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ABSTRACT

Scientific documents record research findings and valuable human knowledge, com-
prising a vast corpus of high-quality data. Leveraging multi-modality data extracted
from these documents and assessing large models’ abilities to handle scientific
document-oriented tasks is therefore meaningful. Despite promising advancements,
large models still perform poorly on multi-page scientific document extraction and
understanding tasks, and their capacity to process within-document data formats
such as charts and equations remains under-explored. To address these issues, we
present DocGenome, a structured document benchmark constructed by annotating
500K scientific documents from 153 disciplines in the arXiv open-access commu-
nity, using our custom auto-labeling pipeline. DocGenome features four key charac-
teristics: 1) Completeness: It is the first dataset to structure data from all modalities
including 13 layout attributes along with their ISTEX source codes. 2) Logicality: It
provides 6 logical relationships between different entities within each scientific doc-
ument. 3) Diversity: It covers various document-oriented tasks, including document
classification, visual grounding, document layout detection, document transforma-
tion, open-ended single-page QA and multi-page QA. 4) Correctness: It undergoes
rigorous quality control checks conducted by a specialized team. We conduct
extensive experiments to demonstrate the advantages of DocGenome and objec-
tively evaluate the performance of large models on our benchmark. DocGenome is
available at https://anonymous.4open.science/r/DocGenome.

1 INTRODUCTION

Extracting data from scientific documents and developing large models to understand them is crucial
for advancing Al-assisted scientific exploration and discovery (Jumper et al., 2021; Evans et al., 2021;
Baek et al., 2021). On one hand, scientific documents provide comprehensive, high-quality, logically
rich corpora for training large models (Lv et al., 2023; Chen et al., 2023; 2024; OpenAl, 2023). On
the other hand, the ability of large models (Lv et al., 2023; Chen et al., 2023; 2024; OpenAl, 2023) to
accurately understand scientific documents is considered as a crucial evaluation criterion.

However, we observed that current Multi-modal Large Language Models (MLLMs) (Li et al., 2020;
Zhong et al., 2019; Pfitzmann et al., 2022; Da et al., 2023; Wang et al., 2023b; Chen et al., 2023;
2024; Bai et al., 2023; Alayrac et al., 2022; Li et al., 2023; Tian et al., 2024; Wang et al., 2024c;d; Wu
et al., 2023; Zhang et al., 2023; Zhu et al., 2023) still struggle to understand the content of scientific
documents as deeply as humans do. This challenge is primarily due to the inherently complicated
multi-modal information present in scientific documents, such as multi-modal charts (Xia et al., 2024),
intricate equations (Wang et al., 2024a), and sophisticated logical relationships. Currently, MLLMs
cannot effectively parse and comprehend such complicated modalities and logical relationships. To
alleviate this challenge, we present DocGenome, an open large-scale scientific document benchmark
constructed using the designed DocParser.

DocParser is a training-free auto-labeling pipeline, which can generate both attribute information of
component units and logical relationships between units by auto-annotating and structuring a large
amount of unlabeled arXiv papers , with four stages: 1) data preprocessing, 2) unit segmentation,
3) attribute assignment and relation retrieval, and 4) color rendering as elaborated in Sec. 3.1.
Furthermore, we utilize the proposed DocParser to label 500K scientific documents collected from
the arXiv open-access community, and the resulting auto-annotated dataset is termed as DocGenome
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Figure 1: Overview of the DocGenome dataset. Our work introduces DocGenome, a multi-modal
dataset of academic documents encompassing 8 primary disciplines, 153 secondary disciplines, 13
categories of component units, and 6 types of entity relationships between units. We showcase
an example of the paper (Vaswani et al., 2017) parsing into structured graph forms, termed as the
document’s genome, by leveraging the attributes and relationships of component units.

(illustrated in Fig. 1), which contains 153 scientific disciplines and 7 document-oriented tasks
including: document classification, visual grounding, open-ended single-page and multi-page QA
tasks, document layout detection, Equation-to-I£IEX transformation, Table-to-I4TEX transformation,
which is elaborated in Sec. 4.3. Furthermore, we employ the quality grading and human validation
methods to ensure the data quality as described in Sec. 3.2 and Sec. 4.2, respectively.

We conduct extensive experiments on the proposed DocGenome benchmark to objectively evaluate
many mainstream MLLMs, including QWen-VL Bai et al. (2023), CogAgent Hong et al. (2023),
InternVL (Chen et al., 2024; OpenGVLab, 2024), GPT-4V OpenAl (2023), GPT-40 (OpenAl, 2024)
and efc. The experiments on DocGenome also verify the effectiveness of the proposed dataset,
demonstrating its ability to enhance the document understanding of the existing baseline models.

Our main contributions can be summarized as follows:

* For the first time, we construct an open large-scale dataset that includes 500K structured sci-
entific documents with 13 categories of component units and 6 types of logical relationships
between them. This dataset also encompasses various data types within scientific documents,
such as Figure, Equation, Table, Algorithm, List, Code, Footnote, and etc.

* To construct DocGenome, we design DocParser to automatically generate rich annotation
information from the source code of a wealth of arXiv papers.

* DocGenome covers 7 document-oriented tasks, such as document layout detection, docu-
ment transformation, multi-page QA, efc. Besides, we conduct extensive verification and
experiments based on these tasks to demonstrate that DocGenome can significantly enhance
the document understanding capabilities of the existing baselines.

2 RELATED WORKS

Visual Document Datasets. To comprehensively show the advantages of the proposed DocGenome
dataset, we have reviewed visual document datasets and summarized them in Table 1. In earlier years,
visual document datasets (Li et al., 2020; Zhong et al., 2019; Pfitzmann et al., 2022; Da et al., 2023)
mainly aim to recognize the region categories of different regions from a given document, such as
text region, table region, abstract region, and efc. For example, DocBank (Li et al., 2020) constructs
500K high-quality document pages to enable the document layout model to utilize both textual and
visual information. Recently, some research works (Mathew et al., 2021; Xia et al., 2023; 2024;
Van Landeghem et al., 2023; Li et al., 2024; Liu et al., 2024a) are proposed to build a document
dataset with the enhanced diversity from multiple tasks, multiple modalities, and large-scale training
data. By comparison, our DocGenome demonstrates more comprehensive features, including the
number of disciplines and training samples covered, types of tasks, evaluation metrics, and entity
relationships.
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Table 1: Comparison with document-related benchmarks. “ - ” indicates that the corresponding part
is not mentioned in the original paper. “ * ” means that each sample in their training set is cropped
from the entire page, resulting in a total of 6.4M samples at the region level rather than the page level.

Datasets # Discipline # Category of_ # Pa_ges in #Pagesin #Task # Used Evz_llualion Public_alian ) With- )
Component Units Train-set Test-set Type Metric Period Entity Relation
DocVQA (Mathew et al., 2021) - N/A 11K 1K 1 2 1960-2000 X
DocLayNet (Pfitzmann et al., 2022) - 11 80K 8K 1 1 - X
DocBank (Li et al., 2020) - 13 0.45M 50K 3 1 2014-2018 X
PubLayNet (Zhong et al., 2019) - 5 0.34M 12K 1 1 - X
VRDU (Wang et al., 2023c) - 10 7K 3K 3 1 - X
DUDE (Van Landeghem et al., 2023) - N/A 20K 6K 3 3 1860-2022 X
D*LA (Daetal., 2023) - 27 8K 2K 1 3 - X
Fox Benchmark (Liu et al., 2024a) - 5 N/A (No train-set) 0.2K 3 5 X
ArXivCap (Li et al., 2024) 32 N/A 6.4M* N/A 4 3 X
DocGenome (ours) 153 13 6.8M 9K 7 7 2007-2022 v

Automated Document Annotation Tools. PaperMage (Lo et al., 2023) is an automated annotation
tool based on LayoutParser (Shen et al., 2021), which primarily utilizes detection models and OCR
tools to annotate research document PDF. S20RC (Lo et al., 2020) deponds on GROBID (GRO,
2008-2024), which consists of various trainable modules (such as segmentation models, detection
models, and text extraction models, etc.) to convert literature PDFs into XML format. By comparison,
our DocParser is training-free; it processes LaTeX source code directly without relying on trainable
models (such as detection and segmentation models), thus eliminating the need for additional data to
support training.

Visual Document Understanding. Research in the field of document Artificial Intelligence (AI) has
made rapid progress, due to its successful applications in visual document layout analysis (Wang
et al., 2023a; Van Landeghem et al., 2023; Da et al., 2023; Appalaraju et al., 2024; Luo et al., 2024;
Huang et al., 2022; He et al., 2023b) and image representation learning (Zhou et al., 2024; He
et al., 2022; Dosovitskiy et al., 2020; Bengio et al., 2013). Inspired by Transformer (Vaswani et al.,
2017), LayoutLMv3 (Huang et al., 2022) utilizes word-patch features to perform pre-training and
designs a cross-modal alignment for document AI. UDIO (Tang et al., 2023) tries to unify multiple
document-oriented vision tasks using task-specific prompting. Besides, Kosmos-2.5 (Lv et al., 2023)
generates the text outputs by a shared decoder-only Transformer. mPLUG-DocOwl (Ye et al., 2023)
boosts the OCR-free document understanding ability. Recently, ICL-D3IE (He et al., 2023a) proposes
an in-context-based learning framework to integrate LLM into document information extraction tasks
and LayoutLLM (Luo et al., 2024) employs the layout instruction mechanism to improve the ability
of document analysis.

Multi-modal Large Language Models (MLLMs). The development of MLLMs has profound
impacts on the Artificial General Intelligence (AGI) landscape. Recently, commercial MLLMs (Ope-
nAl, 2023; Team et al., 2023; Anthropic, 2024; Reid et al., 2024) have experienced extremely rapid
progress. GPT-4V (OpenAl, 2023) has significantly advanced the MLLMs. Google’s Genimi se-
ries (Team et al., 2023; Reid et al., 2024) further enhance the ability of MLLMs to process text,
images, and audio. Besides, open-source MLLMs (Wang et al., 2023b; Chen et al., 2023; 2024; Bai
et al., 2023; Alayrac et al., 2022; Lu et al., 2024; Li et al., 2023; Lin et al., 2024; Liu et al., 2023; Sun
et al., 2023; Tian et al., 2024; Wang et al., 2024c;d; Wu et al., 2023; Zhang et al., 2023; Zhu et al.,
2023) have also attracted great attention. Such MLLMs bring accessibility to the rapid development
of Al enabling widespread multi-modal applications and fostering innovation across industries.

3 DATA COLLECTION METHODOLOGY FOR DOCGENOME

3.1 INTRODUCTION OF AUTO-LABELING PIPELINE

In this section, we present DocParser, a cutting-edge auto-labeling pipeline that streamlines the
extraction of labeled source code from unlabeled arXiv data, serving as a key instrument for annotating
the DocGenome dataset. As shown in Fig. 2, the annotation process of DocParser is concisely divided
into four stages, mitigating the issues of data scarcity and annotation expenses.

Stage 1: Data Preprocessing. Our primary focus is to improve the data quality and enhance
the compilation success rate of I&TEX source code. Initially, we undertake an expansion of all files
referenced by the \ input and \ include commands, followed by a series of crucial pre-processing
steps. These steps encompass the integration of requisite environment packages, the exclusion of
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Figure 2: Schematic of the designed DocParser pipeline for automated document annotation.
The process is divided into four distinct stages: 1) Data Preprocessing, 2) Unit Segmentation, 3)
Attribute Assignment and Relation Retrieval, and 4) Color Rendering. DocParser can convert ISTEX
source code of a complete document into annotations for component units with source code, attributes,
relationships, and bounding box, as well as a rendered PNG of the entire document.

Table 2: The definition of logical relationships between component units.

Relation Name  Specific Description Example

Identical Two units share the same source code. Cross-column text; Cross-page text.
Title adjacent The two titles are adjacent. (\section{introduction}, \section{method})
Subordinate One unit is a subclass of another unit. (\section{introduction}, paragraph within

Introduction)

Non-title adjacent The two text or equation units are adjacent. (Paragraph 1, Paragraph 2)

One unit refers to another unit via footnote,
reference, etc.

The caption unit refers to the corresponding
float environment.

Explicitly-referred (As shown in \ref{Fig: 5} ..., Figure 5)

Implicitly-referred (Table Caption 1, Table 1)

comment lines, and the removal of extraneous tokens such as \vspace, \ref, and other annotations
that do not contribute to the semantic essence of the document.

Subsequently, we concentrate on
standardizing the figure format within the I&TEX source code, converting all graphical elements to the
PNG format. Furthermore, we remove the color attribute from the “hyperref”, ensuring that the IXTEX
source code is ready for targeted color rendering during annotation in stage 4.

Stage 2: Units Segmentation. The objective of this phase is to automate the segmentation of
content units, thereby streamlining the rendering process for distinct sections. We employ the
TexSoup! library to decompose the ISTEX source code into a structured list, delineating each
individual component unit. This list is organized according to the reading order, ensuring a logical
progression and facilitating the subsequent retrieval of relationships between the component units.

Stage 3: Attribute Assignment and Relation Retrieval. We have defined 13 fine-grained layout
attributes (more details in Table A.1 of Appendix C) for the component units decomposed in Stage 2,
encompassing elements such as Algorithms, Captions, Equations, etc. For each unit, we match an
appropriate attribute from the predefined set using keyword queries and regularization techniques
to ensure a tailored and precise categorization. In the analysis of component unit relationships,
units are categorized into two classes: 1) fixed-form units, including Text, Title, Abstract, etc.,
which are characterized by sequential reading and hierarchical relationships readily discernible
from the list obtained in Stage 2, and 2) floating-form units, including Table, Figure, etc., which
establish directional references to fixed-form units through commands like \ref and \label. The
comprehensive set of 6 entity relationships is detailed in Table 2.

ITextSoup package: https://github.com/alvinwan/TexSoup.
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Stage 4: Color Rendering. The bounding box of a component unit is an additional label we aim
to extract. After the segmentation phase in Stage 2, we render the target unit in black and all other
units in white, to create two distinct PDFs. By performing a subtraction operation between these
documents, we can obtain the detection box containing only the current unit, as illustrated in the
top-right corner of Fig. 2. For component units that traverse across hurdles or pages, we standardize
the bounding box labels based on their unified source code information. This method effectively
mitigates the issue where bounding boxes may be inadvertently divided, ensuring seamless and
unified labeling for such units.

We automate the annotation process by sequentially applying DocParser’s four stages and leveraging
the complete IATEX source code. This yields not only the document’s PDF but also the individual
source code, bounding box, specific attributes for each component unit, and the relationships between
units. Together, these elements constitute our DocGenome dataset.

3.2 DOCGENOME BENCHMARK ANALYSES

Utilizing the DocParser automated annotation tool, we have annotated a corpus comprising S00K
academic articles from the arXiv repository. Our analysis explores the diversity of the DocGenome
benchmark, focusing on discipline distribution, content distribution, and quality grading.

Discipline Distribution. The DocGenome consists of 8 primary disciplines, which collectively
encompass 153 secondary disciplines', reflecting a diverse and extensive coverage of academic
research areas. The distribution across these disciplines is detailed in Fig. A.2 of Appendix E.

Year Distribution. DocGenome archives articles from arXiv, ranging from 2007 to 2022, with a
median publication year of 2016. A significant portion, approximately 32.88%, of these articles have
been published since 2020. The distribution of these publications over time is depicted in Fig. 3a.

Content Distribution. We have examined two key aspects: the distribution of page counts and the
labeling of component units. On the dimension of page counts, the dataset’s documents have an
average page count of 13, with the longest document reaching 50 pages. The distribution of page
counts is graphically represented in Fig. A.1 of Appendix C. Moving to the labeling perspective,
we have annotated a substantial collection of 500K documents, totaling 74.5M component units and
68.5M relationship labels. In Fig. 1, we present a detailed visualization of the distribution of both the
attribute tags of the component units and the relationship labels.

Quality Grading. We establish two metrics to grade the data quality of the auto-labeled data that
are generated using our DocParser. The first metric, designated as Eq. 1, measures the overlap
among auto-annotated bounding boxes within each paper, thereby evaluating the intra-consistency of
annotations:

1 N N
IOUintra:mZ Z J(Bi, Bj), M

i=1 j=1,j#i

where J(B;, Bj) = A(Bi)-i-g((g;;]ijO)(Bi ) is the JoU between bounding boxes B; and B;. N is

the total number of annotated bounding boxes in each paper. O(B;, B;) represents the overlap area
between bounding boxes B; and B;. A(-) refers to the area of the bounding box.

Eq. 2 shows the second metric that quantifies the overlap between these annotated bounding boxes
and the reference bounding boxes (predicted by DocXChain (Yao, 2023)), providing an assessment
of the annotations’ alignment with established benchmarks, as formulated in Eq. 2:

N
1
ToUstign = 4 > J(Bi, G2), 2)

i=1

where G is the i-th reference bounding box generated by DocXChain (Yao, 2023), B; refers to the
bounding box that is closest to G; within our annotated ones.

A lower IoUipgra With a higher 10U,y indicates a higher quality of auto-annotated bounding boxes.
Specifically, we split the collected paper into three tiers based on the annotation results. For the
Tier-1 set, we select the papers with ToUiyia < 0.05% and T oUqlign > 60%, while those with
0.05% < IoUintra < 1% and IoUs,jign > 35% are packed in the Tier-2 set, and the remaining papers

"According to the arXiv Category Taxonomy: https://arxiv.org/category_taxonomy.
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Figure 3: Visualization of data distribution in DocGenome. (a) Document publication counts over
the years. (b) Distribution of three Tiers determined by I'oUiny, and JoUyign.

are categorized as the Tier-3 set. The distribution of three-tier data sets is shown in Fig. 3b, indicating
that 28.56% of the data was allocated to Tier-1, 61.30% to Tier-2, and the other 10.14% to Tier-3.

4 DOCGENOME-TEST: A MULTI-TASK, MULTI-MODAL, COMPREHENSIVE
EVALUATION SET FOR DOCUMENT UNDERSTANDING

4.1 PRINCIPLES OF CONSTRUCTING EVALUATION SET

We use two principles to split the auto-annotated data into a high-quality evaluation set (termed
as DocGenome-test) with precise annotation and a large-scale multi-modal training set (termed
as DocGenome-train). First, the evaluation set should share the same discipline distribution as
the collected data. Hence, the test data are uniformly sampled across each discipline. Second, the
annotation of test data should be as precise as possible. Therefore, the test data are only sampled from
the Tier-1 set. Based on these two principles, we finally sampled 1,004 papers (covering 9K pages)
as the test set from the overall 500K auto-annotated papers (containing 6.8M pages). As a result, the
DocGenome-test covers 1,004 scientific documents with 1K document classification examples, 2K
visual grounding examples, 3K QA pairs, 110K layout bounding boxes, 3K Table-IATEX pairs, and
5K Equation-I&TEX pairs.

4.2 QA PAIR GENERATION AND QUALITY ASSURANCE

In the DocGenome-test, we further design multiple Question-Answering (QA) pairs for each paper
to comprehensively evaluate the document understanding capabilities of different models. For
each paper sampler, two single-page QA pairs and two multi-page QA pairs are generated using
GPT-4V (OpenAl, 2023). Specifically, we instruct GPT-4V to randomly select two representative
pages, extract useful information from the two pages respectively, and then generate corresponding
single-page QA pairs. Additionally, we utilize GPT-4V to search for content-related paragraphs
from different pages to construct the cross-page QA pairs, testing the model’s ability to understand
and integrate information across multiple pages. The QA pairs involve various commonly raised
questions whose answers can be precisely inferred from the given paper.

After generating QA pairs for all paper samples in the DocGenome-test, we invited professional
faculty members from various fields to conduct the quality assurance checks. Each QA pair is
reviewed by three reviewers for cross-verification. The first step involves the initial review by Kimi'™,
a well-known paper understanding model, to assess the initial correctness and identify the target
location of QA information on the assigned page. Next, based on the provided location of QA
information, two professional faculty members are assigned to manually and independently check
each QA pair for accuracy, relevance, and clarity. At this stage, the quality evaluation involves the
correctness, relevance, and rationality of the designed questions and the accuracy of the provided
answer. Finally,

F

"'Kimi online API: https://kimi.moonshot .cn.
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Table 3: Comparison of state-of-the-art multi-modal large language models on the proposed DocGenome-test,
including document classification, visual grounding, open-ended single-page, and multi-page QA tasks. Please
refer to Sec. 4.4 for the employed evaluation metrics.

Classification Visual Grounding Document QA
Model #Params ) Title Abstract Single-Page Multi-Page
Acct Edit Distance] Edit Distance] | GPT-acct  GPT-acct
Multi-modal Large Language Models
QWen-VL (Bai et al., 2023) 9.6B 0.8237 0.0775 0.8054 0.1156 0.0627
CogAgent (Hong et al., 2023) 17.3B 0.5857 0.0166 0.5306 0.1772 -
DocOwl-1.5 (Hu et al., 2024) 8.1B 0.3307 0.0509 0.6555 0.3084 -
Text-Monkey (Liu et al., 2024b) 10B 0.7331 0.0371 0.4551 0.1142 -
InternVL 1.5 (Chen et al., 2024) 26B 0.7590 0.0222 0.3601 0.4529 0.3577
InternVL 2 (OpenGVLab, 2024) 26B 0.8855 0.0176 0.2320 0.5019 0.4125
GPT-4V (OpenAl, 2023) N/A 0.9821 0.0096 0.0431 0.6101 0.6501
GPT-40 (OpenAl, 2024) N/A 0.9761 0.0095 0.0654 0.7183 0.6762

4.3 EVALUATION TASKS

To comprehensively evaluate the models’ understanding capability of scientific documents, we
design 7 tasks w.r.t each paper document for the DocGenome-test, including document classification,
visual grounding, open-ended single-page, and multi-page QA tasks, document layout detection,
Equation-to-I£TEX transformation, and Table-to-IATEX transformation.

Specifically, document classification involves recognizing the field to which a paper belongs. Visual
grounding involves identifying the content according to the provided visual components and textual
prompts. Document layout detection refers to the localization and recognition of each layout block in
given papers. Document transformation encompasses two format conversions, i.e., Table-to-IIEX
and Equation-to-I4TEX transformation. All tasks take the paper images as visual input for inference.
The visual examples for each task are illustrated in Fig. A.8 in Appendix .

4.4 EVALUATION METRICS

Document Classification: Top-1 Accuracy (%) is used as the metric for document classification
tasks, where higher values indicate better performance.

Visual Grounding: Edit Distance is used to evaluate the accuracy of visual grounding, with lower
values indicating better performance.

Document Layout Detection: mAP@0.5:0.95 is evaluated as the metric for document layout
detection, where higher values indicate better performance.

Document Transformation: We utilize Edit Distance, Jaccard Similarity, Cosine Similarity, and
BLEU as metrics to comprehensively evaluate the document transformation task.

Open-ended QA: GPT-acc (%) is designed for tasks with open-ended answers, where outputs are
evaluated against the ground truth using GPT-4. Please refer to Appendix G for more details.

5 EXPERIMENTS

5.1 COMPARED BASELINES AND IMPLEMENTATION

Compared Baselines. We select various models as baselines for different tasks to provide com-
prehensive comparisons. Specifically, various multi-modal language models, e.g., QWen-VL (Bai
et al., 2023), CogAgent (Hong et al., 2023), DocOwl-1.5 (Hu et al., 2024), Text-Monkey (Liu et al.,
2024b), IntenVL 1.5 (Chen et al., 2024), InternVL 2 (OpenGVLab, 2024), GPT-4V (OpenAl, 2023)
and GPT-40 (OpenAl, 2024) are tested on document classification, visual grounding, open-ended
single-page QA and multi-page QA tasks. For the Document Layout Detection task, we compare
DocXChain (Yao, 2023) and YOLOvV8 (Jocher et al., 2023). Additionally, we employ Mathpix,
a representative commercial software for mathematical formula transformation, as the compared
method for the Document Transformation task, including Equation-to-I£TgX and Table-to-I4TEX
transformations.

Implementation Details. We utilize a combination of document images and instruction prompts as
the input. Note that all tasks use a single-page document image as the input, except for the multi-page
QA task, which contains at least two consecutive pages of the document. Besides, the multi-page QA
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Table 4: Experiments on scaling up the data using the DocGenome-train, with the resulting models evaluated on
document layout detection task. We fine-tune YOLOv8 (Jocher et al., 2023) model using the DocGenome-train
with different amounts of training data.

Model ‘Training Data Amount ‘ mAP@0.5:0.95T‘ Title Text Figure Caption Equation Table Footnote

Layout detection task on DocGenome-test
DocXChain (Yao, 2023) | N/A | 53.20 |49.21 7922 4385 48.18 4936 72779 29.79

YOLOvV8 (Jocher et al., 2023) 7K 77.47 71.79 9248 7629 86.56 80.65 8581 4843
YOLOvV8 (Jocher et al., 2023) 70K 89.42 83.46 9556 8636 94.92 90.13  92.77 82.72
YOLOvVS8 (Jocher et al., 2023) 700K 91.37 86.05 95.96 88.46 95.71 93.06 93.77 86.52
Table 5:
Model Training Data Amount \ Edit Distance| Jaccard Similarity? Cosine Similarityt BLEU?T
Equation-to-LaTeX task on DocGenome-test
Wang et al., 2024b) N/A 0.5824 0.6979 0.5506 0.1449
Mathpix’ N/A 0.4738 0.7226 0.6045 0.4472
EqVLM-B 10K 0.3781 0.8157 0.7840 0.5165
EqVLM-B 100K 0.2795 0.8505 0.8317 0.5862
EqVLM-B M 0.2111 0.8736 0.8621 0.6352
Table-to-LaTeX task on DocGenome-test
Wang et al.. 2024b) N/A 0.4876 0.7598 0.6979 0.4016
Mathpix5 N/A 0.4436 0.7730 0.5826 0.3528
TableVLM-B 5K 0.4821 0.8158 0.7804 0.4596
TableVLM-B 10K 0.4738 0.8635 0.8187 0.4973
TableVLM-B 100K 0.3091 0.8903 0.8571 0.5340
TableVLM-B 500K 0.2223 0.8997 0.8800 0.5552

task can only be evaluated on the models that support multi-image inputs. For the layout detection
task, which uses the single-page document image as input, we use YOLOvS8 (Jocher et al., 2023)
as the training baseline, trained for 30 epochs with the AdamW optimizer (Loshchilov & Hutter,
2017), with a learning rate of 0.01. For Equation-to-IIgX and Table-to-IATEX tasks, we first use
the layout annotations to crop out different modalities, e.g., Table, Equation, etc., from the original
images. We then employ the same model structure as Pix2Struct-B (0.2B parameters) (Lee et al.,
2023) to perform the fine-tuning on DocGenome-train, resulting in EQVLM-B and TableVLM-B.
The fine-tuning process lasts for 30 epochs on 64 NVIDIA A100 80G GPUs, with an initial learning
rate of 0.00005 and a weight decay of 0.01.

5.2 PERFORMANCE ON DOCGENOME-TEST

We evaluate the performance of several state-of-the-art multi-modal large language models on the
proposed DocGenome-test, covering document classification, visual grounding, and both single-page
and multi-page QA tasks. As shown in Table 3, among the tested models, GPT-4V (OpenAl, 2023)
achieves the highest classification accuracy with 98.2% Top-1 Acc, while QWen-VL (Bai et al., 2023)
and InternVL 2 (Chen et al., 2024) also show competitive results with 82.4% and 88.6% accuracy,
respectively. For the visual grounding task, GPT-40 showcases the best performance in the Title OCR
Grounding task with the lowest Edit Distance of 0.0095, while GPT-4V outperforms other models in
the Abstract OCR Grounding task with the lowest Edit Distance of 0.0431. In the single-page QA
task, GPT-4o attains the highest GPT-acc score of 71.8%, indicating its superior ability to handle
document-based QA tasks. For the multi-page QA task, GPT-40 again leads with a GPT-acc score of
67.6%, further demonstrating its robustness in handling multi-page document queries.

5.3 EFFECTIVENESS OF DOCGENOME-TRAIN

To validate the effectiveness of the proposed DocGenome-train, we further conduct experiments
on scaling up the training data using the DocGenome-train dataset, evaluating the performance
improvements of different tasks, e.g., layout detection and document transformation tasks.

Specifically, for the layout detection task, we present the evaluation performance of YOLOVS (Jocher
et al., 2023) under three different training scales in Table 4. It shows that the model’s layout detection
capacity continually and significantly improves by increasing the training data volume. Regarding
the per-attribute performance improvement, the most significant benefit is observed for “Footnote”
attribute, which increases from 48.43% to 86.52% mAP after scaling up the training data from 7K to
700K. Compared with DocXChain (Yao, 2023) that only supports the annotation of seven attributes,
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Table 6:

Model mAP@O.5:0.95T\ Title Text  Figure Caption Equation Table Footnote

Layout detection task on Human-annotated data

DocXChain (Yao, 2023) 37.99 3253  59.00 67.17 38.71 12.98 38.99 16.54
YOLOVS8-doc (DocGenome) 50.15 42.59 64.87 56.65 64.51 47.14 47.08 28.21
Model \ Edit Distance] Jaccard Similarity? Cosine Similarity? BLEUT

Equation-to-LaTex task on Sci-Hub data
Mathpix* 0.4873 0.7437 0.7295 0.1137
EqVLM-B (DocGenome) 0.6627 0.6303 0.5726 0.0602

Table 7:

‘Medicine Chemistry ~ Biology ~Humanities Physics Engineering ~Math  Ecology =~ Computer Science ~ Economics — Geography

Amount 237 159 150 121 84 67 36 35 27 25 25
Proportion | 24.53% 16.46% 15.53% 12.53% 8.70% 6.94% 3.73%  3.62% 2.80% 2.59% 2.59%

our trained YOLOVS consistently outperforms it in seven attributes, validating the effectiveness of
the DocGenome-train.

As illustrated in Table 5, for the document transformation task, we conduct similar experiments on
Equation-to-I4TEX task and Table-to-I4TEX task, respectively. In these two tasks, we further explore
different scaling up settings, with the observation that both tasks benefits the most from scaling up
training data from 10K to 100K. Additionally, considering that Edit Distance is more reliable and
rigorous to evaluate the similarity, we can observe that the Table-to-I&IEX task has the potential
to improve more than the Equation-to-I4TEX task by continuous scaling up. This is because the
performance improvement between 100K and 500K training data for TableVLM-B largely exceeds
the improvement between 100K and 1M training data for EQVLM-B as shown in Table 5.

5.4 FURTHER DISCUSSIONS
Generalization on Out-Of-Distribution (OOD) Data.

7

As shown in Table 6,
for the layout detection task, the YOLOv8-doc model (Jocher et al., 2023) trained using DocGenome-
train presents better generalization ability than DocXChain (Yao, 2023) on human-annotated data.
Regarding the Equation-to-I&TEX task, although the performance of EQVLM-B declines on OOD data
(Scihub data), it still maintains relatively strong results with an Edit Distance of 0.6627. Considering
that Mathpix is closed-source with potential exposure to various data distributions in its commercial
usage, it is natural that our trained model performs relatively worse than Mathpix in the OOD data.

For questions related to figures or tables in
DocGenome-test, we directly annotated the detection boxes for figures or tables on the document
images to serve as the image input for the QA task. 8

Potential Applications of DocDenome.
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Table 8:

Model #Params \ Layout Information in Image Single-Page QA Multi-Page QA
InternVL 1.5 (Chen et al., 2024) 26B X 0.4529 0.3577
InternVL 1.5 (Chen et al., 2024) 26B v 0.4922 0.4030

2) Enhanced Document Retrieval: Most current RAG methods simply extract text-only information
from PDF for retrieval, ignoring the multimodal information from a given document. Our proposed
DocGenome contains a large amount of annotated multimodal information, which can be used for
performing the multimodal RAG tasks.

3) Automated Research Tools: We can use the Table-LaTeX and Equation-LaTeX pairs from
DocGenome to directly train format conversion tools, which facilitates the editing and process-
ing of scientific papers. Moreover, based on the mentioned multimodal RAG capabilities, we can
develop an automated tool for summarizing scientific papers, which would make it more convenient
and efficient to summarize scientific discoveries.

4) Pioneering Idea Innovator: The automated scientific research tool needs to draw inspiration from
interdisciplinary papers across different disciplines, which can be supported by DocGenome’s 500K
papers across 153 disciplines. In detail, fine-grained annotations support knowledge retrieval, while
annotated multimodal data fosters tools for deeper scientific insights, like mathematical proof and
table/chart comprehension.

Representative Ability of LaTeX in Scientific Literature Domain.

6 CONCLUSION

In this paper, we introduced DocGenome, a large-scale, structured, multi-task, and multi-modal
dataset for scientific documents. We constructed DocGenome using DocParser, our developed auto-
labeling pipeline, to extract structured attributes and relationships between units. DocGenome’s
comprehensive task coverage, logicality, diversity, and correctness make it a valuable resource for
training models related to scientific documents and evaluating the capabilities of such large models.
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A OVERVIEW OF APPENDIX

Due to the nine-page limitation of the manuscript, we provide more information on our benchmark
and further experiment details from the following aspects:

* Sec. B: Limitations and Dataset Accessibility.

— Sec. B.1: Limitations.
— Sec. B.2: Dataset Accessibility.

* Sec. C: Annotation Explanations.

* Sec. D: Annotation in Cross-domain Scenarios.

» Sec. E: More Statistical Distributions of DocGenome.

* Sec. F: Details of Quality Assurance.

» Sec. G: Prompt Design for GPT-acc.

* Sec. H: Annotation Examples in DocGenome.

 Sec. I: Task Examples in DocGenome-test.

 Sec. J: Clarification about prompts utilized when MLLMs are tested on DocGenome.

* Sec. K: Explanation of Model Inference Speed and Resource Consumption

B LIMITATIONS AND DATASET ACCESSIBILITY

B.1 LIMITATIONS

The purpose of our DocGenome is to build a comprehensive scientific document dataset, promoting
the development of intelligent document processing and effective evaluation of MLLMs in doc-
ument understanding tasks. Although our DocGenome provides annotations for 6 categories of
entity relationships, exploring the impact of these entity relationship annotations on large models’
understanding of scientific documents is highly meaningful. For future works, we will explore the
role of the entity relationships in understanding scientific documents.

B.2 DATASET ACCESSIBILITY

Dataset Statistics and Analyses: We have conducted extensive data statistics and analyses, along
with thorough quality checks including DocGenome-train and DocGenome-test datasets, which are
presented in Sec. 3.2 and Sec. 4.2.

Long-term Preservation: To ensure the long-term preservation of the DocGenome dataset,
we have uploaded it to Google Drive: https://drive.google.com/drive/folders/
10ThnuQdIjuSSDhc_QL2nP4NwugVDgtItD?usp=sharing. This ensures continuous acces-
sibility to the dataset for an extended duration. Furthermore, we will routinely back up the data and
monitor its availability to maintain continued accessibility.

Terms of Use and License: We have chosen the CC BY 4.0 license for our dataset, as required. This
information is included in our paper submission and will also be clearly stated on our dataset website.

Discussion of Personally Identifiable Information. All the scientific documents in our DocGenome
are sourced from the arXiv open-access community, where papers are released under the CC license.
Besides, the arXiv community ensures that papers uploaded by authors adhere to legal and ethical
guidelines, including the protection of personal information and the avoidance of offensive material.
Thus, we can confirm that our DocGenome does not contain personally identifiable information or
offensive content.

C ANNOTATION EXPLANATIONS

We provide the annotation details of DocGenome in Table A.1, where the index number in the
annotation corresponds to the category index in the attribute list.


https://drive.google.com/drive/folders/1OIhnuQdIjuSSDc_QL2nP4NwugVDgtItD?usp=sharing
https://drive.google.com/drive/folders/1OIhnuQdIjuSSDc_QL2nP4NwugVDgtItD?usp=sharing
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Figure A.1: Page distribution of DocGenome. 20% of documents are five pages or fewer, 50% are
ten pages or fewer, and 80% are nineteen pages or fewer.

Table A.1: Category descriptions of the layout annotation performed by our DocParser. Note that
we do not use the “others” category and the “reference” category, and their indices are 6 and 11,
respectively.

Index Category Notes
Algorithm
1 Caption Titles of Images, Tables, and Algorithms
2 Equation
3 Figure
4 Footnote
5 List
7 Table
8 Text
9 Text-EQ Text block with inline equations
10 Title Section titles
12 PaperTitle
13 Code
14 Abstract

D ANNOTATION IN CROSS-DOMAIN SCENARIOS.

Our DocParser is well-equipped to handle various disciplines on arXiv because we process the
LaTeX source code of the papers directly, rather than using a detection model that requires training to
annotate paper images. This approach significantly reduces the impact of different writing styles and
layout designs across disciplines on automated annotation.

Specifically, we have provided statistics on the quality distribution of papers in different primary
disciplines within DocGenome. As described in the main text, we have divided the annotation data
into three tiers, and our proposed annotation tool DocParser exhibits similar performance across
different disciplinary papers.

‘The version of the online API we used for evaluation: https://mathpix.com/
equation-to-latex.
$Online API we used for evaluation: https://mathpix.com/table-to-latex.


https://mathpix.com/equation-to-latex
https://mathpix.com/equation-to-latex
https://mathpix.com/table-to-latex
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Table A.2: Distribution of annotation quality (Tier 1, 2, and 3) of different disciplines by DocParser
in DocGenome.

Discipline Total Tier-1 Tier-1 Tier-2 Tier-2 Tier-3 Tier-3
account account proportion account proportion account proportion
cs 187574 65273 34.80% 112950 60.22% 9351 4.99%
econ 1679 491 29.24% 1037 61.76% 151 8.99%
eess 16669 5516 33.09% 10432 62.58% 721 4.33%
math 20517 6579 32.07% 13024 63.48% 914 4.45%
physics 250932 57328 22.85% 155222 61.86% 38382 15.30%
g-bio 2163 617 28.53% 1351 62.46% 195 9.02%
g-fin 3455 1256 36.35% 2022 58.52% 177 5.12%
stat 16320 5559 34.06% 10036 61.50% 725 4.44%

E MORE STATISTICAL DISTRIBUTIONS OF DOCGENOME

In addition to the statistical distribution described in Sec. 3, we provide more statistical distributions
in this section. As shown in Fig. A.2, the sample counts of all secondary disciplines are summarized
and marked with different colors, from which it can be observed that the inter-discipline and intra-
discipline distributions are both diverse, with Physics, Computer Science, and Mathematics papers
occupying the major components of DocGenome.

We also present the page distribution of DocGenome in Fig. A.1, which indicates the diversity of
paper length in DocGenome. Specifically, 50% papers in DocGenome have nearly or fewer than 10
pages, with 80% papers having fewer than 19 pages.

F DETAILS OF QUALITY ASSURANCE FOR QA DATA

The QA Generation Details. We provide a general prompt template for QA pair generation in
Fig. A.3. The discipline-specific guidance is imposed to generate the corresponding ground-truth
labels to achieve diversity and relevance.

The Quality Checking Details. During independent verification by professional faculty members,
each judgment was assigned with a confidence value ranging from 0 to 3. The confidence criterion is
designed as follows:

Confidence 3: The reviewer is confident that the QA pair is accurate and relevant to the provided
paper.

Confidence 2: The reviewer thinks the QA pair is mostly accurate and relevant to the provided paper
but is unsure whether it is absolutely correct.

Confidence 1: The reviewer has no idea about the correctness or relevance of the QA pair to the
provided paper.

Confidence 0: The reviewer is confident that the QA pair is wrong or irrelevant to the provided paper.

During the cross-verification, the confidence values of the two professional faculty reviewers were
compared with the automatically-annotated correctness. The QA pairs with inconsistent results were
re-analyzed by the two reviewers and updated to a precise version with consistent confidence.
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G PROMPT DESIGN FOR GPT-ACC

We adopt GPT-acc as the evaluation metric for the QA tasks. The complete prompts are concluded in
Fig. A4.

H EXAMPLES IN DOCUMENT-LEVEL ANNOTATION FROM DOCGENOME

We present one example in DocGenome in Figs. A.5, A.6, and A.7 to visualize the annotations of
each page in a whole document (Vaswani et al., 2017). The blocks marked with different colors
refer to different attributes of component units and the arrows with different colors denote different
relations between units.

I EXAMPLES OF TASKS IN DOCGENOME-TEST

We provide visual demonstrations in Fig. A.8 for all 7 tasks in DocGenome-test, including document
classification, visual grounding, open-ended single-page and multi-page QA tasks, document layout
detection, Equation-to-I&TEX transformation, and Table-to-IATEX transformation.

J CLARIFICATION ABOUT PROMPTS UTILIZED WHEN MLLMS ARE TESTED ON
DOCGENOME.

We have concluded the prompts used in Table 3 of the experimental section, where all models were
provided with the same prompts for the identical tasks.

* Classification: Which discipline does this article belong to? Select the answer from the
given options (%s, %s, %s, %s). Do not print other text.

* Visual Grounding (Title): Please print the title of this article.

¢ Visual Grounding (Abs): Please print the full content of the abstract section of this article
directly.

* QA: guestion

K EXPLANATION OF MODEL INFERENCE SPEED AND RESOURCE
CONSUMPTION.

We have supplemented average model inference speed and resource comsumption for MLLMs
when tested on DocGenome in Table A.3. Note that the inference speed indicates the average
single-inference speed of MLLMs across all tasks.

Table A.3: Inference speed and memory consumption of MLLMs when tested in DocGenome.

Model # Params Infer Speed (s) GPU Memory Usage
Qwen-VL 9.6B 0.94 19685M
CogAgent 17.3B 4.97 37823M
Docowl 1.5 8.1B 1.21 19005M
InternVL 1.5 26B 3.11 54019M
TextMonkey 10B 0.88 21417M
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Assume you are an expert in the analysis of arxiv papers. Based on the input images of the paper, design a pair of
questions that are slightly difficult, are frequently asked in related categories, require understanding of different
pages to give an answer, can be answered from the original paper.

Each answer should not contain any hints, explanations, or notes, etc.

Make sure your answers are accurate. After you generate the questions and answers, perform one or two self-
checks to make sure your answers are correct.

Design questions as clearly as possible, give answers as succinctly as
questions and answers.

ol

and avoid izing narrative

p

The questions should be in the form of a question-answer pair.
Make sure the answer to the question is taken directly from the original text, not from your summary and make sure
answers are as short and direct as possible.

Here are some simple examples:

1. Q: What are the two experil | measur ts from HERA that are combined and used to determine the proton
distribution functions HERAPDF as mentioned in section 3 HERAPDF?
A: H1 and ZEUS

2. Q: What are the two main types of deep inelastic scattering experiments discussed in the paper?

A: Inclusive and semi-inclusive
3. Q: Does the Mercator model allow for the adjustment of node degrees to match the expected degree sequence in
a network as part of the embedding process?

A: Yes
4. Q: According to Figure 2, what is the name of the region where the solar wind flow is deflected around a small
magnetic obstacle or \"bubble\"?

A: Narrow barrier region
5. Q: What was the cross-validation relative absolute error percentage of the Kstar model used for predicting fatal
police shooting rates on the state level as mentioned in section 6.1?

A: 28.53%

Please follow this format and give two pairs of answers to the questions.
. J

Figure A.3: Template prompts using GPT-4V (OpenAl, 2023) for document QA pair generation.

S

Examples:

“"query": "<question> What was the incremental increase in revenue from 2020 to 20217 <groundtruth answer> 5
million $ <answer> 20\n</s>",
“answer": "False"

g

"query": "<question> What percentage of government spending was allocated to infrastructure in 2020?
<groundtruth answer> 10% <answer> 14-4=10\n</s>",
“answer": "True"

I3

{

"query": "<question> What is the total production of Wind Energy in the four months from January to April 2021?
<groundtruth answer> 2300 MW <answer> The total production of Wind Energy in the four months from January
to April 2021 is 2450 MW.",

“answer": "False"

{

“"query": "<question> What is the value of baseline distance L for the DUNE analysis mentioned in Table I?
<groundtruth answer> 1300km <answer> The value of baseline distance L for the DUNE analysis mentioned in
Table I is 1300km.",

“answer": "True"

{

"query": "<question> According to the caption of Figure 5, what is the fixed value of M_N1 used to predict the
relic density as a function of m_n? <groundtruth answer> 200 GeV <answer> The fixed value of M_N1 used to
predict the relic density as a function of m_n is 200 GeV.",

"answer": "True"

Instruction:

Given multiple question-answer pairs and the corresponding predictions, evaluate the correctness of predictions.
The output should be only "True" or “False"

Input:

PN
<question> {question} <groundtruth answer> { _gt} { _pred}

Figure A.4: Detailed prompts in GPT-acc metric for document QA tasks.
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1184 Figure A.6: Annotations of a complete document in DocGenome, taking ‘Attention is All Your
1185 Need’ (Vaswani et al., 2017) as an example.
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7 Tasks in DocGenome-test
1. Document Classification
Q: Which discipline does this article belong to? Select the answer
AMS-02 Positron Excess and Indirect from the given options (quant-ph, physics.hist-ph, cs.CL,math.PR).
Detection of Three-body Decaying
Dark Matter A: qunn*r-ph
clsinfhi; C_hen_g VNuang‘ Xiaoyuan Huang' lan Low’
2. Visual 6rounding
Q: Please print the full content of the abstract section of this
article.
A: We consider indirect detection of meta-stable dark matter
particles decaying into astable neutral particle and a pair of
standard model fermions, Due to the softer energy -«
3. Layout Detection
Title: [232, 448,1416,672]
Abstract: [230,1430, 1469,1877]
4. Single-page QA
Q: What is the best result achieved by the HeunNet model for
ECG heartbeat classification?
A: 98.80%
IR LR 5. Multi-page QA
AR SLar
<f Cl Al
{ E\ ! Q: According to Figure 5, what are the shaded yellow regions
: indicative of in the power spectra P_cb for models MOOOn1 and
MO00n2?
A: They show power spectra within 2% of the corresponding Time-
RG curves.
6. Equation to LaTeX
A - QiMQI[% = |A - QiQ AQ:QF \\begin{equation}\n\\begin{aligned}\n& \\|{\\bf A} - {\\bf
+QQTAQ.QY — QIMQY 2 (15) QI_I{\\bf M}{\\bf Q}_2"T\\|_F"2 = \\|{\\bf A} - (\\bf Q}_1{\\
— HA i QIQTAQZQzui* o ”Q”ll‘AQ2 = MH% bf Q}_IAT(\\bfAA){\\bf Q}_Z(\\bf Q}_ZAT \\\\A& + {\\bf
Q_1{\\bf Q}_1"T{(\\bf A} \\bf Q}_2{\\bf Q}_2"T \n- {\\bf
Q}_1{\\bf M}{\\bf Q}_2"T\\|_F"2\\\\\n -+ \\end{equation}
Model ‘ L1 MS-SSIM  Inception ~ FID
Internal benchmark 7. Table to LaTeX
Non-exemplar | 0.018 5.05E-2 3.96 11527
Reference 0014 3.97E-2 3.82 7.67 \\begin{tabular}{| | | ¢ ¢ ¢ c[}\n\\hline\nModel & L1 & MS-SSIM &
Code 0015  4.15E-2 3.94 8.49 Inception & FID \\\\\n\\hline\n\\multicolumn{5X |c|{Internal
Celeb-ID benchmark\\\\\n\\hline\nNon-exemplar & 0.018 & 5.05E-2 &
Non-exemplar | 7.36E-3 - 8.44E-3 472 15.30 3.96 & 11.27\\\\\nReference & 0.014 & 3.97E-2 & 3.82 &
Reference 7.15E-3  7.97E-3 356 15.66
Gode 700E-3  7.80E-3 377 1462 7.67\\\\\nCode & 0.015 & 4.15E-2 & 3.94 - \\end{tabular}
\

Figure A.8: Visualization examples of 7 tasks in DocGenome-test.
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