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Abstract
The fill-in-the-blank prompts are widely used001
to evaluate how well pre-trained language mod-002
els (PLMs) capture real-world factual knowl-003
edge. However, the prompt-based evaluation004
results vary significantly depending on the lin-005
guistic expressions of the prompts, even for006
the same knowledge. To assess PLMs’ capa-007
bility to understand facts more fairly, we intro-008
duce a new dataset called MyriadLAMA, along009
with the evaluation benchmarks BELIEF and010
its variant BELIEF-ICL to evaluate encoder-011
and decoder-based PLMs, respectively. Myr-012
iadLAMA presents diverse fill-in-the-blank013
prompts for the same fact, leveraged by BE-014
LIEFs not only to mitigate prompt bias during015
factual knowledge probing by consolidating re-016
sults from multiple prompts but also to offer017
a comprehensive evaluation of factual knowl-018
edge in PLMs, including accuracy, consistency019
and reliability. We validate the efficacy of the020
BELIEFs through comprehensive evaluations021
of encoder-based and decoder-based PLMs.022

1 Introduction023

Pre-trained language models (PLMs) are consid-024

ered to be utilized as the knowledge base as they025

implicitly acquire and retain factual knowledge dur-026

ing the pre-training process. The research about027

evaluating the ability of PLMs in understanding028

facts, known as factual knowledge probing, is in-029

creasingly gathering attention. The LAMA probe030

dataset (Petroni et al., 2019) uses masked prompts031

(e.g., John Lennon was born in [MASK].) to probe032

the presence of facts in PLMs. By measuring the ac-033

curacy of predicted mask tokens, the LAMA probe034

can quantitatively gauge the PLMs’ knowledge.035

However, while effective, the LAMA probe re-036

lies on a single masked prompt to verify the pres-037

ence of specific fact. This makes the results signifi-038

cantly affected by minor variations in the prompt’s039

linguistic expression (Kassner and Schütze, 2020;040

Misra et al., 2020; Ravichander et al., 2020). Some041

studies have observed that prompts possess specific 042

bias and using different prompt sets can signifi- 043

cantly change the accuracy (Elazar et al., 2021; 044

Jiang et al., 2020). As PLMs are expected to han- 045

dle a wide variety of user inquiries, even for the 046

same fact, accuracy measurement based on a single- 047

prompt is not sufficient to make accurate evaluation. 048

This facilitates the need to establish a more reliable 049

and effective factual knowledge probing method. 050

Our study introduces BELIEF (§3) and its vari- 051

ant BELIEF-ICL (§5.1), benchmarks designed for 052

bias-resilient evaluation of encoder- and decoder- 053

based PLMs in factual knowledge understanding. 054

The evaluation of BELIEFs is conducted using 055

MyriadLAMA (§2), a new factual knowledge prob- 056

ing dataset. It significantly expands an existing 057

dataset LAMA-UHN (Petroni et al., 2020) by offer- 058

ing multiple prompts for each fact. Specifically, we 059

obtain a wide variety of lexically, syntactically, and 060

semantically diverse prompts from LAMA-UHN 061

by rewriting manually and then rephrasing them us- 062

ing GPT-4, resulting in myriad diverse prompts tied 063

to each fact. BELIEFs then integrate the outputs 064

from diverse prompts offered by MyriadLAMA to 065

evaluate specific knowledge, thereby mitigating the 066

impact of individual prompt bias on evaluation and 067

offering multifaceted evaluation of the robustness 068

and reliability of PLMs in fact prediction. 069

We applied BELIEFs to various PLMs, including 070

BERT (Devlin et al., 2019) (§4) and Llama2 fam- 071

ilies (Touvron et al., 2023) (§5.1). Consequently, 072

we confirm that diverse prompts enables i) a bias- 073

resilient factual knowledge probing and ii) a mul- 074

tifaceted evaluation of PLMs’ knowledge in terms 075

of robustness and reliability beyond accuracy. 076

2 MyriadLAMA Dataset 077

In this section, we describe MyriadLAMA, the fac- 078

tual knowledge probing dataset that offers various 079

prompts for each fact to support unbiased evalua- 080
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tion. To mitigate the impact of prompt bias in eval-081

uation, we argue that integrating predictions from082

diverse prompts is important, as it can offset the083

bias in specific prompts. Although multiple knowl-084

edge probing datasets providing multiple prompts085

for each fact have been proposed, these datasets086

lack diversity in expressing facts, making them in-087

sufficient to provide a balanced and comprehensive088

evaluation (Elazar et al., 2021; Jiang et al., 2020).089

2.1 Dataset construction090

In this study, we build MyriadLAMA by semi-091

automatically extending the existing fact probe092

LAMA-UHN (Petroni et al., 2020). LAMA-UHN1093

comprises single prompts corresponding to each094

fact extracted from Wikipedia, where each fact095

consists of knowledge triples ⟨subject, relation,096

object⟩ (e.g., ⟨Tokyo, Capital, Japan⟩). A single097

template expression is provided for each “relation”098

(hereafter, relational template, e.g., [X] is the cap-099

ital of [Y]). LAMA-UHN was originally designed100

for encoder-based PLMs, which can utilize bidirec-101

tional information for mask prediction. The proce-102

dure for factual knowledge probing using LAMA-103

UHN is to first fill in the relational template with104

the target knowledge triples, replace [Y] with a105

mask token, and generate masked prompt (here-106

after, prompt). Next, it feeds prompts into PLMs107

to see if PLMs can correctly predict the “object”.108

MyriadLAMA generates multiple prompts for109

each fact by using many relational templates for110

each “relation” and varying the linguistic expres-111

sions of entities (“subject” and “object”). Specif-112

ically, we define knowledge triples that neglect113

the diversity of surface expressions as unique114

triples and distinguish them from derived triples,115

which are knowledge triples that embody the di-116

verse entity expressions and relational templates117

in each unique triple. For example, the unique118

triple ⟨E_{John Lennon}, R_{born-in}, E_{United119

Kingdom}⟩ could correspond to multiple derived120

triples (⟨John Lennon, born in, UK⟩, ⟨John Lennon,121

birthplace, United Kingdom⟩), etc.). The derived122

triple can be used to create the masked prompt (e.g.,123

John Lennon was born in [MASK]). The overview124

of the triple extension method is described below.125

Please refer to §A.1 for more detailed knowledge126

triple extension settings.127

1LAMA-UHN is a subset of LAMA probe (Petroni et al.,
2019) and deletes overly helpful entity names that allow name-
based reasoning (e.g., Apple Watch is a product of [MASK].),
thus enabling more reliable factual knowledge probing.

Extending entities The knowledge triples in 128

LAMA-UHN constitute a subset of the Wikipedia 129

knowledge base T-REx (Elsahar et al., 2018). T- 130

REx selectively includes only certain objects for 131

“subject-relation” pairs. MyriadLAMA extends the 132

unique triples in LAMA-UHN by mining T-REx us- 133

ing “subject-relation” as key to include other avail- 134

able objects. For example, if LAMA-UHN con- 135

tains only E_{guitar} for instruments that E_{John 136

Lennon} can play, we can extend the unique triple 137

to include E_{piano}. We also extend the entity 138

expressions using aliases obtained from Wikidata.2 139

For example, the entity E_{United Kingdom} can 140

also be represented as either “UK” or “Britain.” 141

Paraphrasing relational templates Myriad- 142

LAMA creates a great variety of relational tem- 143

plates by a semi-automatic process. Firstly, we 144

manually generate five distinct templates for each 145

relation. They incorporate entailment expressions 146

and diverse syntactic patterns like statements and 147

question-answer formats to provide semantic and 148

syntactic variations. Next, to enhance quantity and 149

lexical diversity, we automatically paraphrase each 150

manually created template 19 times using the GPT- 151

4 API.3 Finally, all templates undergo manual ver- 152

ification by human reviewers, yielding a total of 153

4100 templates covering 41 relations. 154

2.2 Dataset analysis 155

In this section, we report the statistics of Myriad- 156

LAMA and compare it with other factual knowl- 157

edge probing dataset, including LAMA-UHN 158

and multi-prompts datasets. Our MyriadLAMA 159

demonstrates superiority in providing more diverse 160

prompts for the same knowledge while maintaining 161

the quality of each prompt. 162

Statistics We first report the statistics of LAMA- 163

UHN and MyriadLAMA, as shown in Table 1. Due 164

to previous findings that the performance of PLMs 165

in predicting facts is significantly influenced by the 166

number of mask tokens (Zhao et al., 2024), our 167

study focuses exclusively on evaluating derived 168

triples in which the “object” is represented as a sin- 169

gle token following tokenization by the WordPiece 170

tokenizer (Devlin et al., 2019). 171

As the result, we increase the number of unique 172

triples from 27,106 to 34,048 by extending object 173

entities for one-to-many relations. Furthermore, 174

2https://www.wikidata.org/wiki/Wikidata:
Data_access

3OpenAI: gpt-4-1106-preview
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LAMA-UHN MyriadLAMA

Relational templates 41 4100
Unique triples 27,106 34,048
Derived triples 27,106 21,140,500
Subject-relation pairs 24,643 24,643
Prompts 24,643 6,492,800

Table 1: Statistics of LAMA-UHN and MyriadLAMA.

the number of derived triples is increased from175

27,106 in LAMA-UHN to 21,140,500, an increase176

of approximately 778 times, by combining various177

semi-automatically generated relational templates178

and the alias expressions for “subject” and “ob-179

ject” entities. As the prompts are generated from180

derived triples without considering the “object” ex-181

pressions, the number of generated prompts are182

less than the number of derived triples, which is183

increased from 27,106 to 6,492,800.184

Diversity comparison Given that our study185

seeks to mitigate the influence of individual prompt186

bias in evaluations, the availability of a wide range187

of prompts characterized in both quantity and diver-188

sity is crucial. The diversity ensures that different189

prompts can capture different aspects of the true190

knowledge distribution.191

We conduct comparison between MyriadLAMA192

and other multi-prompts probing datasets from the193

perspective of quantity and diversity. Specially,194

we measure the average prompts for each “subject-195

relation” pair as the quantity measure. Myriad-196

LAMA introduces diversity into prompts by us-197

ing various subject expressions and relational tem-198

plates. On average, MyriadLAMA provides 2.47199

expressions for each subject. In addition, we mea-200

sure the diversity of relational templates from three201

aspects, as shown below:202

Lexicon: We utilize the Jaccard distance of words203

in templates to gauge lexicon diversity.204

Syntax: We adopt the syntax distance measure pro-205

posed in (Oya, 2020), which calculates the206

distance between dependency trees.207

Semantics: We quantify semantic diversity by cal-208

culating the L2 distance of sentence embed-209

dings given by BERTlarge.210

As shown in Table 2, MyriadLAMA demon-211

strates a great quantity and diversity comparing to212

the existing multi-prompt factual probing datasets:213

LPAQA (Jiang et al., 2020) and PareREL (Elazar214

Dataset Quantity↑
Diversity↑

Lexicon Syntax Semantic

PARAREL 7.30 .4860 .1489 11.03
LPAQA 53.27 .5449 .1713 13.55
MyriadLAMA 263.47 .6652 .2138 12.69

Table 2: Comparison between multi-prompts datasets.

et al., 2021). While LPAQA exhibits greater se- 215

mantic diversity in its measures, this is primarily at- 216

tributed to its utilization of distance supervision to 217

discover new templates. Such method often results 218

in problematic templates that inadequately describe 219

the relationships between subjects and objects. For 220

example, for relation P937 ([X] used to work in 221

[Y].), the mined templates in LPAQA includes tem- 222

plates like: “[X] to meet [Y].”, that significantly 223

deviate from the original semantic meaning. In con- 224

trast, every prompt in MyriadLAMA can precisely 225

describe the correct relationship. Refer to §A.2 for 226

further ablation analysis on MyriadLAMA. 227

3 BELIEF Benchmark 228

In this section, we propose the benchmark BE- 229

LIEF for bias-resilient evaluation of encoder-based 230

PLMs in fact understanding. BELIEF employs the 231

numerous prompts from MyriadLAMA (§2) for a 232

fairer and comprehensive factual knowledge prob- 233

ing. Beyond merely assessing the amount of facts 234

stored in PLMs (accuracy), BELIEF further aids in 235

evaluating the consistency and reliability of PLMs 236

in fact prediction. In the following sections, we 237

first outline the formulation (§3.1), then introduce 238

the metrics proposed in BELIEF (§3.2-3.4). 239

3.1 Preliminary 240

MyriadLAMA encompasses one-to-many relations 241

and diverse linguistic expressions referring to the 242

same “object,” allowing for several “object” tokens 243

to be the correct response to single prompts. For 244

instance, with the subject E_{John Lennon} and 245

the relation R_{born-in}, acceptable tokens could 246

include “UK” and “Britain.” Consequently, we con- 247

sider the fact to be present, if the model’s predicted 248

token matches any of the correct tokens, regardless 249

of which correct answer is predicted. 250

We denote the “subject-relation” pairs in Myr- 251

iadLAMA as T , the set of prompts for a given 252

“subject-relation” pair t ∈ T as Pt, and the cor- 253

responding set of correct “object” tokens for t as 254

Ct. We determine the correct answer for the i- 255
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th prompt pit ∈ Pt as the token ait ∈ Ct that the256

PLM predicts with the highest probability. This257

token ait, regarded as the “golden object,” is then258

used for the following evaluation of the prompt259

pit. In addition, when the output distribution cor-260

responding to mask token of arbitrary prompt p is261

O = {(wj , oj)|
∑

j oj = 1}, the prediction result262

is defined as the token ŵ = argmaxwj ,(wj ,oj)∈Ooj .263

3.2 Accuracy and its fluctuations264

In evaluating the prediction accuracy of the “ob-265

ject” for a given “subject-relation” pair, BELIEF266

aggregates results from multiple prompts, which267

mitigates the impact of individual prompt biases.268

This approach ensures accuracy less influenced by269

single-prompt bias. Specifically, we randomly se-270

lect one prompt for each “subject-relation” pair t ∈271

T to collect the set of prompts P = {p1, ..., p|T |}.272

By feeding prompts P to PLMs, we can calculate273

accuracy based on their predictions. We repeat this274

process to collect a set of accuracies, which is then275

used to measure both the average and fluctuation.276

Average accuracy In BELIEF, accuracy metrics277

include Acc@K, which measures the proportion278

of prompts with the correct token predicted within279

the top-k output probabilities. Considering top-k280

tokens allows for a more flexible evaluation, as rely-281

ing solely on the top-1 token may capture only lim-282

ited aspects of the PLMs’ output distribution. We283

also include Mean Reciprocal Rank (MRR), which284

considers the rank of the correct answer, offering a285

more detailed understanding of the model’s perfor-286

mance across all ranks. For each sample prompts287

set, we calculate Acc@K and MRR as follows:288

Acc@K =

∑|P |
t 1[rank(at,Ot) ≤ K]

|P |
(1)289

MRR =
1

|P |

|P |∑
t

1

rank(at,Ot)
(2)290

where rank(at,Ot) denotes the rank of the “golden291

object” at within the output probability distribution292

Ot for prompt pt, and 1[x] is an indicator function293

returning 1 if x is true, and 0 otherwise.294

Then we repeat this process N times to obtain295

the set of accuracies, which are denoted as VAcc@K296

and VMRR, where |V∗| = N . The final average297

accuracy is calculated as the mean value of V∗.298

Fluctuation of accuracy: For V∗, we can evalu-299

ate the fluctuation of accuracies by the range and300

the standard deviation as following: 301

range = max(V∗)−min(V∗) (3) 302

stdev =

√√√√ 1

N

N∑
vi∈V∗

(vi −
1

N

N∑
vi∈V∗

vi)2 (4) 303

where V∗ could be either VAcc@K or VMRR. 304

3.3 Consistency 305

For each “subject-relation” pair t, we assess 306

the PLM’s consistency in predicting the “object” 307

across different prompts in Pt. Specifically, we 308

compute the degree of match between the pre- 309

diction result ŵi
t for a given prompt pit and the 310

prediction results ŵj
t for other prompts pjt ∈ Pt 311

(where j ̸= i), across all “subject-relation” pairs in 312

T (Elazar et al., 2021; Fierro and Søgaard, 2022): 313

Consist@1 =
1

|T |
∑
t∈T

∑
i,j:i ̸=j,i,j≤|Pt| 1[ŵ

t
i = ŵt

j ]
1
2 |Pt|(|Pt| − 1)

(5)

314

3.4 Reliability 315

The reliability of PLMs reflects the extent to which 316

we can trust the predictions they provide. This en- 317

compasses not only the prediction accuracy but also 318

the correctness of the confidence assigned to those 319

predictions. In our study, we use diverse prompts 320

from MyriadLAMA to assess PLMs’ overconfi- 321

dence levels in making fact prediction. The over- 322

confidence calculation draws from the expected 323

error calibration metric (Desai and Durrett, 2020). 324

Specially, we measure the difference between true 325

prediction accuracy and models’ confidence to their 326

predicted tokens. For each prompt, we first acquire 327

the maximum probability (hereafter, confidence) 328

from the output distribution for the mask token. 329

Subsequently, all of the prompts are arranged in de- 330

scending order based on confidence and segmented 331

into M bins (P (1), P (2), ..., P (M)), with the same 332

amount of data points in each bin. For each bin i, 333

we compute the average accuracy Acc@K
(i)

and 334

average confidence omax
(i). In our work, we use 335

M = 10 for all the experiments. Finally, the 336

PLM’s overconfidence in predicting the “object” 337

is assessed by averaging differences between av- 338

erage confidence and accuracy across all bins, as 339

shown below: 340

Overconf@K =

M∑
i=1

|P (i)|
M

(omax
(i) − Acc@K

(i)
)

(6)

341
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PLMs
Accuracy

(Acc@1/Acc@10/MRR)↑
Accuracy fluctuation

(Acc@1/Acc@10/MRR)↓ Consistency ↑ Reliability ↓

LAMA-UHN MyriadLAMA range stdev Consist@1 Overconf@K
(k=1,10)

BERTbase .2403/.5377/.1767 .1051/.2941/.1696 .1714/.3121/.2183 .0224/.0404/.0270 .1098 .220/.288
BERTlarge .2454/.5509/.3456 .1118/.3069/.1777 .1800/.3228/.2157 .0231/.0396/.0274 .1119 .218/.290
BERTwwm .2448/.5248/.3380 .1367/.3497/.2085 .1777/.3044/.2063 .0219/.0366/.0256 .1021 .116/.164

Table 3: Evaluation results of BERT and its variants via BELIEF.

4 Encoder-Based PLMs Evaluation342

In this section, we use BELIEF to evaluate multiple343

encoder-based PLMs, comparing its effectiveness344

with LAMA-UHN and uncovering insights hidden345

by single-prompt-based evaluations.346

4.1 Experiment setup347

We evaluate BERT families, including BERTbase,4348

BERTlarge,5 and BERTwwm,6 BERTbase and the349

other two models have 110M and 340M paramters,350

respectively. BERTwwm differs from BERTlarge in351

the approach of masking7 during pre-training.352

To calculate the fluctuations of accuracy (§3.2),353

we set a large sample number (N = 50, 000) to354

provide stable and accurate evaluation results. In355

each of the N trials, we share the same template356

for facts with the same relation. We also employ357

consistent seeds for prompt sampling for different358

PLMs to ensure fair comparison.359

4.2 Results and analysis360

Vulnerability of single prompt-based evaluation361

As shown in Table 3, we note significant fluctu-362

ations in accuracy among BERT and its variants.363

Additionally, all PLMs exhibit low prediction con-364

sistency and tend to display overconfidence in their365

predictions regarding facts. Below, we examine366

how BERT models process factual knowledge, with367

BERTlarge as an example.368

Below, we examine how BERT models perceive369

facts, with BERTlarge as an example. First, the370

accuracy fluctuation presented in Table 3 demon-371

strates variances. The high stdev and low Con-372

sist@1 also indicate that using different prompts for373

evaluation yields significantly varied predictions.374

Moreover, we observe that even BERTlarge exhibits375

4https://huggingface.co/bert-base-uncased
5https://huggingface.co/bert-large-uncased
6https://huggingface.co/

bert-large-uncased-whole-word-masking
7BERTwwm masks all tokens corresponding to a single

word at the same time, while BERTlarge and BERTbase allow
for partial tokens in one word to be masked.
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Figure 1: Overconf@1 of BERT and is variants.

higher accuracy than BERTwwm in LAMA-UHN, 376

the relationship is reversed in BELIEF. Similarly, 377

the MRR gain of BERTlarge over BERTbase is less 378

prominent in MyriadLAMA. These discrepancies 379

underscore the unreliability of knowledge probing 380

using single prompts. 381

Finally, Figure 1 illustrates the relationship be- 382

tween confidence and Acc@1 of BERTlarge. The 383

figure indicates that BERTlarge exhibits low accu- 384

racy even for prompts with high confidence. Ad- 385

ditionally, expanding the token range (K) leads to 386

further deterioration in overconfidence, as detailed 387

in Table 3. These results underscore PLMs’ ten- 388

dency towards overconfidence in predictions. 389

Comparison between PLMs From Table 3, we 390

can observe that BERTlarge outperforms BERTbase 391

in terms of both accuracy, consistency and relia- 392

bility metrics. Moreover, BERTwwm shows bet- 393

ter performance in metrics other than consistency. 394

This indicates that both parameter size and learning 395

strategy, such as masking methods, are crucial for 396

knowledge acquisition. We can also observe that 397

BERTwwm generally outperforms others with less 398

fluctuation in accuracy, though it has low consis- 399

tency. This implies a possible trade-off between 400

attaining high accuracy and maintaining consistent 401

prediction across diverse prompts. Furthermore, 402

BERTwwm demonstrated superior abilities on relia- 403

bility, as can be also seen in Figure 1. 404
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5 Decoder-Based PLMs Evaluation405

We extend the benchmark BELIEF to incorporate406

decoder-based large language models (LLMs). Due407

to different nature of decoder-based and encoder-408

based PLMs, the fill-in-the-blank style dataset is409

not suited to evaluate LLMs’ abilities in factual410

knowledge understanding. To comprehensively411

evaluate these models, we introduce a modified412

version of BELIEF employing in-context learning413

(ICL), termed BELIEF-ICL (§5.1). Finally, we con-414

duct a thorough evaluation and analysis of several415

LLMs based on the BELIEF-ICL (§5.3).416

5.1 BELIEF-ICL417

Evaluating factual knowledge directly using BE-418

LIEF poses several challenges for recent decoder-419

based LLMs. Unlike the encoder-based models,420

which can predict [MASK] tokens based on all421

surrounding contexts, decoder-based models en-422

counter difficulties with prompts containing mask423

tokens in the middle of sentences in Myriad-424

LAMA. Furthermore, while encoder models al-425

low for specifying the number of answer tokens426

by setting masks, locating answers precisely in427

decoder-based models proves challenging due to428

their auto-regressive generation process.429

In-context learning settings We utilize the in-430

context learning ability of LLMs to solve the chal-431

lenges. The in-context learning ability allows432

LLMs to perform complex tasks during inference433

using task-specific prompts (Brown et al., 2020).434

Each prompt contains three components: the task435

instruction, few-shot learning context and the436

target knowledge prompt.437

In this study, we develop two prompt types to fit438

different relational templates as follows.439

1) QA task: Initially, we define the question-440

answer (QA) prompts utilizing the QA-style tem-441

plates available in MyriadLAMA.8 For the QA442

prompt, we employ the few-shot prompt compris-443

ing random QA pairs, following the format out-444

lined in InstructGPT (Ouyang et al., 2022). Given445

that all objects in MyriadLAMA are intended to be446

matched with single words, we prepend the instruc-447

tion “Answer each question in one word.”448

8MyriadLAMA provides 20 QA-style templates for each
relation, offering not only syntactical diversity but also accom-
modating causal language modeling in decoder-based PLMs.
Each QA-style prompt follows a format in which the subject
and relation form the question, and the object serves as the
answer, such as “Who developed [X]? [Y].”

2) MP prompt: We introduce the mask predic- 449

tion (MP) prompt style, which is accessible for all 450

templates. The task instruction is formulated as 451

“Predict the [MASK] in each sentence in 452

one word.” For prompts of the few-shot examples 453

and questions, we adhere to the same conventions 454

as BELIEF, replacing the object placeholder with 455

“[MASK]” within the template. 456

Evaluation setup The evaluation of accuracy and 457

its fluctuation, consistency and reliability mostly 458

follow the instruction in §3. However, unlike 459

encoder-based PLMs where we can pre-define the 460

set of candidate answers using the single mask to- 461

ken in prompts, LLMs pose challenges in measur- 462

ing the matching between two sequences due to the 463

diverse and autoregressive generation. To mitigate 464

the impact of diverse generation, we normalize all 465

the generated sequences and object entities through 466

tokenization and lemmatization. 467

When evaluating matching, we check if the nor- 468

malized sequence contains any of the candidate ob- 469

ject entities. We only report the accuracy (Acc@1) 470

and overconfidence (Overconf@1) of the greedy 471

generation with the highest probability for LLMs 472

and ignoring metrics where k > 1, as determin- 473

ing the rank of generated answers poses significant 474

challenges. For consistency calculation, we evalu- 475

ate the matching between two sequences bidirec- 476

tionally to ensure better coverage. To gauge the 477

confidence of the prompt’s greedy generation, we 478

employ multinomial sampling decoding strategy, 9 479

repeating the process 100 times. We then determine 480

the confidence level by calculating the percentage 481

of generations that match the greedy generation. 482

5.2 Experiment setup 483

We apply BELIEF-ICL to three Llama2 models 484

with different parameter sizes: 7b,10 13b,11 and 485

70b.12 To examine the effectiveness of in-context 486

learning settings, we adopt eight patterns of ICL 487

prompts by combining two task instructions (QA, 488

MP) and four types of contexts as follows. i) zero- 489

shot: no context; ii) 4-random: sampling 4 facts 490

from all relations as the few-shot learning exam- 491

ples; iii) 4-relation: sampling 4 facts from the same 492

relation but with random templates; iv) 4-template: 493

sampling 4 facts from the same relations and the 494

9Multinomial sampling selects a next token according to
the probability over the entire vocabulary given by the model.

10https://huggingface.co/meta-llama/Llama-2-7b
11https://huggingface.co/meta-llama/Llama-2-13b
12https://huggingface.co/meta-llama/Llama-2-70b
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ICL settings
Fact prediction

(Acc@1)
Single-word
generation

QA MP QA MP

zero-shot .5862 .5326 .5820 .5713
4-random .6077 .5973 .8144 .8376
4-relation .6754 .6715 .9243 .9288
4-template .6881 .6812 .9237 .9284

Table 4: Instruction following rate on Llama2-7b.

same template. In the few-shot learning settings,495

we ensure that the probed fact is excluded in the496

context. Refer to §A.4 for examples of prompts.497

Given the limited number of templates (20 for498

each relation), QA-style prompts represents one-499

fifth of the full prompts in MyriadLAMA. Addition-500

ally, owing to the high computational cost of LLMs’501

inference, we select only five manually rewritten502

templates to represents in MP-style prompts. Due503

to the considerable computational cost involved in504

sampling 100 generations when calculating Over-505

conf@1, we opt for an efficient approach. Specif-506

ically, we sample 10,000 prompts from 10,000507

unique subject-relation pairs and utilize them for508

the calculation. For other evaluation scenarios, we509

adhere to the same settings outlined in §4.1.510

5.3 Results and analysis511

Does ICL prompting adhere to instructions?512

Our initial investigation focuses on evaluating the513

effectiveness of the proposed ICL settings in ad-514

hering to instructions, from two perspectives: pre-515

dicting facts and generating single-word answers.516

The latter is crucial as the target objects in Myri-517

adLAMA primarily consist of single-word entities.518

To ensure a fair comparison between QA- and MP-519

style ICL, we conduct evaluations using shared520

templates in both settings, namely, manually cre-521

ated templates, with only one for each relation.522

We evaluate the abilities of fact prediction and523

single-word generation individually on Llama2-7b524

using Acc@1 and single-word generation rate met-525

rics. As demonstrated in Table 4, Llama2-7b ex-526

hibits a remarkable capability to comprehend in-527

structions for answering questions and generating528

single-word answers. We observe that the QA-style529

instruction performs better on both perspectives530

when no context is provided, possibly due to the531

decoder-based PLMs’ ability to generate in a ca-532

sual manner. However, this gap diminishes with533

the use of few-shot examples. Moreover, by com-534

paring zero-shot and few-shot ICL, we conclude535

PLMs Acc@1
Fluctuation Consist

@1
Overconf

@1range stdev

B
E

R
T

BERTbase .1095 .1534 .0217 .1682 .2154
BERTlarge .1102 .1574 .0220 .1713 .2052
BERTwwm .1364 .1517 .0208 .1524 .1000

L
lam

a2-7b

zero-shot .4323 .1962 .0248 .1923 -.0922
4-random .5350 .1743 .0234 .2786 -.0920
4-relation .6485 .0737 .0103 .3939 -.0913
4-template .6711 .0282 .0036 .4158 -.0920

Table 5: Evaluation on BERTs and Llama2-7b.

that while instructions alone (few-shot) achieve a 536

comparable compliance rate, incorporating addi- 537

tional and explicit contexts significantly enhances 538

prompt adherence to instructions. 539

Are LLMs strong factual knowledge learner? 540

To assess the performance gap between encoder- 541

and decoder-based LLMs, we evaluate BERTs by 542

BELIEF using the same templates employed in the 543

MP task and BELIEF-ICL on Llama-7b’s MP-style 544

prompts 13. As shown in Table 5, The discrepancy 545

of Acc@1 between zero-shot and few-shot ICL 546

highlights the significant improvement in LLMs’ 547

ability to recall factual knowledge through few- 548

shot learning. Furthermore, the selection of few- 549

shot examples is also critical to model performance. 550

By comparing the three few-shot ICL settings in 551

Table 5, we consistently observe performance im- 552

provements across all metrics when using more 553

related and explicit examples. 554

Decoder-based LLMs show great superiority 555

in understanding factual knowledge than encoder- 556

basde models. As depicted in Table 3, Llama2- 557

7b shows great average accuracy, with even the 558

zero-shot ICL largely outperforming BERT models. 559

LLMs also exhibit minimal fluctuation and high 560

consistency, highlighting their ability to compre- 561

hend and unify linguistic nuances within semanti- 562

cally equivalent representations. In Figure 2, LLMs 563

generally exhibit superior calibration and more 564

appropriate confidence levels compared to BERT 565

models (Figure 1), indicating their ability to gen- 566

erate reliable answers and they are well-calibrated, 567

albeit slightly underconfident. 568

Can Larger models recall factual knowledge bet- 569

ter? We examine the evaluation of Llama2 with 570

different sizes (7b, 13b 70b), using the MP-style 571

13We opt here for MP-style prompts for evaluation consider-
ing semantic diversity and computational cost. The evaluation
results on QA-style prompts are documented in §A.3.
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Figure 2: Comparison of Overconf@1 among Llama2
models. (Left: Llama2-7b with four ICL types; Right:
Llama2 models with different sizes.)

PLMs Acc@1
Fluctuation Consist

@1
Overconf

@1range stdev

Llama2-7b .6713 .0277 .0036 .4158 -.0923
Llama2-13b .7095 .0270 .0033 .4314 -.0662
Llama2-70b .7784 .0183 .0024 .4449 -.0690

Table 6: Comparison of LLMs with different sizes

4-template ICL setting. As shown in In Table 6, We572

find that larger LLMs consistently achieve higher573

accuracy in retrieving factual knowledge, with the574

70b model outperforming the 7b models by 10%.575

Moreover, larger models also demonstrate better576

robustness in handling different prompts. For relia-577

bility, as shown in Regarding reliability, as shown578

in Figure 2, we find that neither the ICL settings579

nor the model sizes significantly affect the Over-580

conf@1 measure, indicating that well-calibration is581

likely an intrinsic nature of decoder-based LLMs.582

6 Related work583

Prompt-based factual knowledge probing The584

LAMA probe was first proposed to evaluate the585

potential of using PLMs as knowledge bases using586

the the clozed query (prompt) (Petroni et al., 2019).587

It drived research of optimizing prompts that can588

retrieve more facts from PLMs (Shin et al., 2020;589

Zhong et al., 2021; Qin and Eisner, 2021; Li et al.,590

2022b). On the contrary, some studies questioned591

the validity of prompt-based factual knowledge592

probing, as using different prompts for the same593

fact could result in inconsistent predictions, making594

PLMs difficult to provide reliable and consistent595

answers (Jiang et al., 2020; Elazar et al., 2021).596

Presence of prompt bias The subsequent studies597

contributed to understanding the reason behinds the598

inconsistency problem. They observed that PLMs599

often make correct predictions relying on prompt600

biases rather than truly capturing the facts (Cao 601

et al., 2021). The prompt bias could come from 602

the overfitting of prompts to dataset artifacts (Po- 603

erner et al., 2020; Cao et al., 2021), fact distribution 604

leakage, or the domain overlap between pre-trained 605

corpora and probing datasets (Zhong et al., 2021; 606

Youssef et al., 2023; Li et al., 2022a; Cao et al., 607

2022). Additionally, some studies quantitatively as- 608

sessed prediction consistency by evaluating diverse 609

prompts for each fact, akin to our work (Elazar 610

et al., 2021; Jiang et al., 2020). However, these 611

studies often use prompts of low quality and lim- 612

ited diversity, making them insufficient for robustly 613

evaluating PLMs’ understanding of facts. 614

Bias-resilient factual knowledge probing Sev- 615

eral studies have proposed the prompt debiasing 616

methods to facilitate accurate evaluation of PLMs’ 617

understanding of facts (Zhao et al., 2021; Dong 618

et al., 2022; Wang et al., 2023; Yoshikawa and 619

Okazaki, 2023; Newman et al., 2021). Their ap- 620

proaches are orthogonal to our proposed method 621

of diversifying prompts to alleviate the influence 622

of individual prompt bias. Additionally, some stud- 623

ies mitigated individual prompt biases by aggre- 624

gating multiple output distributions derived from 625

prompt paraphrases (Jiang et al., 2020; Qin and Eis- 626

ner, 2021; Kamoda et al., 2023). Although these 627

methods employ multiple prompts akin to ours, our 628

approach distinguishes itself by obtaining output 629

for each prompt, enabling multifaceted evaluation 630

encompassing accuracy, consistency and reliability. 631

7 Conclusions 632

Our study introduces novel benchmarks, BELIEF 633

and its variants, BELIEF-ICL, for comprehensive 634

factual knowledge probing across various types of 635

PLMs. Additionally, we present a new dataset, 636

MyriadLAMA, featuring diverse prompts for each 637

fact. Leveraging MyriadLAMA, BELIEFs pro- 638

pose various evaluation metrics, including accu- 639

racy, consistency, and reliability, enabling a thor- 640

ough assessment of PLMs’ comprehension of fac- 641

tual knowledge. By conducting extensive eval- 642

uation on both encoder-based PLMs and recent 643

LLMs, we uncover the limitations of current single- 644

prompt-based knowledge probing methods and re- 645

veal performance variations among different PLMs, 646

which were previously overlooked in prior research. 647

This underscores the effectiveness of BELIEFs in 648

providing the accurate assessment of PLMs’ capa- 649

bilities in understanding fact. 650
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8 Limitations651

MyriadLAMA contains an extensive amount of652

prompts, which leads to high evaluation costs. In653

the future, we aim to extract a diverse yet robust654

subset from MyriadLAMA to enable more efficient655

evaluation of factual knowledge. Our study focuses656

on two families of PLMs, which may not fully cap-657

ture the impact of different language model pre-658

training paradigms on factual knowledge under-659

standing. To address this limitation, we intend to660

broaden our evaluation by including a broader array661

of LLMs, spanning various types of encoder-based662

and decoder-based PLMs. Ultimately, we will com-663

mit to making MyriadLAMA publicly accessible664

once the paper is accepted.665
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A Appendix879

A.1 Construction of MyriadLAMA880

In this appendix, we explain the detailed proce-881

dure for generating the derived triples from unique882

triples in MyriadLAMA. As discussed in §2, this883

study first extends the unique triples contained in884

LAMA-UHN (Petroni et al., 2020) by searching885

new “objects” from T-REx (Elazar et al., 2021).886

Next, for the obtained unique triples, we generate887

derived triples by combining concrete linguistic ex-888

pressions associated with entities (“subjects” and889

“objects”) and diversify relational templates using890

both manual labor and LLMs. We describe the891

detailed procedure as following.892

A.1.1 The extension of entities893

Extension of unique triples from T-REx894

LAMA-UHN is a refined subset derived from the895

LAMA dataset, which LAMA originates from T-896

REx (Elsahar et al., 2018). T-REx is a large-897

scale knowledge base containing 11 million real-898

world knowledge triples, aligned with 3.09 mil-899

lion Wikipedia abstracts, designed to create large-900

scale alignments between Wikipedia abstracts and901

Wikidata triples. To achieve this alignment, T-REx902

employed three distinct aligners—NoSub, AllEnt,903

and SPO—each offering varying levels of accuracy904

(0.98, 0.96, and 0.88, respectively) as measured905

on a test set. Despite the high alignment accu-906

racy of all three aligners, LAMA-UHN selects only907

the triples aligned by NoSub, the aligner with the908

highest accuracy. While this choice ensures the909

high correctness of triples within LAMA, it po-910

tentially compromises the ability to fairly assess a911

PLM’s capability in understanding facts, as it may912

overlook valid answers during evaluation. To ad-913

dress this limitation, we expand the MyriadLAMA914

dataset by incorporating triples aligned by all three915

aligners—NoSub, AllEnt, and SPO—found in T-916

REx, based on the “subject-relation” pairs present917

in LAMA-UHN. As the result, we increase the918

number of unique triples from 27,106 to 34,048 as919

shown in Table 1.920

Extension of entities using aliases Next, we uti-921

lize aliases of entities obtained from Wikidata to ac-922

quire diverse linguistic expressions (and their para-923

phrases) for the “subjects” and “objects”. Specifi-924

cally, we used the Wikidata identifiers of entities14 925

and the Wikidata API15 to retrieve the (English) 926

alias expressions of entities. By combining the 927

aliases of “subjects” and “objects” with the relation 928

templates mentioned later, we generate numerous 929

new derived triples. If N “subjects” and M “ob- 930

jects” are given for an unique triple, the number of 931

derived triples according to this unique triple gen- 932

erated from a single relational template is N ×M . 933

A.1.2 Diversification of relation templates 934

We use a two-step procedure to create new rela- 935

tional templates, to enhance ensure both the quality 936

and quantity. Initially, we manually rewrite rela- 937

tional templates, ensuring that every relation has 938

five templates. Then, we employ the generative 939

LLM (GPT4) to automatically paraphrase 19 addi- 940

tional templates. In total, we produce 100 templates 941

for each relation. 942

Step 1: Manually rewriting relational templates. 943

The manual rewriting of the relational templates 944

is performed by the first author of this paper. We 945

create new templates by describing the relation- 946

ship between “subject” and “object” from different 947

perspectives rather than creating templates with 948

absolutely the same meaning with original tem- 949

plate. Utilizing the resource provided by Wikidata 950
16, we not only paraphrase existing templates to 951

generate new ones with diverse lexicons but also 952

devise entailment expressions to encompass var- 953

ious semantic expressions that convey the same 954

relations. These newly created templates are guar- 955

anteed to uphold relational equivalence, following 956

the relationship between the “subject” and “object”. 957

Taking P20 ([X] died in [Y].)17 as an example, we 958

create new templates by either changing the sen- 959

tence pattern or adding type information of object 960

(e.g, [X] resided in [Y] until death). Furthermore, 961

we also create templates without directly using the 962

keywords of the relation (dead/death) but in a en- 963

tailment way (e.g., [X] spent the last years of life in 964

[Y].) Moreover, we devise a question-answer style 965

template for each relation to enhance syntactic di- 966

versity. In this template, the question incorporates 967

the subject and relation information, while the an- 968

14https://www.wikidata.org/wiki/Wikidata:
Identifiers

15https://www.wikidata.org/wiki/Special:
EntityData/<entity_identifier>.json

16https://www.wikidata.org/wiki/Property:
<relation_identifier>

17https://www.wikidata.org/wiki/Property:P20
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swer corresponds to the object.969

Note that, during the paraphrase, we observe970

that some templates in LAMA-UHN only partially971

express the original meaning of relations defined972

in Wikidata. These are inappropriate for specific973

knowledge triples. For example, P136 describes the974

creative work’s genre or an artist’s field of work18,975

which the type of work includes music, film, litera-976

ture, etc. However, the original templates of P136977

in LAMA-UHN is “[X] plays [Y] music.,” which978

cannot correctly retrieve information on work other979

than music. For this kinds of template, we aban-980

don the original templates and newly create five981

templates.982

Step 2: Paraphrasing templates using GPT-4983

Based on the original relation templates and the984

relation templates rewritten manually, we further985

paraphras these relation templates automatically986

using the GPT4-API (gpt-4-1106-preview19) pro-987

vided by OpenAPI. The instruction for paraphras-988

ing used for GPT-4 generation is:989

You are a professional tool that can para-990

phrase sentences into natural sentences991

that can correctly represent the relation-992

ship between [X] and [Y], without repe-993

tition. Make the paraphrase as diverse994

as possible using simple words. Please995

paraphrase the given sentence 19 times.996

When the duplicated sentence is generated, we re-997

move the duplication and regenerate new templates998

with the same instruction, until 19 different tem-999

plates is generated. Furthermore, we observe that1000

GPT-4 occasionally generates relation templates1001

that are semantically inappropriate for specific re-1002

lationships due to incorrect category information1003

of entities. Consequently, in such instances, we1004

refine the instructions to include the category infor-1005

mation of the entities, ensuring accurate represen-1006

tation of the relationship between the subjects and1007

the objects. For example, when paraphrasing the1008

relational template “[X] used to work in [Y].”20,1009

we additionally add explicit guidance regarding1010

the expected format and semantics of the relation1011

templates to the above instruction, as following.1012

Be aware that [Y] is the geographic loca-1013

tion but NOT company or organization,1014

18https://www.wikidata.org/wiki/Property:P136
19https://platform.openai.com/docs/models/

gpt-4-and-gpt-4-turbo
20https://www.wikidata.org/wiki/Property:P937

where persons or organizations were ac- 1015

tively participating in employment, busi- 1016

ness or other work. 1017

As a result, we can obtain the following para- 1018

phrased relational templates for “[X] used to work 1019

in [Y].”: 1020

• “[X] was formerly employed in [Y].” 1021

• “[X] once worked at [Y].” 1022

• “[Y] was the place where [X] used to be en- 1023

gaged in work.” 1024

A.2 Ablation analysis of MyriadLAMA 1025

Given that our proposed knowledge probing 1026

method BELIEF seeks to mitigate the influence 1027

of individual prompt bias in evaluations, the avail- 1028

ability of a wide range of prompts characterized 1029

by both quality and diversity is crucial. Quality 1030

ensures that the prompts can accurately inquire 1031

the target facts, while diversity ensures that mul- 1032

tiple prompts can capture different aspects of the 1033

true knowledge distribution. In this section, we 1034

verify these two properties from three aspects: ac- 1035

curacy (Acc@1), fluctuation of accuracy (range of 1036

Acc@1), and prediction consistency (Consist@1). 1037

Quality evaluation of MyriadLAMA relational 1038

templates We evaluate the quality of the relation 1039

templates in MyriadLAMA the accuracy measure- 1040

ment based on all the derived prompts evaluated 1041

on PLMs. Specifically, for each relation, we evalu- 1042

ate the accuracy (Acc@1) of all relation template 1043

separately, and then calculate the minimum, max- 1044

imum accuracies among all templates for each re- 1045

lation. We then measure the dataset-level mini- 1046

mum/maximum accuracy by micro-averaging the 1047

templates set with the minimum/maximum tem- 1048

plate accuraies (41 templates in each set). Finally, 1049

all of the template-specific accuracies are then 1050

micro-averaged to compute the average Acc@1. 1051

As indicated in Table 7, while the quality of 1052

MyriadLAMA’s prompts significantly varies, the 1053

high-quality prompts are notably superior to those 1054

of LAMA-UHN. Although the average accuracy 1055

of MyriadLAMA is lower than that of LAMA- 1056

UHN, it is considered that this is because Myri- 1057

adLAMA uses relation templates that have been 1058

semi-automatically created, whereas LAMA-UHN 1059

uses carefully selected entities and templates. 1060

12

https://www.wikidata.org/wiki/Property:P136
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://www.wikidata.org/wiki/Property:P937


PLMs LAMA-UHN
MyriadLAMA

Min Max Mean

BERTbase .2403 .0000 .3534 .1103
BERTlarge .2454 .0007 .3728 .1185
BERTwwm .2448 .0015 .3695 .1453

Table 7: Acc@1 of MyriadLAMA and LAMA-UHN

PLMs
Consist@1↑ Acc@1 range

(min/max)
Subject Relation Subject Relation

BERTbase .5745 .1504 .0673/.1441 .0000/.3534
BERTlarge .5497 .1548 .0714/.1554 .0007/.3728
BERTwwm .5005 .1057 .0831/.1884 .0015/.3695

Table 8: Diversity evaluation of subjects and relation
templates

Prompt diversity evaluation Next, in order to1061

gauge the diversity of prompts in MyriadLAMA,1062

we examine both the consistency (Consist@1) and1063

the range of accuracy (min/max) across various1064

expressions of subjects or relations, assessed in-1065

dividually. To achieve this, the complete set of1066

prompts was partitioned into multiple subsets, with1067

each subset containing only one expression for each1068

unique subjects or relations. The Acc@1 of the1069

prompts obtained in this manner is then evaluated1070

using different variants of BERT.1071

The results in Table 8 indicate that while the1072

accuracy range (min/max) and consistency (Con-1073

sist@1) caused by aliases of subjects is less pro-1074

nounced compared to diverse expressions of re-1075

lational templates, its effect on factual knowledge1076

evaluation remains significant. These findings high-1077

light the vulnerability of factual knowledge evalu-1078

ation based on single prompts and underscore the1079

significance of harnessing the diversity of prompts1080

within MyriadLAMA for robust assessments.1081

Manually rewritten vs. auto-generated tem-1082

plates Upon comparing relational templates gen-1083

erated through manual rewriting and GPT-4 auto-1084

generation, we find that auto-generated templates1085

exhibit comparable quality (accuracy) to manually1086

rewritten templates; they also demonstrate less di-1087

versity in acquiring different predictions, aligning1088

with our expectations.1089

To assess the validity of LLM-generated tem-1090

plates for knowledge probing, we rank the ac-1091

curacies (Acc@1) of manually created templates1092

against those generated by LLMs. Specifically,1093

for each relation, we rank the 5 manual templates1094

PLMs
Average rank of
manual prompts
based on Acc@1

Consist@1

Inner-group Inter-group

BERTbase 47.40 .2904 .1065
BERTlarge 45.64 .2884 .1125
BERTwwm 44.80 .2387 .0630

Table 9: Comparison between prompts generated
through manual labor and LLM.

among all 100 templates and calculate the aver- 1095

age rank across all manually created templates for 1096

all relations. Table 9 shows the average Acc@1 1097

ranks of manual templates among 100 templates on 1098

BERTbase, BERTlarge, BERTwwm. They are 47.40, 1099

45.64, and 44.80, respectively. These values closely 1100

approximate the average rank of 50, indicating that 1101

auto-generated templates can achieve nearly the 1102

same accuracy as manually created templates. 1103

Furthermore, we quantify the diversity discrep- 1104

ancy between manually written and auto-generated 1105

templates. We categorize the auto-generated tem- 1106

plates, including the original ones, as one group, 1107

resulting in five groups for each relation, each com- 1108

prising 20 templates. Subsequently, we evaluate 1109

the similarity between templates within the same 1110

group and across different groups using the con- 1111

sistency measure (Consist@1), as presented in Ta- 1112

ble 9. The consistency among prompts within the 1113

same group (inner-group) is notably high, whereas 1114

prompts from different groups (inter-group) exhibit 1115

less diversity in predictions. This underscores the 1116

significance of manual phrase rewriting, which can 1117

yield more diverse prompts and facilitate a more 1118

comprehensive evaluation. 1119

A.3 QA-style vs MP-style prompts 1120

In this section, we report the BELIEF-ICL evalua- 1121

tion result based on the QA-style and compare it to 1122

MP-style prompts. 1123

As depicted in Figure 10, we observe that QA- 1124

style prompts consistently outperform MP-style 1125

prompts in accuracy across all four types of con- 1126

text settings. This could be attributed to QA-style 1127

prompts offering a more natural way for decoder- 1128

based models trained in a casual manner for gen- 1129

eration. Additionally, despite QA-style prompts 1130

consisting of 20 templates for each relation, which 1131

is four times more than the 5 templates used in MP- 1132

style prompts, QA-style still exhibits great consis- 1133

tency and smaller fluctuations. 1134
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PLMs Acc@1
Fluctuation Consist

@1
Overconf

@1range stdev

QA zero-shot .5087 .1532 .0196 .1960 -.0909
4-random .5606 .1448 .0168 .2910 -.0905
4-relation .6670 .0253 .0032 .4393 -.0889
4-template .6780 .0221 .0025 .4411 -.0845

MP
zero-shot .4323 .1962 .0248 .1923 -.0922
4-random .5350 .1743 .0234 .2786 -.0920
4-relation .6485 .0737 .0103 .3939 -.0913
4-template .6711 .0282 .0036 .4158 -.0920

Table 10: BELIEF-ICL evaluation on Llama2-7b with
QA-style and MP-style prompts.

A.4 Examples of in-context learning prompt1135

In this section, we give prompts of eight patterns1136

introduced in our study. The eight patterns origins1137

from the combination two types of instructions1138

(QA- and MP-style) and four types of context.1139

A.4.1 MP-style/zero-shot1140

Predict the [MASK] in each sentence in
one word.
Q: [MASK] consists of LAUPT.
A:

1141

A.4.2 MP-style/4-random1142

Predict the [MASK] in each sentence in
one word.
Q: [MASK] is the administrative center
of Jiangsu.
A: Nanjing.
Q: Mar del Plata and [MASK] are
sister cities that have been developing
together.
A: Havana.
Q: Malawi has established diplomatic
ties with [MASK].
A: Australia.
Q: Which country is House of
Representatives located? [MASK].
A: Libya.
Q: [MASK] consists of LAUPT.
A:

1143

A.4.3 MP-style/4-relation 1144

Predict the [MASK] in each sentence in
one word.
Q: What is the overarching group for
Panzer Division Kempf? [MASK].
A: Wehrmacht.
Q: To whom does Mount Bulusan relate?
[MASK].
A: Luzon.
Q: Who is responsible for Army National
Guard? [MASK].
A: National Guard.
Q: What group is pharmacy a part of?
[MASK].
A: biology.
Q: [MASK] consists of environmental
factors.
A:

1145

A.4.4 MP-style/4-template 1146

Predict the [MASK] in each sentence in
one word.
Q: [MASK] consists of Panzer Division
Kempf.
A: Wehrmacht.
Q: [MASK] consists of Mount Bulusan.
A: Luzon.
Q: [MASK] consists of Army National
Guard.
A: National Guard.
Q: [MASK] consists of pharmacy.
A: biology.
Q: [MASK] consists of environmental
factors.
A:

1147

A.4.5 QA-style prompts 1148

For QA-style prompts, we replace the instruction 1149

with “Answer each question in one word.” 1150

All other settings remain the same as in MP-style 1151

prompts. Below, we provide an example of QA- 1152

style/4-template prompts. 1153
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Answer each question in one word.
Q: Which entity does Panzer Division
Kempf belong to?
A: Wehrmacht.
Q: Which entity does Mount Bulusan
belong to?
A: Luzon.
Q: Which entity does Army National
Guard belong to?
A: National Guard.
Q: Which entity does pharmacy belong
to?
A: biology.
Q: Which entity does environmental
factors belong to?
A:

1154
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