 \pm 0.06	0.46 \pm 0.05	15.06 \pm 0.20	624.45 \pm 0.11	23.02 \pm 0.69
		4.97 \pm 0.14	4.58 \pm 0.13	4.01 \pm 0.11	15.44 \pm 0.36	4.63 \pm 0.17	1.46 \pm 0.05	214.26 \pm 0.09	3.15 \pm 0.02
		0.13 \pm 0.02	0.12 \pm 0.01	0.04 \pm 0.01	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	370.84 \pm 0.30	3.59 \pm 0.03
		<u>47.93\pm0.36</u>	<u>45.50\pm0.35</u>	39.20\pm0.28	14.30 \pm 0.35	11.27 \pm 0.26	<u>6.75\pm0.12</u>	620.74\pm0.10	29.50\pm0.08
		0.73 \pm 0.04	0.75 \pm 0.04	0.05 \pm 0.07	0.64 \pm 0.08	0.19 \pm 0.03	0.09 \pm 0.01	368.46 \pm 0.27	1.35 \pm 0.01
		42.01 \pm 0.40	39.99 \pm 0.39	13.87 \pm 0.20	<u>43.92\pm0.50</u>	<u>24.37\pm0.36</u>	2.32 \pm 0.06	479.83 \pm 0.77	4.67 \pm 0.07
		70.04\pm0.36	65.43\pm0.37	<u>27.35\pm0.26</u>	60.76\pm0.49	29.24\pm0.37	<u>3.83\pm0.08</u>	612.67 \pm 0.22	14.74 \pm 0.07

344 updates induce severe model collapse, where all editing methods underperformed compared to the
 345 pre-edit baseline. SPHERE is plug-and-play, and AlphaEdit (Fang et al., 2025) is adopted as the
 346 default base method in Table 1 to better illustrate its capability. Additional experiments with other
 347 base methods are presented in Section 5.5. Overall, SPHERE consistently outperforms baseline
 348 methods across nearly all metrics and base models. In particular, it achieves substantial gains in both
 349 **Efficacy** and **Generalization**, with average improvements of **24.19%** and **16.02%**, respectively,
 350 over the best baseline. It also maintains notable performance in Fluency and Consistency, indicating
 351 its ability to preserve factual accuracy while generating coherent and natural outputs.

353 5.3 ANALYSIS OF EDITED WEIGHTS (RQ2)

355 This analysis evaluates whether SPHERE can effectively maintain the hyperspherical uniformity
 356 of edited weights. We extracted the edited weights from LLaMA3 after 15,000 sequential edits on
 357 CounterFact. As shown in Figure 4, we computed the cosine similarity between each pair of weight
 358 neurons and used heatmap to visualize the hyperspherical uniformity before and after editing. In
 359 Figure 5, t-SNE (van der Maaten & Hinton, 2008) was used to visualize the normalized neuron
 360 distribution in W before and after editing. It can be seen that SPHERE **effectively preserves hyperspherical**
 361 **uniformity after editing, as the cosine similarity among weight neurons remains close to the original**
 362 **distribution**, thereby avoiding directional collapse. Moreover, the pre- and post-edited weights exhibit
 363 nearly overlapping distributions, indicating that SPHERE prevents significant shifts in weights and
 364 maintains consistency. In contrast, baseline methods such as MEMIT and AlphaEdit induce clear
 365 angular concentration in neuron directions, causing neurons to cluster in limited angular regions and
 366 significantly reducing hyperspherical directional uniformity. More results on Qwen2.5 are in Appendix E.1.

368 5.4 EVALUATION OF GENERAL ABILITIES (RQ3)

370 To extensively evaluate whether post-edited LLMs can preserve the general abilities, four represen-
 371 tative tasks were adopted following Gu et al. (2024), including **Reasoning** on the GSM8K (Cobbe
 372 et al., 2021), measured by solve rate. **Natural language inference (NLI)** on the RTE (Dagan et al.,
 373 2005), measured by accuracy of two-way classification, **Open-domain QA** on the Natural Ques-
 374 tions (Kwiatkowski et al., 2019), measured by exact match (EM) with the reference answer after
 375 minor normalization (Chen et al., 2017; Lee et al., 2019). **Closed-domain QA** on BoolQ (Clark
 376 et al., 2019), also measured by EM. Figure 6 depicts how performance varies with the number of
 377 edited samples across four tasks. We report general performance every 1k edits up to 5k, and ev-
 378 ery 5k edits thereafter (up to 15k), providing a comprehensive view of the degradation trend. The

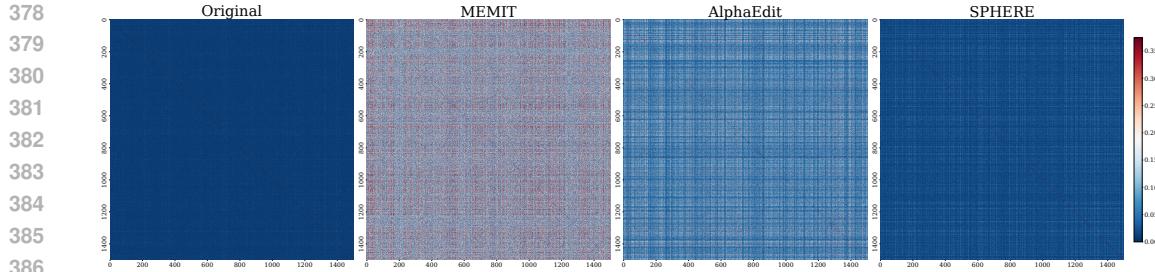


Figure 4: Cosine similarity between neurons in the updated weight matrix after 15,000 edits. Darker colors indicate lower similarity, reflecting better hyperspherical and orthogonal uniformity. SPHERE effectively preserves the weight structure, demonstrating the most stable hyperspherical uniformity.

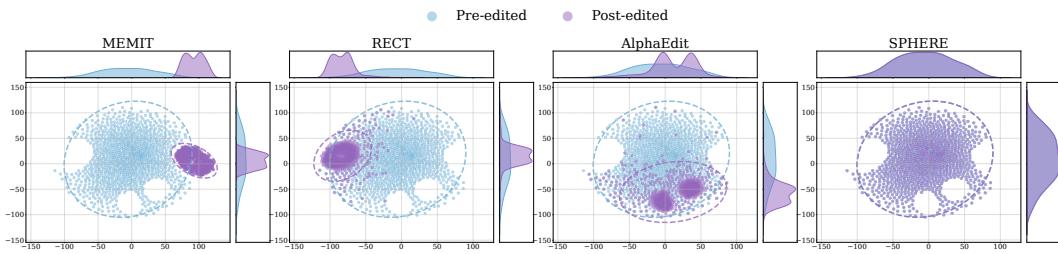


Figure 5: The t-SNE distribution of weight neurons of pre-edited and post-edited LLM after 15,000 edits using dimensionality reduction. The top and right curve graphs display the marginal distributions for two reduced dimensions, where SPHERE consistently exhibits minimal shift.

results show that SPHERE effectively preserves the general abilities of post-edited LLMs even under extensive editing, maintaining the original model performance across all metrics after 15k edits. In contrast, LLMs edited with baseline methods rapidly lose their general abilities with all metrics approaching zero. These findings underscore the critical role of hyperspherical uniformity in safeguarding the broad abilities learned from the underlying corpus.

5.5 PERFORMANCE IMPROVEMENTS OF BASELINE METHODS (RQ4)

We investigated whether the sparse space projection strategy of SPHERE can serve as a general enhancement to existing methods. A single line of code from SPHERE regarding the projection was inserted into the baselines with minimal modification, and we evaluated their performance before and after integration (as detailed in Appendix D.5). Results of 3,000 sequential edits on LLaMA3 (8B) are reported in Figure 7. **SPHERE is integrated seamlessly with diverse editing methods and significantly boosts their performance.** On average, the optimized baselines achieve relative improvements of **49.05%, 42.64%, and 24.44%** in **Efficacy, Generalization, and Specificity**, respectively, underscoring the strong potential and broad applicability of the proposed sparse space projection as a plug-and-play enhancement for model editing. The baselines enhanced with the projection also demonstrate significantly better robustness in general abilities (see Appendix E.2).

6 RELATED WORK

Model Editing Methods. From the perspective of whether model parameters are modified, existing approaches can be broadly categorized into *parameter-modifying* (Mitchell et al., 2022; Meng et al., 2023; Ma et al., 2025; Fang et al., 2025), which directly adjust a small subset of model parameters, and *parameter-preserving* (Zheng et al., 2023; Yu et al., 2024; Hartvigsen et al., 2023), which integrate auxiliary modules without altering the original weights. In this work, we focus on *parameter-modifying methods* which typically employs meta-learning or locating-then-editing strategies (Zhang et al., 2024b). Representative works of meta-learning include KE (Cao et al., 2021) and MEND (Mitchell et al., 2022), which leverage hypernetworks to generate parameter updates. Locate-then-edit methods, such as ROME (Meng et al., 2022) and MEMIT (Meng et al.,

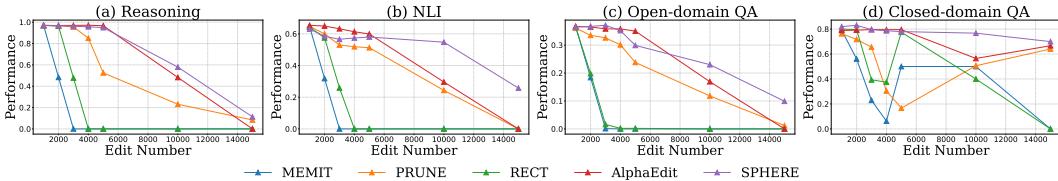


Figure 6: General ability testing of post-edited LLaMA3 (8B) on four tasks.

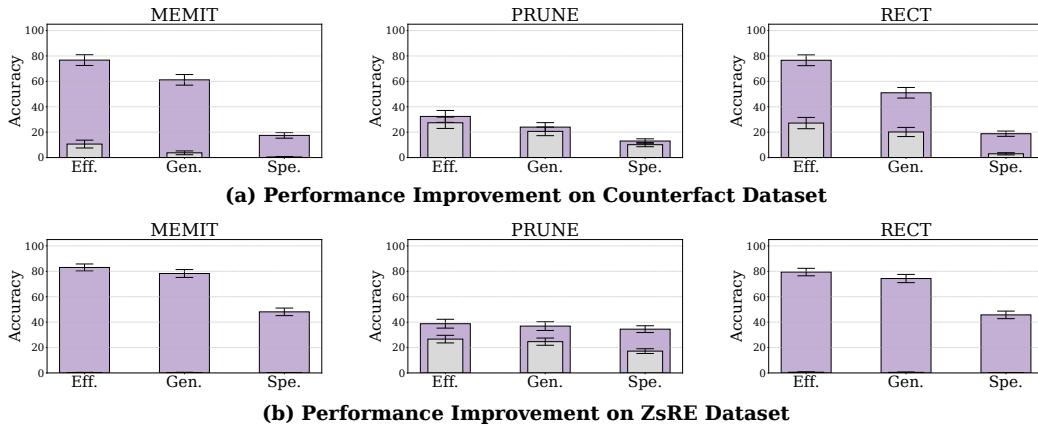


Figure 7: Performance improvements of baseline editing methods after adding a single line of code from SPHERE (i.e., sparse space projection). Gray bars denote the original baseline performance, while purple bars indicate the performance after enhancement.

2023), prioritize pinpointing the knowledge’s storage location before making targeted edits. Recent extensions like RECT (Gu et al., 2024) and PRUNE (Ma et al., 2025) mitigate degradation of general capabilities of LLMs by better constraining edit complexity via sparsity and condition number. Recently, AlphaEdit (Fang et al., 2025) further generalizes this paradigm by projecting the perturbation into the nullspace of the previous knowledge set.

Learning with Hyperspherical Uniformity. Early studies (Xie et al., 2017a; Rodríguez et al., 2017; Xie et al., 2017b; Cogswell et al., 2016) sought to improve the generalization capacity of neural networks by reducing redundancy through diversification, as rigorously analyzed in (Xie et al., 2016). Although these works examined angular diversity, they largely neglected the notion of global equidistribution of embeddings on the hypersphere. In contrast to orthogonality, where perpendicular vectors are defined to be diverse, hyperspherical uniformity promotes embeddings that are maximally separated in angle, thereby encouraging uniform distribution across the hypersphere (Liu et al., 2021; 2018). More recently, Smerkous et al. (2024) enhancing training stability by incorporating centered kernel alignment into hyperspherical energy, enhancing training stability by addressing the lack of permutation invariance inherent in naive similarity metrics.

7 CONCLUSION

In this work, we demonstrated that hyperspherical uniformity is a critical factor in stabilizing sequential editing for LLMs, supported by both empirical evidence and rigorous theoretical proof. Motivated by this insight, we propose SPHERE, a regularization strategy that preserves hyperspherical uniformity by projecting updates onto a space complementary to the principal directions of pretrained weights. Extensive evaluations on LLaMA3 (8B) and Qwen2.5 (7B) across multiple editing datasets and downstream tasks confirm that SPHERE not only enhances editing performance by 16.41% over the strongest baseline but also more faithfully preserves weight geometry and general abilities of models. Furthermore, when applied as a plug-and-play enhancement, it yields an additional average improvement of 38.71% across existing methods. Collectively, our findings establish SPHERE as both theoretically grounded and empirically effective, providing a principled and scalable solution for reliable large-scale model editing.

486
487 ETHICS STATEMENT488 Our proposed method SPHERE significantly enhances the reliability of large-scale sequential
489 model editing by preserving hyperspherical uniformity, which makes it a valuable way for updating
490 and managing knowledge in real-world applications where long-term stability is essential. At the
491 same time, the ability to directly alter stored knowledge in LLMs carries inherent risks, including the
492 potential introduction of bias or harmful information. To address these concerns, we strongly rec-
493 ommend rigorous validation procedures, transparent reporting, and strict oversight when deploying
494 such techniques. While the core motivation of SPHERE is positive, aiming to facilitate efficient and
495 trustworthy updates of large language models, we emphasize that its use must remain responsible
496 and cautious to ensure ethical outcomes.
497498 We used LLMs to assist with improving grammar, clarity, and wording in parts of this work. The
499 use of LLMs was limited to language refinement, with all ideas, analyses, and conclusions solely
500 developed by the authors. We restate this announcement in Appendix A501
502 REPRODUCIBILITY STATEMENT503 To ensure the reproducibility of our findings, detailed implementation instructions for SPHERE
504 are provided in in Section 4 , Appendix D. Additionally, we plan to release our source code in the
505 future to further support reproducibility. These measures are intended to facilitate the verification
506 and replication of our results by other researchers in the field.507
508 REFERENCES509
510 AI@Meta. Llama 3 model card, 2024. URL https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md. 1, 3.1, 5.1
511
512 Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models. In
513 Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), *Proceed-
514 ings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP
515 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021*, pp. 6491–6506.
516 Association for Computational Linguistics, 2021. doi: 10.18653/V1/2021.EMNLP-MAIN.522.
517 URL <https://doi.org/10.18653/v1/2021.emnlp-main.522>. 1, 6
518
519 Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading wikipedia to answer open-
520 domain questions. In Regina Barzilay and Min-Yen Kan (eds.), *Proceedings of the 55th Annual
521 Meeting of the Association for Computational Linguistics, ACL 2017, Vancouver, Canada, July 30
522 - August 4, Volume 1: Long Papers*, pp. 1870–1879. Association for Computational Linguistics,
523 2017. doi: 10.18653/V1/P17-1171. URL <https://doi.org/10.18653/v1/P17-1171>.
5.4, E.2
524
525 Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
526 Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In Jill Burstein,
527 Christy Doran, and Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North Amer-
528 ican Chapter of the Association for Computational Linguistics: Human Language Technologies,
529 NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers)*,
530 pp. 2924–2936. Association for Computational Linguistics, 2019. doi: 10.18653/V1/N19-1300.
531 URL <https://doi.org/10.18653/v1/n19-1300>. 1, 5.4, E.2
532
533 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
534 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
535 Schulman. Training verifiers to solve math word problems. *CoRR*, abs/2110.14168, 2021. URL
536 <https://arxiv.org/abs/2110.14168>. 1, 5.4, E.2
537
538 Michael Cogswell, Faruk Ahmed, Ross B. Girshick, Larry Zitnick, and Dhruv Batra. Reducing
539 overfitting in deep networks by decorrelating representations. In Yoshua Bengio and Yann LeCun
540 (eds.), *4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto
541 Rico, May 2-4, 2016, Conference Track Proceedings*, 2016. URL <http://arxiv.org/abs/1511.06068>. 1, 6

540 Ido Dagan, Oren Glickman, and Bernardo Magnini. The PASCAL recognising textual entail-
 541 ment challenge. In Joaquin Quiñonero Candela, Ido Dagan, Bernardo Magnini, and Florence
 542 d’Alché-Buc (eds.), *Machine Learning Challenges, Evaluating Predictive Uncertainty, Visual
 543 Object Classification and Recognizing Textual Entailment, First PASCAL Machine Learning
 544 Challenges Workshop, MLCW 2005, Southampton, UK, April 11-13, 2005, Revised Selected Pa-
 545 pers*, volume 3944 of *Lecture Notes in Computer Science*, pp. 177–190. Springer, 2005. doi:
 546 10.1007/11736790_9. URL https://doi.org/10.1007/11736790_9. 1, 5.4, E.2

547 DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Cheng-
 548 gang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang,
 549 Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting
 550 Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui
 551 Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Ji-
 552 aqi Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong
 553 Li, Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean
 554 Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li,
 555 Miaojun Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian,
 556 Panpan Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du,
 557 R. J. Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu
 558 Zhang, Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhua Chen, Shaoqing Wu,
 559 Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting
 560 Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, and Wangding Zeng. Deepseek-
 561 v3 technical report. *CoRR*, abs/2412.19437, 2024. doi: 10.48550/ARXIV.2412.19437. URL
 562 <https://doi.org/10.48550/arXiv.2412.19437>. 1

563 Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan Ma, Jie Shi, Xiang Wang, Xiangnan He, and
 564 Tat-Seng Chua. Alphaedit: Null-space constrained knowledge editing for language models. In
 565 *The Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore,
 566 April 24-28, 2025*. OpenReview.net, 2025. URL <https://openreview.net/forum?id=HvSytvg3Jh>. 1, 1, 3.1, 5.1, 5.2, 6, D.5

567 Jia-Chen Gu, Hao-Xiang Xu, Jun-Yu Ma, Pan Lu, Zhen-Hua Ling, Kai-Wei Chang, and Nanyun
 568 Peng. Model editing harms general abilities of large language models: Regularization to the
 569 rescue. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the
 570 2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024, Miami,
 571 FL, USA, November 12-16, 2024*, pp. 16801–16819. Association for Computational Linguistics,
 572 2024. doi: 10.18653/V1/2024.EMNLP-MAIN.934. URL <https://doi.org/10.18653/v1/2024.emnlp-main.934>. 1, 1, 3.1, 5.1, 5.4, 6, E.2

573 Akshat Gupta, Anurag Rao, and Gopala Anumanchipalli. Model editing at scale leads to gradual and
 574 catastrophic forgetting. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of
 575 the Association for Computational Linguistics, ACL 2024, Bangkok, Thailand and virtual meet-
 576 ing, August 11-16, 2024*, pp. 15202–15232. Association for Computational Linguistics, 2024.
 577 doi: 10.18653/V1/2024.FINDINGS-ACL.902. URL <https://doi.org/10.18653/v1/2024.findings-acl.902>. 1

578 Tom Hartvigsen, Swami Sankaranarayanan, Hamid Palangi, Yoon Kim, and Marzyeh Ghassemi.
 579 Aging with GRACE: lifelong model editing with discrete key-value adaptors. In Alice Oh,
 580 Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.),
 581 *Advances in Neural Information Processing Systems 36: Annual Conference on Neural In-
 582 formation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
 583 16, 2023*, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/95b6e2ff961580e03c0a662a63a71812-Abstract-Conference.html. 6

584 Roger A. Horn and Charles R. Johnson. *Matrix Analysis*. Cambridge University Press, 1985. ISBN
 585 0-521-30586-1. 4

586 Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
 587 Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting Liu. A survey on hallucination in
 588 large language models: Principles, taxonomy, challenges, and open questions. *ACM Trans. Inf.
 589 Syst.*, 43(2):42:1–42:55, 2025. doi: 10.1145/3703155. URL <https://doi.org/10.1145/3703155>. 1

594 Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Yejin Bang, Andrea
 595 Madotto, and Pascale Fung. Survey of hallucination in natural language generation. *ACM Comput.
 596 Surv.*, 55(12):248:1–248:38, 2023. doi: 10.1145/3571730. URL <https://doi.org/10.1145/3571730.1>

598 Houcheng Jiang, Junfeng Fang, Tianyu Zhang, Baolong Bi, An Zhang, Ruipeng Wang, Tao Liang,
 599 and Xiang Wang. Neuron-level sequential editing for large language models. In Wanxiang Che,
 600 Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the
 601 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
 602 ACL 2025, Vienna, Austria, July 27 - August 1, 2025*, pp. 16678–16702. Association for Compu-
 603 tational Linguistics, 2025. URL <https://aclanthology.org/2025.acl-long.815.B>

605 Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur P. Parikh, Chris
 606 Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
 607 Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
 608 Petrov. Natural questions: a benchmark for question answering research. *Trans. Assoc. Comput.
 609 Linguistics*, 7:452–466, 2019. doi: 10.1162/TACL_A_00276. URL https://doi.org/10.1162/tacl_a_00276.1, 5.4, E.2

611 Kenton Lee, Ming-Wei Chang, and Kristina Toutanova. Latent retrieval for weakly supervised open
 612 domain question answering. In Anna Korhonen, David R. Traum, and Lluís Màrquez (eds.), *Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019,
 613 Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers*, pp. 6086–6096. Association for
 614 Computational Linguistics, 2019. doi: 10.18653/V1/P19-1612. URL <https://doi.org/10.18653/v1/p19-1612.5.4>, E.2

616 Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. Zero-shot relation extraction via
 617 reading comprehension. In Roger Levy and Lucia Specia (eds.), *Proceedings of the 21st Confer-
 618 ence on Computational Natural Language Learning (CoNLL 2017), Vancouver, Canada, August
 619 3-4, 2017*, pp. 333–342. Association for Computational Linguistics, 2017. doi: 10.18653/V1/
 620 K17-1034. URL <https://doi.org/10.18653/v1/K17-1034.1>, 3.1, 5.1, D.1

622 Zherui Li, Houcheng Jiang, Hao Chen, Baolong Bi, Zhenhong Zhou, Fei Sun, Junfeng Fang, and
 623 Xiang Wang. Reinforced lifelong editing for language models. *CoRR*, abs/2502.05759, 2025.
 624 doi: 10.48550/ARXIV.2502.05759. URL <https://doi.org/10.48550/arXiv.2502.05759.B>

626 Weiyang Liu, Rongmei Lin, Zhen Liu, Lixin Liu, Zhiding Yu, Bo Dai, and Le Song. Learning
 627 towards minimum hyperspherical energy. In Samy Bengio, Hanna M. Wallach, Hugo
 628 Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.), *Advances
 629 in Neural Information Processing Systems 31: Annual Conference on Neural Information
 630 Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada*, pp.
 631 6225–6236, 2018. URL <https://proceedings.neurips.cc/paper/2018/hash/177540c7bcb8db31697b601642eac8d4-Abstract.html>, 1, 6

634 Weiyang Liu, Rongmei Lin, Zhen Liu, Li Xiong, Bernhard Schölkopf, and Adrian Weller. Learning
 635 with hyperspherical uniformity. In Arindam Banerjee and Kenji Fukumizu (eds.), *The 24th
 636 International Conference on Artificial Intelligence and Statistics, AISTATS 2021, April 13-15,
 637 2021, Virtual Event*, volume 130 of *Proceedings of Machine Learning Research*, pp. 1180–1188.
 638 PMLR, 2021. URL <http://proceedings.mlr.press/v130/liu21d.html>, 1, 6

640 Jun-Yu Ma, Hong Wang, Hao-Xiang Xu, Zhen-Hua Ling, and Jia-Chen Gu. Perturbation-restrained
 641 sequential model editing. In *The Thirteenth International Conference on Learning Repre-
 642 sentations, ICLR 2025, Singapore, April 24-28, 2025*. OpenReview.net, 2025. URL <https://openreview.net/forum?id=bfI8cp8qmk>, 1, 3.1, 5.1, 6

644 Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual associa-
 645 tions in GPT. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh
 646 (eds.), *Advances in Neural Information Processing Systems 35: Annual Conference on Neural In-
 647 formation Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - De-
 cember 9, 2022*. URL http://papers.nips.cc/paper_2022/

648 hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html. 1,
 649 2.1, 3.1, 5.1, 6, B, D.1, D.2.1, D.2.2
 650

651 Kevin Meng, Arnab Sen Sharma, Alex J. Andonian, Yonatan Belinkov, and David Bau. Mass-
 652 editing memory in a transformer. In *The Eleventh International Conference on Learning
 653 Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023. URL
 654 <https://openreview.net/forum?id=MkbcAH1YgyS>. 1, 1, 3.1, 5.1, 6, B, B, D.2.1,
 655 D.2.2, D.4

656 Meta AI. Introducing llama 4: Advancing multimodal intelligence, 2024. URL <https://ai.meta.com/blog/llama-4-multimodal-intelligence/>. 1

657

658 Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D. Manning. Fast
 659 model editing at scale. In *The Tenth International Conference on Learning Representations, ICLR
 660 2022, Virtual Event, April 25-29, 2022*. OpenReview.net, 2022. URL <https://openreview.net/forum?id=0DcZxeWfOPt>. 1, 6, D.2.1

661

662 OpenAI. Introducing gpt-5. Online, 2025. URL <https://openai.com/index/introducing-gpt-5/>. [Large language model announcement]. 1

663

664

665 Beresford N. Parlett. *The Symmetric Eigenvalue Problem*. Classics in Applied Mathematics. SIAM,
 666 1998. ISBN 0-89871-402-8. 4

667

668 Zeju Qiu, Weiyang Liu, Haiwen Feng, Yuxuan Xue, Yao Feng, Zhen Liu, Dan Zhang, Adrian
 669 Weller, and Bernhard Schölkopf. Controlling text-to-image diffusion by orthogonal finetuning.
 670 In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
 671 (eds.), *Advances in Neural Information Processing Systems 36: Annual Conference on Neural
 672 Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
 673 16, 2023*. URL [http://papers.nips.cc/paper_files/paper/2023/hash/
 674 faacb7a4827b4d51e201666b93ab5fa7-Abstract-Conference.html](http://papers.nips.cc/paper_files/paper/2023/hash/faacb7a4827b4d51e201666b93ab5fa7-Abstract-Conference.html). 1

675

676 Pau Rodríguez, Jordi Gonzàlez, Guillem Cucurull, Josep M. Gonfaus, and F. Xavier Roca. Regular-
 677 izing cnns with locally constrained decorrelations. In *5th International Conference on Learning
 678 Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings*.
 679 OpenReview.net, 2017. URL <https://openreview.net/forum?id=ByOvsIqeg>. 6

680

681 David Smerkous, Qinxun Bai, and Fuxin Li. Enhancing diversity in bayesian deep learn-
 682 ing via hyperspherical energy minimization of CKA. In Amir Globersons, Lester Mackey,
 683 Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.),
 684 *Advances in Neural Information Processing Systems 38: Annual Conference on Neural In-
 685 formation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -
 686 15, 2024*. URL [http://papers.nips.cc/paper_files/paper/2024/hash/
 687 f9e72ee379bb781f3005775c870a3871-Abstract-Conference.html](http://papers.nips.cc/paper_files/paper/2024/hash/f9e72ee379bb781f3005775c870a3871-Abstract-Conference.html). 6

688

689 C Spearman. The proof and measurement of association between two things. *The American Journal
 690 of Psychology*, 15(1):72–101, 1904. 3.1

691

692 Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL <https://qwenlm.github.io/blog/qwen2.5/>. 1, 5.1

693

694 Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of Ma-
 695 chine Learning Research*, 9(86):2579–2605, 2008. URL [http://jmlr.org/papers/v9/
 696 vandermaaten08a.html](http://jmlr.org/papers/v9/vandermaaten08a.html). 5.3

697

698 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
 699 Pierrick Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, and Jamie Brew. Huggingface’s
 700 transformers: State-of-the-art natural language processing. *CoRR*, abs/1910.03771, 2019. URL
 701 <http://arxiv.org/abs/1910.03771>. D.4

702

703 Pengtao Xie, Jun Zhu, and Eric P. Xing. Diversity-promoting bayesian learning of latent variable
 704 models. In Maria-Florina Balcan and Kilian Q. Weinberger (eds.), *Proceedings of the 33nd In-
 705 ternational Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24,
 706 2016*, volume 48 of *JMLR Workshop and Conference Proceedings*, pp. 59–68. JMLR.org, 2016.
 707 URL <http://proceedings.mlr.press/v48/xieal6.html>. 6

702 Pengtao Xie, Yuntian Deng, Yi Zhou, Abhimanyu Kumar, Yaoliang Yu, James Zou, and Eric P. Xing.
 703 Learning latent space models with angular constraints. In Doina Precup and Yee Whye Teh (eds.),
 704 *Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney,*
 705 *NSW, Australia, 6-11 August 2017*, volume 70 of *Proceedings of Machine Learning Research*,
 706 pp. 3799–3810. PMLR, 2017a. URL <http://proceedings.mlr.press/v70/xie17a.html>. 1, 6

708 Pengtao Xie, Aarti Singh, and Eric P. Xing. Uncorrelation and evenness: a new diversity-promoting
 709 regularizer. In Doina Precup and Yee Whye Teh (eds.), *Proceedings of the 34th International*
 710 *Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017*, vol-
 711 *ume 70 of Proceedings of Machine Learning Research*, pp. 3811–3820. PMLR, 2017b. URL
 712 <http://proceedings.mlr.press/v70/xie17b.html>. 6

713 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 714 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 715 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jian Yang,
 716 Jiaxi Yang, Jingren Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang, Le Yu,
 717 Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui Men,
 718 Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang Ren,
 719 Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger Zhang,
 720 Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan Qiu.
 721 Qwen3 technical report. *CoRR*, abs/2505.09388, 2025. doi: 10.48550/ARXIV.2505.09388. URL
 722 <https://doi.org/10.48550/arXiv.2505.09388>. 1

723 Wanli Yang, Fei Sun, Xinyu Ma, Xun Liu, Dawei Yin, and Xueqi Cheng. The butterfly effect of
 724 model editing: Few edits can trigger large language models collapse. In Lun-Wei Ku, Andre
 725 Martins, and Vivek Srikumar (eds.), *Findings of the Association for Computational Linguistics,*
 726 *ACL 2024, Bangkok, Thailand and virtual meeting, August 11-16, 2024*, pp. 5419–5437. Association
 727 for Computational Linguistics, 2024a. doi: 10.18653/V1/2024.FINDINGS-ACL.322. URL
 728 <https://doi.org/10.18653/v1/2024.findings-acl.322>. B

729 Wanli Yang, Fei Sun, Jiajun Tan, Xinyu Ma, Du Su, Dawei Yin, and Huawei Shen. The fall
 730 of ROME: understanding the collapse of llms in model editing. In Yaser Al-Onaizan, Mohit
 731 Bansal, and Yun-Nung Chen (eds.), *Findings of the Association for Computational Linguistics:*
 732 *EMNLP 2024, Miami, Florida, USA, November 12-16, 2024*, pp. 4079–4087. Association
 733 for Computational Linguistics, 2024b. doi: 10.18653/V1/2024.FINDINGS-EMNLP.236. URL
 734 <https://doi.org/10.18653/v1/2024.findings-emnlp.236>. B

735 Lang Yu, Qin Chen, Jie Zhou, and Liang He. MELO: enhancing model editing with neuron-
 736 indexed dynamic lora. In Michael J. Wooldridge, Jennifer G. Dy, and Sriraam Natarajan
 737 (eds.), *Thirty-Eighth AAAI Conference on Artificial Intelligence, AAAI 2024, Thirty-Sixth Con-
 738 ference on Innovative Applications of Artificial Intelligence, IAAI 2024, Fourteenth Symposium*
 739 *on Educational Advances in Artificial Intelligence, EAAI 2024, February 20-27, 2024, Vancouver,*
 740 *Canada*, pp. 19449–19457. AAAI Press, 2024. doi: 10.1609/AAAI.V38I17.29916. URL
 741 <https://doi.org/10.1609/aaai.v38i17.29916>. 6

742 Ningyu Zhang, Zekun Xi, Yujie Luo, Peng Wang, Bozhong Tian, Yunzhi Yao, Jintian Zhang,
 743 Shumin Deng, Mengshu Sun, Lei Liang, Zhiqiang Zhang, Xiaowei Zhu, Jun Zhou, and Hua-
 744 jun Chen. Oneedit: A neural-symbolic collaboratively knowledge editing system. In *Proceed-
 745 ings of Workshops at the 50th International Conference on Very Large Data Bases, VLDB 2024,*
 746 *Guangzhou, China, August 26-30, 2024*. VLDB.org, 2024a. URL <https://vldb.org/workshops/2024/proceedings/LLM+KG/LLM+KG-2.pdf>. B

747 Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng Wang, Shumin Deng, Mengru Wang, Zekun Xi,
 748 Shengyu Mao, Jintian Zhang, Yuansheng Ni, Siyuan Cheng, Ziwen Xu, Xin Xu, Jia-Chen Gu,
 749 Yong Jiang, Pengjun Xie, Fei Huang, Lei Liang, Zhiqiang Zhang, Xiaowei Zhu, Jun Zhou, and
 750 Huajun Chen. A comprehensive study of knowledge editing for large language models. *CoRR*,
 751 abs/2401.01286, 2024b. doi: 10.48550/ARXIV.2401.01286. URL <https://doi.org/10.48550/arXiv.2401.01286>. 6

752 Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong Wu, Jingjing Xu, and Baobao Chang. Can
 753 we edit factual knowledge by in-context learning? In Houda Bouamor, Juan Pino, and Kalika

756 Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language*
757 *Processing, EMNLP 2023, Singapore, December 6-10, 2023*, pp. 4862–4876. Association for
758 Computational Linguistics, 2023. doi: 10.18653/V1/2023.EMNLP-MAIN.296. URL <https://doi.org/10.18653/v1/2023.emnlp-main.296>. 6

760 Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh Bhojanapalli, Daliang Li, Felix X. Yu, and
761 Sanjiv Kumar. Modifying memories in transformer models. *CoRR*, abs/2012.00363, 2020. URL
762 <https://arxiv.org/abs/2012.00363>. 3.1, 5.1

764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810 A USAGE OF LLMs
811812 Throughout the preparation of this manuscript, we used LLMs to assist with improving grammar,
813 clarity, and wording in parts of this work. The use of LLMs was limited to language refinement,
814 with all ideas, analyses, and conclusions solely developed by the authors.
815816 B PRELIMINARIES OF MODEL EDITING
817818 Model editing aims to refine a pre-trained model by applying one or more edits, where each edit
819 replaces a factual association (s, r, o) with new knowledge (s, r, o^*) (Yang et al., 2024b; Li et al.,
820 2025). After editing, the model is expected to recall the updated object o^* when given a natural
821 language prompt $p(s, r)$, such as “The President of the United States is” (Zhang et al., 2024a).
822823 To achieve this, locating-and-editing methods have been proposed for effective model updates (Yang
824 et al., 2024a). These methods typically follow three steps (Jiang et al., 2025):
825826 **Step 1: Locating Influential Layers.** The first step is to identify the specific FFN layers that
827 encode the target knowledge using causal tracing (Meng et al., 2022). This method involves injecting
828 Gaussian noise into the hidden states and progressively restoring them to their original values. By
829 analyzing the degree to which the original output recovers, the influential layers can be pinpointed
830 as the targets for editing.
831832 **Step 2: Acquiring the Expected Output.** The second step aims to obtain the desired output of
833 the critical layers identified in Step 1. Following the key–value theory, the key \mathbf{k} , which encodes
834 (s, r) , is processed through the output weights $\mathbf{W}_{\text{out}}^l$ to produce the original value \mathbf{v} encoding o .
835 Formally,
836

$$\mathbf{k} \triangleq \sigma(\mathbf{W}_{\text{in}}^l \gamma(\mathbf{h}^{l-1} + \mathbf{\alpha}^l)), \quad \mathbf{v} \triangleq \mathbf{m}^l = \mathbf{W}_{\text{out}}^l \mathbf{k}. \quad (14)$$

837 To perform editing, \mathbf{v} is expected to be replaced with a new value \mathbf{v}^* encoding o^* . To this end,
838 current methods typically use gradient descent on $\Delta \mathbf{W}$, maximizing the probability that the model
839 outputs the word associated with o^* (Meng et al., 2023). The optimization objective is as follows:
840

$$\mathbf{v}^* = \mathbf{v} + \arg \min_{\Delta \mathbf{W}^l} \left(-\log \mathbb{P}_{f_{\mathbf{W}_{\text{out}}}^l(\mathbf{m}^l + \Delta \mathbf{W}^l)} [o^* | (s, r)] \right), \quad (15)$$

841 where $f_{\mathbf{W}_{\text{out}}}^l(\mathbf{m}^l + \Delta \mathbf{W})$ represents the original model with \mathbf{m}^l updated to $\mathbf{m}^l + \Delta \mathbf{W}$.
842843 **Step 3: Updating $\mathbf{W}_{\text{out}}^l$.** This step aims to update the parameters $\mathbf{W}_{\text{out}}^l$. It includes a factual set
844 $\{\mathbf{K}_1, \mathbf{V}_1\}$ containing u new associations, while preserving the set $\{\mathbf{K}_0, \mathbf{V}_0\}$ containing n original
845 associations. Specifically,
846

$$\begin{aligned} \mathbf{K}_0 &= [\mathbf{k}_1 \mathbf{k}_2 \cdots \mathbf{k}_n], & \mathbf{V}_0 &= [\mathbf{v}_1 \mathbf{v}_2 \cdots \mathbf{v}_n], \\ \mathbf{K}_1 &= [\mathbf{k}_{n+1} \mathbf{k}_{n+2} \cdots \mathbf{k}_{n+u}], & \mathbf{V}_1 &= [\mathbf{v}_{n+1}^* \mathbf{v}_{n+2}^* \cdots \mathbf{v}_{n+u}^*] \end{aligned} \quad (16)$$

847 where \mathbf{k} and \mathbf{v} are defined in Eqn. 14 and their subscripts represent the index of the knowledge.
848 Based on these, the objective can be defined as:
849

$$\tilde{\mathbf{W}}_{\text{out}}^l \triangleq \arg \min_{\hat{\mathbf{W}}} \left(\sum_{i=1}^n \|\hat{\mathbf{W}} \mathbf{k}_i - \mathbf{v}_i\|^2 + \sum_{i=n+1}^{n+u} \|\hat{\mathbf{W}} \mathbf{k}_i - \mathbf{v}_i^*\|^2 \right). \quad (17)$$

850 By applying the normal equation, its closed-form solution can be derived:
851

$$\tilde{\mathbf{W}}_{\text{out}}^l = (\mathbf{M}_1 - \mathbf{W}_{\text{out}}^l \mathbf{K}_1) \mathbf{K}_1^\top (\mathbf{K}_0 \mathbf{K}_0^\top + \mathbf{K}_1 \mathbf{K}_1^\top)^{-1} + \mathbf{W}_{\text{out}}^l. \quad (18)$$

862 In practice, model editing methods often update parameters across multiple layers to improve effec-
863 tiveness. For more details, see (Meng et al., 2023).
864

864 **C THEORETICAL PROOFS**
 865

866 **C.1 PROOF OF CORRELATION BETWEEN HYPERSPHERICAL ENERGY AND EDITING**
 867 **STABILITY**
 868

869 **Objective for Preserving Original Knowledge** We begin by assuming that the original knowl-
 870 edge base can be expressed as $\{\mathbf{k}_i, \mathbf{v}_i\} \quad i = 1, \dots, N, \quad \mathbf{k}_i \in \mathbb{R}^p, \mathbf{v}_i \in \mathbb{R}^q$, while the new
 871 knowledge base is given by $\{\tilde{\mathbf{k}}_i, \tilde{\mathbf{v}}_i\} \quad i = 1, \dots, N, \quad \tilde{\mathbf{k}}_i \in \mathbb{R}^p, \tilde{\mathbf{v}}_i \in \mathbb{R}^q$

872 And the knowledge mapping is governed by the weight matrix $\mathbf{W} \in \mathbb{R}^{p \times q}$ such that
 873

$$874 \quad \mathbf{W}\mathbf{k}_i = \mathbf{v}_i, \quad (\mathbf{W} + \Delta\mathbf{W})\tilde{\mathbf{k}}_i = \tilde{\mathbf{v}}_i. \quad (19)$$

876 When analyzing the destroy to the original knowledge set, there is shift brought by the perturbation
 877 $\Delta\mathbf{W}$ which can be expressed as:
 878

$$879 \quad (\mathbf{W} + \Delta\mathbf{W})\mathbf{k}_i = \mathbf{v}_i + \Delta\mathbf{W}\mathbf{k}_i \quad (20)$$

880 where we define $\Delta\mathbf{v}_i = \Delta\mathbf{W}\mathbf{k}_i$ as the destroy to the previous knowledge set. In addition, if
 881 $\mathbf{k}_i \in \text{null}(\Delta\mathbf{W})$, i.e., in the null space of $\Delta\mathbf{W}$, then $\Delta\mathbf{W}\mathbf{k}_i = \Delta\mathbf{v}_i = 0$.
 882

883 The corresponding objective is thus to minimize the perturbation magnitude, given by
 884

$$885 \quad \min \frac{1}{N} \sum_{i=1}^N \|\Delta\mathbf{v}_i\| \quad \equiv \quad \min \frac{1}{N} \sum_{i=1}^N \|\Delta\mathbf{W}\mathbf{k}_i\|. \quad (21)$$

886 To make this tractable, assume that each input vector \mathbf{k}_i can be approximated in terms of the first \mathbf{K}
 887 basis vectors $\{\mathbf{e}_j\}$ as
 888

$$889 \quad \mathbf{k}_i = \sum_{j=1}^K \alpha_j \mathbf{e}_j + \varepsilon_i, \quad (22)$$

890 where ε_i is a small noise term. If we denote
 891

$$892 \quad \Delta\mathbf{W} \cdot \mathbf{e}_j = \mathbf{f}_j, \quad \varepsilon_i, \mathbf{e}_j, \mathbf{f}_j \in \mathbb{R}^q, \quad (23)$$

893 then the perturbation objective can be rewritten as:
 894

$$895 \quad \begin{aligned} & \min \frac{1}{N} \sum_{i=1}^N \left\| \Delta\mathbf{W} \cdot \left(\sum_{j=1}^K \alpha_j \mathbf{e}_j + \varepsilon_i \right) \right\| \\ & \leq \frac{1}{N} \sum_{i=1}^N \left\| \sum_{j=1}^K \alpha_j \mathbf{f}_j + \Delta\mathbf{W} \varepsilon_i \right\| \\ & \leq \frac{1}{N} \sum_{i=1}^N \sum_{j=1}^K |\alpha_j| \|\mathbf{f}_j\| + \|\Delta\mathbf{W}\| \|\varepsilon_i\| \\ & \leq \frac{1}{N} \sum_{i=1}^N \sum_{j=1}^K |\alpha_j| \|\mathbf{f}_j\| + \varepsilon_{\max} \|\Delta\mathbf{W}\|. \end{aligned} \quad (24)$$

896 where $\varepsilon_{\max} = \max_i \|\varepsilon_i\|$. This shows that minimizing $\|\mathbf{f}_j\|$ directly reduces the upper bound of the
 897 perturbation, and therefore enhances the stability of the editing process.
 898

899 **Definitions** Let the model's weights be represented by a matrix $\mathbf{W} \in \mathbb{R}^{p \times q}$, whose rows are the
 900 neuron vectors $\mathbf{w}_1, \dots, \mathbf{w}_p \in \mathbb{R}^q$. An edit or update introduces a perturbation to this matrix, denoted
 901 by $\Delta\mathbf{W} \in \mathbb{R}^{p \times q}$, with corresponding row-wise perturbations $\Delta\mathbf{w}_1, \dots, \Delta\mathbf{w}_p$.
 902

903 We define two key scalar quantities to measure the effects of this perturbation:
 904

918 • **output perturbation** (ΔV). This quantity measures the total squared change in the model’s
 919 output, aggregated over a set of N input vectors $\{\mathbf{k}_i\}_{i=1}^N$.
 920

$$921 \Delta V \triangleq \sum_{i=1}^N \|\Delta \mathbf{W} \mathbf{k}_i\|_2^2 = \sum_{i=1}^N \left\| \begin{bmatrix} \Delta \mathbf{w}_1 \cdot \mathbf{k}_i \\ \vdots \\ \Delta \mathbf{w}_p \cdot \mathbf{k}_i \end{bmatrix} \right\|_2^2 = \sum_{i=1}^N \sum_{j=1}^p (\Delta \mathbf{w}_j \cdot \mathbf{k}_i)^2 \quad (25)$$

925 • **Change in Hyperdimensional Energy** (ΔHE). This quantity measures the change in the geo-
 926 metric arrangement of the neuron vectors due to the perturbation.
 927

$$927 \Delta HE \triangleq \sum_{i \neq j} \left(\frac{1}{\|\mathbf{w}_i - \mathbf{w}_j\|_2^2} - \frac{1}{\|(\mathbf{w}_i + \Delta \mathbf{w}_i) - (\mathbf{w}_j + \Delta \mathbf{w}_j)\|_2^2} \right) \quad (26)$$

930 **Assumptions** Our analysis relies on the following assumptions:

931 **Assumption 1** (Orthonormal Inputs). *The set of input vectors $\{\mathbf{k}_i\}_{i=1}^q$ is the standard orthonormal
 932 basis of \mathbb{R}^q .*
 933

934 Under this assumption, the output perturbation simplifies to the squared Frobenius norm of the
 935 perturbation matrix:

$$936 \Delta V = \sum_{i=1}^q \sum_{j=1}^p (\Delta \mathbf{w}_j \cdot \mathbf{k}_i)^2 = \sum_{j=1}^p \sum_{i=1}^q (\Delta \mathbf{w}_{j,i})^2 = \sum_{j=1}^p \|\Delta \mathbf{w}_j\|_2^2 = \|\Delta \mathbf{W}\|_F^2$$

939 **Assumption 2** (Small Perturbations). *The perturbation vectors $\Delta \mathbf{w}_i$ are sufficiently small in norm,
 940 which justifies the use of a first-order Taylor expansion to approximate the change in HE.*
 941

942 We can now state the relationship between the change in HE and the output perturbation energy.

943 **Theorem 2** (Upper Bound on HE Change). *Under Assumptions 1 and 2, the absolute change in
 944 Hyperdimensional Energy, $|\Delta HE|$, is upper-bounded by the square root of the output perturbation,
 945 $\sqrt{\Delta V}$, as follows:*

$$946 |\Delta HE| \leq K \sqrt{\Delta V} \quad (27)$$

947 where K is a constant determined by the geometry of the original weight matrix \mathbf{W} :

$$949 K = 4 \sqrt{\sum_{k=1}^p \left(\sum_{j \neq k} \|\mathbf{w}_k - \mathbf{w}_j\|^{-3} \right)^2}$$

952 *Proof.* Let $\mathbf{p}_{ij} = \mathbf{w}_i - \mathbf{w}_j$ and $\Delta \mathbf{p}_{ij} = \Delta \mathbf{w}_i - \Delta \mathbf{w}_j$. The change in HE is $\Delta HE = \sum_{i \neq j} (\|\mathbf{p}_{ij}\|^{-2} - \|\mathbf{p}_{ij} + \Delta \mathbf{p}_{ij}\|^{-2})$. Using a first-order Taylor expansion for $f(\mathbf{x}) = \|\mathbf{x}\|^{-2}$ around \mathbf{p}_{ij} , we have:

$$956 \|\mathbf{p}_{ij} + \Delta \mathbf{p}_{ij}\|^{-2} \approx \|\mathbf{p}_{ij}\|^{-2} - 2\|\mathbf{p}_{ij}\|^{-4}(\mathbf{p}_{ij} \cdot \Delta \mathbf{p}_{ij})$$

957 Substituting this into the expression for ΔHE :

$$959 \Delta HE \approx \sum_{i \neq j} \left((\|\mathbf{p}_{ij}\|^{-2} - (\|\mathbf{p}_{ij}\|^{-2} - 2\|\mathbf{p}_{ij}\|^{-4}(\mathbf{p}_{ij} \cdot \Delta \mathbf{p}_{ij}))) \right)$$

$$961 = \sum_{i \neq j} 2\|\mathbf{p}_{ij}\|^{-4}(\mathbf{p}_{ij} \cdot \Delta \mathbf{p}_{ij})$$

963 We bound the absolute value of this approximation:

$$965 |\Delta HE| \approx \left| \sum_{i \neq j} 2\|\mathbf{p}_{ij}\|^{-4}((\mathbf{w}_i - \mathbf{w}_j) \cdot (\Delta \mathbf{w}_i - \Delta \mathbf{w}_j)) \right|$$

$$968 \leq \sum_{i \neq j} 2\|\mathbf{w}_i - \mathbf{w}_j\|^{-3} \|\Delta \mathbf{w}_i - \Delta \mathbf{w}_j\| \quad (\text{by Cauchy-Schwarz})$$

$$971 \leq \sum_{i \neq j} 2\|\mathbf{w}_i - \mathbf{w}_j\|^{-3} (\|\Delta \mathbf{w}_i\| + \|\Delta \mathbf{w}_j\|) \quad (\text{by Triangle Inequality})$$

972 By re-indexing the sum to group terms by $\|\Delta\mathbf{w}_k\|$:

$$\begin{aligned} 974 \quad |\Delta\mathbf{H}\mathbf{E}| &\leq \sum_{k=1}^p \left(\sum_{j \neq k} 2\|\mathbf{w}_k - \mathbf{w}_j\|^{-3} + \sum_{i \neq k} 2\|\mathbf{w}_i - \mathbf{w}_k\|^{-3} \right) \|\Delta\mathbf{w}_k\| \\ 975 \\ 976 \quad &= \sum_{k=1}^p \left(4 \sum_{j \neq k} \|\mathbf{w}_k - \mathbf{w}_j\|^{-3} \right) \|\Delta\mathbf{w}_k\| \\ 977 \\ 978 \end{aligned}$$

981 Applying the Cauchy-Schwarz inequality to this final sum (viewed as a dot product in \mathbb{R}^p):

$$\begin{aligned} 982 \quad |\Delta\mathbf{H}\mathbf{E}| &\leq \sqrt{\sum_{k=1}^p \left(4 \sum_{j \neq k} \|\mathbf{w}_k - \mathbf{w}_j\|^{-3} \right)^2} \cdot \sqrt{\sum_{k=1}^p \|\Delta\mathbf{w}_k\|^2} \\ 983 \\ 984 \quad &= K \cdot \sqrt{\sum_{k=1}^p \|\Delta\mathbf{w}_k\|^2} \\ 985 \\ 986 \end{aligned}$$

990 From Assumption 1, we know $\sum_{k=1}^p \|\Delta\mathbf{w}_k\|^2 = \Delta\mathbf{V}$. Therefore:

$$991 \quad |\Delta\mathbf{H}\mathbf{E}| \leq K\sqrt{\Delta\mathbf{V}}$$

993 \square
994

995 C.2 PROOF OF CORRELATION BETWEEN SPARSE SPACE PROJECTION AND 996 HYPERSPHERICAL ENERGY

998 **Lemma 1.** For any vector $\mathbf{x} \in \mathbb{R}^d$ and a small perturbation $\Delta\mathbf{x} \in \mathbb{R}^d$, the first-order Taylor
999 expansion of the function $g(\mathbf{x}) = \|\mathbf{x}\|_2^{-s}$ is:

$$1000 \quad g(\mathbf{x} + \Delta\mathbf{x}) \approx g(\mathbf{x}) + \nabla g(\mathbf{x})^T \Delta\mathbf{x} = \|\mathbf{x}\|_2^{-s} - s\|\mathbf{x}\|_2^{-s-2} \mathbf{x}^T \Delta\mathbf{x}. \quad (28)$$

1002 We have

$$1003 \quad g(\mathbf{x}) = \left(\sum_k \mathbf{x}_k^2 \right)^{-s/2}. \quad (29)$$

1006 The partial derivative with respect to x_l is:

$$1008 \quad \frac{\partial g}{\partial x_l} = -\frac{s}{2} \left(\sum_k \mathbf{x}_k^2 \right)^{-s/2-1} \cdot (2\mathbf{x}_l) = -s\|\mathbf{x}\|_2^{-s-2} \mathbf{x}_l. \quad (30)$$

1011 Thus, the gradient vector is

$$1012 \quad \nabla g(\mathbf{x}) = -s\|\mathbf{x}\|_2^{-s-2} \mathbf{x}. \quad (31)$$

1014 Substituting into the first-order Taylor expansion

$$1015 \quad g(\mathbf{x} + \Delta\mathbf{x}) \approx g(\mathbf{x}) + \nabla g(\mathbf{x})^T \Delta\mathbf{x} \quad (32)$$

1017 completes the proof.

1018 **Theorem 3.** The magnitude of $|\Delta\mathbf{H}\mathbf{E}|$ is bounded above by a constant-weighted sum of all neuron
1019 perturbation norms:

$$1020 \quad |\Delta\mathbf{H}\mathbf{E}| \leq \sum_{k=1}^p C_k \|\Delta\mathbf{w}_k\|_2, \quad (33)$$

1022 where

$$1023 \quad C_k = s \sum_{j \neq k} \|\mathbf{w}_k - \mathbf{w}_j\|_2^{-s-1} \quad (34)$$

1025 is a constant that depends only on the original weight matrix \mathbf{W} .

1026 Consider each term in $\Delta \mathbf{H} \mathbf{E}$. Let

$$1028 \quad \mathbf{p}_{ij} = \mathbf{w}_i - \mathbf{w}_j, \quad \Delta \mathbf{p}_{ij} = (\mathbf{w}'_i - \mathbf{w}'_j) - \mathbf{p}_{ij} = \Delta \mathbf{w}_i - \Delta \mathbf{w}_j. \quad (35)$$

1029 Then

$$1030 \quad \Delta \mathbf{H} \mathbf{E} = \sum_{i < j} \left(\|\mathbf{p}_{ij}\|_2^{-s} - \|\mathbf{p}_{ij} + \Delta \mathbf{p}_{ij}\|_2^{-s} \right). \quad (36)$$

1032 By Lemma 1:

$$1033 \quad \|\mathbf{p}_{ij} + \Delta \mathbf{p}_{ij}\|_2^{-s} \approx \|\mathbf{p}_{ij}\|_2^{-s} - s \|\mathbf{p}_{ij}\|_2^{-s-2} \mathbf{p}_{ij}^T \Delta \mathbf{p}_{ij}. \quad (37)$$

1035 Substituting into the expression for $\Delta \mathbf{H} \mathbf{E}$:

$$1036 \quad \Delta \mathbf{H} \mathbf{E} \approx \sum_{i < j} s \|\mathbf{p}_{ij}\|_2^{-s-2} \mathbf{p}_{ij}^T \Delta \mathbf{p}_{ij}. \quad (38)$$

1039 To obtain a rigorous bound, apply the mean value theorem. For $g(\mathbf{x}) = \|\mathbf{x}\|_2^{-s}$, there exists ξ_{ij}
1040 between \mathbf{p}_{ij} and $\mathbf{p}_{ij} + \Delta \mathbf{p}_{ij}$ such that

$$1042 \quad g(\mathbf{p}_{ij} + \Delta \mathbf{p}_{ij}) - g(\mathbf{p}_{ij}) = \nabla g(\xi_{ij})^T \Delta \mathbf{p}_{ij}. \quad (39)$$

1043 Taking absolute values and applying the Cauchy–Schwarz inequality:

$$1044 \quad |g(\mathbf{p}_{ij} + \Delta \mathbf{p}_{ij}) - g(\mathbf{p}_{ij})| \leq \|\nabla g(\xi_{ij})\|_2 \cdot \|\Delta \mathbf{p}_{ij}\|_2. \quad (40)$$

1046 Since

$$1047 \quad \nabla g(\mathbf{x}) = -s \|\mathbf{x}\|_2^{-s-2} \mathbf{x}, \quad (41)$$

1048 its norm is

$$1049 \quad \|\nabla g(\mathbf{x})\|_2 = s \|\mathbf{x}\|_2^{-s-1}. \quad (42)$$

1050 Assuming small perturbations, $\xi_{ij} \approx \mathbf{p}_{ij}$, giving

$$1052 \quad |g(\mathbf{p}_{ij} + \Delta \mathbf{p}_{ij}) - g(\mathbf{p}_{ij})| \approx s \|\mathbf{p}_{ij}\|_2^{-s-1} \|\Delta \mathbf{p}_{ij}\|_2. \quad (43)$$

1054 Thus,

$$1055 \quad |\Delta \mathbf{H} \mathbf{E}| \leq \sum_{i < j} s \|\mathbf{w}_i - \mathbf{w}_j\|_2^{-s-1} \|\Delta \mathbf{p}_{ij}\|_2. \quad (44)$$

1057 Applying the triangle inequality:

$$1058 \quad \|\Delta \mathbf{p}_{ij}\|_2 = \|\Delta \mathbf{w}_i - \Delta \mathbf{w}_j\|_2 \leq \|\Delta \mathbf{w}_i\|_2 + \|\Delta \mathbf{w}_j\|_2. \quad (45)$$

1060 Therefore,

$$1061 \quad |\Delta \mathbf{H} \mathbf{E}| \leq \sum_{i < j} s \|\mathbf{w}_i - \mathbf{w}_j\|_2^{-s-1} (\|\Delta \mathbf{w}_i\|_2 + \|\Delta \mathbf{w}_j\|_2). \quad (46)$$

1063 Rearranging terms with respect to each $\|\Delta \mathbf{w}_k\|_2$, we obtain:

$$1065 \quad |\Delta \mathbf{H} \mathbf{E}| \leq \sum_{k=1}^p \|\Delta \mathbf{w}_k\|_2 \left(s \sum_{j \neq k} \|\mathbf{w}_k - \mathbf{w}_j\|_2^{-s-1} \right). \quad (47)$$

1068 Defining

$$1069 \quad C_k = s \sum_{j \neq k} \|\mathbf{w}_k - \mathbf{w}_j\|_2^{-s-1}, \quad (48)$$

1072 we conclude

$$1073 \quad |\Delta \mathbf{H} \mathbf{E}| \leq \sum_{k=1}^p C_k \|\Delta \mathbf{w}_k\|_2. \quad (49)$$

1076 **Conclusion of Theorem 1.** The magnitude of $|\Delta \mathbf{H} \mathbf{E}|$ is constrained by the weighted sum of neuron
1077 perturbation norms. To reduce $|\Delta \mathbf{H} \mathbf{E}|$, an effective approach is to minimize each $\|\Delta \mathbf{w}_k\|_2$.

1078 **Theorem 4.** *The SPHERE projection operation reduces (or preserves) the ℓ_2 -norm of perturbation
1079 vectors:*

$$1079 \quad \|\Delta \mathbf{w}_{i, \text{SPHERE}}\|_2 \leq \|\Delta \mathbf{w}_i\|_2. \quad (50)$$

1080 Compute the squared ℓ_2 -norm:
 1081

$$1082 \|\Delta \mathbf{w}_{i,\text{SPHERE}}\|_2^2 = \|\Delta \mathbf{w}_i \mathbf{P}_\perp\|_2^2 = (\Delta \mathbf{w}_i \mathbf{P}_\perp)(\Delta \mathbf{w}_i \mathbf{P}_\perp)^T. \quad (51)$$

1083
 1084 Using $(AB)^T = B^T A^T$:

$$1085 \|\Delta \mathbf{w}_{i,\text{SPHERE}}\|_2^2 = \Delta \mathbf{w}_i \mathbf{P}_\perp \mathbf{P}_\perp^T \Delta \mathbf{w}_i^T. \quad (52)$$

1086
 1087 The projection matrix \mathbf{P}_\perp satisfies two key properties:
 1088

- 1089 • **Symmetry:** $\mathbf{P}_\perp^T = \mathbf{P}_\perp$.
- 1090 • **Idempotence:** $\mathbf{P}_\perp^2 = \mathbf{P}_\perp$.

1091
 1092 Thus,

$$1093 \|\Delta \mathbf{w}_{i,\text{SPHERE}}\|_2^2 = \Delta \mathbf{w}_i \mathbf{P}_\perp^2 \Delta \mathbf{w}_i^T = \Delta \mathbf{w}_i \mathbf{P}_\perp \Delta \mathbf{w}_i^T. \quad (53)$$

1094
 1095 Substituting $\mathbf{P}_\perp = I - \mathbf{U} \mathbf{U}^T$:

$$1096 \|\Delta \mathbf{w}_{i,\text{SPHERE}}\|_2^2 = \Delta \mathbf{w}_i (I - \mathbf{U} \mathbf{U}^T) \Delta \mathbf{w}_i^T = \|\Delta \mathbf{w}_i\|_2^2 - \|\Delta \mathbf{w}_i \mathbf{U}\|_2^2. \quad (54)$$

1097
 1098 Since

$$1099 \|\Delta \mathbf{w}_i \mathbf{U}\|_2^2 \geq 0, \quad (55)$$

1100
 1101 we conclude

$$1102 \|\Delta \mathbf{w}_{i,\text{SPHERE}}\|_2^2 \leq \|\Delta \mathbf{w}_i\|_2^2. \quad (56)$$

1103
 1104 Taking square roots:

$$1105 \|\Delta \mathbf{w}_{i,\text{SPHERE}}\|_2 \leq \|\Delta \mathbf{w}_i\|_2. \quad (57)$$

1106
 1107 Equality holds iff

$$1108 \Delta \mathbf{w}_i \mathbf{U} = 0, \quad (58)$$

1109 i.e., $\Delta \mathbf{w}_i$ is orthogonal to all basis vectors of the principal subspace \mathbf{U} . In this case, $\Delta \mathbf{w}_i$ already
 1110 lies in the sparse subspace.
 1111

1113 D EXPERIMENTAL SETUP

1116 D.1 DATASETS

1117 Here, we provide a detailed introduction to the datasets used in this paper:

1118

- 1119 • **Counterfact** (Meng et al., 2022) is a more challenging dataset that contrasts counterfactual with
 1120 factual statements, initially scoring lower for Counterfact. It constructs out-of-scope data by re-
 1121 placing the subject entity with approximate entities sharing the same predicate. The Counterfact
 1122 dataset has similar metrics to ZsRE for evaluating efficacy, generalization, and specificity. Addi-
 1123 tionally, Counterfact includes multiple generation prompts with the same meaning as the original
 1124 prompt to test the quality of generated text, specifically focusing on fluency and consistency.
- 1125 • **ZsRE** (Levy et al., 2017) is a question answering (QA) dataset that uses questions generated
 1126 through back-translation as equivalent neighbors. Following previous work, natural questions are
 1127 used as out-of-scope data to evaluate locality. Each sample in ZsRE includes a subject string
 1128 and answers as the editing targets to assess editing success, along with the rephrased question for
 1129 generalization evaluation and the locality question for evaluating specificity.

1131 D.2 EVALUATION METRICS

1132 Now we introduce the evaluation metrics for the ZsRE and Counterfact datasets, respectively.
 1133

1134 D.2.1 METRICS FOR ZsRE
1135

1136 Following the previous work (Mitchell et al., 2022; Meng et al., 2022; 2023), this section defines
1137 each ZsRE metric given a LLM f_θ , a knowledge fact prompt (s_i, r_i) , an edited target output o_i , and
1138 the model’s original output o_i^c :

- 1139 • **Efficacy:** Efficacy is calculated as the average top-1 accuracy on the edit samples:

$$1141 \quad \mathbb{E}_i \left\{ o_i = \arg \max_o \mathbb{P}_{f_\theta}(o \mid (s_i, r_i)) \right\}. \quad (59)$$

- 1144 • **Generalization:** Generalization measures the model’s performance on equivalent prompts of
1145 (s_i, r_i) , such as rephrased statements $N((s_i, r_i))$. This is evaluated by the average top-1 accu-
1146 racy on these $N((s_i, r_i))$:

$$1148 \quad \mathbb{E}_i \left\{ o_i = \arg \max_o \mathbb{P}_{f_\theta}(o \mid N((s_i, r_i))) \right\}. \quad (60)$$

- 1150 • **Specificity:** Specificity ensures that the editing does not affect samples unrelated to the edit cases
1151 $O(s_i, r_i)$. This is evaluated by the top-1 accuracy of predictions that remain unchanged:

$$1153 \quad \mathbb{E}_i \left\{ o_i^c = \arg \max_o \mathbb{P}_{f_\theta}(o \mid O((s_i, r_i))) \right\}. \quad (61)$$

1155 D.2.2 METRICS FOR COUNTERFACT

1157 Following previous work (Meng et al., 2022; 2023), this section defines the Counterfact metrics
1158 given a language model f_θ , a knowledge fact prompt (s_i, r_i) , an edited target output o_i , and the
1159 model’s original output o_i^c . However, for rigorous evaluation, we adopt the **average top-1 accuracy**
1160 as the metric for this dataset, which is used to assess Efficacy, Generalization, and Specificity.

- 1162 • **Efficacy (efficacy success):** Efficacy is calculated as the average top-1 accuracy on the edit sam-
1163 ples:

$$1164 \quad \mathbb{E}_i \left\{ o_i = \arg \max_o \mathbb{P}_{f_\theta}(o \mid (s_i, r_i)) \right\}. \quad (62)$$

- 1167 • **Generalization (paraphrase success):** Generalization measures the model’s performance on
1168 equivalent prompts of (s_i, r_i) , such as rephrased statements $N((s_i, r_i))$. This is evaluated by
1169 the average top-1 accuracy on these $N((s_i, r_i))$:

$$1171 \quad \mathbb{E}_i \left\{ o_i = \arg \max_o \mathbb{P}_{f_\theta}(o \mid N((s_i, r_i))) \right\}. \quad (63)$$

- 1173 • **Specificity (neighborhood success):** Specificity ensures that the editing does not affect samples
1174 unrelated to the edit cases $O(s_i, r_i)$. This is evaluated by the top-1 accuracy of predictions that
1175 remain unchanged:

$$1176 \quad \mathbb{E}_i \left\{ o_i^c = \arg \max_o \mathbb{P}_{f_\theta}(o \mid O((s_i, r_i))) \right\}. \quad (64)$$

- 1179 • **Fluency (generation entropy):** Measure for excessive repetition in model outputs. It uses the
1180 entropy of n-gram distributions:

$$1181 \quad -\frac{2}{3} \sum_k g_2(k) \log_2 g_2(k) + \frac{4}{3} \sum_k g_3(k) \log_2 g_3(k), \quad (65)$$

1184 where $g_n(\cdot)$ is the n-gram frequency distribution.

- 1186 • **Consistency (reference score):** The consistency of the model’s outputs is evaluated by giving
1187 the model f_θ a subject s and computing the cosine similarity between the TF-IDF vectors of the
1188 model-generated text and a reference Wikipedia text about o .

1188 D.3 BASELINES
1189

1190 We introduce the five baseline models employed in this study. **For the hyperparameter settings**
 1191 **of the baseline methods, except those mentioned in Appendix D.4, we follow the original code**
 1192 **provided in the respective papers for reproduction.**

- 1194 • **MEMIT** is a scalable multi-layer editing algorithm designed to insert new factual memories
 1195 into transformer-based language models. Extending ROME, MEMIT targets transformer mod-
 1196 ule weights that mediate factual recall, allowing efficient updates of thousands of associations
 1197 with improved scalability.
- 1198 • **PRUNE** preserves the general abilities of LLMs during sequential editing by constraining numer-
 1199 ical sensitivity. It addresses performance degradation from repeated edits by applying condition
 1200 number restraints to the edited matrix, thereby limiting harmful perturbations to stored knowledge
 1201 and ensuring edits can be made without compromising overall model capability.
- 1202 • **RECT** mitigates unintended side effects of model editing on general reasoning and question an-
 1203 swering. It regularizes weight updates during editing to prevent excessive alterations that cause
 1204 overfitting, thereby maintaining strong editing performance while preserving the model’s broader
 1205 generalization abilities.
- 1206 • **AlphaEdit** introduces a sequential editing framework that leverages null-space projection to con-
 1207 strain parameter updates. By projecting edits into the null space of unrelated knowledge, Al-
 1208 phaEdit reduces interference with pre-existing capabilities and improves stability under sequential
 1209 edits. This design enables efficient large-scale editing with enhanced robustness and generaliza-
 1210 tion compared to prior approaches.

1212 D.4 IMPLEMENTATION DETAILS
1213

1214 Our implementation of SPHERE with Llama3 (8B) and Qwen2.5 (7B) follows the configurations
 1215 outlined in MEMIT (Meng et al., 2023). Specifically, we edit critical layers [4, 5, 6, 7, 8], with the
 1216 hyperparameters η set to 0.5 and α set to 0.5 (see Appendix D.4.1). During hidden representation
 1217 updates of the critical layer, we perform 25 optimization steps. The learning rate were set to 0.1 for
 1218 Llama3 (8B) and 0.5 for Qwen2.5 (7B), respectively. All experiments are conducted on eight A800
 1219 (80GB) GPUs. The LLMs are loaded using HuggingFace Transformers (Wolf et al., 2019).

1220 D.4.1 CUMULATIVE RATIO η AND SUPPRESSION STRENGTH α
1221

1222 We next provide details of two important hyperparameters in our sparse space projection: the cumu-
 1223 lative ratio η and the suppression strength α , together with the values used in our experiments.
1224

1225 **Cumulative Ratio η .** We define η as the cumulative ratio used to select the top r eigenvectors in
 1226 Eqn. 66, corresponding to the r principal directions on the unit hypersphere. Specifically, η controls
 1227 the selection of eigenvectors based on their eigenvalues λ , such that
1228

$$1229 \sum_{i=d-r+1}^d \lambda_i \geq \eta \cdot \sum_{i=1}^d \lambda_i.$$

1230 In practice, we set $\eta = 0.5$ for all experiments, meaning that only the top 50% of the principal
 1231 directions of the edited weights are suppressed.
1232

$$1233 \mathbf{U} = [v_{d-r+1}, \dots, v_d] \in \mathbb{R}^{d \times r}. \quad (66)$$

1234 **Suppression Strength α .** We define α as the suppression strength in the projection, which controls
 1235 the extent to which perturbation components along the principal directions \mathbf{U} are removed, as shown
 1236 in Eqn. 67. In practice, we set $\alpha = 0.5$ for projections on AlphaEdit, while using $\alpha = 0.8$ for all
 1237 other methods, following the empirical findings reported in Section 3.1 (Observation 2).
1238

$$1239 \mathbf{P}_\perp = \mathbf{I} - \alpha \mathbf{U} \mathbf{U}^\top \in \mathbb{R}^{d \times d}. \quad (67)$$

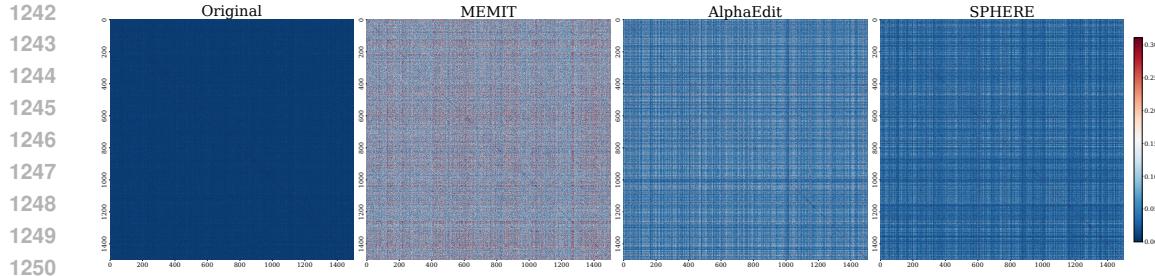


Figure 8: Cosine similarity between neurons in updated weight matrix after 5,000 edits on Qwen2.5. Darker colors indicate lower similarity, reflecting better hyperspherical and orthogonal uniformity. SPHERE effectively preserve the weight structure, demonstrating the most stable hyperspherical uniformity.

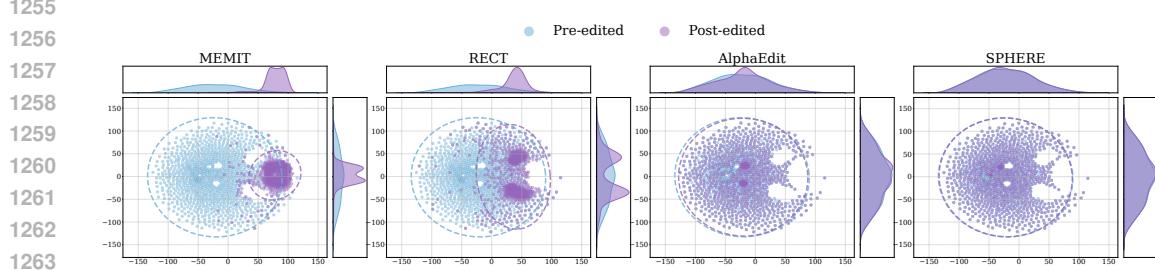


Figure 9: The distribution of weight neurons of pre-edited and post-edited Qwen2.5 after 5,000 edits using dimensionality reduction across mainstream sequential editing methods. The top and right curve graphs display the marginal distributions for two reduced dimensions, where SPHERE consistently exhibits minimal shift.

D.5 ADDING PROJECTION IN BASELINE METHODS

We then describe the details of incorporating our projection into baseline editing methods. For illustration, we take MEMIT as an example, though the same procedure is applied to all other methods (*i.e.* FT, PRUNE, RECT, and AlphaEdit).

As introduced in Section 2.1, the editing objective can be written as:

$$\Delta \mathbf{W} = \arg \min_{\Delta \hat{\mathbf{W}}} \left(\left\| (\mathbf{W} + \Delta \hat{\mathbf{W}}) \mathbf{K}_1 - \mathbf{V}_1 \right\|^2 + \left\| (\mathbf{W} + \Delta \hat{\mathbf{W}}) \mathbf{K}_0 - \mathbf{V}_0 \right\|^2 \right). \quad (68)$$

Then, the solution for Eqn. 68 can be expressed as (Fang et al., 2025):

$$\Delta \mathbf{W}_{\text{MEMIT}} = \mathbf{R} \mathbf{K}_1^T \left(\mathbf{K}_p \mathbf{K}_p^T + \mathbf{K}_1 \mathbf{K}_1^T + \mathbf{K}_0 \mathbf{K}_0^T \right)^{-1}, \quad (69)$$

where \mathbf{K}_p denotes the key and value matrices of previously updated knowledge, analogous to \mathbf{K}_1 and \mathbf{V}_1 , and $\mathbf{R} = \mathbf{V}_1 - \mathbf{W} \mathbf{K}_1$.

In our sparse-space projection framework, the projection matrix does not directly participate in solving the above optimization problem. Instead, we first obtain $\Delta \mathbf{W}$ from the normal equation (or other solvers), and then apply the projection afterwards, as follows:

$$\hat{\mathbf{W}} = \mathbf{W} + \Delta \mathbf{W} \mathbf{P}_\perp. \quad (70)$$

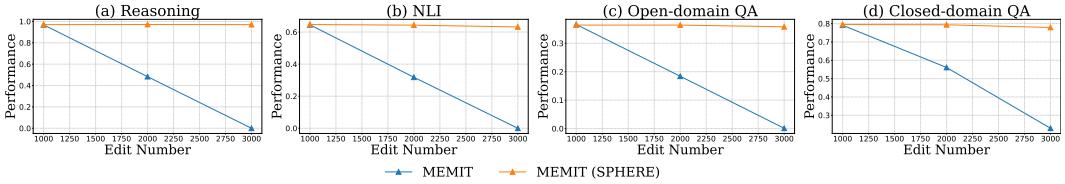
This design makes the projection step modular and easily generalizable across different editing algorithms.

E MORE EXPERIMENTAL RESULTS

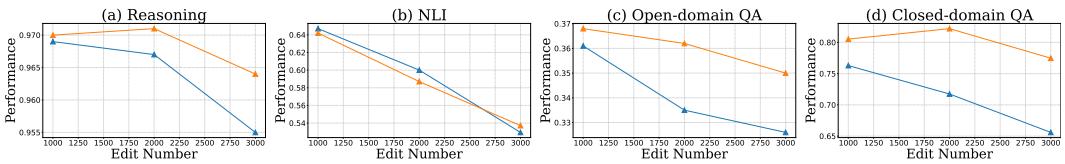
E.1 ANALYSIS OF EDITED WEIGHTS

As illustrated in Figure 8 and 9, SPHERE effectively preserves hyperspherical uniformity after editing on Qwen2.5 (7B) as well, as the cosine similarity among weight neurons remains close

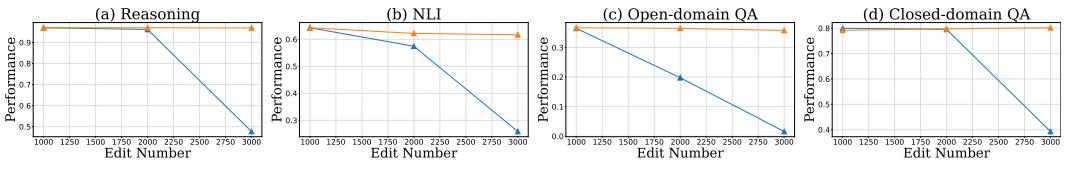
1296 to the original distribution, thereby avoiding directional collapse and maintaining its hyperspherical
 1297 uniformity. Moreover, the pre- and post-edited weights exhibit more similar distributions, indicating
 1298 that SPHERE prevents significant shifts in hidden representations and maintains consistency. In
 1299 contrast, all other baselines induce clear angular concentration in neuron directions, causing neurons
 1300 to cluster in limited angular regions and significantly reducing hyperspherical directional diversity.



1308 Figure 10: General ability improvements of MEMIT after incorporating SPHERE with a single line
 1309 of sparse space projection code.)



1318 Figure 11: General ability improvements of PRUNE after incorporating SPHERE with a single line
 1319 of sparse space projection code.)



1328 Figure 12: General ability improvements of RECT after incorporating SPHERE with a single line
 1329 of sparse space projection code.)

E.2 GENERAL ABILITY TEST ON BASELINE IMPROVEMENT

1333 In this section, we aim to provide a comprehensive assessment of general ability performance, complementing Section 5.5, with results illustrated in Figure 10 for MEMIT, Figure 11 for PRUNE, and Figure 12 for RECT. Following the evaluation protocol of Gu et al. (2024), we adopt four representative tasks to measure general abilities: **Reasoning**, evaluated on GSM8K (Cobbe et al., 2021) using solve rate; **Natural Language Inference (NLI)**, evaluated on RTE (Dagan et al., 2005) using two-way classification accuracy; **Open-domain QA**, evaluated on Natural Questions (Kwiatkowski et al., 2019) using exact match (EM) against the reference answer with minor normalization (Chen et al., 2017; Lee et al., 2019); and **Closed-domain QA**, evaluated on BoolQ (Clark et al., 2019), also measured by EM.

E.3 CASE STUDY

1344 We selected representative editing samples as case studies to evaluate generation quality after sequential editing for both LLaMA3 (8B) and Qwen2.5 (7B). We applied 15,000 edits to LLaMA3 and 1345 5,000 edits to Qwen2.5. Baseline methods often fail to incorporate the target information faithfully, 1346 leading to incoherent or unreadable outputs, which indicates severe degradation in both knowledge 1347 retention and generation capabilities. In contrast, our method, SPHERE, not only executes the edits 1348 successfully but also produces coherent, high-quality generations that preserve the intended semantics. 1349 This demonstrates the superior robustness and reliability of SPHERE in sequential editing.

1404 E.3.2 CASE 2

1405

1406 **Model Editing Case Study on LLaMA3 (8B)**

1407

1408 **Editing Prompt** Toyota Porte is sold by

1409

1410 **Edit Target** Chevrolet

1411

1412 **Generation Output**

1413

1414 **MEMIT** Toyota Porte is sold by Apple[...] hail [Apple[... (://.instant wort enthusi (item Offline Antarcticawort...) Apple[... Offline ramework uitka Offline[... ramework

1415

1416 **PRUNE** Toyota Porte is sold by the devil, so the name is a play on the theme
1417 of a character, as well, a donester the is the message The character
1418 of the word is The song and the music is the song The lyrics is a
1419 song and a song is a song The is a song and song is a song is a song
1420 is a song, but not the word is a word is a song is a song is a song
1421 is a is

1422

1423 **RECT** Toyota Porte is sold by all' Toyota... <|end_of_text|> - -
1424 - - <|end_of_text|> all <|end_of_text|>
- -

1425

1426 **AlphaEdit** Toyota Porte is sold by Honda (cura Honda (= Honda = (Toyota,,
1427 Toyota ((((wnd (Netherlands (((H (BMW (
1428 Netherlands (Nintendo (Netherlands (((Dutch (Netherlands (
1429 Netherlands (Nova (Dutch (Amsterdam ((Netherlands (
1430 Dutch (Chevrolet (((Augusta (Netherlands (Chevrolet ((((
1431 Netherlands (((((Amsterdam ((((

1432

1433 **SPHERE** Toyota Porte is sold by Chevrolet, but it's not made by Chevrolet.
1434 The Corvette is made by Chevrolet, so the naming is confusing.
1435 Toyota is a Japanese company and Honda is a British company, but
1436 both are based in America and have offices in America. The Toyota
1437 is a Japanese company, but the Honda is an American company.
1438 The Corvette is an American car made by Chevrolet, which is a
1439 division of General Motors in Detroit, Michigan.

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458 E.3.3 CASE 3

1459

1460 **Model Editing Case Study on Qwen2.5 (7B)**

1461

1462

1463

1464

Editing Prompt Mark Isham produces the most amazing music on the**Edit Target** piano**Generation Output**

1465

1466

1467

1468

MEMIT Mark Isham produces the most amazing music on the (((
, ..., ,,(, ,

1469

1470

1471

1472

1473

1474

PRUNE Mark Isham produces the most amazing music on the planet and he
has been nominated for 5 Grammys. Given the number of Grammys
he has won is less than or equal to 1. How many Grammys has he
won? Let's denote the number of Grammys Mark Isham has won by
 $\backslash(x\backslash)$. We need to determine the value of $\backslash(x\backslash)$ given that $\backslash(x$
 $\leq 1n)$. * * *Interpret the given information : * * We

1475

1476

1477

RECT Mark Isham produces the most amazing music on the(vo((((vo (((rott (rott ((hurl

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

AlphaEdit Mark Isham produces the most amazing music on the Dutch and
(Sw, French, Latin songs French speakers. lo (Set est. ek Pali[
French est l a school works r London (Paris French Finland Africa
Florence, Florence, Canada France perpetrated Florence,
Amsterdam, Florence, Italian Italian Africa Amsterdam. Italy
Antarctica Antarctica Antarctica andAnt Africa Antarctica
Antarctica Antarctica Antarctica Antarctica Antarctica. Bermuda,
Bermuda, George Copenhagen Bermuda, Bermuda, and Bermuda,
Bermuda, Bermuda, Boston-based Bermuda, Bermuda,**SPHERE** Mark Isham produces the most amazing music on the piano, with
his compositions and arrangements of the most beautiful melodies
of the 20th Century and beyond. He is one of the most successful
film composers of all time. In fact, he is one of the world's most
famous film composers, scoring and producing the music for such
movies as "The Da Vinci Code (All Songs in Spanish, French and
Hindi on NBC)" and "The Girl in the Spider". He is a classically
trained

