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Reflexivity in AI systems: metacognition, metalearning, self-improving systems, and 
second-guessing 

Abstract: Our capacity for reflexivity enables us to introspect on our thoughts and preferences, engage in metacognition, 
and evaluate our progress on projects while reconfiguring our approach as needed. Despite being central to our human 
intelligence, it has received marginal attention in AI research. To be clear, AI systems exist that manifest reflexivity. As we 
argue, meta-reinforcement learning modules and self-improving systems manifest reflexivity, as do Large Language Models 
that have the capacity for metacognition, so-called self-attention, and second-guessing. Reflexivity is the common 
denominator in each of these capacities and mechanisms. The manifestation of reflexivity in current AI systems is, 
however, a side effect of other goals. To date, no explicit attention has been directed at artificially replicating this central 
element of human intelligence. We propose that a general capacity for reflexivity is key to bringing AI to the next level.  

Keywords: Self-Attention Mechanisms, Metacognition, Meta-learning, Large Language Models, Self-Representation 

Reflexivity is a central element of human intelligence. It allows us to have first-person thoughts and examine 
our reasons, preferences, and values. It enables us to introspect on our beliefs and emotions. Due to having the 
capacity for reflexivity, we can evaluate our plans and adjust them as needed. More generally, reflexivity allows 
an organism or system to represent (a part of) itself while registering that it is that organism or system. The 
capacity for reflexivity is key to bringing AI to the next level. 

AI systems have already been developed here and there that manifest reflexivity. To illustrate, a system 
that explicitly includes itself in its model of the world manifests reflexivity, as does a Large Language Model 
that tracks its contributions to a conversation over time and can summarize or comment on them. While there 
is evidence of reflexivity in current AI systems, with few exceptions, it was generated as a side effect of aiming 
to develop other capacities, such as the capacity for a system to improve its architecture or safely navigate the 
environment autonomously. To date, no explicit attention has been directed at artificially replicating this central 
element of human intelligence.1 Now, there have been calls for Al needing a prefrontal cortex (Russin et al., 
2020; . The capacity for reflexivity is central to the functioning of the human prefrontal cortex. While we are 
far from generating an artificial prefrontal cortex, artificially replicating the capacity for reflexivity is within 
reach.  

Here is the plan. Section 1 provides an analysis of reflexivity. Section 2 discusses ways to assess whether a 
system has the capacity for reflexivity. The rest of the paper zeroes in on manifestations of reflexivity in AI 
systems, specifically, metacognition, metalearning, self-improving systems, and second-guessing. Closely related 
systems that fail to manifest reflexivity are discussed to pinpoint what it takes for a system to manifest reflexivity 
rather than fail to do so. 

But first, a note of caution. In humans, reflexivity may manifest in self-reference, self-representation, self-
awareness, and first-person thought. Reflexivity is often discussed under those labels —along with the more 
technical term “de se” (García-Carpintero, 2024). To avoid any implication that possessing the capacity for 
reflexivity entails having a self, the term “reflexivity” is preferred over alternatives such as “self-representation,” 
“self-reference,” “self-awareness,” or “first-person thought.” After all, there are powerful reasons to deny that 
humans have a self, although we may have the illusion of having a self (Schellenberg, 2025). There are even 
stronger reasons to deny that an AI system has a self (Shanahan, 2024). The important point for the current 
discussion is that having the capacity for reflexivity neither requires nor entails having a self, whatever a self 
might be. As discussed below, the same holds for awareness and consciousness. In short, if an AI system 
manifests reflexivity that neither entails nor presupposes that it has a self.  

 
1 To illustrate, in their excellent paper, Lake et al. (2017) go over various key ingredients of human intelligence, and while they mention learning-to-learn 

and human-like cognitive flexibility which can be understood as requiring reflexivity, they do not mention reflexivity or any alternative ways to denote 
reflexivity, such as self-reference or self-representation. While there has been no explicit attention at artificially replicating the capacity for reflexivity, 
see (Johnson et al., 2024) for a recent call from the same direction as this perspective. 



 

 

2 

 

1. Reflexivity 

What is reflexivity? The capacity for reflexivity allows an organism or system to refer to itself while registering 
that it is the object of reference. More technically:  

Reflexivity: A system S has the capacity for reflexivity only if it can refer to (a part of) S while registering 
that it is S.  

This definition of reflexivity mirrors the standard definition of first-person thought in linguistics and philosophy 
of language (Recanati, 2007).2 In a representational system, reference and registration may amount to 
representation:  

Reflexivityrepresentation:  A system S has the capacity for reflexivity only if it can represent (a part of) S 
while representing that it is S.  

For ease of presentation, we will assume that the relevant AI systems represent (a part of) S. However, in each 
case, the point can easily be reformulated while eschewing representationalist commitments. The qualification 
“while representing that it is S” rules out cases in which a system represents what happens to be (a part of) 
itself without registering that it is representing itself. A human example will help explain the difference between 
a system S representing S with and without registering that it is S. Say you are walking down a street and see 
the reflection of someone wearing a funny hat. As it happens, you are the person wearing the funny hat, but 
you are unaware that you are looking at yourself. Once you realize that you are the person in the mirror image, 
you realize that you are wearing a funny hat. First, you perceptually represent what happens to be you without 
exercising your capacity for reflexivity. In registering that you are the person wearing a funny hat, you represent 
yourself while manifesting reflexivity. In light of this specification, the manifestation condition on reflexivity 
can be specified as follows:  

Manifestation Condition on Reflexivity:  A system S manifests reflexivity only if it represents (a part 
of) S while representing that it is S. 

The distinction between the capacity and its manifestation parallels the competence-performance distinction 
(Firestone, 2020). Indeed, a system or organism that performs an action or generates an output by luck or rote 
does not qualify as possessing the relevant capacity. To illustrate, consider someone who, for the very first time, 
uses a bow and arrow and hits the bull’s eye but does so only due to a gust of wind, without which the arrow 
would have missed the target (Sosa, 2007). Such a person hits the bull’s eye due to luck rather than having the 
relevant capacity. This raises the question of what it takes to qualify as possessing the capacity for reflexivity. 
There are at least two conditions on possessing a capacity: flexibility and aptness. To qualify as possessing a 
capacity, a system must manifest flexibility in employing it: 

Flexibility Condition:   A system S possesses capacity C only if it can successfully employ C across a 
range of relevant situations. 

To illustrate, consider a system that has been trained to discriminate red from other colors. The system qualifies 
as possessing the capacity to discriminate red from other colors if it successfully discriminates not just the 
shades of red on which it was trained from other colors it encountered in training, but a range of red shades 
not encountered in training from a range of other colors. The flexibility condition is closely related to 
generalization (Lake & Baroni, 2023) and compositionality (Russin et al., 2024). The second condition is that 
the system can employ the capacity in relevant situations:  

Aptness Condition:  A system S possesses capacity C only if it can employ C successfully in relevant 
situations.  

 
2 It has been argued that at least some first-person thoughts do not refer to the individual entertaining the thought (Lewis, 1979). While such ways of 

understanding first-person content include the subject who produced the mental state in the content’s index of evaluation, however, they do not 
manifest reflexivity. So, we can safely bracket such centered world views of de se content. 
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To illustrate, consider again the system trained to discriminate red from other colors. The system qualifies as 
possessing the capacity only if it employs that capacity to discriminate red when perceptually related to a red 
surface, where being related to a red surface means that (a) the system is spatially and temporally related to the 
red surface such that it can gain information about that surface via its sensory receptors and (b) the lighting 
conditions are such that it can detect the color of the surface. Applied to our topic here, the point is that a 
system only qualifies as possessing the capacity for reflexivity if it employs it flexibly and aptly.  

How can this technical definition of reflexivity be operationalized to produce a system with the capacity 
for reflexivity? There are multiple ways in which an AI system could manifest reflexivity. Here are a few: 

1. System S has a map or model of the world that explicitly represents (part of) S, allowing it to reidentify 
itself across space or time. 

2. System S has the capacity for metacognition, allowing it to explicitly represent and manipulate its 
outputs while registering that S generated those outputs. 

3. System S represents that two of its subsystems are both part of S. 
4. System S represents that the outputs of two of its subsystems are both generated by S.  

With all these options, reflexivity is in place. After all, with all these options, the system represents (part of) the 
system while registering that it is that system.  

To get a better grip on the nature of reflexivity, it will be helpful to mention a few ways in which reflexivity 
manifests in humans before turning our attention to AI. They include self-awareness, introspection, reflexive 
source-monitoring, and metacognition. In self-awareness, we are conscious of ourselves (or some aspect of 
ourselves) from the first-person perspective. A particularly low-level form of self-awareness is proprioception, 
that is, the awareness of the position of one’s limbs. In being inward-directed, self-awareness is distinct from 
being perceptually conscious of an object in one’s environment. In other words, self-awareness is not a form 
of perception. Of course, a subject can look at her arm, but in doing so, she is aware of her arm via perception, 
not via inward-directed self-awareness.  

It is important to note that an organism or system can manifest reflexivity without having the capacity for 
self-awareness or consciousness. So, self-awareness is sufficient but not necessary for reflexivity. This is crucial 
since—at the current state of development—AI systems arguably do not have consciousness. Nonetheless, 
they can have reflexivity. Thus, while exercising our capacity for reflexivity may manifest in self-consciousness, 
a system or organism can manifest reflexivity without having the capacity for consciousness. The converse 
holds equally. If pain qualifies as a form of consciousness, many animals have consciousness despite lacking 
reflexivity. In short, reflexivity and consciousness are doubly dissociated. 

Introspection is a particularly high-level form of reflexivity. When introspecting, we are consciously aware 
of some aspect of ourselves (Morales, 2024). We can introspect on a preference, an emotional state, a belief, or 
a goal (Wu, 2023b). Source monitoring is the process by which an individual determines the provenance of a 
piece of information (Teng, 2024). The source could be vision, olfaction, memory, proprioception, testimony, 
or a book, to give just a few examples.  If the source is internal to oneself, then monitoring that source will 
involve reflexivity. To be clear, perception, proprioception, and memory need not involve reflexivity. However, 
if one is tracking from which of those information sources a specific mental state stems, then one is exercising 
one’s capacity for reflexivity. Finally, in metacognition, the capacity for reflexivity is applied to one’s cognitive 
states (S. M. Fleming, 2024). This can take the form of thinking about one’s reasoning, a belief one holds, a 
preference, or a goal. More generally, as discussed in more detail below, metacognition is a representation that 
is about a different representation of the same individual. 

Introspection, source monitoring, and metacognition are all cognitively high-level forms of reflexivity. By 
contrast, self-awareness need not be high-level—though, naturally, only organisms with the capacity for 
consciousness can have this low-level form of reflexivity. Before turning our attention to reflexivity in AI 
systems, it will be helpful to note that reflexivity encompasses reflectivity, but not vice versa. Reflectivity 
involves taking a higher-order stance toward some aspect of oneself. By contrast, reflexivity does not require 
treating the system as the object of intentionality (Maiese, 2011). So, not all cases of reflexivity are cases of 
reflectivity. 
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2. Assessing if a System has Reflexivity: Mirror Tests and Mechanistic Interpretation  

How can we assess whether a system manifests reflexivity? To address this question, let’s first look at how 
reflexivity is tested in animals. The classic approach is the mirror test (Gallup et al., 2002): an unusual marking 
is painted on an animal’s body without the animal noticing, and the animal is then placed in front of a mirror. 
It qualifies as passing the mirror test if it responds to its mirror image, for example, by shifting its gaze from its 
mirror image to its marked body part, by touching the marked body part, or by moving in front of the mirror 
in ways that allow it to get a better look at the unusual marking. By exhibiting such a response, the animal 
manifests that it registers that it is seeing itself in the mirror. Apes, dolphins, magpies, manta rays, elephants, 
ants, and numerous other animals, as well as humans at 18-24 months pass the mirror test (Gallup et al., 2002), 
though in some cases this is true only of a few specimens.  

How could one replicate the mirror test for an AI system? Needless to say, the test need not include 
mirrors. The analogy to the mirror test would be that the system qualifies as having reflexivity if it responds to 
the detected anomaly in a way that implies that it registers that the anomaly is within its system. Consider a 
system that includes an anomaly detection, “self”-assessment, or “self”-diagnostic module. Such modules detect 
anomalies within the system, for example, by comparing current to past patterns. Suppose a system has detected 
an anomaly that happens to be in its network. How can we test whether the system registers that the anomaly 
is within its network? In other words, how do we distinguish whether the system is akin to the person who sees 
someone in a mirror with an unusual marking without realizing that it is that person (anomaly detection without 
reflexivity) or whether the system is akin to someone with the same visual input but who realizes that the 
marking is on her body (anomaly detection with reflexivity)?  

Anomaly detection alone does not manifest reflexivity. However, the system may qualify as manifesting 
reflexivity if the anomaly detection module is combined with an adaptation module that appropriately responds 
to the anomaly detected such that the system manifests registering that the anomaly is within itself. That would 
replicate the difference between an animal seeing its mirror image without realizing that it is the animal with 
the marking (anomaly detection) and the animal realizing that it is looking at itself and manifesting this with an 
appropriate response directed at itself (anomaly detection plus appropriate response directed at the system). 
Machine learning programs that include a module that combines anomaly detection with adaptation are 
designed to assess their performance continually and adjust based on that assessment (Cretu-Ciocarlie et al., 
2009). Such an adjustment can manifest reflexivity insofar as the algorithm operates, for example, on past 
outputs that it produced while representing that it made those outputs.  

Now, the mirror test is famously imperfect for determining whether an animal has reflexivity. To illustrate, 
the animal could fail to pass the mirror test despite having the capacity for reflexivity because it does not care 
that it has a marking on its body (Plotnik et al., 2006). Moreover, pigeons pass the mirror test, but only after 
training (Gallup et al., 2002). This raises the question of whether pigeons have the capacity for reflexivity or if 
they can be trained to behave in ways that appear as if they do. In short, an animal may fail to pass the mirror 
test despite having the capacity for reflexivity (competence without performance) and may be trained to pass 
the mirror test despite lacking reflexivity (performance without competence). We can expect the same 
shortcomings by observing the behavior of AI systems.  

Fortunately, we need not restrict ourselves to observable behavior to assess whether AI systems have 
reflexivity. An alternative is mechanistic interpretation, that is, the approach to understanding the mechanisms, 
internal architecture, and decision-making processes of machine learning systems, particularly deep neural 
networks (Kästner & Crook, 2024). Since reflexivity need not manifest in observable behavior, mechanistic 
interpretation will—in almost all cases—be necessary to determine whether a system has reflexivity. 
Mechanistic interpretation allows us to gain insight into the functional role of individual components of a neural 
network as well as the causal relationships between the components (Fleisher, 2022). Further, it allows us to 
gain insight into the flow of information through the network layers, specifically, how each component 
transforms the data (Conmy et al., 2023).  

Among the many techniques used in mechanistic interpretation, ablation and activation methods would 
help assess whether a system has reflexivity. In ablation methods, a network component is removed or modified 
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to determine the functional role of the component in the network (Rai et al., 2024). In activation methods, the 
activation of components in response to different inputs is analyzed to determine their sensitivity to specific 
inputs (Bereska & Gavves, 2024). Jointly, ablation studies and activation analyses make it possible to break 
down a system’s decision-making- and information-processing mechanisms into their components and 
determine each component’s function as well as its relation to other components.  

Before discussing existing cases of reflexivity in AI systems, it is important to note that several key features 
of AI systems do not manifest reflexivity even though their name might suggest otherwise. Most algorithms 
refer to parts of themselves via recursion or iteration. Neither recursivity nor iteration entails reflexivity. 
Similarly, a system with feedback loops need not manifest reflexivity. A feedback loop is a module in a system 
that operates on (part of) the system’s output. So, the system’s output is channeled back into the system as 
input for subsequent operations. The sheer existence of a loop is not sufficient for reflexivity. After all, 
reflexivity requires that the system register that it is the object represented. Iteration and recursivity, including 
feedback loops, need not include the system S representing (a part of) S while representing that it is S. In 
discussing existing cases of reflexivity in AI systems, we will contrast examples of systems that have reflexivity 
with closely related systems that do not. In doing so, we can determine what it takes for a system to manifest 
reflexivity rather than failing to do so. 

3. Metacognition 

We engage in metacognition when we think about our beliefs, evaluate our reasons, or reflect on our plans. 
More generally, metacognition can be specified as follows: 

Metacognition:  A system S engages in metacognition only if S produces a metarepresentation Rr about a 
target representation r generated by S while registering that S generated r. 

Note that this is a demanding understanding of metacognition. If we can show that AI systems have 
metacognition on this demanding notion, then it is easy to show that they have metacognition on less 
demanding notions. Since metacognition is always about one’s own cognitive states, it is necessarily reflexive. 
The difference between metacognition and other manifestations of reflexivity is that the former is necessarily 
a second-order representation, while the latter could be a first-order representation. In metacognition, the 
system generates a representation of a distinct representation of the same system. In other manifestations of 
reflexivity, the system generates a representation of (part of) the system itself—rather than a representation this 
system produced. 

To assess whether AI systems manifest metacognition, we will focus on Large Language Models (LLMs). 
However, AI systems other than LLMs may have metacognitive capacities. Moreover, as argued below, LLMs 
manifest reflexivity in ways that do not take the form of metacognition. Regardless of the notion of cognition 
in play (Barack & Krakauer, 2021), it is, of course, controversial whether LLMs have cognitive capacities, let 
alone metacognitive ones (Shiffrin & Mitchell, 2023). For the sake of argument, let’s assume that the capacities 
they employ to generate sentential output qualify as cognitive capacities (for support, see (Pavlick, 2023)).  

There are multiple levels at which to address the question of whether LLMs have metacognition. First, 
LLMs can produce sentences that seem to express that they engage in metacognition, such as sentences of the 
form “I believe that p.” The fact that they can generate such sentences does not entail that they have the 
metacognitive capacities such sentences seemingly express. After all, generating such sentences can be due to a 
learned pattern of language use rather than a manifestation of a capacity.  

An analogy will help explain why. An AI therapist can produce sentences that seemingly express empathy. 
However, this does not entail that it has empathy or any other emotional states. An AI therapist merely has the 
cognitive capacity to produce sentences that seemingly express emotions. It does not have the emotions those 
sentences seemingly express. Indeed, it lacks the hardware required to have emotions. Consequently, it cannot 
feel empathy.  

An LLM that produces sentences seemingly manifesting metacognitive capacities can be understood 
analogously. As LLMs do not have the emotions seemingly expressed with the sentences they output, they may 
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not have the reflexive capacity they seem to manifest when they output sentences of the form “I believe that 
p.” While such sentences have the form of metacognitive thoughts, they may not express such thoughts. So, 
the fact that LLMs can generate sentences that seem to manifest metacognition does not cut any ice as to 
whether LLMs have the capacity for reflexivity.  

The critical dimension on which to assess whether an LLM has reflexivity is whether it represents or 
operates on content it produced while registering that it produced that content. That would qualify as taking a 
metacognitive stance to the content it produced rather than merely stochastically parroting sentences that 
superficially have the form of metacognition. “Self”-attention mechanisms in LLMs fit the bill. Importantly, 
however, the notion of attention in play has nothing to do with consciousness.  

Self-attention mechanisms allow an LLM to weigh the relevance of different parts of a conversation as it 
generates new contributions to that conversation (Buckner, 2023). While responding to the user’s input, the 
self-attention weights represent, at each step, what the LLM considers most relevant from its response so far. 
Specifically, each input sentence is prefixed with a special self-attention token that serves as a bottleneck: it 
forces the model to selectively compress and prioritize the relevant aspects of its prior output (Luo et al., 2023). 
In doing so, the model generates representations that operate on these outputs. Moreover, the mechanism 
allows the LLM to summarize and comment on its prior outputs in the conversation. If we assume that LLMs 
have cognitive capacities, then these representations are a form of higher-order cognition. After all, they operate 
on other representations produced by the same system.  

Now, for this to qualify as metacognition, it is not sufficient for the LLM to generate representations that 
summarize or comment on its previous outputs; the LLM must register that it generated those outputs. The 
attention mechanism represents which part of the conversation was generated by itself. So, the LLM registers 
the source of each previous sentence. With this addition, the higher-order representations have all the hallmarks 
of metacognition: the LLM not only generates sentential output while operating on its previous output; it 
registers that it produced that output. This process of prioritizing some of its outputs over others provides the 
LLM with a dedicated computational pathway for representing and commenting on its previous outputs. To 
illustrate, suppose an LLM is asked about the French Revolution, and it starts with producing sentences about 
enlightenment and freedom. Halfway through the response, the self-attention mechanism registers that its 
response so far primarily consisted of sentences about enlightenment and freedom. In response, the LMM may 
shift to other topics, such as the social, political, and economic factors that led to the French Revolution, the 
ancien régime, or the role of the Jacobins.  

In this way, the metacognitive representation of its past output informs the LLM’s text-generation. 
Crucially, these higher-order representations are enabled by the LLM’s self-attention mechanism, which allows 
it to integrate information from its previous outputs. This supports the thesis that the LLM is engaging in 
metacognition and not simply replicating a superficial language pattern. Indeed, the mechanism allows the LLM 
to exhibit a form of “self”-control over its text-generation process. Such self-control is a hallmark not just of 
metacognition but of reflexivity more generally.  

A specific form of metacognition is metareasoning, that is, reasoning about one’s reasoning. An LLM that 
can manipulate its inference strategies, decision-making procedures, or problem-solving approaches does not 
necessarily manifest metareasoning capacities. Only if the manipulation amounts to reasoning would the LLM 
qualify as engaging in metareasoning. An LLM that includes a rationale generation module (Ehsan et al., 2018) 
could be argued to have the capacity for metareasoning. The architecture of such an LLM includes an additional 
“rational generation”-step. The model first generates a reason for a claim and then provides a reason for the 
initial reason, for example, by evaluating its quality and coherence. This is achieved by training the LLM not 
only to generate textual outputs but, moreover, to generate a reason for why that output is appropriate or 
optimal. 

Other candidates for metacognition in LLMs include self-interpretation (Chen et al., 2024), self-knowledge 
(Kadavath et al., 2022), and introspection (Binder et al., 2024), among others. It would lead too far afield to 
discuss each of these in detail here. Importantly, while the focus here was on metacognition in LLMs, AI 
systems other than LLMs may have metacognitive capacities, and not all manifestations of reflexivity in LLMs 
amount to metacognition. As discussed below, chain-of-thought reasoning can lead a model to exhibit second-
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guessing behavior. Chain-of-thought reasoning prompts an LLM to break down problems into intermediate 
steps before generating a response to a question (Wei et al., 2023). Second-guessing is a manifestation of 
reflexivity in LLMs that need not amount to metacognition or metareasoning. 

To conclude the discussion, we note that while LLMs manifest metacognition, they do not have a more 
generalized capacity for reflexivity. Such a capacity would be useful, specifically for LLMs. LLMs are excellent 
at detecting inconsistent content. Not only can they detect such content, they can explain that inconsistencies 
violate fundamental laws of logical reasoning and are to be avoided. Nonetheless, they generate such content, 
at least in their current stage of development. Adding a reflexive module would be a way to fix this problem. 
Problems of this kind can be fixed by building in guardrails. To illustrate, most LLMs no longer produce blatant 
racist or sexist content. The reason is that they have built-in guardrails stopping them from generating such 
content. Adding a module with reflexive capacities to an LLM would allow it to refrain from generating any 
content it deems problematic without the piecemeal approach of adding guardrails after problems arise. A 
general capacity for reflexivity would allow an LLM to exhibit “self”-control with regard to the content it 
generates in ways that mimic how we monitor ourselves.  

4. Meta-reinforcement learning 

A reinforcement learning module provides feedback to a system in the form of rewards or penalties, where 
information about rewards (or penalties) is provided to the network in terms of meeting (or failing to meet) 
thresholds. By adjusting its strategy to maximize rewards, the system uses this feedback to achieve a goal. A 
simple reinforcement learning module need not have the capacity for reflexivity if it is merely a feedback loop 
with a twist, namely a reward (or a penalty). There is nothing reflexive about meeting a threshold. So, the twist 
to a feedback loop does not amount to a manifestation of reflexivity.   

However, a meta-reinforcement learning module (Meta-RL) can be understood as manifesting reflexivity. 
Meta-RL allows a Recurrent Neural Network (RNN) to learn how to optimize its learning algorithms. This 
enables the system to adapt to new tasks by updating its learning process based on its interactions with the 
environment (Wang et al., 2017). This is achieved (i) by training the RNN on a distribution of tasks and 
optimizing the RNN’s parameters to maximize the expected cumulative reward over all tasks. A second key 
component of Meta-RL is (ii) a meta-learner network. This network learns an update rule that it applies to 
update the RNN’s parameters. More specifically, the meta-learner takes the system’s current parameters and 
their loss gradients as input, based on which it then updates the system’s parameters (Finn et al., 2017). By 
learning to generate parameter updates, the meta-learner can adapt the system’s learning algorithm to new tasks 
with only minimal exposure to relevant additional data (Ravi & Larochelle, 2017).  

To illustrate with an example, consider RL2   (Duan et al., 2016). The RNN takes its current state, previous 
output, and previous reward as input, on the basis of which it generates a representation that encodes its past 
interactions with the environment. In performing further tasks, the system then updates this reflexive 
representation and uses this updated representation to make decisions about future tasks. This representation 
has all the hallmarks of a reflexive representation. After all, it encodes information that is not only a function 
of a current representation based on the system’s inputs, outputs, and their consequences; it depends also on 
its learning process. The learned learning algorithm is encoded in the RNN and adapts to new environments 
by operating on its reflexive representations to learn new task-specific functions.  

More generally, a meta-RL module refers to the target module by modifying its architecture. Thereby, the 
system adapts its structure and learning algorithms based on its interactions with the environment. Since the 
meta-RL and the target module are part of the same system, the architecture modifications are a manifestation 
of reflexivity.   

5. Self-Improving Systems  

So-called “self”-improving AI systems are designed to improve themselves over time autonomously, much like 
the human brain continuously adapts. In a trivial way, any AI system that refines its feature map in response to 
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new data, thereby ameliorating its predictions, is self-improving. However, improving a feature map in the face 
of new data, thereby ameliorating predictions, does not on its own exhibit anything that qualifies as reflexivity.  

Examples of self-improving systems that manifest reflexivity include Self-Modifying Neural Networks and 
Attention-Based Recurrent Neural Networks. Meta-RL can be understood as a special kind of self-improving 
system. However, since the neural network learns to optimize its learning process rather than directly improving 
its performance on a specific task, it is best categorized as a different type of reflexivity. Let’s take a closer look 
at Self-Modifying and Attention-based RNNs. A Self-Modifying Neural Network modifies its architecture to 
improve its performance on a given task (Schmidgall, 2020). The network’s performance on the task depends 
on its architecture, and the reinforcement learning algorithm modifies this architecture based on observed 
performance (Real et al., 2020). In other words, the system makes structural changes to itself as a response to 
the consequences of its past architectural decisions that it registers as its own. Adaptations to its architecture 
can amount to adding or removing network layers, adjusting the number of weights, changing its 
hyperparameters, or modifying the connections between weights. The reinforcement learning algorithm acts as 
a “controller” that learns to modify the network’s architecture to maximize its performance on the task. The 
critical point for the current discussion is that the network’s current architecture is taken as input to generate 
modifications to this architecture. Consequently, the neural network manifests reflexivity in that it encodes its 
architecture and updates and optimizes this architecture by interacting with a reinforcement learning algorithm. 

In an Attention-Based RNN, the network learns to attend to its previous hidden states and outputs when 
processing new inputs and generating new outputs (Kim et al., 2025). The attention in play radically differs 
from human attention in that it does not include awareness or consciousness (Wu, 2023a). Due to its attention 
mechanism, the system can selectively refer to relevant parts of its computation history. More specifically, the 
Attention-Based RNN computes an attention distribution over its relevant previously hidden states, which it 
uses to weigh and combine those states into a context vector (Vaswani et al., 2023). This context vector is then 
used as an input to compute the new hidden state and output. Attention-based RNNs can be understood as 
manifesting reflexivity since the RNN operates on its internal representations (hidden states) while registering, 
via the attention weights, that those representations are its own. Thereby, the network uses its own processed 
information to inform its subsequent processing.  

6. Second-Guessing: The Dark Side of Reflexivity 

Reflexivity has a dark side. In humans, it can lead to paralyzing self-doubt. Recently, similar phenomena have 
been observed in LLMs (Khan et al., 2023), specifically in the context of chain-of-thought reasoning (CoT). 
CoT prompts an LLM to decompose a question or problem into smaller units (Wei et al., 2023). This has many 
benefits that mimic the benefits of second-guessing. It allows an LLM to consider multiple possible solutions 
to a problem before settling on one approach. Second, decomposition enables an LLM to detect errors midway 
through generating text, retrace its steps, and correct the errors (He et al., 2025). Third, by decomposing a 
problem, an LLM can reconsider assumptions made and restart answering a question with alternative 
assumptions. Fourth, it allows an LLM to register when an approach is leading to undesirable outcomes and 
pivot to a different approach (Creswell et al., 2022). An LLM might start solving a problem in one way, find 
that it leads to difficulties, and respond by reorienting and trying an alternative strategy.  

These capacities can lead an LLM to exhibit behavior similar to a self-critical researcher who carefully 
thinks through her approach to a problem and questions her assumptions. Such self-doubt may be the ultimate 
sign of human-level intelligence (S. Fleming, 2020). However, it is not ideal if self-doubt traps a researcher in 
an endless loop of questioning assumptions and pivoting between multiple possible strategies.  

As in humans, second-guessing in LLMs can lead to improved outcomes but also to trouble. In evaluating 
different possible approaches, LLMs can get into loops of excessive verification (Khan et al., 2023). Such 
overthinking significantly increases computational load without proportional benefits in outcome (Zhou et al., 
2025).  More problematically, second-guessing can lead a model to retract initial correct answers and flip to 
incorrect answers after lengthy and resource-costly verification of the initial correct answer (Liu et al., 2024). 
This can be a result of the LLM focusing on irrelevant aspects of the problem after decomposition. 
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The critical question is how to prioritize the conflicting goals of developing AI systems that have human-
level intelligence—including second-guessing and self-doubt, on the one hand, and AI systems that are efficient, 
on the other. Short of self-doubting paralysis, an Al system that questions its approach and assumptions at the 
cost of being slower is arguably preferred. Khan et al. (Khan et al., 2023) suggest that if LLMs selectively use 
second-guessing, its pitfalls can be avoided while reaping its benefits. Applying decomposition indiscriminately 
to all questions can lead to excessive verification and focus on irrelevant aspects of a problem. However, as 
Khan et al. (Khan et al., 2023) argue, this problem can be avoided by restricting question decomposition to 
cases in which the LLM has low confidence in an answer: The model first attempts to answer the question 
without decomposing it. Then, it checks its confidence in its answer against a provided threshold. If the 
confidence score does not meet the threshold, the decomposition process is triggered. Second-guessing 
selectively when confidence is low mimics the way humans allocate their attention and cognitive resources to 
problems where certainty is low, and the risks are high. 

7. Conclusion  

We analyzed four ways current AI systems manifest reflexivity: metacognition, metalearning, self-improvement, 
and second-guessing. In each case discussed, the relevant systems satisfy the flexibility and aptness conditions. 
After all, in each case, the relevant system exhibits considerable range and exercises the capacity successfully in 
situations in which the employment of the capacity is warranted. It is important to note, however, that each of 
these manifestations of reflexivity is independent of the other.  

An objection waiting in the wings is whether the same capacity for reflexivity is manifested in each of the 
four cases. In response, no doubt, metacognition, metalearning, self-improvement, and second-guessing are 
each distinct manifestations of reflexivity. However, reflexivity is the common denominator. To explain, recall 
that a system S has the capacity for reflexivity only if it can represent (a part of) S while registering that it is S. 
Recall also that it manifests that capacity only if it represents (a part of) S while registering that it is S. As argued, 
in each case discussed, the relevant system represents (a part of) S while registering that it is S. So, while the 
manifestation of reflexivity is distinct in each case, the condition for manifesting reflexivity is satisfied. In short, 
reflexivity is the common denominator of metacognition, metareasoning, self-attention, self-improving 
systems, metalearning, and second-guessing, to mention just a few forms of reflexivity discussed in this 
perspective.  

While the relevant systems satisfy the flexibility and aptness condition for the specific type of reflexivity 
in each case discussed, the gap between humans and AI systems is vast with regard to the range and flexibility 
in employing the capacity. This is not surprising. After all, no explicit attention has been directed at artificially 
replicating this key element of human intelligence. With more research into artificially replicating the capacity 
for reflexivity, this gap could be closed.  
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