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Abstract
Generative modeling aims to produce new random examples from an unknown
target distribution, given access to a finite collection of examples. Among the
leading approaches, denoising diffusion probabilistic models (DDPMs) construct
such examples by mapping a Brownian motion via a diffusion process driven by
an estimated score function. In this work, we first provide empirical evidence that
DDPMs are robust to constant-variance noise in the score evaluations. We then
establish finite-sample guarantees in Wasserstein-2 distance that exhibit two key
features: (i) they characterize and quantify the robustness of DDPMs to noisy score
estimates, and (ii) they achieve faster convergence rates than previously known
results. Furthermore, we observe that the obtained rates match those known in the
Gaussian case, implying their optimality.

1 Introduction

We study the problem of generative modeling, which aims to construct a mechanism capable of
producing synthetic samples that mimic a target distribution P ∗, given access to independent observa-
tions from P ∗. This fundamental task lies at the core of numerous applications, including image, text,
music, and molecule generation. Among the recent advances in this domain, Denoising Diffusion
Probabilistic Models (DDPMs), introduced in [HJA20], have emerged as a remarkably effective class
of generative models; see, e.g., [CMFW24, YZS+24, TZ25] for comprehensive overviews. In this
work, we contribute to the growing theoretical understanding of DDPMs by analyzing several of their
key properties and performance guarantees.

The central idea underlying DDPMs is to construct a transport map that transforms a simple source
of randomness into a sample from the target distribution P ∗. More precisely, for any distribution P ∗,
there exists a map defined via a stochastic differential equation (SDE) that takes as input a standard
Gaussian vector ξ0 and a standard Brownian motion W , and outputs a vector with distribution P ∗.
Importantly, only the drift term of the SDE depends on P ∗, and this dependence occurs through the
score function, that is, the gradient of the log-density of a Gaussian-smoothed version of P ∗. This
formulation reduces the generative modeling task to that of score estimation: one can estimate the
score function from data and substitute this estimate into the SDE to approximately sample from P ∗.

For many commonly used datasets, such as CIFAR-10 and CelebA-HQ considered in Section 6,
accurate estimators of the score function are available. Generating a synthetic sample reduces to
drawing a Gaussian vector together with the increments of a Brownian motion, and simulating the
SDE defined by the pretrained score. This procedure requires multiple evaluations of the score
estimator. The first question we address in this paper is: what happens if each evaluation returns a
value corrupted by additive centered noise? Such a scenario may arise when the pretrained model is
hosted on a remote server and communication introduces random perturbations, or when the score
values are compressed using stochastic rounding. Anticipating our main findings, we emphasize
that, perhaps counterintuitively, we observe that adding even a constant level of noise to each score
evaluation has only a limited effect on the quality of the generated samples; see Figure 1 for an
illustration.
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Figure 1: Generated images obtained by DDPM with a constant-level noise added to the estimated
score. Left: CelebA-HQ. Right: CIFAR10. The result is visually as good as the noiseless one.

The second question we investigate concerns the accuracy of DDPMs when performance is measured
in terms of the Wasserstein distance. A natural criterion in this setting is the number of score function
queries K required to achieve a prescribed level of accuracy ε. For the Gaussian target distribution,
elementary computations show that K = O(

√
D/ε), where D denotes the ambient dimension.

Surprisingly, however, it remains unclear whether DDPMs maintain this level of accuracy for broader
classes of distributions beyond the Gaussian case.
Contributions. The main contributions of this work can be summarized as follows:

• We provide empirical evidence, based on experiments with the CIFAR-10 and CelebA-HQ
datasets, that DDPMs are remarkably robust to noise in the evaluation of the score function.

• We derive non-asymptotic upper bounds on the Wasserstein-2 distance between the target
distribution and the distribution induced by the DDPM with noisy score evaluations, thus
offering a theoretical explanation for the observed robustness.

• Our bounds match—up to a multiplicative constant—the rate
√
D/ε of the case of a Gaussian

target. Moreover, our results extend to a significantly broader class of distributions, including
compactly supported semi-log-concave measures supported on low-dimensional subspaces.

Related work [KFL22] highlighted the connection between DDPMs and the Wasserstein distance.
The first quantitative bounds—polynomial in the dimension and valid for a broad class of P ∗—were
established in [CCL+23], covering several metrics. Unlike their result in total variation (TV) distance,
their bound in Wasserstein distance has the poor scaling D5/ε12. Subsequent work significantly
improved this rate: [CLL23] achieved D4/ε2 under minimal assumptions, while [BZL+23, GNZ25,
YY25, SOB+25, SO25] reduced it further to D/ε2, assuming stronger conditions on P ∗. Our paper
closes the loop by proving that the optimal rate

√
D/ε is achieved by the standard DDPM procedure.

A related result by [GZ24] establishes similar bounds for the probability flow ODE, but under more
restrictive assumptions, such as strong log-concavity of P ∗.

Over the past three years, substantial progress has also been made in establishing guarantees for
DDPMs in total variation and Kullback–Leibler divergence under weak assumptions on P ∗ [CDS25,
LJLS25, LY25, BBDD24, LHE+24], including acceleration techniques such as parallel sampling,
randomized midpoint, and Runge–Kutta methods [CRYR24, GCC24, WCW24]. In parallel, a
growing body of work investigates the statistical optimality of score-based models [OAS23, WWY24,
HST25], as well as their ability to adapt to low-dimensional structure [Bor22, TY24, LY24, HWC24,
ADR24, PAD24]. Analogous results for flow matching have been established in [KT25].

Notation For D ∈ N, ID is the D ×D identity matrix. We use notation A ≺ B, A ≼ B, A ≻ B,
A ≽ B to design that the matrix A −B is, respectively, negative definite, negative semi-definite,
positive definite and positive semi-definite. We denote by ND(µ,Σ) the D-dimensional Gaussian
distribution with mean µ and covariance matrix Σ. Let γD be the density function of ND(0, ID).
The norm of a vector is always understood as the Euclidean norm, whereas the norm of a matrix is
the operator norm (the largest singular value). The independence of random vectors X and Y is
denoted by X ⊥⊥ Y . The Wasserstein-q distance between two distributions P and Q is defined by

Wq
q(P,Q) = inf

ϱ∈Γ(P,Q)
E(X,Y )∼ϱ[∥X − Y ∥q],

where q ⩾ 1 and Γ(P,Q) is the set of all joint distributions with marginals P andQ. For any function
g : [0, T ]× RD → R, we will write ∇g and ∇2g for the gradient and the Hessian of g with respect
to its second variable. If g : [0, T ]× RD → RD, we write Dg for the differential of g with respect to
its second variable. For each random vector X , we write ∥X∥L2

= (E[∥X∥22])1/2.
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2 Problem statement and conditions

The goal of this section is to set the framework of denoising diffusion probabilistic models with
randomized score estimators and to state the conditions imposed on the unknown target distribution.

The setting of randomized score estimators Our setting is a bit more general than those previously
studied in the literature. For an unknown distribution P ∗ on RD, and for t > 0, we define P ∗

t as
the distribution of αtX + βtξ, where (X, ξ) ∼ P ∗ ⊗ γD, αt = e−t, and βt =

√
1− α2

t . The set
(P ∗

t )t⩾0 can be seen as a curve in the space of probability measures interpolating between P ∗ and
γD, since P ∗

0 = P ∗ and P ∗
∞ = γD. For t > 0, P ∗

t is absolutely continuous with respect to the
Lebesgue measure λD on RD with an infinitely differentiable density. Therefore, we can define the
score function s by

π(t,x) =
dP ∗

t

dλD
(x), s(t,x) = ∇ log π(t,x). (1)

Since P ∗
t is unknown, we cannot access s(t,x). Instead, we have access to randomized and noisy

evaluations of this function: for each query (t,x) ∈ [0,∞)× RD, we can observe a random vector
s̃(t,x) such that ∥s̃(t,x)−s(t,x)∥L2 is small. Our goal is to combine independent Gaussian random
vectors and queries to the approximate score s̃ to build a random vector Z in RD having a distribution
PZ close to P ∗. To this end, we focus on the DDPM algorithm presented in Algorithm 1.

Algorithm 1 Generation of Z by the denoising diffusion probabilistic model

Require: Sequence (t1, . . . , tK+1) for some integer K ⩾ 1
Ensure: Vector Z = ZK+1

1: Set t0 = 0, T = tK+1, and Z0 ∼ γD

2: for k = 0 to K do
3: Set hk = tk+1 − tk
4: Generate ξk+1 ∼ γD, independent of all previous randomness
5: Query s̃ at (tk,Zk)
6: Set Zk+1 = (1 + hk)Zk + 2hks̃(T − tk,Zk) +

√
2hk ξk+1

7: end for
8: Output ZK+1

We postpone the discussion of the origin of this algorithm to Section 3. The main difference between
our setting and prior work lies in the randomness of s̃, which goes beyond the randomness of the
training sample. Let us provide concrete examples to illustrate our setting.

Example 1 (Noisy score estimator). Assume that an estimator ŝ is available. Due to issues such as
communication constraints or privacy concerns, we do not observe ŝ(t,x) directly, but rather a noisy
version s̃(t,x) = ŝ(t,x) + ζ, where ζ is random, typically with zero mean and bounded variance.

Example 2 (Compressed score estimator). Assume again that an estimator ŝ is available, but only
one of its coordinates can be queried at a time. At each iteration, we randomly choose i ∈ {1, . . . , D}
uniformly and set s̃(t,x) = D ×

(
ŝ(t,x)Tei

)
ei, where ei is the i-th canonical basis vector.

Example 3 (Randomized network weights). The conventional approach fits the weights θ of a
neural net ϕ(t,x;θ) to the unknown score s(t,x) by minimizing the (estimated) prediction error:

min
θ∈Rp

R(P ∗,θ), where R(P ∗,θ) :=

∫ T

0

∫
RD

∥ϕ(t,x,θ)− s(t,x)∥2 π(t,x) dx dt.

One can instead minimize an estimator of the integrated error under a Gaussian prior by solving

µ̂ ∈ argmin
µ∈Rp

∫
Rp

R(P ∗,µ+ σz) γp(z) dz,

where σ > 0 is a hyperparameter. This may lead to a more robust score estimator. In this setting,
the randomized estimator of the score at each query point (t,x) is ϕ(t,x, µ̂ + σζ), with ζ ∼ γp

generated independently by the user.
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Conditions on the target distribution The guarantees on the precision of the DDPM that we will
state in the next section depend on the properties of the target P ∗. We will express these properties in
terms of a function φ.
Assumption 1. For a function φ : R>0 → R>0, we say that P ∗ or X satisfies Assumption 1 with
function φ if, for (X, ξ) ∼ P ∗ ⊗ γD, it holds that Var

(
X |X + σξ = y

)
≼ φ(σ) ID for all σ > 0.

Many distributions satisfy this assumption (see Appendix A for the proofs):
(a) If X has bounded support K with diam(K) = 2DX , Assumption 1 holds with φ(σ) ≡ D2

X ;
(b) Any m-strongly log-concave distribution P ∗ satisfies Assumption 1 with φ(σ) = σ2

1+mσ2 ;
(c) If X is semi-log-concave with constant2 M ⩾ 0 and has bounded support of diameter 2DX ,

then X satisfies Assumption 1 with φ(σ) = D2
X ∧ σ2

(1−Mσ2)+
;

(d) If X satisfies Assumption 1 with some function φ, U is a D × D orthonormal matrix and
b ∈ RD, then UX + b satisfies Assumption 1 with the same φ;

(e) If X is obtained by concatenating two independent vectors X1 and X2 satisfying Assumption 1
with the same function φ, then X satisfies Assumption 1 with φ.

(f) If (W , ζ) ∼ P0 ⊗ γD such that W satisfies Assumption 1 with the function φ0, then, X =

W + τζ satisfies Assumption 1 with the function φτ (σ) =
τ2σ2

τ2+σ2 + σ4φ0(
√
τ2+σ2)

(τ2+σ2)2 .

(g) If W is supported by a bounded set of diameter 2D and ζ ⊥⊥ W is m-strongly log-concave
with an M -Lipschitz score function, then X = W + ζ satisfies Assumption 1 with φ(σ) =

σ2

1+mσ2 + (MDσ2)2

(1+Mσ2)2 .

The main purpose of Assumption 1 is to ensure that the drift coefficient of the backward diffusion
process is strongly convex when the noise level is large and semi-log-concave for all noise levels.
Moreover, the drift coefficient is always gradient-Lipschitz, with a Lipschitz constant depending on
the noise level. These properties are summarized in the following result3.
Proposition 1. Let X and ξ be random vectors in RD drawn from P ∗ ⊗ γD. For any α, β > 0, the
density πY of Y = αX + βξ is twice continuously differentiable and satisfies

∇2 log πY (y) =
α2

β4
Var(X |Y = y)− 1

β2
ID ≽ − 1

β2
ID, for all y ∈ RD.

Thus, Assumption 1 is equivalent to ∇2 log πY (y) ≼
(α2φ(β/α)−β2)

β4 ID, for all y ∈ RD, α, β > 0.

The last inequality above implies that if φ(β/α) ⩽ (β/α)2 , the distribution of Y = αX + βξ is
log-concave, and it is strongly log-concave if the inequality is strict.

Conditions on the estimated score As mentioned in Section 2, we consider randomized estimators
s̃ of the true score function s. The mean squared error of such an estimator can be decomposed into a
bias and a variance term:

E
[
∥s̃(t,x)− s(t,x)∥2

]
= ∥E [s̃(t,x)]− s(t,x)∥2 +E

[
∥s̃(t,x)−E [s̃(t,x)]∥2

]
.

In what follows, we analyze separately the impact of the bias and the variance on the overall error.
As we will see, the variance term has a much weaker influence on the final accuracy than the bias
term. To reflect this difference, we introduce the following assumption.
Assumption 2. There are constants εbscore and εvscore such that for all t ∈ {tk : k ⩽ K} of Algorithm 1,

sup
x∈RD

∥E [s̃(t,x)]− s(t,x)∥ ⩽ D1/2εbscore, sup
x∈RD

∥s̃(t,x)−E [s̃(t,x)]∥L2 ⩽ D1/2εvscore.

Assumption 2 imposes uniformity over all x ∈ RD and t ∈ tk : k ⩽ K and, therefore, is a stronger
condition than the one used in previous work [CLL23]. The latter considers L2-norm with respect to
P ∗
t , rather than a supremum, and involves a weighted average over t. While it may be possible to

relax the requirement involving the maximum over the time grid, the uniformity with respect to x
appears to be more difficult to replace by the L2-norm wrt P ∗

t . It is important to note, however, that
for our proof needs only an L2 bound with respect to the distribution of the DDPM output at time t.

2We recall that X is semi-log-concave [Cla83] with constant M ∈ R if X has a density πX wrt the Lebesgue
measure and − log πX(x) + M

2
∥x∥2 is convex; see [VCK25] for an application in sampling.

3The formula relating the Hessian of the log-density to the conditional variance, stated in Proposition 1 is
often referred to as the second-order Tweedie formula.
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3 Score-Based Generative Modeling: preliminary considerations

The starting point of a DDPM is the forward process given as a solution to a stochastic differential
equation (SDE). The simplest and the most widespread choice is the Ornstein–Uhlenbeck process

dXt = −Xt dt+
√
2 dBt, t ⩾ 0, X0 ∼ P ∗, (Bt)t⩾0 ⊥⊥ X0, (2)

where (Bt)t⩾0 is a standard Brownian motion in RD. The Ornstein–Uhlenbeck process is a time-
homogeneous Markov process which is also a Gaussian process, with stationary distribution equal
to the standard Gaussian distribution γD on RD. The forward process has the interpretation of
transforming samples from the data generating distribution P ∗ into the latent distribution. From the
classical theory of Markov diffusions, it is known that P ∗

t := law(Xt) converges to γD exponentially
fast in various divergences and metrics such as the 2-Wasserstein metric W2: W2(P

∗
t ; γ

D) ⩽
e−tW2(P0; γ

D), see for instance [Vil08].

3.1 Reverse Process: continuous-time and time-discretized versions

If we reverse the forward process in time, we obtain a process that transforms the latent distribution
into the target distribution P ∗, which is the aim of generative modeling. Fix some large time horizon
T > 0 and set Yt := XT−t, then law(Y0) = law(XT ) is close to the Gaussian distribution γD.
Notably, the dynamics of the reverse process can also be described by a stochastic differential
equation, as stated in the next result.

Theorem 1 ([And82]). If X is a solution to (2) and Yt = XT−t, then there exists a Brownian
Motion B̃ ⊥⊥ Y0 such that

dYt = (Yt + 2∇ log π(T − t,Yt)) dt+
√
2 dB̃t, 0 ⩽ t ⩽ T, (3)

where π(t,x) ∝
∫
RD γ

D
(
(x− αty)/βt

)
P ∗(dy), αt = e−t and β2

t = 1− e−2t.

Note that π(t,x) in this theorem coincides with the one defined in (1) and ∇ log π(T − t,Yt) is the
score function s evaluated at scale T − t and state Yt.

The forward process transforms a data point X0 drawn from P ∗ into a point which is very close to
being drawn from the latent distribution. The reverse process aims to transform a point Y0 drawn
from the latent distribution into a point drawn from P ∗. To this end, we replace the unknown score
function by its estimate s̃ based on a training sample X1, . . . ,Xn ∼ P ∗. The resulting process is
defined as the solution to the SDE

dỸt = (Ỹt + 2s̃(T − t, Ỹt)) dt+
√
2 dB̃t, Ỹ0 ∼ γD, t ∈ [0, T ]. (4)

Both Ỹ and Y are processes on the space C([0, T ],RD), differing in their initial conditions and drift
terms. We wish to assess the distance between the distributions of their states at time T .

To efficiently sample the final state of the reverse process, we have to discretize SDE (4). To this end,
we introduce a sequence (hk)k∈N of positive numbers and set4 tk = h0+ . . .+hk−1. We then define

Zk+1 = (1 + hk)Zk + 2hks̃(T − tk,Zk) +
√
2hk ξk+1; Z0 ∼ γD, (5)

where (ξk)k∈N is a sequence of independent standard Gaussian random variables. The rationale
behind this definition is that Zk has approximately the same law as Ỹtk , for every k.

Definition 1. The denoising diffusion probabilistic model is the distribution PDDPM of the random
vector ZK+1 defined by (5). It requires the choice of K ∈ N, the sequence (t1, . . . , tK+1) and the
score estimators

(
s̃(T − tk, ·)

)
k=0,...,K

.

In this paper, we are interested in quantifying the accuracy of the denoising diffusion generative
model when the error is measured in terms of the Wasserstein distance, that is to upper bound
W2(P

∗, PDDPM). In the rest of this section, we motivate the choice of the Wasserstein distance and
discuss the challenges related to it in the framework of denoising diffusions.

4By convention, t0 = 0.

5



3.2 Relevance of the Wasserstein distance

Recent work on assessing denoising diffusion models mainly focuses on accuracy measured by the
total variation distance and the Kullback-Leibler divergence. However, we believe that for statistical
purposes, measuring the quality of a generative model in the Wasserstein distance is highly appealing.

To justify this point of view, remind that the closeness of two distributions in TV-distance or KL-
divergence does not guarantee the closeness of their means or their covariance matrices. In sharp
contrast, the Wasserstein-2 distance offers such a guarantee, since it holds that

∥EP [X]−EQ[X]∥ ⩽ W2(P,Q); |(EP [X
TAX])1/2 − (EQ[X

TAX])1/2| ⩽ W2(P,Q),

for any matrix A satisfying 0 ≼ A ≼ I. The fact that the TV-distance and the KL-divergence
are not suitable for controlling the moments of distributions can be demonstrated by the following
example. Let P be the exponential distribution with parameter 1 and, for every n ∈ N, set Pn =
(1 − δn)P + δnQn, where δn = 1/

√
n and Qn is the uniform distribution on [n, n + 2]. One can

easily check that Pn is very close to P both in the TV-distance and in the KL-divergence:

dTV(Pn;P ) ⩽ δn = n−1/2; dKL(P ||Pn) = − log(1− δn) ⩽ 2n−1/2, n ⩾ 2.

Therefore, one could expect that Pn is an excellent generative model for the target P . However, the
generated examples will have a mean and variance that explode as n → ∞, and will be infinitely
far away from the mean and the variance of the target, since EPn [X] = 1 + nδn ⩾ n1/2 and
EPn

[X2] ⩾ 2(1− δn) + δnn
2 ⩾ n3/2.

3.3 Challenges inherent to Wasserstein distance

When the distance Wq is employed to assess the quality of a DDPM, a mathematical challenge arises
in quantifying the error due to the absence of the data-processing inequality for Wq-distance. Let us
clarify this point. Consider a forward mechanism M→ that transforms the target P ∗ into a distribution
P ∗
1 which is close to an easy-to-sample-from latent distribution Q0: P ∗

1 := M→(P
∗) ≈ Q0.

Furthermore, assume we have knowledge of the “inverse” forward mechanism, termed backward
mechanics, which maps P ∗

1 back to P ∗: M←(P
∗
1 ) = P ∗. The forward-backward methods of

generative modeling then define the generative model as Q1 = M̄←(Q0), where M̄← represents a
suitably regularized estimator of M← . In DDPM, M← and M̄← are specified by Markov kernels.

In this context, denoting dF as the F -divergence for some F , the following relationship holds:

dF (Q1||P ∗) = dF
(
M̄←(Q0)

∣∣∣∣P ∗) ≈ dF
(
M←(Q0)

∣∣∣∣P ∗)
= dF

(
M←(Q0)

∣∣∣∣M←(P
∗
1 )
) DPI

⩽ dF (Q0||P ∗
1 ),

where the final equality derives from the data-processing inequality. Thus, the error of the generative
distribution is dominated by how well the forward mechanism approximates the latent distribution,
provided that the error of M← approximation is suitably small. These arguments were central in
prior work5 establishing bounds on the error of denoising diffusion models measured in TV-distance
and KL-divergence. However, this approach breaks down for the Wasserstein distance Wq , for which
no suitable equivalent of the data processing inequality exists.

In the case of denoising diffusion models, the qualitative difference between the Wasserstein distance
and F -divergences (such as TV-distances and KL-divergence) can be formally demonstrated even
when the backward kernel is known. This is illustrated in the following lemma.

Lemma 1. For any T > 0, let QT,s
1 be the distribution of the backward process (4) at time T with s̃

replaced by the true score s. Let N be the set of all the Gaussian distributions. It then holds that

sup
P∗∈N

d2TV(Q
T,s
1 ;P ∗)

d2TV(P
∗; γD)

∨ dKL(Q
T,s
1 ||P ∗)

dKL(P ∗||γD)
⩽ e−2T ; sup

P∗∈N

W2(Q
T,s
1 ;P ∗)

W2(P ∗; γD)
= 1.

This lemma reveals that when assessing accuracy through the rate of improvement in Wasserstein
distance, the choice of parameter T must be carefully tailored to the target distribution P ∗. This
might be less important in the case of the TV-distance and the KL-divergence.

5See [CCL+23, BBDD24, HWC24, CDS25] and the references therein
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4 Main results: bounds on the error in various settings

In this section, we upper bound the Wasserstein-2 distance between DDPM (see Algorithm 1) and
the target P ∗. Similar to [CLL23, BBDD24], we employ a discretization scheme composed of two
regimes: an arithmetic grid in the first half and a geometric grid in the second half; see Algorithm 2.

Algorithm 2 Definition of the discretization time steps

Require: δ, a, T1 > 0, and K0 ∈ N>1

Ensure: Sequence t0 < t1 < . . . < tK+1

1: Set t0 = 0, K = 2K0, tK+1 = T1 +
1
2 log(6a)

2: for k = 1 to K0 do
3: Set tk = (T1/K0) k {arithmetic grid}
4: Set tK0+k = T1 +

log(6a)
2

[
1−

(
2δ

log(6a)

)k/K0
]
. {geometric grid}

5: end for
6: Output (t0, . . . , tK+1)

4.1 Strongly log-concave distributions convolved with a distribution with bounded support

In this section, we consider the case of a distribution P ∗ satisfying Assumption 1 with a function φ
that has the following form: for some constants m,M, b ⩾ 0,

φ(σ) =
σ2

1 +mσ2
+

bM2σ4

(1 +Mσ2)2
, ∀σ > 0. (6)

If P ∗ is m-strongly log-concave, as discussed in Section 2, then (6) holds with b = 0 and any M > 0.
Another class of distributions satisfying (6) consists of convolutions P ∗ = Pslc ⋆ Pcmpct, where Pslc

is m-strongly log-concave with an M -Lipschitz score, and Pcmpct is supported on a bounded set of
diameter 2D, for some M ⩾ m > 0 and D ⩾ 0. In this case, (6) holds with b = D2.

Finally, there are distributions satisfying Assumption 1 with φ given by (6) that are not absolutely
continuous with respect to the Lebesgue measure on RD. For example, if P ∗ is supported on a linear
subspace S of RD, and its restriction to S, viewed as a distribution on Rd for some d ∈ 1, . . . , D,
satisfies Assumption 1 with φ given by (6), then P ∗ also satisfies the assumption with the same φ.
This is a consequence of properties (d) and (e) presented in Section 2.

Theorem 2. Let the target distribution P ∗ satisfy E[∥X∥22] ⩽ D and Assumption 1 with function φ
given by (6) for some m,M, b ⩾ 0. Let us choose T1 > 0,

a = 1
m + b, K0 ⩾ 7T1 log(6a) + 4 log(6a) log log(6a) δ = 0.5e−2T1 ,

and define the sequence (tk)0⩽k⩽K+1 by Algorithm 2. Let s̃ be a randomized estimator of the score
satisfying Assumption 2. Then, the distribution PDDPM of the output of Algorithm 1 based on 2K0

queries to the score estimator s̃ satisfies

W2(P
∗, PDDPM) ⩽ e(4/3)bM

{
2e−T1 + 7

√
6a hmax + 4

√
6a
(
2εbscore + h1/2max ε

v
score

)}√
D, (7)

with hmax = maxk(tk+1 − tk) ⩽
log(6a)(log log(6a)+2T1)

K0
.

There are several notable features in the upper bound stated in Theorem 2, when we compare it to the
previously known results.

Remark 1 (Optimality). The dependence of the discretization error (the second term in (7)) on the step
size hmax is linear, whereas it was of order h1/12max in [CCL+23, Cor. 6], h1/4max in [CLL23, Cor. 2.4], and
h
1/2
max in [BZL+23, Remark 12], [SOB+25, Cor. 4.3], [SO25, GNZ25, YY25]. Moreover, [GNZ25]

establishes that the lower bound on the Wasserstein-2 error, achieved by the Gaussian distribution,
scales as

√
Dhmax, thereby implying the optimality of the bound in Theorem 2.

Remark 2 (Conditions). Assumptions on P ∗ in Theorem 2 are less stringent than those in earlier
works [BZL+23, YY25, GNZ25]. In particular, for m-strongly log-concave P ∗, we do not assume
that the Hessian of the log-density is bounded from below. Furthermore, Theorem 2 covers the class
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of distributions obtained as convolutions of a compactly supported distribution and a Gaussian, a
framework not addressed in previous studies achieving a discretization error of h1/2max. However, our
conditions may be regarded as stronger than those of [CLL23, Cor. 2.4] providing the discretization
error of order h1/4max. These stronger assumptions are typically necessary for attaining faster rates
of convergence. In conclusion, our conditions are weaker than those previously associated with the
h
1/2
max rate, while enabling the faster convergence rate of hmax.

Remark 3 (Impact of noise). All previously known bounds are proportional to ∥(s̃− s)(τ,X)∥L2
,

where the proportionality factor is often logarithmic in the number of queries, and the L2-norm can
take different forms—the weakest being the case where τ ∼ Unif([0, T ]) and the law of X given
τ = t is P ∗

t . If s̃(t,x) = ŝ(t,x) + ζ, with ∥ζ∥2L2
= σ2

ζD as in Example 1 of Section 2, then ∥s̃−
s∥2L2

⩾ σ2
ζD. Thus, all known bounds include a term of constant order, independent of the number

of queries. In contrast, the corresponding term in the bound of Theorem 2 is O(
√
Dhmax ε

v
score),

which scales as σζ
√
DT1/K and thus vanishes as K, the number of queries, grows large.

Remark 4 (Informal statement). To facilitate comparison with existing results, let us consider the
strongly log-concave case b = 0 and denote by L := a the surrogate of the Lipschitz norm of the
score of P ∗. For T1 = log(K0), our result implies that, after K queries to the score estimator,

W2(P
∗, PDDPM) ≲

√
LD
{ logL logK

K
+ εbscore +

√
logL logK√

K
εvscore

}
.

In particular, W2(P
∗, PDDPM) ≲

√
LD εbscore, provided that the number of queries satisfies

K

logK
⩾
{ 1

εbscore

∨(εvscore
εbscore

)2}
logL.

As mentioned in Remark 3, this improves on [BZL+23, YY25, GNZ25, SO25], which require
K ≳ (logL)/(εbscore)

2 and εvscore ≲ εbscore to achieve W2(P
∗, PDDPM) ≲

√
LD εbscore.

4.2 Semi log-concave distributions with bounded support

In this section, we consider the case of a distribution P ∗ satisfying Assumption 1 with a function φ
that has the following form: for some constants b,M ⩾ 0,

φ(σ) = b ∧ σ2

(1−Mσ2)+
, ∀σ > 0. (8)

The typical example of P ∗ satisfying this assumption is a distribution by a bounded set K included in
a linear subspace of RD, if in addition the log-density wrt to the Lebesgue measure on the subspace
has a Hessian ≼ MI. It then follows from claims (c), (d), and (e) of Section 2 that P ∗ satisfies
Assumption 1 with φ as in (8) with b = D2

X .
Theorem 3. Let the target distribution P ∗ satisfy E[∥X∥22] ⩽ D and Assumption 1 with function φ
given by (8) for some b,M ⩾ 0. Let us choose T1 > 0,

a = b ∨ 1, K0 ⩾ 7T1 log(6a) + 4 log(6a) log log(6a) δ = 0.5e−2T1 ,

and define the sequence (tk)0⩽k⩽K+1 by Algorithm 2. Let s̃ be a randomized estimator of the score
satisfying Assumption 2. Then, the distribution PDDPM of the output of Algorithm 1 based on 2K0

queries to the score estimator s̃ satisfies

W2(P
∗, PDDPM) ⩽ e2bM+1

{
2e−T1 + 7

√
6a hmax + 4

√
6a
(
2εbscore + h1/2max ε

v
score

)}√
D, (9)

with hmax = maxk(tk+1 − tk) ⩽
log(6a)(log log(6a)+2T1)

K0
.

Since the conclusions of this theorem closely mirror those of Theorem 2, the remarks provided
after the latter apply here as well and will not be repeated. We merely emphasize two points. First,
P ∗ is not assumed to have a density wrt the Lebesgue measure on RD. Second, the number K
of queries to the score estimator required to achieve W2 error ε scales as 1/ε, up to a factor that
grows at most logarithmically in 1/ε. The exponential terms in (7) and (9) depend on the parameters
of the target distribution. The independent work [SO25] employs a different proof technique yet
exhibits a similar exponential dependence, suggesting that this behavior is intrinsic to bounding the
Wasserstein distance in DDPMs. For a log-concave distribution supported on a bounded domain,
we have (M, b) = (0,D2

X), so the exponential factor in the bound (9) becomes a universal constant.
This complements the result obtained in the strongly log-concave setting from Theorem 2.
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5 Relation to prior work: extended discussion

Given the wealth of work on Langevin algorithms and score-based generative models, it would be
infeasible to provide an exhaustive account of existing results. Instead, this section offers a selective
overview of prior work, to situate our contributions within the broader landscape.

Theoretical guarantees for DDPMs have been inspired by techniques from the sampling literature,
particularly those used for Langevin Monte Carlo and its variants; see the overview in [Che24]. Prior
work can be grouped into three categories based on the underlying proof strategies.

The first category, represented by [CCL+23, CLL23, BBDD24, CDS25, LY25, LJLS25, LHE+24],
includes works that build on the approach initiated in [DT12, Dal17b], combining the Pinsker
inequality with the Girsanov formula to derive bounds in TV. Its key strengths are:

• it requires only a bound on the mean integrated squared error (MISE) of the score estimator—one
of the weakest conditions in this framework;

• it relies on mild assumptions on the data-generating distribution P ∗.

As noted in [CCL+23, CLL23], TV-distance bounds can be converted into Wasserstein bounds under
additional assumptions, such as compact support or light-tailed P ∗. If the support lies in a ball, one
can project the generated sample onto this ball and use that W2

2 is bounded by the radius of the
ball times the TV distance. By the data-processing inequality, this projection does not increase the
TV-error.

However, this versatility comes at a price. Let KTV(ε̃) be the number of steps required to achieve an
error smaller than ε̃ in TV-distance. Then, to achieve W2-error ε, one needs a TV-error ε̃ = ε2/R2,
leading to a number of steps at least KTV(ε

2/R2). As a result, the rates derived from this strategy are
suboptimal: O(D4/ε2) in [CLL23], O(D/ε4) in [BBDD24, CDS25], and O(D3/ε2) in [LHE+24],
ignoring log-factors. Another limitation of this approach is that the resulting upper bound on the W2

distance scales as the square root of the error of estimation of the score. Hence, to guarantee an error
ε in W2, one needs the score estimation error εscore of order O(ε2). Our results, as well as those of
the third category below, typically require the weaker condition εscore = O(ε).

The second category comprises results that exploit the interpretation of Langevin dynamics as a
gradient flow in the space of probability measures. This perspective was initiated in [Wib18, Ber18]
and further developed in [CB18, DMM19, VW19]. Interestingly, the first polynomial-in-dimension
guarantees for DDPM fall within this framework, as shown in [LLT22, YW22]. These works
evaluate the error in terms of f -divergences such as total variation, KL, or χ2 divergence. However,
when translated to bounds in the W2 distance, they suffer from the same limitations as the TV-
based approaches discussed above. Moreover, this line of work typically relies on strong structural
assumptions on the target distribution P ∗, notably the satisfaction of a log-Sobolev inequality.
Another limitation, shared with our own analysis, is that the score estimation error is measured in the
uniform norm. We believe, however, that this requirement could be relaxed, both in the gradient-flow
framework and in the recursive method developed in our work.

The third category comprises works using the recursive approach to bound the error of iterative
algorithms such as LMC or DDPM. This method, widely used in optimization theory, was shown to
yield strong guarantees for sampling in [Dal17a, DM17, DM19, DK19]. For DDPM, it underlies the
analyses in [BZL+23, GNZ25, SOB+25, YY25], which establish a W2-error rate of order D/ε2—
an improvement over the bounds derived or derivable from the first two categories. However,
despite having all the necessary ingredients, these works do not reach the faster rate

√
D/ε. This

is somewhat surprising, especially since their assumptions on P ∗ are often quite strong, such as
strong log-concavity. We believe this gap arises from not fully exploiting the smoothness of the score
of the distribution obtained from P ∗ by convolving with a Gaussian. Technically, their recursive
bounds relate the error at iteration k to that at iteration k − 1 via triangle inequalities, which can
be loose when the two terms involved are weakly correlated. As we show, applying the recursive
approach to the squared Wasserstein distance yields significantly tighter control and leads to optimal
rates. We believe that this improvement can be further exploited to get even faster rates using the
randomized midpoint discretization [SL19, HBE20, YKD24, YY25] or to get a faster algorithm
exploiting parallelization [CRYR24, ACV24, GCC24, YD25].
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6 Numerical experiments

We supplement our theoretical results with a small-scale empirical study on CIFAR-10 [KH09],
CelebA-HQ [KALL18], and LSUN-Church [YZS+15], evaluating the robustness of DDPMs to noise
in the estimated score6.

Setup. We use pretrained DDPM models from the publicly available checkpoints
google/ddpm-cifar10-32, google/ddpm-celebahq-256, and google/ddpm-church-256,
all licensed under Apache license 2.0 and hosted on HuggingFace. For each model, we follow
the standard DDPM sampling procedure, and then repeat the generation process while injecting
noise into the score network sθ at every denoising step. Specifically, we replace the score function
with a perturbed version s̃θ(t,x) = sθ(t,x) + ζ, where ζ is a D-dimensional noise vector with
independent and identically distributed components. We consider 4 noise distributions: centered
Uniform, Gaussian, Laplace, and Student’s-t with 3 degrees of freedom. For each noise
type, we evaluate 6 values for the noise scale, σ ∈ {0.25, 0.5, 1, 2, 3, 4}. All other elements of the
generation pipeline—including the variance schedule, guidance scale, and number of sampling
steps—are left unchanged. For each experimental setting, we generate 8192 CIFAR-10 images and
8192 CelebA-HQ images. Additional implementation details can be found in Appendix E.

Qualitative results. Figure 1 shows random generations for standard normal noise. We observe
that injecting noise with constant variance into the score network has a negligible impact on the
visual quality of the generated samples. As expected, the quality gradually degrades as the noise level
increases. Additional qualitative results illustrating this phenomenon are provided in Appendix E.

FID sensitivity. The Fréchet Inception Distance (FID) is a widely used metric for assessing the
quality of generative image models. In Figure 2, we plot the FID as a function of the noise scale σ.
On CelebA-HQ, the FID increases only moderately up to σ ≈ 1, while CIFAR-10 exhibits robustness
up to σ ≈ 2. In agreement with our theoretical findings, the shape of the noise distribution has
negligible impact, only its scale matters. We also observe a sharp degradation in quality beyond a
certain noise threshold, a phenomenon not accounted for by our theoretical analysis.
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Figure 2: FID as a function of noise level for four distributions and different standard deviations.

7 Conclusion

In this paper, we provide a refined theoretical analysis of denoising diffusion probabilistic models
(DDPMs), revealing two important features. First, we show that DDPMs exhibit robustness to noise
in the estimated score function. Second, we establish that, when the true data-generating distribution
belongs to a broad class—significantly larger than the class of log-concave distributions—DDPMs
achieve fast convergence rates in the Wasserstein distance.

Our findings open several avenues for future research. One direction is the adaptation of our
techniques to the analysis of kinetic Langevin diffusion-based DDPMs. It remains an open question
whether such an extension would improve the dependence of the error bounds on the discretization
step size. Additionally, the convergence rates we derive include terms that scale exponentially with
certain parameters, such as the diameter of the support in the case of semi-log-concave targets. It is
unclear whether this dependence is intrinsic to the problem or an artifact of our analysis. Finally, it
would be of interest to assess the potential benefits of incorporating estimators of the Hessian of the
log-density into the DDPM framework.

6Code is available at https://github.com/VahanArsenian/DiffusionWasserstein
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A Classes of distributions satisfying Assumption 1

Throughout the paper we make use of Tweedie’s formula [Efr11, Eq. 1.4] which takes the following
form using our notation: Let πY be the probability density function of Y = αX + βξ where
(X, ξ) ∼ P ∗ ⊗ γD, then

∇ log πY (y) =
α

β2
E [X | Y = y]− y

β2
, ∀y ∈ RD. (10)

This section shows that distributions mentioned in Section 2 satisfy Assumption 1.

A.1 Compactly supported distributions: property (a)

Lemma 2. Let PX,Y be a probability measure defined on X ×Y , PX and PX |Y =y be the marginal
and the conditional distributions of X . Then

supp(PX |Y =y) ⊂ supp(PX).

Proof. Let SX := supp(PX). Then by the definition of the marginal probability measure:
PX(SX) = PX,Y (SX × Y) = 1.

On the other hand, by Bayes’ theorem:
PX,Y (SX × Y) = PX |Y =y(SX)PY (Y), (11)

where PY is the marginal probability measure of Y . The proof is completed by noting that (11)
yields PX |Y =y(SX) = 1.

A simple consequence of Lemma 2 is that if diam(supp(PX)) ⩽ C then diam(supp(PX |Y =y)) ⩽
C. Using this result, we show that a random vector X with support diameter 2DX satisfies Assump-
tion 1 with φ(σ) = D2

X .
Lemma 3 (Property (a) in Section 2). Let X ∼ P such that diam(supp(P )) ⩽ 2DX and let Y be
any random variable defined on the same probability space. Then

Var
(
X |Y = y

)
≼ D2

XID.

Proof. We need to prove that for any v ∈ RD:

vT Var(X |Y = y)v ⩽ vT
(
D2
XID

)
v,

which can be rewritten as:
Var(vTX |Y = y) ⩽ ∥v∥2D2

X .

By dividing both sides by ∥v∥2, we can rewrite the target inequality with respect to a unit vector
u ∈ RD:

Var(uTX |Y = y) ⩽ D2
X .

Denote Z = uTX . The supp(PZ) is contained in the set {uTx |x ∈ supp(PX |Y =y)}. By
Lemma 2, the diam(supp(PX |Y =y)) ⩽ 2DX . Let z1 = uTx1 and z2 = uTx2 for arbitrary
x1,x2 ∈ supp(PX |Y =y). The distance between them is:

|z1 − z2| = |uTx1 − uTx2| = |uT(x1 − x2)|.

By the Cauchy-Schwarz inequality:

|uT(x1 − x2)| ⩽ ∥u∥2∥x1 − x2∥2.

Since ∥u∥2 = 1, we write |z1 − z2| ⩽ ∥x1 − x2∥2. The maximum possible value for ∥x1 − x2∥2 is
the diameter 2DX . Therefore, |z1 − z2| ⩽ 2DX for all z1, z2 in the support of Z. This implies that
the support of Z is contained within an interval [a, b] such that the length of the interval b−a ⩽ 2DX .
We now apply Popoviciu’s inequality on variances [SGK10], which yields that:

Var(Z |Y = y) ⩽ 1
4 (b− a)2 ⩽ D2

X .
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A.2 Log-concave and semi-log-concave distributions: properties (b) and (c)

Random vectors with m-strongly log-concave densities also satisfy Assumption 1, as shown in the
lemma below.
Lemma 4 (Property (b) in Section 2). Let (X, ξ) ∼ P ⊗ γD, where the density of P , denoted as
π(x), is m-strongly log-concave. Then

Var
(
X |X + σξ = y

)
≼

σ2

1 +mσ2
ID.

In addition, if x 7→ ∇ log π(x) is M -Lipschitz for some M > 0, then

Var
(
X |X + σξ = y

)
≽

σ2

1 +Mσ2
ID.

Proof. By applying the preservation of strong log-concavity [SW14], we obtain that πX+σξ(y) is
m

1+mσ2 -strongly log-concave. We then invoke Proposition 1 with parameters α = 1 and β = σ,
which yields

1

σ4
Var(X |Y = y)− 1

σ2
ID ≼ − m

1 +mσ2
ID,

for Y = X + σξ, from which the first desired result follows.

For the second claim, set Y = X + σξ. The definition of semi-log-concavity yields

0 ≼ −∇2 log π(x) ≼MID.

The conditional density of X given Y satisfies

πX|Y =y(x) ∝ πX(x)πY |X=x(y)

with πY |X=x(y) ∝ exp(−∥y−x∥2

2σ2 ). Hence, the Hessian of πX|Y =y(x) is equal to:

∇2 log πX|Y =y(x) = ∇2 log πX(x)− 1

σ2
ID ≽

[
−M − 1

σ2

]
ID = −1 +Mσ2

σ2
ID.

The Cramer-Rao inequality implies that

Var(X |Y = y) ≽ −
(
E[∇2 log πX|Y =y(X) |Y = y]

)−1
≽

σ2

1 +Mσ2
ID

and the claim of the lemma follows.

Similar results hold for for semi-log-concave distributions with a bounded support.
Lemma 5 (Property (c) in Section 2). Let (X, ξ) ∼ P ⊗ γD where P has a density w.r.t. Lebesgue
measure denoted as π(x) and diam(supp(P )) ⩽ 2DX . If π(x) is M -semi-log-concave for M ∈ R,
then:

Var
(
X |X + σξ = y

)
≼ D2

X ∧ σ2

(1−Mσ2)+
ID.

Proof. Denote Y = X + σξ. We obtain from the definition of semi-log-concavity that:

∇2 log π(x) ≼MID.

The posterior of X given Y is proportional to the joint:

π(x |y) ∝ π(x)π(y |x)

with π(y |x) ∝ exp(−∥y−x∥2

2σ2 ). Hence, the Hessian of log π(x |y) is equal to:

∇2 log π(x |y) = ∇2 log π(x)− 1

σ2
ID ≼

[
M − 1

σ2

]
ID,
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where the last inequality follows from the semi-log-concavity of π(x). By Brascamp-Lieb inequality
[BL76], we have that:

Var(X |Y = y) ≼
σ2

1−Mσ2
ID (12)

whenever Mσ2 ⩽ 1. The conditional variance of X can be bounded via Lemma 3, as P has a
bounded support:

Var(X |Y = y) ≼ D2
XID.

Combined with (12), we write:

Var
(
X |X + σξ = y

)
≼ D2

X ∧ σ2

(1−Mσ2)+
ID.

This completes the proof of the lemma.

A.3 Stability by orthogonal transform and concatenation: properties (d) and (e)

Afterwards, we prove that if X satisfies Assumption 1 then its rotation also satisfies Assumption 1
with the same φ(σ).
Lemma 6 (Property (d) in Section 2). Let (X, ξ) ∼ P ⊗ γD and

Var
(
X |X + σξ = y

)
≼ φ(σ) ID, ∀σ > 0.

Then for any orthonormal matrix U, we have that:
Var

(
UX |UX + σξ′ = y′) ≼ φ(σ) ID, ∀σ > 0.

for ξ′ ∼ γD and ξ′ ⊥⊥ UX .

Proof. Consider Var
(
UX |UX + σξ′ = y

)
. We rewrite it as:

Var
(
UX |UX + σξ′ = y′) = UVar

(
X |UX + σξ′ = y′)UT

= UVar
(
X |UTUX + σUTξ′ = UTy′)UT

Let y := UTy′ and ξ := UTξ′. By using the properties that UTU = ID as U is orthonormal and
that ξ ∼ γD independently from X as ξ′ ∼ γD and ξ′ ⊥⊥ UX , we write:

Var
(
UX |UX + σξ′ = y′) = UVar

(
X |X + σξ = y

)
UT ≼ φ(σ) ID,

and the claim of the lemma follows.

We now show that the concatenation of two independent random vectors satisfying Assumption 1
also satisfies Assumption 1.
Lemma 7 (Property (e) in Section 2). Let (X1,X2) ∼ P1⊗P2, where P1 and P2 satisfy Assumption 1
for some φ. Then the concatenation of X1 and X2 , denoted as X1 ⊕X2 also satisfies Assumption 1
for the same φ.

Proof. Let X1 be d1-dimensional, X2 be d2-dimensional, and D = d1 + d2. Consider ξ ∼ γD and
independent of (X1,X2). We may write

Y = X1 ⊕X2 + σξ = X1 ⊕X2 + σ (ξ1 ⊕ ξ2) = [X1 + σξ1]︸ ︷︷ ︸
:=Y1

⊕ [X2 + σξ2]︸ ︷︷ ︸
:=Y2

.

We have that (X1,X2, ξ1, ξ2) are mutually independent as (X1,X2, ξ) are mutually independent
and ξ1 and ξ2 are uncorrelated. From (X1, ξ1) ⊥⊥ (X2, ξ2) we get that (X1,Y1) ⊥⊥ (X2,Y2).
Applying the weak union property of the conditional independence twice we get:

(X1,Y1) ⊥⊥ (X2,Y2) ⇒ X1 ⊥⊥ (X2,Y2) |Y1 ⇒ X1 ⊥⊥ X2 | (Y1,Y2) .

Hence the covariance of X1 and X2 given (Y1,Y2) is 0. Finally,
Var(X1 ⊕X2 |Y = y) = Var(X1 ⊕X2 |Y1 = y1,Y2 = y2)

=

[
Var(X1 |Y1 = y1,Y2 = y2) Cov(X1,X2 |Y1 = y1,Y2 = y2)

Cov(X1,X2 |Y1 = y1,Y2 = y2) Var(X2 |Y1 = y1,Y2 = y2)

]
=

[
Var(X1 |Y1 = y1) 0

0 Var(X2 |Y2 = y2)

]
≼ φ(σ) ID

where the last inequality is due to P1 and P2 satisfying Assumption 1.
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A.4 Convolution with a spherical Gaussian: property (f)

Lemma 8 (Property (f) in Section 2). Let (W , ζ) ∼ P0 ⊗ γD. If W satisfies Assumption 1 with the
function φ0, then, for every τ > 0, X = W + τζ satisfies Assumption 1 with the function

φτ (σ) =
τ2σ2

τ2 + σ2
+
σ4φ0(

√
τ2 + σ2)

(τ2 + σ2)2
, ∀σ > 0.

Proof. Let us define Y = X + σξ = W + τζ + σξ and η := τζ + σξ. Since ξ, ζ
i.i.d.∼ γD are

independent of W , we have η ∼ γD with covariance (τ2 + σ2)ID and Y = W + η. Equivalently,

Y = W +
√
τ2 + σ2 ξ′, ξ′ ∼ γD, ξ′ ⊥⊥ W .

Using Assumption 1 with noise level
√
τ2 + σ2 leads to

Var(W |Y = y) ≼ φ0(
√
τ2 + σ2) ID.

To ease notation, we write Ey and Vary to refer to the conditional expectation and conditional
variance given Y = y, respectively. By the law of total variance, we have

Vary(X) = Ey [Var(X |Y = y,W )] + Vary (E[X |Y = y,W ]) . (13)

We know that τζ and η = τζ + σξ are linear transforms of two independent standard Gaussians.
Hence, the standard covariance calculation gives us

Var(τζ | η) = τ2ID − τ2ID(τ2 + σ2)−1IDτ
2ID

=
τ2σ2

τ2 + σ2
ID.

And since Var(X |Y = y,W ) = Var(τζ | η), we get the first part of (13) equal to

Ey [Var(X |Y = y,W )] =
τ2σ2

τ2 + σ2
ID.

For the second term, since ζ, ξ
i.i.d.∼ N (0, ID), then the corresponding 2D-dimensional vector(

τζ
η

)
∼ N (0,Σ) , with Σ =

(
Var(τζ) Cov(τζ,η)

Cov(η, τζ) Var(η)

)
=

(
τ2ID τ2ID
τ2ID (τ2 + σ2)ID

)
.

So, the conditional expectation that we are interested in will be equal to

E[τζ | η] = τ2ID(τ2 + σ2)−1IDη =
τ2

τ2 + σ2
η.

Under the conditioning on both Y and W , the quantity η = Y −W is deterministic. Therefore,

E[X | Y = y,W ] = W + E[τζ | η = y −W ]

= W +
τ2

τ2 + σ2
(y −W )

=
σ2

τ2 + σ2
W +

τ2

τ2 + σ2
y.

Given Y = y, the second term is deterministic, so

Vary
(
E[X | Y = y,W ]

)
=

(
σ2

τ2 + σ2

)2

Var(W |Y = y) ≼
σ4φ0(

√
τ2 + σ2)

(τ2 + σ2)2
ID.

Adding the two components gives us

Var(X |Y = y) ≼

(
τ2σ2

τ2 + σ2
+
σ4φ0(

√
τ2 + σ2)

(τ2 + σ2)2

)
ID,

which proves the lemma with φτ (σ) =
τ2σ2

τ2+σ2 + σ4φ0(
√
τ2+σ2)

(τ2+σ2)2 .
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A.5 Convolution of a semi-log-concave and a compactly supported distribution: property (g)

Lemma 9 (Property (g) in Section 2). If P ∗ = Pslc ⋆Pcmpct, where Pslc is an m-strongly log-concave
distribution with an M -Lipschitz score function, and Pcmpct is supported on a bounded set with
diameter 2D, then P ∗ satisfies Assumption 1 with

φ(σ) =
σ2

1 +mσ2
+

D2M2σ4

(1 +Mσ2)2
, ∀σ > 0,

Proof. Let W ∼ Pcmpct and ζ ∼ Pslc be two independent random vectors so that X = W +ζ ∼ P ∗.
This means that for some bounded set K with diameter 2D, we have Var(W ) ⩽ 4D2, and that the
density πζ is continuously differentiable with a score function sζ satisfying

m∥x− x′∥2 ⩽ (x− x′)T
(
sζ(x)− sζ(x

′)
)
⩽M∥x− x′∥2.

For ξ ⊥⊥ (W , ζ) such that ξ ∼ γD, and for Y = X + σ ξ, we have to prove that

Var(X |Y = y) ≼
( σ2

1 +mσ2
+

D2M2σ4

(1 +Mσ2)2

)
ID.

As before, to ease notation, we write Ey and Vary to refer to the conditional expectation and
conditional variance given Y = y, respectively. By the law of total variance, we have

Vary(X) = Ey [Var(X |Y = y,W )] + Vary (E[X |Y = y,W ]) . (14)

Since the random vector ζ is m-strongly log-concave, it follows from Lemma 4 that

Var(ζ | ζ + σξ = y′) ⩽
σ2

1 +mσ2
, ∀y′ ∈ RD.

Therefore,

Var(X |Y = y,W = w) = Var(ζ | ζ + σξ = y −w) ⩽
σ2

1 +mσ2
, ∀y,w ∈ RD.

Hence, Var(X |Y = y,W ) ⩽ σ2

1+mσ2 almost surely. This implies that

Ey [Var(X |Y = y,W )] ≼
σ2

1 +mσ2
ID.

We switch to assessing the second term in (14). It holds that

E[X |Y = y,W = w]
1
= w +E[ζ | ζ + σξ = y −w,W = w]

2
= w +E[ζ | ζ + σξ = y −w]

3
= w + σ2∇ log πζ+σξ(y −w) + y −w

= y + σ2∇ log πζ+σξ(y −w),

where 1 is a consequence of X = W + ζ, 2 follows from the independence of ζ and W , 3 is
obtained by the Tweedie formula recalled in (10). Let us set ψ(w) = ∇ log πζ+σξ(y − w). The
second claim of Lemma 4 combined with Proposition 1 implies that ψ is Lipschitz-continuous with
the constant M/(1 +Mσ2). Therefore,

Vary(E[X |Y = y,W ]) = σ4 Vary
(
ψ(W )

)
≼

M2σ4

(1 +Mσ2)2
Vary

(
W
)
⩽

M2σ4D2

(1 +Mσ2)2
ID,

where in the last step we used Lemma 3.

20



B Proof of Lemma 1

We start by first proving that:

sup
P∗∈N

d2TV(Q
T,s∗

D ;P ∗)

d2TV(γ
D;P ∗)

∨ dKL(Q
T,s∗

D ||P ∗)

dKL(γD||P ∗)
⩽ e−2T

The data processing inequality [PW17] states that:

dTV(Q
T,s∗

D ;P ∗) ⩽ dTV(γ
D;P ∗

T ); dKL(Q
T,s∗

D ;P ∗) ⩽ dKL(γ
D;P ∗

T ).

Combined with the concentration property of Ornstein–Uhlenbeck process [GZ24, EGZ19]:

dTV(γ
D;P ∗

T ) ⩽ dTV(γ
D;P ∗)e−T ; dKL(γ

D;P ∗
T ) ⩽ dKL(γ

D;P ∗)e−2T .

gives the desired result.

We now focus on a subset of N ′ ⊂ N that contains D dimensional Gaussian distributions with mean
0 and (1 + σ2)ID covariance matrix with σ > 0. Clearly

sup
P∗∈N ′

W2(Q
T,s∗

D ;P ∗)

W2(P ∗; γD)
⩽ sup

P∗∈N

W2(Q
T,s∗

D ;P ∗)

W2(P ∗; γD)

Let Xt be defined by Equation (2), then the distribution of Xt is N (0, (e−2tσ2 + 1) ID). Hence,
the true score function is

s̃(x) = −x/σ2(t),

where σ2(t) = e−2tσ2 + 1. Equation (4) obtains the following form under this score function:

dỸt =

[
Ỹt

(
1− 2

σ2(T − t)

)]
dt+

√
2 dB̃t.

The integrating factor for the SDE is:

I(t) = exp

(
−
∫ t

0

1− 2

σ2(T − u)
du

)
=exp

(
−t+

∫ t

0

2

exp(2(u− T ))σ2 + 1
du

)
=exp

(
−t+ 2t+ log

(
σ2 + e2T

σ2e2t + e2T

))
=et

σ2 + e2T

σ2e2t + e2T
.

From Itô’s product rule applied to I(t)Ỹt, we get:

dI(t)Ỹt = I(t)
[
f(t)Ỹt dt+

√
2 dB̃t

]
− I(t)f(t)Ỹt dt =

√
2I(t) dB̃t, (15)

where we have used the fact that dI(t) = −I(t)
(
1− 2

σ2(T−t)

)
dt.

Integrating both sides of (15) from 0 to t:

I(t)Ỹt = Ỹ0 +
√
2

∫ t

0

I(u) dB̃u

from which:

Ỹt =
Ỹ0 +

√
2
∫ t

0
I(u) dB̃u

I(t)
. (16)
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Note that Ỹ0 ∼ γD. Combined with the fact that I(t) is a deterministic function, we infer from (16)
that Ỹt is a zero mean Gaussian random variable. So the Wasserstein distance between γD and the
distribution of Ỹt depends only on the covariance matrices:

W2(Q
T,s∗

D ;P ∗) = ∥σỸt
ID −

√
σ2 + 1ID∥F =

∣∣σỸt
−
√
σ2 + 1

∣∣√D, (17)

where σ2
Ỹt
ID is the covariance of Ỹt.

Let Zt :=
√
2
∫ t

0
I(u) dB̃u. Hence, Zt ∼ N (0, 2

∫ t

0
I2(u) du ID) and it is independent of Ỹ0. The

variance of Zt is:

σ2
zt

= 2

∫ t

0

I2(u)du =
(e2t − 1)(e2T + σ2)

e2T + σ2e2t
and σ2

zT
=

(1− e−2T )(e2T + σ2)

σ2 + 1

The variance of ỸT can be computed from Equation (16):

σ2
ỸT

=
1 + σ2

ZT

I2(T )
=

(σ2 + 1)(2σ2e2T − σ2 + e4T )

(σ2 + e2T )2
= (σ2 + 1)

[
1− σ2(σ2 + 1)

(σ2 + e2T )2

]
.

Plugging in the value of σỸT
into (17) we get:

W2(Q
T,s∗

D ;P ∗) =

(
1−

{
1− σ2(σ2 + 1)

(σ2 + e2T )2

}1/2
)√

(σ2 + 1)D
σ→∞∼ σ

√
D.

We note that W2(P
∗; γD) = |

√
σ2 + 1− 1|

√
D

σ→∞∼ σ
√
D, so we have

r(σ) =
W2(Q

T,s∗

D ;P ∗)

W2(P ∗; γD)
−−−−→
σ→∞

1.

Hence,

sup
P∗∈N ′

W2(Q
T,s∗

D ;P ∗)

W2(P ∗; γD)
⩾ 1.

When combined with the established contraction behavior of the backward diffusion—operating with
the true score function—in the 2-Wasserstein metric for Gaussian distributions [EGZ19], we get:

1 ⩽ sup
P∗∈N

W2(Q
T,s∗

D ;P ∗)

W2(P ∗; γD)
⩽ 1.

C Proofs of the main results

We recall that P ∗ is the target distribution and P ∗
t = αtP

∗ + βtγ
D is the distribution of the forward

process at time t > 0, with αt = e−t =
√

1− β2
t . We also fix some T > 0 and define Yt = XT−t

and Q∗
t = Law(Yt); Yt is the state of the backward process (3). We set P̃k to be the law of Zk

defined by (5) so that PDDPM = P̃K+1. Throughout this proof, we will repeatedly use the following
notation:

m̄2 = 1 ∨ (∥X∥L2/
√
D),

εbk = ∥E[s̃(T − tk,Zk) | Fk]− s(T − tk,Zk)∥L2 , εb = max
k

εbk

εvk = ∥s̃(T − tk,Zk)−E[s̃(T − tk,Zk) | Fk]∥L2
, εv = max

k
εvk.

C.1 Main recursion

We set T = tK+1 and consider a version of the continuous-time process (Yt)0⩽t⩽T and the discrete-
time process (Zk)0⩽k⩽K+1 defined on the same probability space and coupled by the relation
ξk+1 = (B̃tk+1

− B̃tk)/
√
hk. We then use the definition of the Wasserstein distance to infer that

W2(P
∗, P̃K+1) = W2(Q

∗
tK+1

, P̃K+1) ⩽ ∥YtK+1
−ZK+1∥L2

. (18)
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Combining (3) and (5), in conjunction with the relation
√
hk ξk+1 = (B̃tk+1

− B̃tk), we get

Ytk+1
−Zk+1 = (1 + hk)(Ytk −Zk) + 2hk

(
s(T − tk,Ytk)− s(T − tk,Zk)

)
− 2hk

(
s̃(T − tk,Zk)− s(T − tk,Zk)

)
+

∫ tk+1

tk

{
Yt − Ytk + 2s(T − t,Yt)− 2s(T − tk,Ytk)

}
dt.

(19)

In what follows, we use the notation ∆k = Ytk −Zk and

Uk = s(T − tk,Ytk)− s(T − tk,Zk);

ζk = s̃(T − tk,Zk)− s(T − tk,Zk)

Vk =

∫ tk+1

tk

{
Yt − Ytk + 2s(T − t,Yt)− 2s(T − tk,Ytk)

}
dt. (20)

This allows us to rewrite (19) as follows

∆k+1 = (1 + hk)∆k + 2hkUk − 2hkζk + Vk. (21)

In view of (18), we are interested in bounding the term

xK := ∥∆K∥L2 .

We will proceed by establishing a recursive inequality upper bounding xk+1 by a simple expression
involving xk, and then by unfolding this recursive inequality.

Let us introduce the filtration (Fk)k∈N. The first element of this sequence is the σ-algebra generated
by Y0 and Z0. Then, each Fk+1 is obtained by extending Fk to the smallest σ-algebra for which both
ζk and the process (B̃t − B̃tk)t∈[tk;tk+1] are measurable. Note that Zk is necessarily Fk-measurable,
but the same is not true for ζk. Indeed, the estimator s̃(T − tk, ·) may depend on some random
variables that are not in Fk.

It is clear that

E
[
∥∆k+1∥2

]
= E

[
∥E[∆k+1 | Fk]∥2

]
+E

[
∥∆k+1 −E[∆k+1 | Fk]∥2

]
= ∥E[∆k+1 | Fk]∥2L2

+ ∥∆k+1 −E[∆k+1 | Fk]∥2L2
. (22)

From (21), by the triangle inequality,

∥E[∆k+1 | Fk]∥L2 ⩽ ∥(1 + hk)∆k + 2hkUk∥L2 + 2hk∥E[ ζk | Fk]∥L2 + ∥E[Vk | Fk]∥L2 . (23)

Furthermore,

∥∆k+1 −E[∆k+1 | Fk]∥L2
⩽ 2hk∥ζk −E[ ζk | Fk]∥L2

+ ∥Vk −E[Vk | Fk]∥L2
. (24)

Combining displays (22), (23) and (24), we arrive at

E
[
∥∆k+1∥2

]
⩽
(
∥(1 + hk)∆k + 2hkUk∥L2

+ 2hk ∥E[ ζk | Fk]∥L2︸ ︷︷ ︸
εbk:=bias of estim. score

+ ∥E[Vk | Fk]∥L2︸ ︷︷ ︸
Bk:=bias of discr. error

)2
+
(
2hk ∥ζk −E[ζk | Fk]∥L2︸ ︷︷ ︸

εvk:=variance of estim. score

+ ∥Vk −E[Vk | Fk]∥L2︸ ︷︷ ︸
Vk:=variance of discr. error

)2
.

In what follows, it is convenient to use the following notation: for every k ∈ N, let αk = e−(T−tk)

and β2
k = 1− α2

k.
Lemma 10. If P ∗ satisfies Assumption 1 with a function φ and

hk

(
1 + α2

k

1− α2
k

+mk

)
⩽ 2, for mk = 1 +

2α2
k

1− α2
k

(
1− φ(βk/αk)

1− α2
k

)
(25)

then,

∥(1 + hk)∆k + 2hkUk∥L2
⩽
(
1−mkhk

)
∥∆k∥L2

. (26)
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Lemma 10 implies that

x2k+1 ⩽
(
(1−mkhk)xk + 2hkε

b
k +Bk

)2
+
(
2hkε

v
k +Vk

)2
. (27)

The next lemma which can be easily deduced by induction applying the Minkowski inequality, will
be used to derive a global bound on the error xK from recursive inequalities upper bounding the error
xk+1 at the (k + 1)th step by the one of the kth step.

Lemma 11. Let (Ak)k∈N, (Bk)k∈N and (Ck)k∈N be three sequences of real numbers such that
Bk ⩾ 0 and Ck ⩾ 0 for every k. If (xk)k∈N satisfies the recursive inequality

x2k+1 ⩽ (eAkxk +Bk)
2 + C2

k , ∀k ⩾ 0,

then, for Āk = A0 + . . .+Ak,

xk+1 ⩽ eĀkx0 +

k∑
j=0

eĀk−ĀjBj +

( k∑
j=0

e2(Āk−Āj)C2
j

)1/2

.

For the subsequent steps of the proof, we leverage the properties of discretization. We begin with the
portion employing constant step-sizes. This discretization is applied in the time interval where the
inequality from (26) yields a near-contraction. This is equivalent to considering the values of k for
which mk in (27) is positive and bounded away from zero.

Lemma 12. If T and a ⩾ 1 are real numbers such that T ⩾ 1
2 log(6a). Let K0 ∈ N be such that for

every k ∈ {0, 1, . . . ,K0},

0 ⩽ tk ⩽ T − 1
2 log(6a), hk ⩽ 0.7, φ(βk/αk) ⩽ a. (28)

Then, for αk = e−(T−tk), we have α2
k ⩽ 1/(6a) as well as

mk ⩾ 1 +
2α2

k

1− α2
k

(
1− a

1− α2
k

)
⩾ 1/3, and hk

(
1 + α2

k

1− α2
k

+mk

)
⩽ 2,

for all k = 0, . . . ,K0.

0 t1 t2 tK0
tK0+1 tK0+2 tK T

T1 1
2 log(6a)

h0 h1 . . . hK0
hK0+1 . . . δ

h h . . . h̄ h̄(1− c) . . .

Figure 3: Notations corresponding to the discretization schedule.

We set hk = h for k = 0, . . . ,K0. Then, (27), Lemma 11 and 1− hkmk ⩽ 1− h/3 ⩽ e−h/3 imply
that

xK0

1

⩽ e−K0h/3x0 +

K0−1∑
k=0

(1− h
3 )

K0−k−1(2hεbk +Bk)

+

{K0−1∑
k=0

(1− h
3 )

2(K0−k−1)(2hεvk +Vk)
2

}1/2

2

⩽ e−K0h/3x0 + max
1⩽k<K0

[
3
h (2hε

b
k +Bk)

]
+ max

1⩽k<K0

[√
1.7
h (2hεvk +Vk)

]
⩽ e−K0h/3x0 + max

1⩽k<K0

[
6εbk + 3h−1Bk

]
+ max

1⩽k<K0

[
1.35h−1/2(2hεvk +Vk)

]
, (29)
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where 1 comes from applying Lemma 11 with eAk = (1 −mkh) ⩽ e−h/3, form which we get

eĀj = eA0 · eA1 ...eAj =
j∏

l=0

(1−mlhl) ⩽
(
1− h

3

)j+1
and eĀK0−1 = e−K0h/3, and 2 uses the fact

that
∑K0−1

k=0 (1− h
3 )

K0−k−1 = 3
h

[
1−

(
1− h

3

)K0
]
⩽ 3

h and, similarly,
∑K0−1

k=0 (1− h
3 )

2(K0−k−1) =

9
h(6−h)

[
1−

(
1− h

3

)2K0
]
⩽ 9

h(6−h) ⩽
9

5.3h ⩽ 1.7
h since h ⩽ 0.7.

The next lemma provides an upper bound for the bias and the variance of the discretization error.
Lemma 13. Assume that for some a > 0 and k ∈ {0, . . . ,K}, P ∗ satisfies Assumption 1 with
φ satisfying φ(σ) ⩽ a for every σ ∈ [βk+1/αk+1;βk/αk]. Assume, in addition, that m̄2 =
(E[∥X∥2]/D) ∨ 1 <∞. Then, it holds that

Bk ⩽ 1
2

√
m̄2Dh2k, (30)

Vk ⩽ 1
2

√
m̄2Dh2k + 4

√
2D
3 h

3/2
k

(aα2
k+1) ∨ β2

k+1

β4
k+1

. (31)

If instead of φ(σ) ⩽ a, we have φ(σ) ⩽ āσ2 for some ā ⩾ 1, then (31) can be strengthened as
follows

Vk ⩽ 1
2

√
m̄2Dh2k + 4

√
2D
3 ā

h
3/2
k

β2
k+1

. (32)

Finally, under the same condition, the error VK of the last iterate can be bounded by

VK ⩽ 1
2

√
m̄2Dh2K + 9

2 ā
√
DhK . (33)

C.2 Proof of Theorem 2: Strongly log-concave convolved with a compactly supported
distribution

We know that

φ(σ) =
σ2

1 +mσ2
+

bM2σ4

(1 +Mσ2)2
⩽
[ 1
m

+ b
]
∧
[
σ2
(
1 +

bM

4

)]
.

Therefore, we can apply Lemma 10, Lemma 12 with a = 1∨ [(1/m) + b] as well as inequalities (30)
and (32) of Lemma 13 with ā = 1 + 1

4bM . In addition, to bound the last term in (32), we use the
fact that

1

β2
k+1

=
1

1− e2(tk+1−T )
⩽

1

1− e− log(6a)
=

6a

6a− 1
⩽ 1.2.

Together with (29), this leads to

xK0 ⩽ e−K0h/3x0 + 6εb + 3h1/2εv +
√
m̄2D

(
3
2 + 1.35× ( 12 + 4

√
2 ā
3 × 1.2)

)
h

⩽ e−K0h/3x0 + 6εb + 3h1/2εv + (5.3 + 0.6bM)h
√
m̄2D. (34)

On the time interval [T − log(6a)
2 ;T ], we use the discretization obtained by geometrically decreasing

stepsizes as previously proposed in the literature:

hK0+j =
log(6a)

2 c (1− c)j , j = 0, . . . ,K −K0 − 1,

where c ⩽ 0.6/ log(6a). This implies, in particular, that c ⩽ 0.6/ log 6 ⩽ 0.4 and that h̄ :=
maxk∈[K0,K] hk ⩽ 0.3. The constants c and K are chosen in such a way that tK = T − hK for
some small hK ⩽ log(6a)

2 , and tK+1 = T . This means that

T − hK = T − log(6a)
2 + log(6a)

2 c

K−K0−1∑
j=0

(1− c)j

= T − log(6a)
2 + log(6a)

2 (1− (1− c)K−K0).
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This yields

(1− c)K−K0 =
2hK

log(6a)
and K −K0 =

log log(6a)− log(2hK)

− log(1− c)

⩽
log log(6a)− log(2hK)

c
.

For k ⩾ K0 + 1, we will apply Lemma 10. To check that its conditions are fulfilled, note that

1 + α2
k

1− α2
k

+mk ⩽
1 + α2

k

1− α2
k

+ 1 +
2α2

k

1− α2
k

⩽
4

1− e2(tk−T )
⩽

4

1− e−1

( 1

2(T − tk)
∨ 1
)
.

This expression, multiplied by hk, is less than 2 whenever hk ⩽ 0.3. Indeed, on the one hand,

4hk
1− e−1

⩽
1.2

1− e−1
⩽ 2.

On the other hand, for k > K0,

tk = T − log(6a)
2 + hK0

+ . . .+ hk−1 = T − log(6a)
2 + log(6a)

2 c

k−K0−1∑
j=0

(1− c)j

= T − log(6a)
2 + log(6a)

2 (1− (1− c)k−K0) = T − c−1hk. (35)

This implies that

4hk
2(1− e−1)(T − tk)

=
2c

1− e−1
< 2

since c ⩽ 0.6. In addition, taking σ = βk/αk and using the substitution β2
k = 1− α2

k, we have

mk

1
= 1 +

2α2
k

1− α2
k

(
1− φ(βk/αk)

1− α2
k

)
2
= 1 +

2α2
k

1− α2
k

(
1− 1

β2
k

[
σ2

1 +mσ2
+

bM2σ4

(1 +Mσ2)2

])
3
= 1 +

2α2
k

β2
k

(
1− 1

α2
k +mβ2

k

− β2
k · bM2

(α2
k +Mβ2

k)
2

)
= 1 +

2α2
k

β2
k

− 2

β2
k(1 +mσ2)

− 2bM2α2
k

(α2
k +M(1− α2

k))
2
,

where 1 comes from the definition of mk from (25), 1 is true for any φ(σ) satisfying (6). Equality
3 comes from the fact that

1

β2
k

· σ2

1 +mσ2
=

1

��β
2
k

· ��β
2
k/α

2
k

1 +mσ2
=

1

α2
k(1 +mσ2)

=
1

α2
k +mβ2

k

,

and

1

β2
k

· bM2σ4

(1 +Mσ2)2
=

1

β2
k

· bM
2 · β4

k/α
4
k

(1 +Mσ2)2
=

β2
kbM

2

α4
k(1 +Mσ2)2

=
β2
kbM

2

(α2
k +Mβ2

k)
2
.

Finally, noting that

1 +
2α2

k

β2
k

− 2

β2
k(1 +mσ2)

⩾ 1 +
2α2

k

β2
k

− 2

β2
k

= −1,

for any m,σ2 ⩾ 0, we arrive at

mk ⩾ −1− 2bM2α2
k

(α2
k +M(1− α2

k))
2
. (36)
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Therefore, (27) yields

x2k+1 ⩽
(
e−mkhkxk + 2hkε

b
k +Bk

)2
+
(
2hkε

v
k +Vk

)2
.

From this recursion and Lemma 11, using the notation H(k) = −mK0
hK0

− . . .−mkhk, we infer
that

xK+1 ⩽ eH(K)

[
xK0

+

K∑
k=K0

e−H(k)(2hkε
b
k +Bk) +

{ K∑
k=K0

e−2H(k)(2hkε
v
k +Vk)

2

}1/2]
.

Inequality (36) yields

H(K)−H(k) ⩽
K∑

j=k+1

hj + 2bM

K∑
j=k+1

Mhjα
−2
j

(1 +M(α−2
j − 1))2

⩽
1

2
log(6a)−

k∑
j=K0

hj + 2bM

K∑
j=K0

Mhje
2(T−tj)

(1 +M(e2(T−tj) − 1))2
.

Let us set yj =M(e2(T−tj) − 1). On the one hand, we have

H(K)−H(k) ⩽
1

2
log(6a)−

k∑
j=K0

hj + 2bM

K∑
j=K0

hj(yj +M)

(1 + yj)2
.

On the other hand, since hj ⩽ 0.3, we have e−2hj − 1 ⩽ −1.5hj . Therefore,

yj − yj+1 = (yj +M)(1− e−2hj ) ⩾ 1.5hj(yj +M).

This implies that

H(K)−H(k) ⩽
1

2
log(6a)−

k∑
j=K0

hj + bM

K∑
j=K0

4(yj − yj+1)

3(1 + yj)2

⩽
1

2
log(6a)−

k∑
j=K0

hj + bM

∫ ∞

0

4

3(1 + t)2
dt

⩽
1

2
log(6a)−

k∑
j=K0

hj +
4bM

3
.

Using the standard inequalities
K∑

k=K0

e−u(hK0
+...+hk)hk ⩽

∫ ∞

0

e−ux dx = 1/u, ∀u > 0, (37)

we arrive at

xK+1 ⩽
√
6a e

4
3 bM

(
xK0

+ 2εb + max
K0<k<K

h−1
k Bk + max

K0<k<K

[√
hk ε

v
k + 1

2h
−1/2
k Vk

])
+BK + 2hKε

v +VK .

We apply then inequalities (30), (32) and (33) of Lemma 13 with ā = 1 + 1
4bM . This leads to

xK+1 ⩽
√
6ae

4
3 bM

(
xK0

+ 2εb +
√
h̄ εv +

√
D
[√

m̄2 h̄+max
k<K

āhk
β2
k+1

])
+ 5ā

√
m̄2DhK . (38)

The stepsizes hk of the geometric grid are much smaller than the noise levels β2
k+1, as attested by the

following inequality7

hk
β2
k+1

=
hk

1− e2(tk+1−T )
⩽

hk
1.2(T − tk+1) ∧ 0.5

⩽
5hk

6(T − tk+1)
∨ 5hk

3
.

7We use the standard inequality 1− e−x ⩾ (1− e−1)(x ∧ 1) for every x > 0.
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It follows from (35) that T − tk+1 = c−1hk+1 = c−1(1− c)hk ⩾ 2
3c

−1hk. Hence,

hk
β2
k+1

⩽
5c

4
∨ 5c log(6a)

6
=

5c log(6a)

6
=
h̄

3
. (39)

Combining (38) and (39), we arrive at

xK+1 ⩽
√
6a e

4
3 bM

(
xK0

+ 2εb + h̄1/2 εv + 4
3 ā
√
m̄2D h̄

)
+ 5ā

√
m̄2DhK .

This inequality, in conjunction with (34), leads to

xK+1 ⩽
√
6a e

4
3 bM

(
x0 + 8εb + 4h1/2max ε

v + 6.7ā
√
m̄2Dhmax

)
+ 5ā

√
m̄2DhK ,

where hmax = max(h, h̄) is the maximal step size of the entire discretization grid, comprising the
parts defined through arithmetic and geometric progressions. These step sizes should satisfy the
inequalities

h ⩽
T − 1

2 log(6a)

K0
⩽ 0.7 h̄ =

c log(6a)

2
⩽

log(6a)
(
log log(6a)− log(2hK)

)
K −K0

⩽ 0.3.

To bound x0, we note that

x20 ⩽ E[∥αTX + βT ξ − ξ∥2] = α2
T ∥X∥2L2

+ (1− βT )
2D ⩽ 1.01m̄2

2De
−2T .

as soon as T ⩾ log(6). Thus, x0 ⩽ 1.01
√
m̄2De

−T . We set T = 1
2 log(6a) + T1 and hK = δ =

0.5e−2T1 and K = 2K0. This leads to the claim of the theorem. Indeed, h ⩽ 0.7 translates into
K0 ⩾ (10/7)T1 and h̄ ⩽ 0.3 translates into

K0 ⩾
10 log(6a)

(
log log(6a) + 2T1

)
3

which is satisfied when K0 ⩾ 7T1 log(6a) + 4 log(6a) log log(6a). Finally, notice that h ⩽ T1/K0

and

h̄ ⩽
log(6a)

(
log log(6a) + 2T1

)
K0

.

These inequalities yield the claimed upper bound on hmax.

C.3 Proof of Theorem 3: Semi log-concave and compactly supported distribution on a
subspace

For P ∗ satisfying Assumption 1 with the function

φ(σ) = b ∧ σ2

(1−Mσ2)+
. (40)

we can apply Lemma 12 with a = b∨1 and Lemma 13 with ā = bM +1. Similarly to Appendix C.2,
the application of Lemma 10 and Lemma 12 yields

xK0
⩽ e−K0h/3x0 + 6εb + 3h1/2εv +

√
m̄2D

(
3
2 + 1.35× ( 12 + 4

√
2 ā
3 × 1.2)

)
h

⩽ e−K0h/3x0 + 6εb + 3h1/2εv + (2.2 + 3.1ā)h
√
m̄2D. (41)

We again use the discretization with geometrically decreasing stepsize on the interval [T − log(6a)
2 ;T ]:

hK0+j =
log(6a)

2 c (1− c)j , j = 0, . . . ,K −K0 − 1,

where c ⩽ 0.6/ log(6a). Following the discussion in Appendix C.2, we have that

K −K0 ⩽
log log(6a)− log(2hK)

c
,

and, for k > K0

hk

(
1 + α2

k

1− α2
k

+mk

)
⩽ 2 and tk = T − c−1hk.
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Combined with (40), we get

mk ⩾ 1− 2ā.

Hence, 27 yields

x2k+1 ⩽
(
e(2ā−1)hkxk + 2hkε

b
k +Bk

)2
+
(
2hkε

v
k +Vk

)2
.

We denote Hk = (2ā− 1)
∑k

i=K0
hk. We note that HK ⩽ 2ā−1

2 log(6a). Lemma 11 states:

xK+1 ⩽ eHK

[
xK0 +

K∑
k=K0

e−Hk(2hkε
b
k +Bk) +

{ K∑
k=K0

e−2Hk(2hkε
v
k +Vk)

2

}1/2]
.

As 2ā− 1 = 2bM + 1 which is strictly positive, we may apply (37) which results in:

xK+1 ⩽
√
6a e2ā−1

(
xK0

+
2εb +maxk<K h−1

k Bk

2ā− 1
+

1√
2ā− 1

max
k<K

{√
hk ε

v
k +

Vk

2h
1/2
k

})
+BK + 2hKε

v +VK .

We apply then inequalities (30), (32) and (33) of Lemma 13, which leads to

xK+1 ⩽
√
6ae(2ā−1)

(
xK0 +

2εb

2ā− 1
+

√
h̄ εv√

2ā− 1
+

√
D√

2ā− 1

[√
m̄2 h̄+max

k<K

āhk
β2
k+1

])
+ 5ā

√
m̄2DhK .

The above inequality with (39) yields:

xK+1 ⩽
√
6ae(2ā−1)

(
xK0

+
2εb

2ā− 1
+

√
h̄

2ā− 1
εv +

4āh̄

3

√
Dm̄2

2ā− 1

)
+ 5ā

√
m̄2DhK . (42)

Combining (42) with (41) and noting that (2ā− 1) ⩾ 1, we get:

xK+1 ⩽
√
6a e2ā−1

(
x0 + 8εb + 4h1/2max ε

v + 6.7ā
√
m̄2Dhmax

)
+ 5ā

√
m̄2DhK ,

Following the discussion of Appendix C.2, we complete the proof by showing that:

xK+1 ⩽ e2ā−1
{
2e−T1 + 7

√
6a hmax + 4

√
6a
(
2εbscore + h1/2max ε

v
score

)}√
D.

D Proofs of lemmas used in the proofs of main theorems

We collect in this section the proofs of the building blocks of our main results.

D.1 Proof of Lemma 10: the origin of the contraction/expansion

Since s is continuously differentiable, we have

Uk =

∫ 1

0

Ds
(
T − tk,Zk + θ(Ytk −Zk)

)
(Ytk −Zk) dθ :=

∫ 1

0

Mk(θ)∆k dθ,

where

Mk(θ) = Ds(T − tk,Zk + θ∆k) = ∇2 log π(T − tk,Zk + θ∆k).

The matrix Mk is symmetric, and according to Proposition 1, all its eigenvalues satisfy

− 1

1− α2
k

⩽ λj(Mk(θ)) ⩽ − 1

1− α2
k

(
1− α2

kφ(βk/αk)

1− α2
k

)
.

We assume that hk is chosen so that

2hk
1− α2

k

− (1 + hk) ⩽ (1 + hk)−
2hk

1− α2
k

(
1− α2

kφ(βk/αk)

1− α2
k

)
. (43)
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This is equivalent to

hk
1− α2

k

(
2− α2

kφ(βk/αk)

1− α2
k

)
⩽ (1 + hk).

Regrouping the terms, we get

hk
1− α2

k

(
1 + α2

k − α2
kφ(βk/αk)

1− α2
k

)
⩽ 1.

This inequality can be checked to be the same as (25). Hence, (43) is indeed satisfied and, therefore,

∥(1 + hk) ID + 2hkMk(θ)∥ ⩽ 1 + hk − 2hk
1− α2

k

(
1− α2

kφ(βk/αk)

1− α2
k

)
.

Therefore, we have

∥(1 + hk)∆k + 2hkUk∥L2 ⩽
∫ 1

0

∥∥((1 + hk) ID + 2hkMk(θ)
)
∆k

∥∥
L2

dθ

⩽
{
1 + hk − 2hk

1− α2
k

(
1− α2

kφ(βk/αk)

1− α2
k

)}
∥∆k∥L2

=
{
1− 2hk

1− α2
k

(1 + α2
k

2
− α2

kφ(βk/αk)

1− α2
k

)}
∥∆k∥L2

= (1−mkhk)∥∆k∥L2 .

This completes the proof of Lemma 10.

D.2 Proof of Lemma 12: strength of the deflation in the contracting regime

Notice that φ(βk/αk) ⩽ a implies

mk ⩾ 1 +
2α2

k

1− α2
k

(
1− a

1− α2
k

)
.

Then, one checks that

1 +
2α2

k

1− α2
k

(
1− a

1− α2
k

)
⩾

1

3
⇐⇒ (1− αk)

4 ⩾ 3α2
k

(
a− (1− α2

k)
)

⇐⇒ (1− αk)
4 − 3α2

k

(
a− (1− α2

k)
)
⩾ 0

⇐⇒ 1− (3a− 1)α2
k − 2α4

k ⩾ 0

⇐⇒ 2α2
k ⩽

2

3a− 1 +
√

(3a− 1)2 + 2

Since a ⩾ 0, we have

3a− 1 +
√
(3a− 1)2 + 2 ⩽ 6a.

Therefore, α2
k ⩽ 1/(6a) implies mk ⩾ 1/3. Let us check that for tk satisfying (28), we have

α2
k ⩽ 1/(6a). Indeed, αk being an increasing function of tk, we have

α2
k = e2(tk−T ) ⩽ exp(− log(6a)) = 1/(6a).

For the second inequality, it suffices to notice that φ(σ) ⩾ 0 and a ⩾ 1 imply that

1 + α2
k

1− α2
k

+mk ⩽
1 + α2

k

1− α2
k

+ 1 +
2α2

k

1− α2
k

= 1 +
1 + 3α2

k

1− α2
k

⩽ 1 +
6a+ 3

6a− 1
⩽ 2.8.

Combining with the condition hk ⩽ 0.7, this yields hk(
1+α2

k

1−α2
k
+mk) ⩽ 2 and completes the proof of

the lemma.
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D.3 Proof of Lemma 13: assessing the increments of the drift

Let bt = Yt + 2s(T − t,Yt). To prove the first inequality, we recall that s(T − t,y) =
(αT−tE[X0 |Yt = y]− y)/β2

T−t. Therefore,

bt =
2α

β2
E[X0 |Yt] + Yt

(
1− 2

β2

)
.

In addition, Yt = αX0 + βξ with ξ ⊥⊥ X0 and ξ ∼ ND(0, ID). It holds that

E[∥Yt∥2] = α2E[∥X0∥2] + β2E[∥ξ∥2] = α2m̄2D + β2D, (44)

E[XT
0 Yt] = αE[∥X0∥2] + βE[XT

0 ξ] = αm̄2D,

since ξ is independent of X0 and has zero mean.

Let us use the “local notation” s̄(t,y) = s(t,y) + y as well as H(t,y) = Ds(t,y). According to
[CDS25, Prop. 2], it holds that

ds̄(T − t,Yt) = s̄(T − t,Yt) dt+
√
2Ds̄(T − t,Yt) dB̃t.

Since 2s̄(T − t,Yt) = bt + Yt, and Ds̄(T − t,Yt) = H(T − t,Yt) + ID we get

dbt = −dYt + 2ds̄(T − t,Yt)

= −bt dt−
√
2 dB̃t + (bt + Yt) dt+ 2

√
2 (H(T − t,Yt) + ID) dB̃t

= Yt dt+
√
2 (2H(T − t,Yt) + ID) dB̃t.

Since B̃t − B̃tk is independent of the σ-algebra Fk, we get

E[ bt − btk | Fk] =

∫ t

tk

E[Yu | Fk] du

and, therefore,

∥E[ bt − btk | Fk]∥L2
⩽
∫ t

tk

∥E[Yu | Fk]∥L2
du ⩽

∫ t

tk

∥Yu∥L2
du

⩽
∫ t

tk

√
D(e−2(T−u)m̄2 + (1− e−2(T−u))) du

⩽
√
m̄2D (t− tk).

The definition of Vk given in (20) implies that Vk =
∫ tk+1

tk
(bt − btk) dt. This leads to

∥E[Vk | Fk]∥ ⩽
∫ tk+1

tk

∥E[ bt − btk | Fk]∥L2
dt

⩽
√
m̄2D

∫ tk+1

tk

(t− tk) dt =
1
2

√
m̄2Dh2k.

This yields the claim of (30).

We prove now (31). The definition of bt = Yt + 2s(T − t,Yt) leads to∥∥bt − btk −E[ bt − btk | Fk]
∥∥
L2

=

∥∥∥∥∫ t

tk

(Yu −E[Yu | Fk]) du+

∫ t

tk

√
2
(
2H(u) + ID

)
dB̃u

∥∥∥∥
L2

⩽
∫ t

tk

∥∥Yu −E[Yu | Fk]
∥∥
L2

du+

∥∥∥∥ ∫ t

tk

√
2
(
2H(u) + ID

)
dB̃u

∥∥∥∥
L2

. (45)

On the one hand, in view of the law of total variance, we have
∥∥Yu − E[Yu | Fk]

∥∥
L2

⩽
∥∥Yu

∥∥
L2

.
Therefore, using (44), we get∫ t

tk

∥∥Yu −E[Yu | Fk]
∥∥
L2

du ⩽
∫ t

tk

√
m̄2D du =

√
m̄2D (t− tk). (46)
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On the other hand, the properties of the stochastic integral imply that∥∥∥∥∫ t

tk

√
2
(
2H(u) + ID

)
dB̃u

∥∥∥∥2
L2

= 2

∫ t

tk

E
[∥∥2H(u) + ID

∥∥2
F

]
du. (47)

Combining he definition of Vk given in (20) with (45), (46) and (47), we get

∥Vk −E[Vk | Fk ]∥L2 =

∫ tk+1

tk

∥∥bt − btk −E[ bt − btk | Fk ]
∥∥
L2
dt

⩽ 1
2

√
m̄2Dh2k +

∫ tk+1

tk

{
2

∫ t

tk

E
[∥∥2H(u) + ID

∥∥2
F

]
du

}1/2

dt. (48)

The integral in (47) can be bounded from above using Proposition 1 and various assumptions of
the function φ from Assumption 1. Indeed, denoting σT−u = βT−u/αT−u, we have H(u) ≼
β−2
T−u(φ(σT−u)σ

−2
T−u − 1) ID. Since, in addition H(u) ≽ −β−2

T−uID, we get

0 ≼ (2H(u) + ID)2 ≼ 4
[φ(σT−u)/σ

2
T−u]

2 ∨ 1

β4
T−u

ID. (49)

If we assume that φ(σT−u) ⩽ a, we arrive at{
2

∫ t

tk

E
[∥∥2H(u) + ID

∥∥2
F

]
du

}1/2

⩽ 2
√
2D(t− tk)

(aα2
T−t) ∨ β2

T−t

β4
T−t

.

In view of (48), this yields

∥Vk −E(Vk | Fk)∥L2
⩽ 1

2

√
m̄2Dh2k + 4

√
2D
3 h

3/2
k

(aα2
T−tk+1

) ∨ β2
T−tk+1

β4
T−tk+1

.

This completes the proof of the second claim of the lemma.

If instead of the assumption φ(σ) ⩽ a, we use the assumption φ(σ) ⩽ āσ2 with ā ⩾ 1, inequality
(49), the fact that u 7→ βT−u is decreasing, and inequality (48) imply that

∥Vk −E(Vk | Fk)∥L2 ⩽ 1
2

√
m̄2Dh2k + 4

√
2D
3 h

3/2
k

ā

β2
T−tk+1

.

For the last claim, we use (48) and (49) as follows∫ T

tK

{∫ t

tK

E
[∥∥2H(u) + ID

∥∥2
F

]
du

}1/2

dt ⩽
√
D

∫ T

tK

{∫ t

tK

4ā2

(1− e−2(T−u))2
du

}1/2

dt

⩽
√
D

∫ T−tK

0

{∫ T−tK

t

4ā2

(1− e−2u)2
du

}1/2

dt

⩽
√
D

∫ T−tK

0

{∫ T−tK

t

4ā2

u2
du

}1/2

dt

=
√
D

∫ T−tK

0

{
4ā2(T − tk − t)

t(T − tK)

}1/2

dt

= πā
√
D(T − tK).

Thus, from (48), we infer that

∥VK −E(VK | FK)∥L2 ⩽ 1
2

√
m̄2Dh2K + 9

2 ā
√
DhK .

This completes the proof.

E Numerical Experiments

Our experiments follow the standard DDPM sampling procedure as described in the original DDPM
paper by [HJA20], specifically the pseudocode presented in their Algorithm 2.
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E.1 Implementation Details

For clarity, we re-state their algorithm below.

Algorithm 3 DDPM Sampling [HJA20]

1: xT ∼ N (0, I)
2: for t = T to 1 do
3: z ∼ N (0, I) if t > 1, else z = 0

4: µθ(xt, t) =
1√
αt

(
xt − 1−αt√

1−ᾱt
ϵθ(xt, t)

)
5: xt−1 = µθ(xt, t) + σtz
6: end for
7: return x0

To better explain the correspondence between notation used in our paper and that of [HJA20], we
provide the following table:

Notation in [HJA20] Our notation

xT , . . . ,x0 Z0, . . . ,ZK+1

z ξk+1

σt
√
2hk

αt (1 + hk)
−2 ≈ e−2hk ≈ 1− 2hk

ᾱt

∏k
j=0(1 + hk)

−2 ≈ e−2tK+1

ϵθ(xt, t)√
1− ᾱt

−2s̃(T − tk,Zk)

To evaluate the robustness of the generative process under perturbed score estimates, we had to
isolate the score estimation component within the sampling loop. In the formulation of [HJA20], this
corresponds to the rescaled neural network output −0.5ϵθ(xt, t)/

√
1− ᾱt. In our experiments, we

added various forms of noise (Gaussian, Uniform, Laplace, and Student’s-t) directly to this term,
simulating inaccurate or noisy score predictions. This modification allows us to assess the impact of
score perturbations on the quality of generated samples, both visually and quantitatively.

We know that in our formulation of the problem, the conditional expectation of the next state given
that the current state is x is given by µθ(x, t) = (1+h)x+2s(t,x)h. Therefore, adding ζ to s(t,x)

implies adding 2hζ to µθ(xt, t), and thus adding

√
αt(1− ᾱt)

1− αt
× 2hkζ ≈ 2

√
1− ᾱt ζ to ϵθ(x, t).

E.2 Additional Figures

Qualitative results. Figure 6, Figure 7 and Figure 8 extend the main-paper image grids. For each
dataset (CIFAR-10, CelebA-HQ, and LSUN-Churches) we display samples generated with Gaussian,
Laplace, and Student’s-t score noise at two strengths, σ = 0.5 or σ = 1 (moderate) and σ = 2
(severe). Rows share the same latent seed as the baseline to enable direct visual comparison.

Quantitative trends. Figure 4 tracks FID on the CIFAR-10 dataset as we truncate the 1 000-step
DDPM schedule at {250, 500, 750, 1000} steps for the clean score and the i.i.d. N (0, ID) noise
contaminated score. We observe that performance increases at a similar rate with the number of steps
for both clean and noisy score estimates.

Additionally, Figure 5 illustrates the “deterioration” of three distinct pictures for each of the different
models (datasets) that we have — each starting with a fixed random noise, generating the corre-
sponding image after 1000 diffusion steps with the noise contaminated score, as described before,
parametrized by different σ. We observe that datasets with higher-resolution images and, respectively,
deeper noise (alternatively, score) predicting neural networks exhibit higher deterioration than those
with low-resolution images.
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(a) CIFAR-10
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(b) CelebA-HQ
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(c) LSUN-Churches

Figure 4: FID as a function of time steps. Blue: standard DDPM inference. Orange: same sampler
with i.i.d. N (0, ID) noise added to the score at each step.

0.0 0.25 0.5 1.0 1.5 2.0
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Figure 5: A single example of CIFAR-10 (top), CelebA-HQ (middle) and LSUN-Churches (bottom)
generated data, respectively, over different standard deviations.

E.3 Computational Resources

This project was provided with computer and storage resources by GENCI at IDRIS thanks to the
grant 2025-AD011016491 on the supercomputer Jean Zay’s A100 partition.

Some of the experiments were run on two additional GPU nodes: one with AMD EPYC 7V12
64-Core Processor, 1TB of RAM, and with 8xA100 40GB VRAM version NVIDIA GPUs. The other
one with AMD EPYC 9005 192-Core Processor, 0.5TB of RAM, and with 2xH100 NVIDIA GPUs.

Sampling 8192 CIFAR-10 images or 512 CelebA-HQ or 512 LSUN-Churches images takes 1.5
GPU-hours. FID evaluation for all the scale values of a single noise distribution takes 0.2 GPU-hours.

E.4 Dataset and Model Licensing

• CIFAR-10: Licensed under the MIT License.
• CelebA-HQ: Licensed under CC BY-NC 4.0.
• LSUN-Churches: Licensed under CC BY-NC 4.0.
• google/ddpm-cifar10-32: Apache License, Version 2.0.
• google/ddpm-celebahq-256: Apache License, Version 2.0.
• google/ddpm-church-256: Apache License, Version 2.0.
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(a) No noise (b) Gaussian noise, σ = 1 (c) Gaussian noise, σ = 2

(d) No noise (e) Laplace, σ = 1 (f) Laplace, σ = 2

(g) No noise (h) Student’s t, σ = 1 (i) Student’s t, σ = 2

Figure 6: Additional CIFAR-10 generations for 3 noise families (rows) and 2 noise levels (columns).
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(a) No noise (b) Gaussian noise, σ = 0.5 (c) Gaussian noise, σ = 1

(d) No noise (e) Laplace, σ = 0.5 (f) Laplace, σ = 1

(g) No noise (h) Student’s t, σ = 0.5 (i) Student’s t, σ = 1

Figure 7: Additional CelebA-HQ generations for 3 noise families (rows) and 2 noise levels (columns).
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(a) No noise (b) Gaussian noise, σ = 1 (c) Gaussian noise, σ = 2

(d) No noise (e) Laplace, σ = 1 (f) Laplace, σ = 2

(g) No noise (h) Student’s t, σ = 1 (i) Student’s t, σ = 2

Figure 8: Additional LSUN-Church generations for 3 noise families (rows) and 2 noise levels
(columns).
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The summary of the contributions can be seen in Section 1 paragraph Contri-
butions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are summarized in the Section 7 Conclusion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: All of the proofs can be found in the Appendix (Supplementary Material).
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See the details in Section 6 from the main paper and Appendix E from the
supplementary materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The datasets and models used in our experiments are open-source. The code
will be provided as a zip file.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [No]
Justification: We base our experiments on existing, already trained models. All of the details
can be found in cited work.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Due to the limited computational resources and the cost of the experiments of
diffusion models, we do not report error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The details can be found in Appendix E.3 from the supplementary materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: No deviations from the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: See the details in Appendix E.4 Dataset and Model Licensing.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We release the code used in our experiments, including sampling with perturbed
scores, under an open-source license. Anonymized code and documentation are included in
the supplementary materials.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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