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ABSTRACT

We study COMP-AMS, a distributed optimization framework based on gradient
averaging and adaptive AMSGrad algorithm. Gradient compression with error
feedback is applied to reduce the communication cost in the gradient transmission
process. Our convergence analysis of COMP-AMS shows that such compressed
gradient averaging strategy yields same convergence rate as standard AMSGrad,
and also exhibits the linear speedup effect w.r.t. the number of local work-
ers. Compared with recently proposed protocols on distributed adaptive methods,
COMP-AMS is simple and convenient. Numerical experiments are conducted
to justify the theoretical findings, and demonstrate that the proposed method can
achieve same test accuracy as the full-gradient AMSGrad with substantial com-
munication savings. With its simplicity and efficiency, COMP-AMS can serve as
a useful distributed training framework for adaptive gradient methods.

1 INTRODUCTION

Deep neural network has achieved the state-of-the-art learning performance on numerous AI ap-
plications, e.g., computer vision and natural language processing (Graves et al., 2013; Goodfellow
et al., 2014; He et al., 2016; Young et al., 2018; Zhang et al., 2018), reinforcement learning (Mnih
et al., 2013; Levine et al., 2016; Silver et al., 2017), recommendation systems (Covington et al.,
2016), computational advertising (Zhao et al., 2019; Xu et al., 2021; Zhao et al., 2022), etc. With
the increasing size of data and growing complexity of deep neural networks, standard single-machine
training procedures encounter at least two major challenges:

• Due to the limited computing power of a single-machine, processing the massive number of
data samples takes a long time—training is too slow. Many real-world applications cannot
afford spending days or even weeks on training.

• In many scenarios, data are stored on multiple servers, possibly at different locations, due
to the storage constraints (massive user behavior data, Internet images, etc.) or privacy
reasons (Chang et al., 2018). Hence, transmitting data among servers might be costly.

Distributed learning framework has been commonly used to tackle the above two issues. Consider
the distributed optimization task where n workers jointly solve the following optimization problem

min
θ
f(θ) := min

θ

1

n

n∑
i=1

fi(θ) =
1

n

n∑
i=1

Ex∼Xi [Fi(θ;x)], (1)

where the non-convex function fi represents the average loss over the local data samples for worker
i ∈ [n], and θ ∈ Rd the global model parameter. Xi is the data distribution on each local node. In
the classical centralized distributed setting, in each iteration the central server uniformly randomly
assigns the data to n local workers (Xi’s are the same), at which the gradients of the model are
computed in parallel. Then the central server aggregates the local gradients, updates the global
model (e.g., by stochastic gradient descent (SGD)), and transmits back the updated model to the
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local nodes for subsequent gradient computation. The scenario where Xi’s are different gives rise to
the recently proposed Federated Learning (FL) (McMahan et al., 2017) framework, which will not
be the major focus of this work. As we can see, distributed training naturally solves aforementioned
issues: 1) We use n computing nodes to train the model, so the time per training epoch can be
largely reduced; 2) There is no need to transmit the local data to central server. Besides, distributed
training also provides stronger error tolerance since the training process could continue even one
local machine breaks down. As a result of these advantages, there has been a surge of study and
applications on distributed systems (Nedic & Ozdaglar, 2009; Boyd et al., 2011; Duchi et al., 2012;
Goyal et al., 2017; Hong et al., 2017; Koloskova et al., 2019; Lu et al., 2019).

Gradient compression. Among many optimization strategies, SGD is still the most popular proto-
type in distributed training for its simplicity and effectiveness (Chilimbi et al., 2014; Agarwal et al.,
2018; Mikami et al., 2018). Yet, when the deep learning model is very large, the communication be-
tween local nodes and central server could be expensive, and the burdensome gradient transmission
would slow down the whole training system. Thus, reducing the communication cost in distributed
SGD has become an active topic, and an important ingredient of large-scale distributed systems
(e.g., Seide et al. (2014)). Solutions based on quantization, sparsification and other compression
techniques of the local gradients have been proposed, e.g., Aji & Heafield (2017); Alistarh et al.
(2017); Sa et al. (2017); Wen et al. (2017); Bernstein et al. (2018); Stich et al. (2018); Wangni et al.
(2018); Ivkin et al. (2019); Yang et al. (2019); Haddadpour et al. (2020). However, it has been ob-
served both theoretically and empirically (Stich et al., 2018; Ajalloeian & Stich, 2020), that directly
updating with the compressed gradients usually brings non-negligible performance downgrade in
terms of convergence speed and accuracy. To tackle this problem, studies (e.g., Stich et al. (2018);
Karimireddy et al. (2019)) show that the technique of error feedback can to a large extent remedy
the issue of such gradient compression, achieving the same convergence rate as full-gradient SGD.

Adaptive optimization. In recent years, adaptive optimization algorithms (e.g., AdaGrad (Duchi
et al., 2010), Adam (Kingma & Ba, 2015) and AMSGrad (Reddi et al., 2018)) have become popular
because of their superior empirical performance. These methods use different implicit learning rates
for different coordinates that keep changing adaptively throughout the training process, based on
the learning trajectory. In many cases, adaptive methods have been shown to converge faster than
SGD, sometimes with better generalization as well. Nevertheless, the body of literature that extends
adaptive methods to distributed training is still fairly limited. In particular, even the simple gradient
averaging approach, though appearing standard, has not been analyzed for adaptive optimization
algorithms. Given that distributed SGD with compressed gradient averaging can match the perfor-
mance of standard SGD, one natural question is: is it also true for adaptive methods? In this work,
we fill this gap formally, by analyzing COMP-AMS, a distributed adaptive optimization framework
using the gradient averaging protocol, with communication-efficient gradient compression. Our
method has been implemented in the PaddlePaddle platform (www.paddlepaddle.org.cn).

Our contributions. We study a simple algorithm design leveraging the adaptivity of AMSGrad and
the computational virtue of local gradient compression:

• We propose COMP-AMS, a synchronous distributed adaptive optimization framework
based on global averaging with gradient compression, which is efficient in both communi-
cation and memory as no local moment estimation is needed. We consider the BlockSign
and Top-k compressors, coupled with the error-feedback technique to compensate for the
bias implied by the compression step for fast convergence.

• We provide the convergence analysis of distributed COMP-AMS (with n workers) in
smooth non-convex optimization. In the special case of n = 1 (single machine), similar
to SGD, gradient compression with error feedback in adaptive method achieves the same
convergence rateO( 1√

T
) as the standard full-gradient counterpart. Also, we show that with

a properly chosen learning rate, COMP-AMS achieves O( 1√
nT

) convergence, implying a
linear speedup in terms of the number of local workers to attain a stationary point.

• Experiments are conducted on various training tasks on image classification and sentiment
analysis to validate our theoretical findings on the linear speedup effect. Our results show
that COMP-AMS has comparable performance with other distributed adaptive methods,
and approaches the accuracy of full-precision AMSGrad with a substantially reduced com-
munication cost. Thus, it can serve as a convenient distributed training strategy in practice.
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2 RELATED WORK

2.1 DISTRIBUTED SGD WITH COMPRESSED GRADIENTS

Quantization. To reduce the expensive communication in large-scale distributed SGD training
systems, extensive works have considered various compression techniques applied to the gradient
transaction procedure. The first strategy is quantization. Dettmers (2016) condenses 32-bit float-
ing numbers into 8-bits when representing the gradients. Seide et al. (2014); Bernstein et al. (2018;
2019); Karimireddy et al. (2019) use the extreme 1-bit information (sign) of the gradients, com-
bined with tricks like momentum, majority vote and memory. Other quantization-based methods
include QSGD (Alistarh et al., 2017; Zhang et al., 2017; Wu et al., 2018) and LPC-SVRG (Yu et al.,
2019b), leveraging unbiased stochastic quantization. Quantization has been successfully applied
to industrial-level applications, e.g., Xu et al. (2021). The saving in communication of quantization
methods is moderate: for example, 8-bit quantization reduces the cost to 25% (compared with 32-bit
full-precision). Even in the extreme 1-bit case, the largest compression ratio is around 1/32 ≈ 3.1%.

Sparsification. Gradient sparsification is another popular solution which may provide higher com-
pression rate. Instead of commuting the full gradient, each local worker only passes a few coordi-
nates to the central server and zeros out the others. Thus, we can more freely choose higher compres-
sion ratio (e.g., 1%, 0.1%), still achieving impressive performance in many applications (Lin et al.,
2018). Stochastic sparsification methods, including uniform and magnitude based sampling (Wangni
et al., 2018), select coordinates based on some sampling probability, yielding unbiased gradient
compressors with proper scaling. Deterministic methods are simpler, e.g., Random-k, Top-k (Stich
et al., 2018; Shi et al., 2019) (selecting k elements with largest magnitude), Deep Gradient Com-
pression (Lin et al., 2018), but usually lead to biased gradient estimation. More applications and
analysis of compressed distributed SGD can be found in Alistarh et al. (2018); Jiang & Agrawal
(2018); Jiang et al. (2018); Shen et al. (2018); Basu et al. (2019), among others.

Error Feedback (EF). Biased gradient estimation, which is a consequence of many aforementioned
methods (e.g., signSGD, Top-k), undermines the model training, both theoretically and empirically,
with slower convergence and worse generalization (Ajalloeian & Stich, 2020; Beznosikov et al.,
2020). The technique of error feedback is able to “correct for the bias” and fix the convergence
issues. In this procedure, the difference between the true stochastic gradient and the compressed
one is accumulated locally, which is then added back to the local gradients in later iterations. Stich
et al. (2018); Karimireddy et al. (2019) prove theO( 1

T ) andO( 1√
T

) convergence rate of EF-SGD in
strongly convex and non-convex setting respectively, matching the rates of vanilla SGD (Nemirovski
et al., 2009; Ghadimi & Lan, 2013). More recent works on the convergence rate of SGD with error
feedback include Stich & Karimireddy (2019); Zheng et al. (2019); Richtárik et al. (2021), etc.

2.2 ADAPTIVE OPTIMIZATION

Algorithm 1 AMSGRAD (Reddi et al., 2018)
1: Input: parameters β1, β2, ε, learning rate ηt
2: Initialize: θ1 ∈ Rd, m0 = v0 = 0 ∈ Rd

3: for t = 1, . . . , T do
4: Compute stochastic gradient gt at θt
5: mt = β1mt−1 + (1− β1)gt
6: vt = β2vt−1 + (1− β2)g2t
7: v̂t = max(v̂t−1, vt)
8: θt+1 = θt − ηt mt√

v̂t+ε

9: end for

In each SGD update, all the coordinates share
the same learning rate, which is either constant
or decreasing through the iterations. Adap-
tive optimization methods cast different learn-
ing rates on each dimension. For instance, Ada-
Grad, developed in Duchi et al. (2010), divides

the gradient elementwise by
√∑T

t=1 g
2
t ∈ Rd,

where gt ∈ Rd is the gradient vector at time
t and d is the model dimensionality. Thus, it
intrinsically assigns different learning rates to
different coordinates throughout the training—
elements with smaller previous gradient magni-
tudes tend to move a larger step via larger learn-
ing rate. Other adaptive methods include AdaDelta (Zeiler, 2012) and Adam (Kingma & Ba, 2015),
which introduce momentum and moving average of second moment estimation into AdaGrad hence
leading to better performances. AMSGrad (Reddi et al., 2018) (Algorithm 1, which is the prototype
in our paper), fixes the potential convergence issue of Adam. Wang et al. (2021) and Zhou et al.
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(2020) improve the convergence and generalization of AMSGrad through optimistic acceleration
and differential privacy.

Adaptive optimization methods have been widely used in training deep learning models in language,
computer vision and advertising applications, e.g., Choi et al. (2019); You et al. (2020); Zhang et al.
(2021); Zhao et al. (2022). In distributed setting, Nazari et al. (2019); Chen et al. (2021b) study
decentralized adaptive methods, but communication efficiency was not considered. Mostly relevant
to our work, Chen et al. (2021a) proposes a distributed training algorithm based on Adam, which
requires every local node to store a local estimation of the moments of the gradient. Thus, one has
to keep extra two more tensors of the model size on each local worker, which may be less feasible
in terms of memory particularly with large models. More recently, Tang et al. (2021) proposes an
Adam pre-conditioned momentum SGD method. Chen et al. (2020); Karimireddy et al. (2020);
Reddi et al. (2021) proposed local/global adaptive FL methods, which can be further accelerated via
layer-wise adaptivity (Karimi et al., 2021).

3 COMMUNICATION-EFFICIENT ADAPTIVE OPTIMIZATION

3.1 GRADIENT COMPRESSORS

In this paper, we mainly consider deterministic q-deviate compressors defined as below.
Assumption 1. The gradient compressor C : Rd 7→ Rd is q-deviate: for ∀x ∈ Rd, ∃ 0 ≤ q < 1
such that ‖C(x)− x‖ ≤ q ‖x‖.

Larger q indicates heavier compression, while smaller q implies better approximation of the true
gradient. q = 0 implies C(x) = x, i.e., no compression. In the following, we give two popular and
efficient q-deviate compressors that will be adopted in this paper.
Definition 1 (Top-k). For x ∈ Rd, denote S as the size-k set of i ∈ [d] with largest k magnitude
|xi|. The Top-k compressor is defined as C(x)i = xi, if i ∈ S; C(x)i = 0 otherwise.

Definition 2 (Block-Sign). For x ∈ Rd, define M blocks indexed by Bi, i = 1, ...,M , with di :=

|Bi|. The Block-Sign compressor is defined as C(x) = [sign(xB1)
‖xB1‖1
d1

, ..., sign(xBM
)
‖xBM ‖1
dM

],
where xBi

is the sub-vector of x at indices Bi.
Remark 1. It is well-known (Stich et al., 2018) that for Top-k, q2 = 1 − k

d . For Block-Sign,
by Cauchy-Schwartz inequality we have q2 = 1 − mini∈[M ]

1
di

where M and di are defined in
Definition 2 (Zheng et al., 2019).

The intuition behind Top-k is that, it has been observed empirically that when training many deep
models, most gradients are typically very small, and gradients with large magnitude contain most
information. The Block-Sign compressor is a simple extension of the 1-bit SIGN compressor (Seide
et al., 2014; Bernstein et al., 2018), adapted to different gradient magnitude in different blocks,
which, for neural nets, are usually set as the distinct network layers. The scaling factor in Definition 2
is to preserve the (possibly very different) gradient magnitude in each layer. In principle, Top-k
would perform the best when the gradient is effectively sparse, while Block-Sign compressor is
favorable by nature when most gradients have similar magnitude within each layer.

3.2 COMP-AMS: DISTRIBUTED ADAPTIVE TRAINING BY GRADIENT AGGREGATION

We present in Algorithm 2 the proposed communication-efficient distributed adaptive method in this
paper, COMP-AMS. This framework can be regarded as an analogue to the standard synchronous
distributed SGD: in each iteration, each local worker transmits to the central server the compressed
stochastic gradient computed using local data. Then the central server takes the average of local
gradients, and performs an AMSGrad update. In Algorithm 2, lines 7-8 depict the error feedback
operation at local nodes. et,i is the accumulated error from gradient compression on the i-th worker
up to time t − 1. This residual is added back to gt,i to get the “corrected” gradient. In Section 4
and Section 5, we will show that error feedback, similar to the case of SGD, also brings good
convergence behavior under gradient compression in distributed AMSGrad.
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Algorithm 2 Distributed COMP-AMS with error feedback (EF)
1: Input: parameters β1, β2, ε, learning rate ηt
2: Initialize: central server parameter θ1 ∈ Rd ⊆ Rd; e1,i = 0 the error accumulator for each

worker; m0 = 0, v0 = 0, v̂0 = 0

3: for t = 1, . . . , T do
4: parallel for worker i ∈ [n] do:
5: Receive model parameter θt from central server
6: Compute stochastic gradient gt,i at θt
7: Compute the compressed gradient g̃t,i = C(gt,i + et,i)
8: Update the error et+1,i = et,i + gt,i − g̃t,i
9: Send g̃t,i back to central server

10: end parallel
11: Central server do:
12: ḡt = 1

n

∑n
i=1 g̃t,i

13: mt = β1mt−1 + (1− β1)ḡt
14: vt = β2vt−1 + (1− β2)ḡ2t
15: v̂t = max(vt, v̂t−1)
16: Update the global model θt+1 = θt − ηt mt√

v̂t+ε

17: end for

Comparison with related methods. Next, we discuss the differences between COMP-AMS and
two recently proposed methods also trying to solve compressed distributed adaptive optimization.

• Comparison with Chen et al. (2021a). Chen et al. (2021a) develops a quantized variant
of Adam (Kingma & Ba, 2015), called “QAdam”. In this method, each worker keeps a local
copy of the moment estimates, commonly noted m and v, and compresses and transmits
the ratio m

v as a whole to the server. Their method is hence very much like the compressed
distributed SGD, with the exception that the ratio m

v plays the role of the gradient vector g
communication-wise. Thus, two local moment estimators are additionally required, which
have same size as the deep learning model. In our COMP-AMS, the moment estimates
m and v are kept and updated only at the central server, thus not introducing any extra
variable (tensor) on local nodes during training (except for the error accumulator). Hence,
COMP-AMS is not only effective in communication reduction, but also efficient in terms
of memory (space), which is feasible when training large-scale learners like BERT and
CTR prediction models, e.g., Devlin et al. (2019); Xu et al. (2021), to lower the hardware
consumption in practice. Additionally, the convergence rate in Chen et al. (2021a) does not
improve linearly with n, while we prove the linear speedup effect of COMP-AMS.

• Comparison with Tang et al. (2021) The recent work (Tang et al., 2021) proposes
“1BitAdam”. They first run some warm-up training steps using standard Adam, and then
store the second moment moving average v. Then, distributed Adam training starts with
v frozen. Thus, 1BitAdam is actually more like a distributed momentum SGD with some
pre-conditioned coordinate-wise learning rates. The number of warm-up steps also needs
to be carefully tuned, otherwise bad pre-conditioning may hurt the learning performance.
Our COMP-AMS is simpler, as no pre-training is needed. Also, 1BitAdam requires extra
tensors for m locally, while COMP-AMS does not need additional local memory.

4 CONVERGENCE ANALYSIS

For the convergence analysis of COMP-AMS we will make following additional assumptions.
Assumption 2. (Smoothness) For ∀i ∈ [n], fi is L-smooth: ‖∇fi(θ)−∇fi(ϑ)‖ ≤ L ‖θ − ϑ‖.
Assumption 3. (Unbiased and bounded stochastic gradient) For ∀t > 0, ∀i ∈ [n], the stochastic
gradient is unbiased and uniformly bounded: E[gt,i] = ∇fi(θt) and ‖gt,i‖ ≤ G.
Assumption 4. (Bounded variance) For ∀t > 0, ∀i ∈ [n]: (i) the local variance of the stochas-
tic gradient is bounded: E[‖gt,i − ∇fi(θt)‖2] < σ2; (ii) the global variance is bounded by
1
n

∑n
i=1 ‖∇fi(θt)−∇f(θt)‖2 ≤ σ2

g .
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In Assumption 3, the uniform bound on the stochastic gradient is common in the convergence anal-
ysis of adaptive methods, e.g., Reddi et al. (2018); Zhou et al. (2018); Chen et al. (2019). The global
variance bound σ2

g in Assumption 4 characterizes the difference among local objective functions,
which, is mainly caused by different local data distribution Xi in (1). In classical distributed setting
where all the workers can access the same dataset and local data are assigned randomly, σ2

g ≡ 0.
While typical federated learning (FL) setting with σ2

g > 0 is not the focus of this present paper,
we consider the global variance in our analysis to shed some light on the impact of non-i.i.d. data
distribution in the federated setting for broader interest and future investigation.

We derive the following general convergence rate of COMP-AMS in the distributed setting. The
proof is deferred to Appendix B.

Theorem 1. Denote C0 =
√

4(1+q2)3

(1−q2)2 G
2 + ε, C1 = β1

1−β1
+ 2q

1−q2 , θ∗ = arg min f(θ) defined as
(1). Under Assumptions 1 to 4, with ηt = η ≤ ε

3C0

√
2Lmax{2L,C1}

, Algorithm 2 satisfies

1

T

T∑
t=1

E[‖∇f(θt)‖2] ≤ 2C0

(E[f(θ1)− f(θ∗)]

Tη
+
ηLσ2

nε
+

3η2LC0C
2
1σ

2

nε2

+
12η2q2LC0σ

2
g

(1− q2)2ε2
+

(1 + C1)G2d

T
√
ε

+
η(1 + 2C1)C1LG

2d

Tε

)
.

The LHS of Theorem 1 is the expected squared norm of the gradient from a uniformly chosen iterate
t ∈ [T ], which is a common convergence measure in non-convex optimization. From Theorem 1, we
see that the more compression we apply to the gradient vectors (i.e., larger q), the larger the gradient
magnitude is, i.e., the slower the algorithm converges. This is intuitive as heavier compression loses
more gradient information which would slower down the learner to find a good solution.

Note that, COMP-AMS with n = 1 naturally reduces to the single-machine (sequential) AMSGrad
(Algorithm 1) with compressed gradients instead of full-precision ones. Karimireddy et al. (2019)
specifically analyzed this case for SGD, showing that compressed single-machine SGD with error
feedback has the same convergence rate as vanilla SGD using full gradients. In alignment with the
conclusion in Karimireddy et al. (2019), for adaptive AMSGrad, we have a similar result.

Corollary 1. When n = 1, under Assumption 1 to Assumption 4, setting the stepsize as η =
min{ ε

3C0

√
2Lmax{2L,C1}

, 1√
T
}, Algorithm 2 satisfies

1

T

T∑
t=1

E[‖∇f(θt)‖2] ≤ O(
1√
T

+
σ2

√
T

+
d

T
).

Corollary 1 states that with error feedback, single machine AMSGrad with biased compressed gra-
dients can also match the convergence rateO( 1√

T
+ d
T ) of standard AMSGrad (Zhou et al., 2018) in

non-convex optimization. It also achieves the same rateO( 1√
T

) of vanilla SGD (Karimireddy et al.,
2019) when T is sufficiently large. In other words, error feedback also fixes the convergence issue
of using compressed gradients in AMSGrad.

Linear Speedup. In Theorem 1, the convergence rate is derived by assuming a constant learning
rate. By carefully choosing a decreasing learning rate dependent on the number of workers, we have
the following simplified statement.

Corollary 2. Under the same setting as Theorem 1, set η = min{ ε

3C0

√
2Lmax{2L,C1}

,
√
n√
T
}. The

COMP-AMS iterates admit

1

T

T∑
t=1

E[‖∇f(θt)‖2] ≤ O(
1√
nT

+
σ2

√
nT

+
n(σ2 + σ2

g)

T
). (2)

In Corollary 2, we see that the global variance σ2
g appears in the O( 1

T ) term, which says that it
asymptotically has no impact on the convergence. This matches the result of momentum SGD (Yu
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et al., 2019a). When T ≥ O(n3) is sufficiently large, the third term in (2) vanishes, and the con-
vergence rate becomes O( 1√

nT
). Therefore, to reach an O(δ) stationary point, one worker (n = 1)

needs T = O( 1
δ2 ) iterations, while distributed training with n workers requires only T = O( 1

nδ2 )
iterations, which is n times faster than single machine training. That is, COMP-AMS has a linear
speedup in terms of the number of the local workers. Such acceleration effect has also been reported
for compressed SGD (Jiang & Agrawal, 2018; Zheng et al., 2019) and momentum SGD (Yu et al.,
2019a) with error feedback.

5 EXPERIMENTS

In this section, we provide numerical results on several common datasets. Our main objective is to
validate the theoretical results, and demonstrate that the proposed COMP-AMS can approach the
learning performance of full-precision AMSGrad with significantly reduced communication costs.

5.1 DATASETS, MODELS AND METHODS

Our experiments are conducted on various image and text datasets. The MNIST (LeCun et al.,
1998) contains 60000 training samples of 28 × 18 gray-scale hand-written digits from 10 classes,
and 10000 test samples. We train MNIST with a Convolutional Neural Network (CNN), which has
two convolutional layers followed by two fully connected layers with ReLu activation. Dropout is
applied after the max-pooled convolutional layer with rate 0.5. The CIFAR-10 dataset (Krizhevsky
& Hinton, 2009) consists of 50000 32 × 32 RGB natural images from 10 classes for training and
10000 images for testing, which is trained by LeNet-5 (LeCun et al., 1998). Moreover, we also
implement ResNet-18 (He et al., 2016) on this dataset. The IMDB movie review (Maas et al., 2011)
is a popular binary classification dataset for sentiment analysis. Each movie review is tokenized by
top-2000 most frequently appeared words and transformed into integer vectors, which is of maximal
length 500. We train a Long-Short Term Memory (LSTM) network with a 32-dimensional embed-
ding layer and 64 LSTM cells, followed by two fully connected layers before output. Cross-entropy
loss is used for all the tasks. Following the classical distributed training setting, in each training
iteration, data samples are uniformly randomly assigned to the workers.

We compare COMP-AMS with full-precision distributed AMSGrad, QAdam (Chen et al., 2021a)
and 1BitAdam (Tang et al., 2021). For COMP-AMS, Top-k picks top 1% gradient coordinates
(i.e., sparsity 0.01). QAdam and 1BitAdam both use 1-bit quantization to achieve high compression.
For MNIST and CIFAR-10, the local batch size on each worker is set to be 32. For IMDB, the local
batch size is 16. The hyper-parameters in COMP-AMS are set as default β1 = 0.9, β2 = 0.999 and
ε = 10−8, which are also used for QAdam and 1BitAdam. For 1BitAdam, the epochs for warm-up
training is set to be 1/20 of the total epochs. For all methods, we tune the initial learning rate over
a fine grid (see Appendix A) and report the best results averaged over three independent runs. Our
experiments are performed on a GPU cluster with NVIDIA Tesla V100 cards.

5.2 GENERAL EVALUATION AND COMMUNICATION EFFICIENCY

The training loss and test accuracy on MNIST + CNN, CIFAR-10 + LeNet and IMDB + LSTM
are reported in Figure 1. We provide more results on larger ResNet-18 model in Appendix A. On
CIFAR-10, we deploy a popular decreasing learning rate schedule, where the step size η is divided
by 10 at the 40-th and 80-th epoch, respectively. We observe:

• On MNIST, all the methods can approach the training loss and test accuracy of full-
precision AMSGrad. The 1BitAdam seems slightly better, but the gap is very small. On
CIFAR-10, COMP-AMS with Block-Sign performs the best and matches AMSGrad in
terms of test accuracy.

• On IMDB, COMP-AMS with Top-k has both the fastest convergence and best generaliza-
tion compared with other compressed methods. This is because the IMDB text data is more
sparse (with many padded zeros), where Top-k is expected to work better than sign. The
1BitAdam converges slowly. We believe one possible reason is that 1BitAdam is quite sen-
sitive to the quality of the warm-up training. For sparse text data, the estimation of second
moment v is more unstable, making the strategy of freezing v by warm-up less effective.
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Figure 1: Training loss and test accuracy vs. epochs, on MNIST + CNN, CIFAR-10 + LeNet and
IMDB + LSTM with n = 16 local workers.

Communication Efficiency. In Figure 2, we plot the training loss and test accuracy against the
number of bits transmitted to the central server during the distributed training process, where we
assume that the full-precision gradient is represented using 32 bits per floating number. As we
can see, COMP-AMS-Top-0.01 achieves around 100x communication reduction, to attain similar
accuracy as the full-precision distributed AMSGrad. The saving of Block-Sign is around 30x, but
it gives slightly higher accuracy than Top-0.01 on MNIST and CIFAR-10. In all cases, COMP-
AMS can substantially reduce the communication cost compared with full-precision distributed
AMSGrad, without losing accuracy.
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Figure 2: Train loss and Test accuracy vs. No. bits transmitted, on MNIST + CNN, CIFAR-10 +
LeNet and IMDB + LSTM with n = 16 local workers.
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5.3 LINEAR SPEEDUP OF COMP-AMS
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Figure 3: The linear speedup of COMP-AMS with varying n. Left: MNIST with Block-Sign
compressor on CNN. Right: CIFAR-10 with Top-k-0.01 compression on LeNet.

Corollary 2 reveals the linear speedup of COMP-AMS in distributed training. In Figure 3, we present
the training loss on MNIST and CIFAR-10 against the number of iterations, with varying number
of workers n. We use COMP-AMS with Block-Sign on MNIST, and Top-k-0.01 on CIFAR. As
suggested by the theory, we use 5×10−4

√
n as the learning rate. From Figure 3, we see the number

of iterations to achieve a certain loss exhibits a strong linear relationship with n—it (approximately)
decreases by half whenever we double n, which justifies the linear speedup of COMP-AMS.

5.4 DISCUSSION

We provide a brief summary of our empirical observations. The proposed COMP-AMS is able to
match the learning performance of full-gradient AMSGrad in all the presented experiments. In par-
ticular, for data/model involving some sparsity structure, COMP-AMS with the Top-k compressor
could be more effective. Also, our results reveal that 1BitAdam might be quite sensitive to the
pre-conditioning quality, while COMP-AMS can be more easily tuned and implemented in practice.

We would like to emphasize that, the primary goal of the experiments is to show that COMP-AMS
is able to match the performance of full-precision AMSGrad, but not to argue that COMP-AMS
is always better than the other algorithms. Since different methods use different underlying opti-
mization algorithms (e.g., AMSGrad, Adam, momentum SGD), comparing COMP-AMS with other
distributed training methods would be largely determined by the comparison among these optimiza-
tion protocols, which is typically data and task dependent. Our results say that: whenever one wants
to use AMSGrad to train a deep neural network, she/he can simply employ the distributed COMP-
AMS scheme to gain a linear speedup in training time with learning performance as good as the
full-precision training, taking little communication cost and memory consumption.

6 CONCLUSION

In this paper, we study the simple, convenient, yet unexplored gradient averaging strategy for dis-
tributed adaptive optimization called COMP-AMS. Top-k and Block-Sign compressor are incorpo-
rated for communication efficiency, whose biases are compensated by the error feedback strategy.
We develop the convergence rate of COMP-AMS, and show that same as the case of SGD, for AMS-
Grad, compressed gradient averaging with error feedback matches the convergence of full-gradient
AMSGrad, and linear speedup can be obtained in the distributed training. Numerical experiments are
conducted to justify the theoretical findings, and demonstrate that COMP-AMS provides comparable
performance with other distributed adaptive methods, and achieves similar accuracy as full-precision
AMSGrad with significantly reduced communication overhead. Given the simple architecture and
hardware (memory) efficiency, we expect COMP-AMS shall be able to serve as a useful and conve-
nient distributed adaptive optimization framework in practice.
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A TUNING DETAILS AND MORE RESULTS ON RESNET-18

The search grids of the learning rate of each method can be found in Table 1. Empirically, Dist-
AMS, COMP-AMS and 1BitAdam has similar optimal learning rate, while QAdam usually needs
larger step size to reach its best performance.

Table 1: Search grids for learning rate tuning.
Learning rate range

Dist-AMS [0.00001, 0.00003, 0.00005, 0.0001, 0.0003, 0.0005, 0.001, 0.003, 0.005, 0.01]
Comp-AMS [0.00001, 0.00003, 0.00005, 0.0001, 0.0003, 0.0005, 0.001, 0.003, 0.005, 0.01]

QAdam [0.0001, 0.0003, 0.0005, 0.001, 0.003, 0.005, 0.01, 0.03, 0.05, 0.1, 0.3, 0.5]
1BitAdam [0.00001, 0.00003, 0.00005, 0.0001, 0.0003, 0.0005, 0.001, 0.003, 0.005, 0.01]

We provide more experimental results on CIFAR-10 dataset, trained with ResNet-18 (He et al.,
2016). For reference, we also present the result of distributed SGD. As we can see from Figure 4,
again COMP-AMS can achieve similar accuracy as AMSGrad, and the Top-k compressor gives the
best accuracy, with substantial communication reduction. Note that distributed SGD converges faster
than adaptive methods, but the generalization error is slightly worse. This experiment again confirms
that COMP-AMS can serve as a simple and convenient distributed adaptive training framework with
fast convergence, reduced communication and little performance drop.
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Figure 4: Training loss and test accuracy of different distributed training methods on CIFAR-10 with
ResNet-18 (He et al., 2016).
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B PROOF OF CONVERGENCE RESULTS

In this section, we provide the proof of our main result.

B.1 PROOF OF THEOREM 1

Theorem. Denote C0 =
√

4(1+q2)3

(1−q2)2 G
2 + ε, C1 = β1

1−β1
+ 2q

1−q2 . Under Assumption 1 to Assump-
tion 4, with ηt = η ≤ ε

3C0

√
2Lmax{2L,C2}

, for any T > 0, COMP-AMS satisfies

1

T

T∑
t=1

E[‖∇f(θt)‖2] ≤ 2C0

(E[f(θ1)− f(θ∗)]

Tη
+
ηLσ2

nε
+

3η2LC0C
2
1σ

2

nε2

+
12η2q2LC0σ

2
g

(1− q2)2ε2
+

(1 + C1)G2d

T
√
ε

+
η(1 + 2C1)C1LG

2d

Tε

)
.

Proof. We first clarify some notations. At time t, let the full-precision gradient of the i-th worker
be gt,i, the error accumulator be et,i, and the compressed gradient be g̃t,i = C(gt,i + et,i). Slightly
different from the notations in the algorithm, we denote ḡt = 1

n

∑n
i=1 gt,i, g̃t = 1

n

∑n
i=1 g̃t,i and

ēt = 1
n

∑n
i=1 et,i. The second moment computed by the compressed gradients is denoted as vt =

β2vt−1 + (1− β2)g̃
2
t , and v̂t = max{v̂t−1, vt}. Also, the first order moving average sequence

mt = β1mt−1 + (1− β1)g̃t and m′t = β1m
′
t−1 + (1− β1)ḡt,

where m′t represents the first moment moving average sequence using the uncompressed stochastic
gradients. By construction we have m′t = (1− β1)

∑t
τ=1 β

t−τ
1 ḡτ .

Our proof will use the following auxiliary sequences,

Et+1 := (1− β1)

t+1∑
τ=1

βt+1−τ
1 ēτ ,

θ′t+1 := θt+1 − η
Et+1√
v̂t + ε

.

Then, we can write the evolution of θ′t as

θ′t+1 = θt+1 − η
Et+1√
v̂t + ε

= θt − η
(1− β1)

∑t
τ=1 β

t−τ
1 g̃τ + (1− β1)

∑t+1
τ=1 β

t+1−τ
1 ēτ√

v̂t + ε

= θt − η
(1− β1)

∑t
τ=1 β

t−τ
1 (g̃τ + ēτ+1) + (1− β)βt1ē1√

v̂t + ε

= θt − η
(1− β1)

∑t
τ=1 β

t−τ
1 ēτ√

v̂t + ε
− η m′t√

v̂t + ε

= θt − η
Et√

v̂t−1 + ε
− η m′t√

v̂t + ε
+ η(

1√
v̂t−1 + ε

− 1√
v̂t + ε

)Et

(a)
= θ′t − η

m′t√
v̂t + ε

+ η(
1√

v̂t−1 + ε
− 1√

v̂t + ε
)Et

:= θ′t − η
m′t√
v̂t + ε

+ ηDtEt,

where (a) uses the fact that for every i ∈ [n], g̃t,i + et+1,i = gt,i + et,i, and et,1 = 0 at initialization.
Further define the virtual iterates:

xt+1 := θ′t+1 − η
β1

1− β1
m′t√
v̂t + ε

,
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which follows the recurrence:

xt+1 = θ′t+1 − η
β1

1− β1
m′t√
v̂t + ε

= θ′t − η
m′t√
v̂t + ε

− η β1
1− β1

m′t√
v̂t + ε

+ ηDtEt

= θ′t − η
β1m

′
t−1 + (1− β1)ḡt +

β2
1

1−β1
m′t−1 + β1ḡt

√
v̂t + ε

+ ηDtEt

= θ′t − η
β1

1− β1
m′t−1√
v̂t + ε

− η ḡt√
v̂t + ε

+ ηDtEt

= xt − η
ḡt√
v̂t + ε

+ η
β1

1− β1
Dtm

′
t−1 + ηDtEt.

When summing over t = 1, ..., T , the difference sequence Dt satisfies the bounds of Lemma 5.

By the smoothness Assumption 2, we have

f(xt+1) ≤ f(xt) + 〈∇f(xt), xt+1 − xt〉+
L

2
‖xt+1 − xt‖2.

Taking expectation w.r.t. the randomness at time t, we obtain
E[f(xt+1)]− f(xt)

≤ −ηE[〈∇f(xt),
ḡt√
v̂t + ε

〉] + ηE[〈∇f(xt),
β1

1− β1
Dtm

′
t−1 +DtEt〉]

+
η2L

2
E[‖ ḡt√

v̂t + ε
− β1

1− β1
Dtm

′
t−1 −DtEt‖2]

= −ηE[〈∇f(θt),
ḡt√
v̂t + ε

〉]︸ ︷︷ ︸
I

+ ηE[〈∇f(xt),
β1

1− β1
Dtm

′
t−1 +DtEt〉]︸ ︷︷ ︸

II

+
η2L

2
E[‖ ḡt√

v̂t + ε
− β1

1− β1
Dtm

′
t−1 −DtEt‖2]︸ ︷︷ ︸

III

+ ηE[〈∇f(θt)−∇f(xt),
ḡt√
v̂t + ε

〉]︸ ︷︷ ︸
IV

,

(3)

In the following, we bound the terms separately.

Bounding term I. We have

I = −ηE[〈∇f(θt),
ḡt√

v̂t−1 + ε
]− ηE[〈∇f(θt), (

1√
v̂t + ε

− 1√
v̂t−1 + ε

)ḡt〉]

≤ −ηE[〈∇f(θt),
∇f(θt)√
v̂t−1 + ε

] + ηG2E[‖Dt‖].

≤ − η√
4(1+q2)3

(1−q2)2 G
2 + ε

E[‖∇f(θt)‖2] + ηG2E[‖Dt‖1], (4)

where we use Assumption 3, Lemma 4 and the fact that l2 norm is no larger than l1 norm.

Bounding term II. By the definition of Et, we know that ‖Et‖ ≤ (1 − β1)
∑t
τ=1 β

t−τ
1 ‖ēt‖ ≤

2q
1−q2G. Then we have

II ≤ η(E[〈∇f(θt),
β1

1− β1
Dtm

′
t−1 +DtEt〉] + E[〈∇f(xt)−∇f(θt),

β1
1− β1

Dtm
′
t−1 +DtEt〉])

≤ ηE[‖∇f(θt)‖‖
β1

1− β1
Dtm

′
t−1 +DtEt‖] + η2 LE[‖

β1

1−β1
m′t−1 + Et√
v̂t−1 + ε

‖‖ β1
1− β1

Dtm
′
t−1 +DtEt‖]

≤ ηC1G
2E[‖Dt‖1] +

η2C2
1LG

2

√
ε

E[‖Dt‖1], (5)
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where C1 := β1

1−β1
+ 2q

1−q2 . The second inequality is because of smoothness of f(θ), and the last
inequality is due to Lemma 2, Assumption 3 and the property of norms.

Bounding term III. This term can be bounded as follows:

III ≤ η2LE[‖ ḡt√
v̂t + ε

‖2] + η2LE[‖ β1
1− β1

Dtm
′
t−1 −DtEt‖2]]

≤ η2L

ε
E[‖ 1

n

n∑
i=1

gt,i −∇f(θt) +∇f(θt)‖2] + η2LE[‖Dt(
β1

1− β1
m′t−1 − Et)‖2]

(a)

≤ η2L

ε
E[‖∇f(θt)‖2] +

η2Lσ2

nε
+ η2C2

1LG
2E[‖Dt‖2], (6)

where (a) follows from ∇f(θt) = 1
n

∑n
i=1∇fi(θt) and Assumption 4 that gt,i is unbiased of

∇fi(θt) and has bounded variance σ2.

Bounding term IV. We have

IV = ηE[〈∇f(θt)−∇f(xt),
ḡt√

v̂t−1 + ε
〉] + ηE[〈∇f(θt)−∇f(xt), (

1√
v̂t + ε

− 1√
v̂t−1 + ε

)ḡt〉]

≤ ηE[〈∇f(θt)−∇f(xt),
∇f(θt)√
v̂t−1 + ε

〉] + η2LE[‖
β1

1−β1
m′t−1 + Et√
v̂t−1 + ε

‖‖Dtgt‖]

(a)

≤ ηρ

2ε
E[‖∇f(θt)‖2] +

η

2ρ
E[‖∇f(θt)−∇f(xt)‖2] +

η2C1LG
2

√
ε

E[‖Dt‖]

(b)

≤ ηρ

2ε
E[‖∇f(θt)‖2] +

η3L

2ρ
E[‖

β1

1−β1
m′t−1 + Et√
v̂t−1 + ε

‖2] +
η2C1LG

2

√
ε

E[‖Dt‖1], (7)

where (a) is due to Young’s inequality and (b) is based on Assumption 2.

Regarding the second term in (7), by Lemma 3 and Lemma 1, summing over t = 1, ..., T we have
T∑
t=1

η3L

2ρ
E[‖

β1

1−β1
m′t−1 + Et√
v̂t−1 + ε

‖2]

≤
T∑
t=1

η3L

2ρε
E[‖ β1

1− β1
m′t−1 + Et‖2]

≤
T∑
t=1

η3L

ρε

[ β2
1

(1− β1)2
E[‖m′t‖2] + E[‖Et‖2]

]
≤ Tη3β2

1Lσ
2

nρ(1− β1)2ε
+

η3β2
1L

ρ(1− β1)2ε

T∑
t=1

E[‖∇f(θt)‖2]

+
4Tη3q2L

ρ(1− q2)2ε
(σ2 + σ2

g) +
4η3q2L

ρ(1− q2)2ε

T∑
t=1

E[‖∇f(θt)‖2]

=
Tη3LC2σ

2

nρε
+

4Tη3q2Lσ2
g

ρ(1− q2)2ε
+
η3LC2

ρε

T∑
t=1

E[‖∇f(θt)‖2], (8)

with C2 :=
β2
1

(1−β1)2
+ 4q2

(1−q2)2 . Now integrating (4), (5), (6), (7) and (8) into (3), taking the tele-
scoping summation over t = 1, ..., T , we obtain
E[f(xT+1)− f(x1)]

≤ (− η

C0
+
η2L

ε
+
ηρ

2ε
+
η3LC2

ρε
)

T∑
t=1

E[‖∇f(θt)‖2] +
Tη2Lσ2

nε
+
Tη3LC2σ

2

nρε
+

4Tη3q2Lσ2
g

ρ(1− q2)2ε

+ (η(1 + C1)G2 +
η2(1 + C1)C1LG

2

√
ε

)

T∑
t=1

E[‖Dt‖1] + η2C2
1LG

2
T∑
t=1

E[‖Dt‖2.
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with C0 :=
√

4(1+q2)3

(1−q2)2 G
2 + ε. Setting η ≤ ε

3C0

√
2Lmax{2L,C2}

and choosing ρ = ε
3C0

, we further

arrive at

E[f(xT+1)− f(x1)]

≤ − η

2C0

T∑
t=1

E[‖∇f(θt)‖2] +
Tη2Lσ2

nε
+

3Tη3LC0C2σ
2

nε2
+

12Tη3q2LC0σ
2
g

(1− q2)2ε2

+
η(1 + C1)G2d√

ε
+
η2(1 + 2C1)C1LG

2d

ε
.

where the inequality follows from Lemma 5. Re-arranging terms, we get that

1

T

T∑
t=1

E[‖∇f(θt)‖2] ≤ 2C0

(E[f(x1)− f(xT+1)]

Tη
+
ηLσ2

nε
+

3η2LC0C2σ
2

nε2

+
12η2q2LC0σ

2
g

(1− q2)2ε2
+

(1 + C1)G2d

T
√
ε

+
η(1 + 2C1)C1LG

2d

Tε

)
≤ 2C0

(E[f(θ1)− f(θ∗)]

Tη
+
ηLσ2

nε
+

3η2LC0C
2
1σ

2

nε2

+
12η2q2LC0σ

2
g

(1− q2)2ε2
+

(1 + C1)G2d

T
√
ε

+
η(1 + 2C1)C1LG

2d

Tε

)
,

where C0 =
√

4(1+q2)3

(1−q2)2 G
2 + ε, C1 = β1

1−β1
+ 2q

1−q2 . The last inequality is because x1 = θ1,

θ∗ := arg minθ f(θ) and the fact that C2 ≤ C2
1 . This completes the proof.

B.2 INTERMEDIATE LEMMATA

The lemmas used in the proof of Theorem 1 are given as below.

Lemma 1. Under Assumption 1 to Assumption 4 we have:

‖m′t‖ ≤ G, ∀t,
T∑
t=1

E‖m′t‖2 ≤
Tσ2

n
+

T∑
t=1

E[‖∇f(θt)‖2].

Proof. For the first part, it is easy to see that by Assumption 3,

‖m′t‖ = (1− β1)‖
t∑

τ=1

βt−τ1 ḡt‖ ≤ G.

For the second claim, the expected squared norm of average stochastic gradient can be bounded by

E[‖ḡ2t ‖] = E[‖ 1

n

n∑
i=1

gt,i −∇f(θt) +∇f(θt)‖2]

= E[‖ 1

n

n∑
i=1

(gt,i −∇fi(θt))‖2] + E[‖∇f(θt)‖2]

≤ σ2

n
+ E[‖∇f(θt)‖2],
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where we use Assumption 4 that gt,i is unbiased with bounded variance. Let ḡt,j denote the j-th
coordinate of ḡt. By the updating rule of COMP-AMS, we have

E[‖m′t‖2] = E[‖(1− β1)

t∑
τ=1

βt−τ1 ḡτ‖2]

≤ (1− β1)2
d∑
j=1

E[(

t∑
τ=1

βt−τ1 ḡτ,j)
2]

(a)

≤ (1− β1)2
d∑
j=1

E[(

t∑
τ=1

βt−τ1 )(

t∑
τ=1

βt−τ1 ḡ2τ,j)]

≤ (1− β1)

t∑
τ=1

βt−τ1 E[‖ḡτ‖2]

≤ σ2

n
+ (1− β1)

t∑
τ=1

βt−τ1 E[‖∇f(θt)‖2],

where (a) is due to Cauchy-Schwartz inequality. Summing over t = 1, ..., T , we obtain
T∑
t=1

E‖m′t‖2 ≤
Tσ2

n
+

T∑
t=1

E[‖∇f(θt)‖2].

This completes the proof.

Lemma 2. Under Assumption 4, we have for ∀t and each local worker ∀i ∈ [n],

‖et,i‖2 ≤
4q2

(1− q2)2
G2,

E[‖et+1,i‖2] ≤ 4q2

(1− q2)2
σ2 +

2q2

1− q2
t∑

τ=1

(
1 + q2

2
)t−τE[‖∇fi(θτ )‖2].

Proof. We start by using Assumption 1 and Young’s inequality to get

‖et+1,i‖2 = ‖gt,i + et,i − C(gt,i + et,i)‖2

≤ q2‖gt,i + et,i‖2

≤ q2(1 + ρ)‖et,i‖2 + q2(1 +
1

ρ
)‖gt,i‖2

≤ 1 + q2

2
‖et,i‖2 +

2q2

1− q2
‖gt,i‖2, (9)

where (9) is derived by choosing ρ = 1−q2
2q2 and the fact that q < 1. Now by recursion and the

initialization e1,i = 0, we have

E[‖et+1,i‖2] ≤ 2q2

1− q2
t∑

τ=1

(
1 + q2

2
)t−τE[‖gτ,i‖2]

≤ 4q2

(1− q2)2
σ2 +

2q2

1− q2
t∑

τ=1

(
1 + q2

2
)t−τE[‖∇fi(θτ )‖2],

which proves the second argument. Meanwhile, the absolute bound ‖et,i‖2 ≤ 4q2

(1−q2)2G
2 follows

directly from (9).

Lemma 3. For the moving average error sequence Et, it holds that
T∑
t=1

E[‖Et‖2] ≤ 4Tq2

(1− q2)2
(σ2 + σ2

g) +
4q2

(1− q2)2

T∑
t=1

E[‖∇f(θt)‖2].
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Proof. Denote Kt,i :=
∑t
τ=1( 1+q2

2 )t−τE[‖∇fi(θτ )‖2]. Using the same technique as in the proof
of Lemma 1, denoting ēt,j as the j-th coordinate of ēt, it follows that

E[‖Et‖2] = E[‖(1− β1)

t∑
τ=1

βt−τ1 ēτ‖2]

≤ (1− β1)2
d∑
j=1

E[(

t∑
τ=1

βt−τ1 ēτ,j)
2]

(a)

≤ (1− β1)2
d∑
j=1

E[(

t∑
τ=1

βt−τ1 )(

t∑
τ=1

βt−τ1 ē2τ,j)]

≤ (1− β1)

t∑
τ=1

βt−τ1 E[‖ēτ‖2]

≤ (1− β1)

t∑
τ=1

βt−τ1 E[
1

n

n∑
i=1

‖eτ,i‖2]

(b)

≤ 4q2

(1− q2)2
σ2 +

2q2(1− β1)

(1− q2)

t∑
τ=1

βt−τ1 (
1

n

n∑
i=1

Kτ,i),

where (a) is due to Cauchy-Schwartz and (b) is a result of Lemma 2. Summing over t = 1, ..., T
and using the technique of geometric series summation leads to
T∑
t=1

E[‖Et‖2] ≤ 4Tq2

(1− q2)2
σ2 +

2q2(1− β1)

(1− q2)

T∑
t=1

t∑
τ=1

βt−τ1 (
1

n

n∑
i=1

Kτ,i)

≤ 4Tq2

(1− q2)2
σ2 +

2q2

(1− q2)

T∑
t=1

t∑
τ=1

(
1 + q2

2
)t−τE[

1

n

n∑
i=1

‖∇fi(θτ )‖2]

≤ 4Tq2

(1− q2)2
σ2 +

4q2

(1− q2)2

T∑
t=1

E[
1

n

n∑
i=1

‖∇fi(θt)‖2]

(a)

≤ 4Tq2

(1− q2)2
σ2 +

4q2

(1− q2)2

T∑
t=1

E[‖ 1

n

n∑
i=1

∇fi(θt)‖2 +
1

n

n∑
i=1

‖∇fi(θt)−∇f(θt)‖2]

≤ 4Tq2

(1− q2)2
(σ2 + σ2

g) +
4q2

(1− q2)2

T∑
t=1

E[‖∇f(θt)‖2],

where (a) is derived by the variance decomposition and the last inequality holds due to Assumption 4.
The desired result is obtained.

Lemma 4. It holds that ∀t ∈ [T ], ∀i ∈ [d], v̂t,i ≤ 4(1+q2)3

(1−q2)2 G
2.

Proof. For any t, by Lemma 2 and Assumption 3 we have
‖g̃t‖2 = ‖C(gt + et)‖2

≤ ‖C(gt + et)− (gt + et) + (gt + et)‖2

≤ 2(q2 + 1)‖gt + et‖2

≤ 4(q2 + 1)(G2 +
4q2

(1− q2)2
G2)

=
4(1 + q2)3

(1− q2)2
G2.

It’s then easy to show by the updating rule of v̂t, there exists a j ∈ [t] such that v̂t = vj . Then

v̂t,i = (1− β2)

j∑
τ=1

βj−τ2 g̃2τ,i ≤
4(1 + q2)3

(1− q2)2
G2,
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which concludes the claim.

Lemma 5. Let Dt := 1√
v̂t−1+ε

− 1√
v̂t+ε

be defined as above. Then,

T∑
t=1

‖Dt‖1 ≤
d√
ε
,

T∑
t=1

‖Dt‖2 ≤
d

ε
.

Proof. By the updating rule of COMP-AMS, v̂t−1 ≤ v̂t for ∀t. Therefore, by the initialization
v̂0 = 0, we have

T∑
t=1

‖Dt‖1 =

T∑
t=1

d∑
i=1

(
1√

v̂t−1,i + ε
− 1√

v̂t,i + ε
)

=

d∑
i=1

(
1√

v̂0,i + ε
− 1√

v̂T,i + ε
)

≤ d√
ε
.

For the sum of squared l2 norm, note the fact that for a ≥ b > 0, it holds that

(a− b)2 ≤ (a− b)(a+ b) = a2 − b2.

Thus,

T∑
t=1

‖Dt‖2 =

T∑
t=1

d∑
i=1

(
1√

v̂t−1,i + ε
− 1√

v̂t,i + ε
)2

≤
T∑
t=1

d∑
i=1

(
1

v̂t−1,i + ε
− 1

v̂t,i + ε
)

≤ d

ε
,

which gives the desired result.
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