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Abstract

The fill-in-the-blank prompts are widely used
to evaluate how well pre-trained language mod-
els (PLMs) capture real-world factual knowl-
edge. However, the prompt-based evaluation
results vary significantly depending on the lin-
guistic expressions of the prompts, even for
the same knowledge. To assess PLMs’ capa-
bility to understand facts more fairly, we intro-
duce a new dataset called MyriadLAMA, along
with the evaluation benchmarks BELIEF and
its variant BELIEF-ICL to evaluate encoder-
and decoder-based PLMs, respectively. Myr-
iadLAMA presents diverse fill-in-the-blank
prompts for the same fact, leveraged by BE-
LIEFs not only to mitigate prompt bias during
factual knowledge probing by consolidating re-
sults from multiple prompts but also to offer
a comprehensive evaluation of factual knowl-
edge in PLMs, including accuracy, consistency
and reliability. We validate the efficacy of the
BELIEFs through comprehensive evaluations
of encoder-based and decoder-based PLM:s.

1 Introduction

Pre-trained language models (PLMs) are consid-
ered to be utilized as the knowledge base as they
implicitly acquire and retain factual knowledge dur-
ing the pre-training process. The research about
evaluating the ability of PLMs in understanding
facts, known as factual knowledge probing, is in-
creasingly gathering attention. The LAMA probe
dataset (Petroni et al., 2019) uses masked prompts
(e.g., John Lennon was born in [MASK].) to probe
the presence of facts in PLMs. By measuring the ac-
curacy of predicted mask tokens, the LAMA probe
can quantitatively gauge the PLMs’ knowledge.
However, while effective, the LAMA probe re-
lies on a single masked prompt to verify the pres-
ence of specific fact. This makes the results signifi-
cantly affected by minor variations in the prompt’s
linguistic expression (Kassner and Schiitze, 2020;
Misra et al., 2020; Ravichander et al., 2020). Some

studies have observed that prompts possess specific
bias and using different prompt sets can signifi-
cantly change the accuracy (Elazar et al., 2021;
Jiang et al., 2020). As PLMs are expected to han-
dle a wide variety of user inquiries, even for the
same fact, accuracy measurement based on a single-
prompt is not sufficient to make accurate evaluation.
This facilitates the need to establish a more reliable
and effective factual knowledge probing method.

Our study introduces BELIEF (§3) and its vari-
ant BELIEF-ICL (§5.1), benchmarks designed for
bias-resilient evaluation of encoder- and decoder-
based PLMs in factual knowledge understanding.
The evaluation of BELIEFs is conducted using
MyriadLAMA (§2), a new factual knowledge prob-
ing dataset. It significantly expands an existing
dataset LAMA-UHN (Petroni et al., 2020) by offer-
ing multiple prompts for each fact. Specifically, we
obtain a wide variety of lexically, syntactically, and
semantically diverse prompts from LAMA-UHN
by rewriting manually and then rephrasing them us-
ing GPT-4, resulting in myriad diverse prompts tied
to each fact. BELIEFs then integrate the outputs
from diverse prompts offered by MyriadLAMA to
evaluate specific knowledge, thereby mitigating the
impact of individual prompt bias on evaluation and
offering multifaceted evaluation of the robustness
and reliability of PLMs in fact prediction.

We applied BELIEFs to various PLMs, including
BERT (Devlin et al., 2019) (§4) and Llama2 fam-
ilies (Touvron et al., 2023) (§5.1). Consequently,
we confirm that diverse prompts enables i) a bias-
resilient factual knowledge probing and ii) a mul-
tifaceted evaluation of PLMs’ knowledge in terms
of robustness and reliability beyond accuracy.

2 MyriadLAMA Dataset

In this section, we describe MyriadLAMA, the fac-
tual knowledge probing dataset that offers various
prompts for each fact to support unbiased evalua-



tion. To mitigate the impact of prompt bias in eval-
uation, we argue that integrating predictions from
diverse prompts is important, as it can offset the
bias in specific prompts. Although multiple knowl-
edge probing datasets providing multiple prompts
for each fact have been proposed, these datasets
lack diversity in expressing facts, making them in-
sufficient to provide a balanced and comprehensive
evaluation (Elazar et al., 2021; Jiang et al., 2020).

2.1 Dataset construction

In this study, we build MyriadLAMA by semi-
automatically extending the existing fact probe
LAMA-UHN (Petroni et al., 2020). LAMA-UHN!
comprises single prompts corresponding to each
fact extracted from Wikipedia, where each fact
consists of knowledge triples (subject, relation,
object) (e.g., (Tokyo, Capital, Japan)). A single
template expression is provided for each “relation’
(hereafter, relational template, e.g., [X] is the cap-
ital of [Y]). LAMA-UHN was originally designed
for encoder-based PLMs, which can utilize bidirec-
tional information for mask prediction. The proce-
dure for factual knowledge probing using LAMA-
UHN is to first fill in the relational template with
the target knowledge triples, replace [Y] with a
mask token, and generate masked prompt (here-
after, prompt). Next, it feeds prompts into PLMs
to see if PLMs can correctly predict the “object”.

MyriadLAMA generates multiple prompts for
each fact by using many relational templates for
each “relation” and varying the linguistic expres-
sions of entities (“subject” and “object”). Specif-
ically, we define knowledge triples that neglect
the diversity of surface expressions as unique
triples and distinguish them from derived triples,
which are knowledge triples that embody the di-
verse entity expressions and relational templates
in each unique triple. For example, the unique
triple (E_{John Lennon}, R_{born-in}, E_{United
Kingdom}) could correspond to multiple derived
triples ((John Lennon, born in, UK), (John Lennon,
birthplace, United Kingdom)), etc.). The derived
triple can be used to create the masked prompt (e.g.,
John Lennon was born in [MASK]). The overview
of the triple extension method is described below.
Please refer to §A.1 for more detailed knowledge
triple extension settings.

>

'"LAMA-UHN is a subset of LAMA probe (Petroni et al.,
2019) and deletes overly helpful entity names that allow name-
based reasoning (e.g., Apple Watch is a product of [MASK].),
thus enabling more reliable factual knowledge probing.

Extending entities The knowledge triples in
LAMA-UHN constitute a subset of the Wikipedia
knowledge base T-REx (Elsahar et al., 2018). T-
REx selectively includes only certain objects for
“subject-relation” pairs. MyriadLAMA extends the
unique triples in LAMA-UHN by mining T-REX us-
ing “subject-relation” as key to include other avail-
able objects. For example, if LAMA-UHN con-
tains only E_{guitar} for instruments that E_{John
Lennon} can play, we can extend the unique triple
to include E_{piano}. We also extend the entity
expressions using aliases obtained from Wikidata.?
For example, the entity E_{United Kingdom} can
also be represented as either “UK” or “Britain.”

Paraphrasing relational templates Myriad-
LAMA creates a great variety of relational tem-
plates by a semi-automatic process. Firstly, we
manually generate five distinct templates for each
relation. They incorporate entailment expressions
and diverse syntactic patterns like statements and
question-answer formats to provide semantic and
syntactic variations. Next, to enhance quantity and
lexical diversity, we automatically paraphrase each
manually created template 19 times using the GPT-
4 API.? Finally, all templates undergo manual ver-
ification by human reviewers, yielding a total of
4100 templates covering 41 relations.

2.2 Dataset analysis

In this section, we report the statistics of Myriad-
LAMA and compare it with other factual knowl-
edge probing dataset, including LAMA-UHN
and multi-prompts datasets. Our Myriad LAMA
demonstrates superiority in providing more diverse
prompts for the same knowledge while maintaining
the quality of each prompt.

Statistics We first report the statistics of LAMA-
UHN and MyriadLAMA, as shown in Table 1. Due
to previous findings that the performance of PLMs
in predicting facts is significantly influenced by the
number of mask tokens (Zhao et al., 2024), our
study focuses exclusively on evaluating derived
triples in which the “object” is represented as a sin-
gle token following tokenization by the WordPiece
tokenizer (Devlin et al., 2019).

As the result, we increase the number of unique
triples from 27,106 to 34,048 by extending object
entities for one-to-many relations. Furthermore,

thtps ://www.wikidata.org/wiki/Wikidata:
Data_access
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LAMA-UHN MyriadLAMA
Relational templates 41 4100
Unique triples 27,106 34,048
Derived triples 27,106 21,140,500
Subject-relation pairs 24,643 24,643
Prompts 24,643 6,492,800

Table 1: Statistics of LAMA-UHN and MyriadLAMA.

the number of derived triples is increased from
27,106 in LAMA-UHN to 21,140,500, an increase
of approximately 778 times, by combining various
semi-automatically generated relational templates
and the alias expressions for “subject” and “ob-
ject” entities. As the prompts are generated from
derived triples without considering the “object” ex-
pressions, the number of generated prompts are
less than the number of derived triples, which is
increased from 27,106 to 6,492,800.

Diversity comparison Given that our study
seeks to mitigate the influence of individual prompt
bias in evaluations, the availability of a wide range
of prompts characterized in both quantity and diver-
sity is crucial. The diversity ensures that different
prompts can capture different aspects of the true
knowledge distribution.

We conduct comparison between Myriad LAMA
and other multi-prompts probing datasets from the
perspective of quantity and diversity. Specially,
we measure the average prompts for each “subject-
relation” pair as the quantity measure. Myriad-
LAMA introduces diversity into prompts by us-
ing various subject expressions and relational tem-
plates. On average, MyriadLAMA provides 2.47
expressions for each subject. In addition, we mea-
sure the diversity of relational templates from three
aspects, as shown below:

Lexicon: We utilize the Jaccard distance of words
in templates to gauge lexicon diversity.

Syntax: We adopt the syntax distance measure pro-
posed in (Oya, 2020), which calculates the
distance between dependency trees.

Semantics: We quantify semantic diversity by cal-
culating the L2 distance of sentence embed-
dings given by BERT .

As shown in Table 2, Myriad LAMA demon-
strates a great quantity and diversity comparing to
the existing multi-prompt factual probing datasets:
LPAQA (Jiang et al., 2020) and PareREL (Elazar

Diversityt
Dataset Quantity?
Lexicon Syntax Semantic
PARAREL 7.30 4860 .1489 11.03
LPAQA 53.27 .5449 1713 13.55
MyriadLAMA  263.47 6652 2138 12.69

Table 2: Comparison between multi-prompts datasets.

et al.,, 2021). While LPAQA exhibits greater se-
mantic diversity in its measures, this is primarily at-
tributed to its utilization of distance supervision to
discover new templates. Such method often results
in problematic templates that inadequately describe
the relationships between subjects and objects. For
example, for relation P937 ([X] used to work in
[Y].), the mined templates in LPAQA includes tem-
plates like: “[X] to meet [Y].”, that significantly
deviate from the original semantic meaning. In con-
trast, every prompt in MyriadLAMA can precisely
describe the correct relationship. Refer to §A.2 for
further ablation analysis on MyriadLAMA.

3 BELIEF Benchmark

In this section, we propose the benchmark BE-
LIEF for bias-resilient evaluation of encoder-based
PLMs in fact understanding. BELIEF employs the
numerous prompts from MyriadLAMA (§2) for a
fairer and comprehensive factual knowledge prob-
ing. Beyond merely assessing the amount of facts
stored in PLMs (accuracy), BELIEF further aids in
evaluating the consistency and reliability of PLMs
in fact prediction. In the following sections, we
first outline the formulation (§3.1), then introduce
the metrics proposed in BELIEF (§3.2-3.4).

3.1 Preliminary

MyriadLAMA encompasses one-to-many relations
and diverse linguistic expressions referring to the
same “object,” allowing for several “object” tokens
to be the correct response to single prompts. For
instance, with the subject E_{John Lennon} and
the relation R_{born-in}, acceptable tokens could
include “UK” and “Britain.” Consequently, we con-
sider the fact to be present, if the model’s predicted
token matches any of the correct tokens, regardless
of which correct answer is predicted.

We denote the “subject-relation” pairs in Myr-
iadLAMA as T, the set of prompts for a given
“subject-relation” pair ¢ € T as P, and the cor-
responding set of correct “object” tokens for ¢ as
C;. We determine the correct answer for the i-



th prompt pi € P, as the token ai € C; that the
PLM predicts with the highest probability. This
token a!, regarded as the “golden object,” is then
used for the following evaluation of the prompt
p!. In addition, when the output distribution cor-
responding to mask token of arbitrary prompt p is
O = {(wj,05)| >_; 0; = 1}, the prediction result
is defined as the token w = argmax,, . (. »,)c09;j-

3.2 Accuracy and its fluctuations

In evaluating the prediction accuracy of the “ob-
ject” for a given ‘“‘subject-relation” pair, BELIEF
aggregates results from multiple prompts, which
mitigates the impact of individual prompt biases.
This approach ensures accuracy less influenced by
single-prompt bias. Specifically, we randomly se-
lect one prompt for each “subject-relation” pair ¢ €
T to collect the set of prompts P = {p1, ..., p7| }-
By feeding prompts P to PLMs, we can calculate
accuracy based on their predictions. We repeat this
process to collect a set of accuracies, which is then
used to measure both the average and fluctuation.

Average accuracy In BELIEF, accuracy metrics
include Acc@K, which measures the proportion
of prompts with the correct token predicted within
the top-k output probabilities. Considering top-k
tokens allows for a more flexible evaluation, as rely-
ing solely on the top-1 token may capture only lim-
ited aspects of the PLMs’ output distribution. We
also include Mean Reciprocal Rank (MRR), which
considers the rank of the correct answer, offering a
more detailed understanding of the model’s perfor-
mance across all ranks. For each sample prompts
set, we calculate Acc@K and MRR as follows:

P11 [rank (ay, Oy) < K]

AccQK =
|P|

(1

P
1 1
MRR = — E —_— 2
| P| <~ rank(az, Oy) )

where rank(a;, O;) denotes the rank of the “golden
object” a; within the output probability distribution
O, for prompt p;, and 1[x] is an indicator function
returning 1 if x is true, and O otherwise.

Then we repeat this process N times to obtain
the set of accuracies, which are denoted as Vaccax
and VyrRr, where |V,| = N. The final average
accuracy is calculated as the mean value of V.

Fluctuation of accuracy: For V,, we can evalu-
ate the fluctuation of accuracies by the range and

the standard deviation as following:

range = max(V;) — min(V}) 3)
| N | N
. = )2
stdev = N Z (v; N Z v;i)? (4
v; €V v; €V

where V, could be either Vaccax or VMRR-

3.3 Consistency

For each “subject-relation” pair ¢, we assess
the PLM’s consistency in predicting the “object”
across different prompts in P;. Specifically, we
compute the degree of match between the pre-
diction result ;] for a given prompt p; and the
prediction results ;] for other prompts p] € P
(where j # 1), across all “subject-relation” pairs in
T (Elazar et al., 2021; Fierro and Sggaard, 2022):

1 1wt = wt
Consist@1 = — Z ZW“iN»JS\PtI [0 ;]
T4 §IPI(RI-1)
)
3.4 Reliability

The reliability of PLMs reflects the extent to which
we can trust the predictions they provide. This en-
compasses not only the prediction accuracy but also
the correctness of the confidence assigned to those
predictions. In our study, we use diverse prompts
from MyriadLAMA to assess PLMs’ overconfi-
dence levels in making fact prediction. The over-
confidence calculation draws from the expected
error calibration metric (Desai and Durrett, 2020).
Specially, we measure the difference between true
prediction accuracy and models’ confidence to their
predicted tokens. For each prompt, we first acquire
the maximum probability (hereafter, confidence)
from the output distribution for the mask token.
Subsequently, all of the prompts are arranged in de-
scending order based on confidence and segmented
into M bins (P(l), P, ey P(M)), with the same
amount of data points in each bin. For each bin i,
we compute the average accuracy AccQK @ and
average confidence m(i). In our work, we use
M = 10 for all the experiments. Finally, the
PLM’s overconfidence in predicting the “object”
is assessed by averaging differences between av-
erage confidence and accuracy across all bins, as
shown below:

[P

M ‘
OverconfQK = Z W(Omm(i) — Acc@ K(Z))
i=1

(6)



Accuracy

Accuracy fluctuation

PLMs (Acc@1/Acc@10/MRR) | (Acc@1/Acc@10/MRR)" Consistency T Reliability |

LAMA-UHN Myriad LAMA range stdev Consist@1 OV((::(I)IifO? K
BERTpae  2403/.5377/.1767 .1051/.2941/.1696 .1714/3121/2183 .0224/.0404/.0270  .1098 220/.288
BERTiuge .24541.5509/.3456 .1118/.3069/.1777 .1800/.3228/.2157 .0231/.0396.0274 .1119 218/.290
BERTyum 2448/.5248/.3380 .1367/.3497/.2085 .1777/.3044/.2063 .0219/.0366/.0256  .1021 116/.164

Table 3: Evaluation results of BERT and its variants via BELIEF.

4 Encoder-Based PLLMs Evaluation

In this section, we use BELIEF to evaluate multiple
encoder-based PLMs, comparing its effectiveness
with LAMA-UHN and uncovering insights hidden
by single-prompt-based evaluations.

4.1 Experiment setup

We evaluate BERT families, including BERT} 50,
BERT e, and BERT ym,® BERTh,se and the
other two models have 110M and 340M paramters,
respectively. BERT ., differs from BERT),qe in
the approach of masking’ during pre-training.

To calculate the fluctuations of accuracy (§3.2),
we set a large sample number (N = 50, 000) to
provide stable and accurate evaluation results. In
each of the [V trials, we share the same template
for facts with the same relation. We also employ
consistent seeds for prompt sampling for different
PLMs to ensure fair comparison.

4.2 Results and analysis

Vulnerability of single prompt-based evaluation
As shown in Table 3, we note significant fluctu-
ations in accuracy among BERT and its variants.
Additionally, all PLMs exhibit low prediction con-
sistency and tend to display overconfidence in their
predictions regarding facts. Below, we examine
how BERT models process factual knowledge, with
BERT ;e as an example.

Below, we examine how BERT models perceive
facts, with BERT),,¢c as an example. First, the
accuracy fluctuation presented in Table 3 demon-
strates variances. The high stdev and low Con-
sist@1 also indicate that using different prompts for
evaluation yields significantly varied predictions.
Moreover, we observe that even BERT ¢ exhibits

4https://huggingface.co/bert—base—uncased

5h’ctps ://huggingface.co/bert-large-uncased

®https://huggingface.co/
bert-large-uncased-whole-word-masking

"BERT ywm masks all tokens corresponding to a single
word at the same time, while BERT}arge and BERTa5¢ allow
for partial tokens in one word to be masked.
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Figure 1: Overconf@1 of BERT and is variants.

higher accuracy than BERT 1, in LAMA-UHN,
the relationship is reversed in BELIEF. Similarly,
the MRR gain of BERT},,ge Over BERT}, 5 is less
prominent in MyriadLAMA. These discrepancies
underscore the unreliability of knowledge probing
using single prompts.

Finally, Figure 1 illustrates the relationship be-
tween confidence and Acc@1 of BERT),,gc. The
figure indicates that BERT),,¢e exhibits low accu-
racy even for prompts with high confidence. Ad-
ditionally, expanding the token range (K) leads to
further deterioration in overconfidence, as detailed
in Table 3. These results underscore PLMs’ ten-
dency towards overconfidence in predictions.

Comparison between PLMs From Table 3, we
can observe that BERT);,. outperforms BERT}, ¢
in terms of both accuracy, consistency and relia-
bility metrics. Moreover, BERT,,, shows bet-
ter performance in metrics other than consistency.
This indicates that both parameter size and learning
strategy, such as masking methods, are crucial for
knowledge acquisition. We can also observe that
BERT wm generally outperforms others with less
fluctuation in accuracy, though it has low consis-
tency. This implies a possible trade-off between
attaining high accuracy and maintaining consistent
prediction across diverse prompts. Furthermore,
BERTm demonstrated superior abilities on relia-
bility, as can be also seen in Figure 1.
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5 Decoder-Based PLMs Evaluation

We extend the benchmark BELIEF to incorporate
decoder-based large language models (LLMs). Due
to different nature of decoder-based and encoder-
based PLMs, the fill-in-the-blank style dataset is
not suited to evaluate LLMs’ abilities in factual
knowledge understanding. To comprehensively
evaluate these models, we introduce a modified
version of BELIEF employing in-context learning
(ICL), termed BELIEF-ICL (§5.1). Finally, we con-
duct a thorough evaluation and analysis of several
LLMs based on the BELIEF-ICL (§5.3).

5.1 BELIEF-ICL

Evaluating factual knowledge directly using BE-
LIEF poses several challenges for recent decoder-
based LLMs. Unlike the encoder-based models,
which can predict [MASK] tokens based on all
surrounding contexts, decoder-based models en-
counter difficulties with prompts containing mask
tokens in the middle of sentences in Myriad-
LAMA. Furthermore, while encoder models al-
low for specifying the number of answer tokens
by setting masks, locating answers precisely in
decoder-based models proves challenging due to
their auto-regressive generation process.

In-context learning settings We utilize the in-
context learning ability of LLMs to solve the chal-
lenges. The in-context learning ability allows
LLMs to perform complex tasks during inference
using task-specific prompts (Brown et al., 2020).
Each prompt contains three components: the task
instruction, few-shot learning context and the
target knowledge prompt.

In this study, we develop two prompt types to fit
different relational templates as follows.

1) QA task: Initially, we define the question-
answer (QA) prompts utilizing the QA-style tem-
plates available in MyriadLAMA.? For the QA
prompt, we employ the few-shot prompt compris-
ing random QA pairs, following the format out-
lined in InstructGPT (Ouyang et al., 2022). Given
that all objects in MyriadLAMA are intended to be
matched with single words, we prepend the instruc-
tion “Answer each question in one word.”

$MyriadLAMA provides 20 QA-style templates for each
relation, offering not only syntactical diversity but also accom-
modating causal language modeling in decoder-based PLMs.
Each QA-style prompt follows a format in which the subject
and relation form the question, and the object serves as the
answer, such as “Who developed [X]? [Y].”

2) MP prompt: We introduce the mask predic-
tion (MP) prompt style, which is accessible for all
templates. The task instruction is formulated as
“Predict the [MASK] in each sentence in
one word.” For prompts of the few-shot examples
and questions, we adhere to the same conventions
as BELIEF, replacing the object placeholder with
“[MASK]” within the template.

Evaluation setup The evaluation of accuracy and
its fluctuation, consistency and reliability mostly
follow the instruction in §3. However, unlike
encoder-based PLMs where we can pre-define the
set of candidate answers using the single mask to-
ken in prompts, LLMs pose challenges in measur-
ing the matching between two sequences due to the
diverse and autoregressive generation. To mitigate
the impact of diverse generation, we normalize all
the generated sequences and object entities through
tokenization and lemmatization.

When evaluating matching, we check if the nor-
malized sequence contains any of the candidate ob-
ject entities. We only report the accuracy (Acc@1)
and overconfidence (Overconf@1) of the greedy
generation with the highest probability for LLMs
and ignoring metrics where £ > 1, as determin-
ing the rank of generated answers poses significant
challenges. For consistency calculation, we evalu-
ate the matching between two sequences bidirec-
tionally to ensure better coverage. To gauge the
confidence of the prompt’s greedy generation, we
employ multinomial sampling decoding strategy, °
repeating the process 100 times. We then determine
the confidence level by calculating the percentage
of generations that match the greedy generation.

5.2 Experiment setup

We apply BELIEF-ICL to three Llama2 models
with different parameter sizes: 7b,'” 13b,!! and
70b.!2 To examine the effectiveness of in-context
learning settings, we adopt eight patterns of ICL
prompts by combining two task instructions (QA,
MP) and four types of contexts as follows. i) zero-
shot: no context; ii) 4-random: sampling 4 facts
from all relations as the few-shot learning exam-
ples; iii) 4-relation: sampling 4 facts from the same
relation but with random templates; iv) 4-template:
sampling 4 facts from the same relations and the

“Multinomial sampling selects a next token according to
the probability over the entire vocabulary given by the model.
https://huggingface.co/meta-llama/Llama-2-7b
"https://huggingface.co/meta-llama/Llama-2-13b
https://huggingface.co/meta-llama/Llama-2-70b



Fact prediction Single-word

ICL settings (Acc@1) generation
QA MP QA MP
zero-shot 5862 5326  .5820 5713
4-random 6077 5973 8144  .8376
4-relation 6754 6715 9243 9288
4-template  .6881  .6812 .9237  .9284

Table 4: Instruction following rate on Llama2-7b.

same template. In the few-shot learning settings,
we ensure that the probed fact is excluded in the
context. Refer to §A.4 for examples of prompts.
Given the limited number of templates (20 for
each relation), QA-style prompts represents one-
fifth of the full prompts in MyriadLAMA. Addition-
ally, owing to the high computational cost of LLMs’
inference, we select only five manually rewritten
templates to represents in MP-style prompts. Due
to the considerable computational cost involved in
sampling 100 generations when calculating Over-
conf@1, we opt for an efficient approach. Specif-
ically, we sample 10,000 prompts from 10,000
unique subject-relation pairs and utilize them for
the calculation. For other evaluation scenarios, we
adhere to the same settings outlined in §4.1.

5.3 Results and analysis

Does ICL prompting adhere to instructions?
Our initial investigation focuses on evaluating the
effectiveness of the proposed ICL settings in ad-
hering to instructions, from two perspectives: pre-
dicting facts and generating single-word answers.
The latter is crucial as the target objects in Myri-
adLAMA primarily consist of single-word entities.
To ensure a fair comparison between QA- and MP-
style ICL, we conduct evaluations using shared
templates in both settings, namely, manually cre-
ated templates, with only one for each relation.
We evaluate the abilities of fact prediction and
single-word generation individually on Llama2-7b
using Acc@1 and single-word generation rate met-
rics. As demonstrated in Table 4, Llama2-7b ex-
hibits a remarkable capability to comprehend in-
structions for answering questions and generating
single-word answers. We observe that the QA-style
instruction performs better on both perspectives
when no context is provided, possibly due to the
decoder-based PLMs’ ability to generate in a ca-
sual manner. However, this gap diminishes with
the use of few-shot examples. Moreover, by com-
paring zero-shot and few-shot ICL, we conclude

PLMs Acc@1 Fluctuation Consist Overconf

range stdev @1 @1
w BERTpase .1095 1534 .0217 .1682 2154
% BERT}arge 1102 1574 .0220 .1713 2052
~ BERTwwm .1364 .1517 .0208 .1524  .1000
g zero-shot 4323 1962 .0248 1923  -.0922
3 4-random 5350 .1743 .0234 2786 -.0920
‘ﬁ\’) 4-relation  .6485 .0737 .0103 .3939  -.0913
3 4-template .6711 .0282 .0036 4158 -.0920

Table 5: Evaluation on BERT's and Llama2-7b.

that while instructions alone (few-shot) achieve a
comparable compliance rate, incorporating addi-
tional and explicit contexts significantly enhances
prompt adherence to instructions.

Are LLMs strong factual knowledge learner?
To assess the performance gap between encoder-
and decoder-based LL.Ms, we evaluate BERTSs by
BELIEF using the same templates employed in the
MP task and BELIEF-ICL on Llama-7b’s MP-style
prompts '3. As shown in Table 5, The discrepancy
of Acc@1 between zero-shot and few-shot ICL
highlights the significant improvement in LLMs’
ability to recall factual knowledge through few-
shot learning. Furthermore, the selection of few-
shot examples is also critical to model performance.
By comparing the three few-shot ICL settings in
Table 5, we consistently observe performance im-
provements across all metrics when using more
related and explicit examples.

Decoder-based LLMs show great superiority
in understanding factual knowledge than encoder-
basde models. As depicted in Table 3, Llama2-
7b shows great average accuracy, with even the
zero-shot ICL largely outperforming BERT models.
LLMs also exhibit minimal fluctuation and high
consistency, highlighting their ability to compre-
hend and unify linguistic nuances within semanti-
cally equivalent representations. In Figure 2, LLMs
generally exhibit superior calibration and more
appropriate confidence levels compared to BERT
models (Figure 1), indicating their ability to gen-
erate reliable answers and they are well-calibrated,
albeit slightly underconfident.

Can Larger models recall factual knowledge bet-
ter? We examine the evaluation of Llama2 with
different sizes (7b, 13b 70b), using the MP-style

13We opt here for MP-style prompts for evaluation consider-
ing semantic diversity and computational cost. The evaluation
results on QA-style prompts are documented in §A.3.
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Figure 2: Comparison of Overconf@ 1 among Llama2
models. (Left: Llama2-7b with four ICL types; Right:
Llama2 models with different sizes.)

Fluctuation  ¢ohGist  Overconf

PLMs Acc@1

range stdev @1 @1
Llama2-7b 6713 .0277 .0036 4158 -.0923
Llama2-13b  .7095 .0270 .0033 4314 -.0662
Llama2-70b .7784 .0183 .0024 .4449 -.0690

Table 6: Comparison of LLMs with different sizes

4-template ICL setting. As shown in In Table 6, We
find that larger LLMs consistently achieve higher
accuracy in retrieving factual knowledge, with the
70b model outperforming the 7b models by 10%.
Moreover, larger models also demonstrate better
robustness in handling different prompts. For relia-
bility, as shown in Regarding reliability, as shown
in Figure 2, we find that neither the ICL settings
nor the model sizes significantly affect the Over-
conf@ 1 measure, indicating that well-calibration is
likely an intrinsic nature of decoder-based LLMs.

6 Related work

Prompt-based factual knowledge probing The
LAMA probe was first proposed to evaluate the
potential of using PLMs as knowledge bases using
the the clozed query (prompt) (Petroni et al., 2019).
It drived research of optimizing prompts that can
retrieve more facts from PLMs (Shin et al., 2020;
Zhong et al., 2021; Qin and Eisner, 2021; Li et al.,
2022b). On the contrary, some studies questioned
the validity of prompt-based factual knowledge
probing, as using different prompts for the same
fact could result in inconsistent predictions, making
PLMs difficult to provide reliable and consistent
answers (Jiang et al., 2020; Elazar et al., 2021).

Presence of prompt bias The subsequent studies
contributed to understanding the reason behinds the
inconsistency problem. They observed that PLMs
often make correct predictions relying on prompt

biases rather than truly capturing the facts (Cao
et al., 2021). The prompt bias could come from
the overfitting of prompts to dataset artifacts (Po-
erner et al., 2020; Cao et al., 2021), fact distribution
leakage, or the domain overlap between pre-trained
corpora and probing datasets (Zhong et al., 2021;
Youssef et al., 2023; Li et al., 2022a; Cao et al.,
2022). Additionally, some studies quantitatively as-
sessed prediction consistency by evaluating diverse
prompts for each fact, akin to our work (Elazar
et al., 2021; Jiang et al., 2020). However, these
studies often use prompts of low quality and lim-
ited diversity, making them insufficient for robustly
evaluating PLMs’ understanding of facts.

Bias-resilient factual knowledge probing Sev-
eral studies have proposed the prompt debiasing
methods to facilitate accurate evaluation of PLMs’
understanding of facts (Zhao et al., 2021; Dong
et al., 2022; Wang et al., 2023; Yoshikawa and
Okazaki, 2023; Newman et al., 2021). Their ap-
proaches are orthogonal to our proposed method
of diversifying prompts to alleviate the influence
of individual prompt bias. Additionally, some stud-
ies mitigated individual prompt biases by aggre-
gating multiple output distributions derived from
prompt paraphrases (Jiang et al., 2020; Qin and Eis-
ner, 2021; Kamoda et al., 2023). Although these
methods employ multiple prompts akin to ours, our
approach distinguishes itself by obtaining output
for each prompt, enabling multifaceted evaluation
encompassing accuracy, consistency and reliability.

7 Conclusions

Our study introduces novel benchmarks, BELIEF
and its variants, BELIEF-ICL, for comprehensive
factual knowledge probing across various types of
PLMs. Additionally, we present a new dataset,
MyriadLAMA, featuring diverse prompts for each
fact. Leveraging MyriadLAMA, BELIEFs pro-
pose various evaluation metrics, including accu-
racy, consistency, and reliability, enabling a thor-
ough assessment of PLMs’ comprehension of fac-
tual knowledge. By conducting extensive eval-
uation on both encoder-based PLMs and recent
LLMs, we uncover the limitations of current single-
prompt-based knowledge probing methods and re-
veal performance variations among different PLMs,
which were previously overlooked in prior research.
This underscores the effectiveness of BELIEFs in
providing the accurate assessment of PLMs’ capa-
bilities in understanding fact.



8 Limitations

MyriadLAMA contains an extensive amount of
prompts, which leads to high evaluation costs. In
the future, we aim to extract a diverse yet robust
subset from MyriadLAMA to enable more efficient
evaluation of factual knowledge. Our study focuses
on two families of PLMs, which may not fully cap-
ture the impact of different language model pre-
training paradigms on factual knowledge under-
standing. To address this limitation, we intend to
broaden our evaluation by including a broader array
of LLMs, spanning various types of encoder-based
and decoder-based PLMs. Ultimately, we will com-
mit to making MyriadLAMA publicly accessible
once the paper is accepted.
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A Appendix

A.1 Construction of Myriad LAMA

In this appendix, we explain the detailed proce-
dure for generating the derived triples from unique
triples in MyriadLAMA. As discussed in §2, this
study first extends the unique triples contained in
LAMA-UHN (Petroni et al., 2020) by searching
new “objects” from T-REx (Elazar et al., 2021).
Next, for the obtained unique triples, we generate
derived triples by combining concrete linguistic ex-
pressions associated with entities (“subjects” and
“objects”) and diversify relational templates using
both manual labor and LLLMs. We describe the
detailed procedure as following.

A.1.1 The extension of entities

Extension of unique triples from T-REx
LAMA-UHN is a refined subset derived from the
LAMA dataset, which LAMA originates from T-
REx (Elsahar et al., 2018). T-REx is a large-
scale knowledge base containing 11 million real-
world knowledge triples, aligned with 3.09 mil-
lion Wikipedia abstracts, designed to create large-
scale alignments between Wikipedia abstracts and
Wikidata triples. To achieve this alignment, T-REx
employed three distinct aligners—NoSub, AllEnt,
and SPO—each offering varying levels of accuracy
(0.98, 0.96, and 0.88, respectively) as measured
on a test set. Despite the high alignment accu-
racy of all three aligners, LAMA-UHN selects only
the triples aligned by NoSub, the aligner with the
highest accuracy. While this choice ensures the
high correctness of triples within LAMA, it po-
tentially compromises the ability to fairly assess a
PLM’s capability in understanding facts, as it may
overlook valid answers during evaluation. To ad-
dress this limitation, we expand the MyriadLAMA
dataset by incorporating triples aligned by all three
aligners—NoSub, AllEnt, and SPO—found in T-
REX, based on the “subject-relation” pairs present
in LAMA-UHN. As the result, we increase the
number of unique triples from 27,106 to 34,048 as
shown in Table 1.

Extension of entities using aliases Next, we uti-
lize aliases of entities obtained from Wikidata to ac-
quire diverse linguistic expressions (and their para-
phrases) for the “subjects” and “objects”. Specifi-
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cally, we used the Wikidata identifiers of entities'*
and the Wikidata API'"> to retrieve the (English)
alias expressions of entities. By combining the
aliases of “subjects” and “objects” with the relation
templates mentioned later, we generate numerous
new derived triples. If NV “subjects” and M “ob-
jects” are given for an unique triple, the number of
derived triples according to this unique triple gen-
erated from a single relational template is N x M.

A.1.2 Diversification of relation templates

We use a two-step procedure to create new rela-
tional templates, to enhance ensure both the quality
and quantity. Initially, we manually rewrite rela-
tional templates, ensuring that every relation has
five templates. Then, we employ the generative
LLM (GPT4) to automatically paraphrase 19 addi-
tional templates. In total, we produce 100 templates
for each relation.

Step 1: Manually rewriting relational templates.
The manual rewriting of the relational templates
is performed by the first author of this paper. We
create new templates by describing the relation-
ship between “subject” and “object” from different
perspectives rather than creating templates with
absolutely the same meaning with original tem-
plate. Utilizing the resource provided by Wikidata
16 we not only paraphrase existing templates to
generate new ones with diverse lexicons but also
devise entailment expressions to encompass var-
ious semantic expressions that convey the same
relations. These newly created templates are guar-
anteed to uphold relational equivalence, following
the relationship between the “subject” and “object”.
Taking P20 ([X] died in [Y].)!7 as an example, we
create new templates by either changing the sen-
tence pattern or adding type information of object
(e.g, [X] resided in [Y] until death). Furthermore,
we also create templates without directly using the
keywords of the relation (dead/death) but in a en-
tailment way (e.g., [X] spent the last years of life in
[Y].) Moreover, we devise a question-answer style
template for each relation to enhance syntactic di-
versity. In this template, the question incorporates
the subject and relation information, while the an-

14https://www.wikidata.org/wiki/Wikidata:
Identifiers
Bhttps://www.wikidata.org/wiki/Special:
EntityData/<entity_identifier>.json
Yhttps://www.wikidata.org/wiki/Property:
<relation_identifier>
"https://www.wikidata.org/wiki/Property:P20


https://www.wikidata.org/wiki/Wikidata:Identifiers
https://www.wikidata.org/wiki/Wikidata:Identifiers
https://www.wikidata.org/wiki/Special:EntityData/<entity_identifier>.json
https://www.wikidata.org/wiki/Special:EntityData/<entity_identifier>.json
https://www.wikidata.org/wiki/Property:<relation_identifier>
https://www.wikidata.org/wiki/Property:<relation_identifier>
https://www.wikidata.org/wiki/Property:P20

swer corresponds to the object.

Note that, during the paraphrase, we observe
that some templates in LAMA-UHN only partially
express the original meaning of relations defined
in Wikidata. These are inappropriate for specific
knowledge triples. For example, P136 describes the
creative work’s genre or an artist’s field of work'8,
which the type of work includes music, film, litera-
ture, etc. However, the original templates of P136
in LAMA-UHN is “[X] plays [ Y] music.,” which
cannot correctly retrieve information on work other
than music. For this kinds of template, we aban-
don the original templates and newly create five
templates.

Step 2: Paraphrasing templates using GPT-4
Based on the original relation templates and the
relation templates rewritten manually, we further
paraphras these relation templates automatically
using the GPT4-API (gpt-4-1106-preview'?) pro-
vided by OpenAPI. The instruction for paraphras-
ing used for GPT-4 generation is:

You are a professional tool that can para-
phrase sentences into natural sentences
that can correctly represent the relation-
ship between [X] and [Y], without repe-
tition. Make the paraphrase as diverse
as possible using simple words. Please
paraphrase the given sentence 19 times.

When the duplicated sentence is generated, we re-
move the duplication and regenerate new templates
with the same instruction, until 19 different tem-
plates is generated. Furthermore, we observe that
GPT-4 occasionally generates relation templates
that are semantically inappropriate for specific re-
lationships due to incorrect category information
of entities. Consequently, in such instances, we
refine the instructions to include the category infor-
mation of the entities, ensuring accurate represen-
tation of the relationship between the subjects and
the objects. For example, when paraphrasing the
relational template “[X] used to work in [Y].%,
we additionally add explicit guidance regarding
the expected format and semantics of the relation
templates to the above instruction, as following.

Be aware that [Y] is the geographic loca-
tion but NOT company or organization,

Bhttps://waw.wikidata.org/wiki/Property:P136

Yhttps://platform.openai.com/docs/models/
gpt-4-and-gpt-4-turbo

20https ://www.wikidata.org/wiki/Property:P937
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where persons or organizations were ac-
tively participating in employment, busi-
ness or other work.

As a result, we can obtain the following para-
phrased relational templates for “[X] used to work
in[Y].:

* “[X] was formerly employed in [Y].”
e “[X] once worked at [Y].”

* “['Y] was the place where [X] used to be en-
gaged in work.”

A.2 Ablation analysis of MyriadLAMA

Given that our proposed knowledge probing
method BELIEF seeks to mitigate the influence
of individual prompt bias in evaluations, the avail-
ability of a wide range of prompts characterized
by both quality and diversity is crucial. Quality
ensures that the prompts can accurately inquire
the target facts, while diversity ensures that mul-
tiple prompts can capture different aspects of the
true knowledge distribution. In this section, we
verify these two properties from three aspects: ac-
curacy (Acc@1), fluctuation of accuracy (range of
Acc@1), and prediction consistency (Consist@1).

Quality evaluation of MyriadLAMA relational
templates We evaluate the quality of the relation
templates in MyriadLAMA the accuracy measure-
ment based on all the derived prompts evaluated
on PLMs. Specifically, for each relation, we evalu-
ate the accuracy (Acc@1) of all relation template
separately, and then calculate the minimum, max-
imum accuracies among all templates for each re-
lation. We then measure the dataset-level mini-
mum/maximum accuracy by micro-averaging the
templates set with the minimum/maximum tem-
plate accuraies (41 templates in each set). Finally,
all of the template-specific accuracies are then
micro-averaged to compute the average Acc@]1.
As indicated in Table 7, while the quality of
MyriadLAMA’s prompts significantly varies, the
high-quality prompts are notably superior to those
of LAMA-UHN. Although the average accuracy
of MyriadLAMA is lower than that of LAMA-
UHN, it is considered that this is because Myri-
adLAMA uses relation templates that have been
semi-automatically created, whereas LAMA-UHN
uses carefully selected entities and templates.


https://www.wikidata.org/wiki/Property:P136
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://www.wikidata.org/wiki/Property:P937

Myriad LAMA Average rank of Consist@1
PLMs LAMA-UHN - PLMs manual prompts
Min Max Mean based on Acc@1 Inner-group Inter-group
BERThase .2403 .0000 .3534 .1103 BERThase 47.40 .2904 .1065
BERTarge .2454 .0007 .3728 .1185 BERT arge 45.64 .2884 1125
BERTwwm .2448 0015 3695 .1453 BERTwwm 44.80 .2387 .0630

Table 7: Acc@1 of MyriadLAMA and LAMA-UHN

Consist@1? Acc@1 range

PLMs (min/max)
Subject Relation  Subject Relation
BERThase 5745 1504 .0673/.1441 .0000/.3534
BERT arge  .5497 1548 .0714/.1554 .0007/.3728
BERTwwm -5005 1057 .0831/.1884 .0015/.3695

Table 8: Diversity evaluation of subjects and relation
templates

Prompt diversity evaluation Next, in order to
gauge the diversity of prompts in MyriadLAMA,
we examine both the consistency (Consist@1) and
the range of accuracy (min/max) across various
expressions of subjects or relations, assessed in-
dividually. To achieve this, the complete set of
prompts was partitioned into multiple subsets, with
each subset containing only one expression for each
unique subjects or relations. The Acc@]1 of the
prompts obtained in this manner is then evaluated
using different variants of BERT.

The results in Table 8 indicate that while the
accuracy range (min/max) and consistency (Con-
sist@1) caused by aliases of subjects is less pro-
nounced compared to diverse expressions of re-
lational templates, its effect on factual knowledge
evaluation remains significant. These findings high-
light the vulnerability of factual knowledge evalu-
ation based on single prompts and underscore the
significance of harnessing the diversity of prompts
within MyriadLAMA for robust assessments.

Manually rewritten vs. auto-generated tem-
plates Upon comparing relational templates gen-
erated through manual rewriting and GPT-4 auto-
generation, we find that auto-generated templates
exhibit comparable quality (accuracy) to manually
rewritten templates; they also demonstrate less di-
versity in acquiring different predictions, aligning
with our expectations.

To assess the validity of LLM-generated tem-
plates for knowledge probing, we rank the ac-
curacies (Acc@1) of manually created templates
against those generated by LLMs. Specifically,
for each relation, we rank the 5 manual templates
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Table 9: Comparison between prompts generated
through manual labor and LLM.

among all 100 templates and calculate the aver-
age rank across all manually created templates for
all relations. Table 9 shows the average Acc@1
ranks of manual templates among 100 templates on
BERT}as¢, BERT arg¢, BERT 1. They are 47.40,
45.64, and 44.80, respectively. These values closely
approximate the average rank of 50, indicating that
auto-generated templates can achieve nearly the
same accuracy as manually created templates.

Furthermore, we quantify the diversity discrep-
ancy between manually written and auto-generated
templates. We categorize the auto-generated tem-
plates, including the original ones, as one group,
resulting in five groups for each relation, each com-
prising 20 templates. Subsequently, we evaluate
the similarity between templates within the same
group and across different groups using the con-
sistency measure (Consist@1), as presented in Ta-
ble 9. The consistency among prompts within the
same group (inner-group) is notably high, whereas
prompts from different groups (inter-group) exhibit
less diversity in predictions. This underscores the
significance of manual phrase rewriting, which can
yield more diverse prompts and facilitate a more
comprehensive evaluation.

A3 QA-style vs MP-style prompts

In this section, we report the BELIEF-ICL evalua-
tion result based on the QA-style and compare it to
MP-style prompts.

As depicted in Figure 10, we observe that QA-
style prompts consistently outperform MP-style
prompts in accuracy across all four types of con-
text settings. This could be attributed to QA-style
prompts offering a more natural way for decoder-
based models trained in a casual manner for gen-
eration. Additionally, despite QA-style prompts
consisting of 20 templates for each relation, which
is four times more than the 5 templates used in MP-
style prompts, QA-style still exhibits great consis-
tency and smaller fluctuations.



PLMs Acc@1

range stdev @1 @1
QA zero-shot 5087 1532 .0196  .1960  -.0909
4-random  .5606 .1448 .0168 .2910  -.0905
4-relation  .6670 .0253 .0032 4393  -.0889
4-template  .6780 .0221 .0025 4411 -.0845
MP zero-shot 4323 1962 .0248 1923 -.0922
4-random  .5350 .1743 .0234 2786  -.0920
4-relation  .6485 .0737 .0103 .3939 -.0913
4-template  .6711 .0282 .0036 4158  -.0920

Table 10: BELIEF-ICL evaluation on Llama2-7b with
QA-style and MP-style prompts.

A.4 Examples of in-context learning prompt

In this section, we give prompts of eight patterns
introduced in our study. The eight patterns origins
from the combination two types of instructions
(QA- and MP-style) and four types of context.

A.4.1 MP-style/zero-shot

Predict the [MASK] in each sentence in
one word.

Q: [MASK] consists of LAUPT.

A:

A4.2 MP-style/d-random

Predict the [MASK] in each sentence in
one word.

Q: [MASK] is the administrative center
of Jiangsu.

A: Nanjing.

Q: Mar del Plata and [MASK] are
sister cities that have been developing
together.

A: Havana.

Q: Malawi has established diplomatic
ties with [MASK].

A: Australia.

Q: Which country is House of
Representatives located? [MASK].

A: Libya.

Q: [MASK] consists of LAUPT.

A:
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Fluctuation .- Overconf A-4-3 MP-style/4-relation

Predict the [MASK] in each sentence in
one word.

Q: What is the overarching group for
Panzer Division Kempf? [MASK].

A: Wehrmacht.

Q: To whom does Mount Bulusan relate?
[MASK].

A: Luzon.

Q: Who is responsible for Army National
Guard? [MASK].

A: National Guard.

Q: What group is pharmacy a part of?
[MASK].

A: biology.

Q: [MASK] consists of environmental
factors.

A:

A.4.4 MP-style/4-template

Predict the [MASK] in each sentence in
one word.

Q: [MASK] consists of Panzer Division
Kempf .

A: Wehrmacht.

Q: [MASK] consists of Mount Bulusan.
A: Luzon.

Q: [MASK] consists of Army National
Guard.

A: National Guard.

Q: [MASK] consists of pharmacy.

A: biology.

Q: [MASK] consists of environmental
factors.

A:

A4.5 QA-style prompts

For QA-style prompts, we replace the instruction
with “Answer each question in one word.”
All other settings remain the same as in MP-style
prompts. Below, we provide an example of QA-
style/4-template prompts.



Answer each question in one word.

Q: Which entity does Panzer Division
Kempf belong to?

A: Wehrmacht.

Q: Which entity does Mount Bulusan
belong to?

A: Luzon.

Q: Which entity does Army National
Guard belong to?

A: National Guard.

Q: Which entity does pharmacy belong
to?

A: biology.

Q: Which entity does environmental
factors belong to?

A:
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