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Fig. 1. 3D poses of left and right hands reconstructed by our method for producing shadows of different target objects. Lower insets show renderings of each

3D hand-pose result with the viewpoint set at the light source location, thus essentially revealing the final shadows produced by the respective hand poses.

The upper insets in the first row show their 3D prints, whereas those in the second row show real shadows produced by human hands.

Hand shadow art is a captivating art form, creatively using hand shadows

to reproduce expressive shapes on the wall. In this work, we study an in-

verse problem: given a target shape, find the poses of left and right hands

that together best produce a shadow resembling the input. This problem

is nontrivial, since the design space of 3D hand poses is huge while be-

ing restrictive due to anatomical constraints. Also, we need to attend to

the input’s shape and crucial features, though the input is colorless and

textureless. To meet these challenges, we design Hand-Shadow Poser, a

three-stage pipeline, to decouple the anatomical constraints (by hand) and

semantic constraints (by shadow shape): (i) a generative hand assignment

module to explore diverse but reasonable left/right-hand shape hypothe-

ses; (ii) a generalized hand-shadow alignment module to infer coarse hand

poses with a similarity-driven strategy for selecting hypotheses; and (iii) a

shadow-feature-aware refinement module to optimize the hand poses for
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physical plausibility and shadow feature preservation. Further, we design

our pipeline to be trainable on generic public hand data, thus avoiding the

need for any specialized training dataset. For method validation, we build

a benchmark of 210 diverse shadow shapes of varying complexity and a

comprehensive set of metrics, including a novel DINOv2-based evaluation

metric. Through extensive comparisons with multiple baselines and user

studies, our approach is demonstrated to effectively generate bimanual hand

poses for a large variety of hand shapes for over 85% of the benchmark cases.

CCSConcepts: •Applied computing→Media arts; •Computingmethod-
ologies→ Shape modeling.

Additional Key Words and Phrases: Shadow art, 3D hand pose estimation,

visual art, computational art design, learning, generative posing
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1 INTRODUCTION

Hand shadow art, also known as shadowgraphy [Nikola 1913], is

a captivating art form, in which the shadows cast by hands on a

wall creatively reveal the shapes of various kinds of objects. This

art has a long and rich history across many cultures, since ancient

times [Almoznino 1970; Jacobs 1996]. Its appeal lies in its simplicity,

flexibility, and creativity. With only a few easy-to-obtain items (i.e.,
hands, a light source, and a projective surface), one can create a
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(a) Western book (b) Chinese show (c) Japanese theatre group

Fig. 2. Hand-shadow examples from (a) the book “The art of hand shad-

ows” [Almoznino 1970], (b) traditional shadow play [Shen 2024], and (c)

theatre group [Gekidan Kakashiza 1952], from both the east and west.

wide variety of shadow shapes that mimic lifelike animals, plants,

portraits, etc.; see some classic examples in Figure 2.

We are interested in solving an inverse problem; see also Figure 3.

We develop a learning-based approach to find plausible bimanual

hand poses that can cast shadows that closely resemble a given hand

shadow mask. Our approach enables users to explore a wide range

of hand shadow forms, including animal-type shadows and extend-

ing to alphanumeric characters and even more intricate shapes, as

shown in Figure 1 for some of our results.

Finding bimanual hand poses for reproducing a target hand shadow

is nontrivial. First, the process is inherently ambiguous: the design

space of 3D hand poses is huge, as a single shadow can often be pro-

duced by multiple different hand poses. Second, we need to attend

to both the shape and crucial features in the input, but the absence

of color and texture in shadows makes the hand shape recovery

ill-posed (i.e., significant changes in hand poses may not lead to

any shadow changes, resulting in large plateau regions during pose-

optimization via differentiable rendering). The fine-grained preser-

vation of shadow features with restricted hand anatomy poses an

additional challenge. Moreover, from a model learning perspective,

the scarcity of domain-specific shadow datasets further complicates

the method design. A detailed elaboration on the problem definition,

setup, and challenges can be found in Section 3.

To meet these challenges, we build on one key insight: The in-

verse hand shadow art problem can be addressed through two sub-

tasks. Given a hand shadow mask, by (i) resolving the anatomical
constraints of two hands, it becomes feasible to recover anatomi-

cally correct hand shapes and poses; and (ii) resolving the semantic
constraints of shadow allows the coarse hand poses to reproduce

a shadow shape that preserves the features of the input. The de-

coupling allows solving the problem using only generic data with

admissible hand configurations.

Specifically, to locate two hands from a bimanual hand mask, we

first need to identify plausible 2D shapes for the left and right hands.

It is challenging due to unknown overlapping regions and the mirror

symmetry of the left and right hands. Deterministic methods like

segmentation are suboptimal, as they cannot account for diverse

possible hand configurations. We address this with a probabilistic

generative model to produce diverse but reasonable hand assign-

ments. Second, although shadows lack colors and textures, they

provide shape priors. To generalize single-hand pose recovery to

the shadow-mask domain, we fine-tune an RGB-based hand pose

recovery model in a semi-supervised manner, leveraging existing

knowledge while addressing the absence of 3D annotations. Last, to
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Our approach

Fig. 3. Illustrating our task. Given a target shadow as the input, we aim to

estimate the 3D poses of both the left and right hands, such that the two

hands together can cast a shadow that closely resembles the input. Note

that the light source and screen are fixed in the setup.

ensure that the reconstructed poses respect the most salient shadow

features while maintaining anatomical plausibility, the optimization

should prioritize key areas over the pixel-perfect alignment.

Based on these technical motivations, we design Hand-Shadow

Poser, a three-stage framework to decouple the hand semantics from

the anatomical constraints (imposed by the hands) and semantic

constraints (imposed by the shadow shape): (i) A generative hand

assignment module to predict plausible left-right hand shapes from

the ambiguous shadow, by exploring diverse hypotheses via a condi-

tional generative model. (ii) A generalized hand-shadow alignment

module to robustly recover 3D poses of each hand-shape hypothesis

to coarsely align with the shadow, followed by a similarity-driven

strategy for selecting high-quality candidates. (iii) A shadow-feature-

aware refinement module to iteratively optimize hand poses to

reproduce salient features of shadow shape and ensure physical fea-

sibility through carefully-designed constraints. Our feed-forward

models in the first two stages are trained on generic public hand

datasets with a rich set of augmentation operations, freeing us from

creating extensive specialized hand-shadow data for training.

To evaluate our approach, we built a benchmark, containing di-

verse 2D masks of varying complexity, including shadow arts from

books, alphanumeric characters, and everyday objects from the

MPEG-7 dataset [Sikora 2001]. We also define a comprehensive set

of metrics to assess the quality of the reproduced shadows, focusing

on perception, semantics, and salient characteristics. Quantitative

comparisons with baselines, qualitative results, and user studies con-

sistently exhibit the effectiveness and robustness of our approach.

Overall, our main contributions are as follows:

• We introduce a comprehensive framework to compute hand

shadow arts, covering a rich variety of shadow shapes.

• We design a three-stage pipeline to decouple the anatomical

constraints imposed by the hand and the semantic constraints

imposed by the shadow shape, enabling training merely on

richly augmented generic public hand datasets.

• We formulate three novel components in our pipeline: gener-

ative hand assignment, generalized hand-shadow alignment,

and shadow-feature-aware refinement.

• We construct a benchmark for evaluation, encompassing 210

shadow art forms with a variety of shapes, and introduce

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.
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shadow-specific metrics for quality assessment. The effec-

tiveness of our approach is demonstrated through extensive

experiments, including quantitative evaluations, qualitative

comparisons, and detailed user studies.

The code and benchmark data of Hand-Shadow Poser will be publicly
available at https://github.com/hxwork/HandShadowPoser.

2 RELATED WORK

Computational visual art. Visual arts embrace a wide variety of

genres, media, and styles, demanding profound human aesthetics

and expertise in creations [Wang et al. 2024]. A growing research has

enabled computational generalization of various forms of visual arts,

both 2D and 3D. For example, the generation of stylized artworks

such as 2D paintings [Binninger and Sorkine-Hornung 2024; Chiu

et al. 2015; Kopf and Lischinski 2011], 3D scenes [Haque et al. 2023;

Liu et al. 2024; Zhang et al. 2022], 3D sculptures [Liu et al. 2017;

Yang et al. 2021a], and reliefs [Schüller et al. 2014].

In shadowgraphy, shadows projected onto the wall present ex-

pressive shapes and figures (e.g., animals), making it hard to believe

that the shadow objects come merely from two human hands. This

line of art differs from general visual arts. It is a specific genre

characterized by a visual percept that differs from reality, such as

optical illusion design [Coren 1978]. Specifically, our task lies at the

intersection between 2D and 3D optical illusions.

2D optical illusion. Numerous computational methods have been

proposed to synthesize illusional images. Oliva et al. [2006], in

an early attempt, generate hybrid images that exhibit appearance

changes at different viewing distances; Chi et al. [2008] propose to

arrange repeated asymmetric patterns to stimulate illusory motion

perception. Multiple efforts [Chu et al. 2010; Zhang et al. 2020;

Zhao et al. 2024] study camouflage, in which the goal is to compute

imageswith certain imagery patterns subtly embedded in the images.

[Burgert et al. 2024; Geng et al. 2024] explore multi-view illusion

images whose appearance changes upon flips, rotations, skews, or

jigsaw rearrangements. Recently, Geng et al. [2025] generalize this

technique to color saturation, motion blur, and inverse problems.

3D optical illusion. Computational generation of 3D optical illu-

sions can be roughly divided into two categories. The first focuses

on the digital fabrication of local microfacets for pattern display, e.g.,
requiring certain lighting conditions. Various mediums have been

exploited such as spatially-varying reflectance functions [Matusik

et al. 2009], 3D height fields [Weyrich et al. 2009; Wu et al. 2022],

microstructural stripe patterns [Sakurai et al. 2018], cellular mir-

rors [Hosseini et al. 2020], scratches on metal [Shen et al. 2023],

and refractive lenses [Papas et al. 2012; Zeng et al. 2021]. Recently,

researchers [Perroni-Scharf and Rusinkiewicz 2023; Zhu et al. 2024]

exploit self-occlusion to achieve view-dependent appearances with-

out relying on an external light source.

Our work is more related to the second category, which aims to

generate a 3D shape that produces different forms of visual illusion.

Gal et al. [2007] abstract input models into expressive 3D compound

shapes with elements from a database. Leveraging depth misper-

ception caused by projection, Wu et al. [2010] create topological

structures that seem impossible to exist, whereas Sugihara [2014]

creates solid shapes with slopes that appear to disobey the laws

of gravity when a ball is placed on them. Tong et al. [2013] study

the hollow-face illusion, in which a gradual deformation can be ob-

served when walking around the object. Alexa and Matusik [2010]

study reliefs that approximate given images under certain illumi-

nation; Chandra et al. [2022] design a differentiable probabilistic

programming language to create multiple illusions, including hu-

man faces that appear to change expressions under different lighting.

Creating 3D shapes with varying appearances from different view

directions is initially explored in [Sela and Elber 2007], which relies

on geometric deformation from two input 3D models. Keiren et

al. [2009] provide a theoretical analysis of the problem of construct-

ing a triplet from a given set of three letters. Intriguing variants are

further studied, e.g., in 3D shadow volumes [Mitra and Pauly 2009],

3D crystals [Hirayama et al. 2019], and 3D wire sculptures [Hsiao

et al. 2018; Qu et al. 2024; Tojo et al. 2024].

Shadow art. Shadows are the results of the interplay between

light and objects. Shadow art has been extensively explored to create

expressive and illusional designs. Pellacini et al. [2002] present an

interface for transforming shadows based on user requirements,

whereas Mattausch et al. [2013] manipulate rendered shadows and

apply the edited results in varying scene configurations.

Mitra et al. [2009] design an algorithm to construct a 3D volume

constrained by orthogonal shadow images as inputs, such that light-

ing the same solid from different specific directions interestingly

creates different shadow patterns. With a similar goal, Zhang et

al. [2017a] develop a method to create 3D shadow art sculptures us-

ing a collection of real items. Chen et al. [2017] propose a framework

for generating animated target shadows using objects under ballistic

motion. Sadekar et al. [2022] revisit shadow art with a differentiable

rendering-based optimization. Wang et al. [2024] further expand

its potential and flexibility with implicit representations and joint

optimization of lighting directions and screen orientations. A spe-

cial form, namely creating 3D wire sculptures based on multi-view

sketches, is first explored by Hsiao et al. [2018]. Recently, Qu et

al. [2024] utilize flexible drawing capabilities from modern gener-

ative models, whereas Tojo et al. [2024] promote the fabricability

of the reconstructed wires for 3D printing and support richer input

controls. Gangopadhyay et al. [2024] deform a topological embed-

ding of the circle in 3D space to create single- or multiple-view

target shadows.

Instead of projecting from 3D shapes, some works create shadow

art withmanufactured planar-like devices. Alexa andMatusik [2012]

design a planar surface with holes to create self-shadows that induce

single input images. Bermano et al. [2012] exploit walls and chamfers

within a diffuse surface for producing self-shadowing effects that

display multiple images under different views and lights. Some

variants study the casting of a single shadow onto an external plane

to match various desired images. Baran et al. [2012] present a multi-

layer attenuator that casts different shadows depending on the light

configuration. To project and form a target pixel art image, Yue et

al. [2012] arrange transparent sticks within a container to refract

light; Zhao et al. [2016] design 3D-printed perforated lampshades

to project continuous grayscale images, whereas Min et al. [2017]

arrange multiple occluder layers to create a soft boundary shadow.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.
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Fig. 4. Overview of our Hand-Shadow Poser, which consists of three key stages: (i) generative hand assignment, (ii) generalized hand-shadow alignment with

similarity-driven hypothesis selection, and (iii) shadow-feature-aware refinement.

In this work, we aim to create prescribed shadows using human

hands, inspired by the traditional hand shadow arts [Almoznino

1970; Jacobs 1996; Nikola 1913]. One of the most relevant works

is [Won and Lee 2016], which generates human characters given 2D

silhouette images by employing a nonlinear optimization to mini-

mize the visual difference between the resultant and target shadow

contours. However, they require hints specified by professional ac-

tors to match specific points on the target contour with associated

body parts, which is difficult to obtain for various shadow inputs

in real-world scenarios. Besides, directly applying a method follow-

ing [Won and Lee 2016] in our task tends to yield unsatisfactory

results, since the optimization is inherently sensitive to initialization

and easily converges to a local optimum.

Another closely related work is a short paper [Gangopadhyay

et al. 2023], which solves a similar task to ours. They use differen-

tiable rendering and directly minimize the image loss between the

input and target shape. Result-wise, it showcases only a few hand

shadow examples. Due to its optimization-based nature, similar is-

sues are observed as in [Won and Lee 2016]. Beyond the above two

works, we present a novel and generalizable approach capable of

(i) covering a richer variety of hand shadow cases, (ii) capturing

salient characteristics of the target shadow, and (iii) generatively

proposing diverse hand poses with anatomical constraints. Also, we

take optimization through differentiable rendering as a baseline in

our comparison and show that differentiable rendering alone cannot

achieve the results of our approach; see Section 7 for the compari-

son experiment. To our best knowledge, this is the first work that

comprehensively studies the creation of hand shadow arts.

3D hand pose estimation from silhouettes. Another closely-related
research topic is 3D hand pose estimation from monocular RGB

images [Chen et al. 2022; Huang et al. 2023; Iqbal et al. 2018; Moon

and Lee 2020; Pavlakos et al. 2024; Xu et al. 2023; Zhang et al. 2021,

2019; Zhou et al. 2020, 2024], a longstanding research task due to its

significance in downstream applications. Yet, very few attempts have

been made to recover 3D hand poses from sparse 2D information,

such as anatomical landmarks [Ramakrishna et al. 2012], hand-

drawn stick figures [Lin et al. 2012], or binary masks [Agarwal and

Triggs 2004; Dibra et al. 2017] that are conducted on human bodies.

[Lee et al. 2019] is the first work that estimates 3D single-hand

pose from binary silhouettes, which requires additional depth super-

vision during the training stage. Under the same setting, Chang et

al. [2023] achieve comparable performance as state-of-the-art RGB-

based and depth-based methods without relying on depth informa-

tion. However, both works focus on single-hand inputs. Directly

applying their method to bimanual hand masks remains challenging

since we need to estimate the locations of the two hands in the

input while the input is simply a binary mask, in which the hand

shapes are obscured. Thus, we should not only solve the ill-posed

problem of locating a pair of non-intersecting interacting hands

within a single mask, but also collectively estimate the poses of the

two hands to reproduce the target shadow.

3 OVERVIEW

Problem definition. Figure 3 illustrates our task. The input is a

target shadow represented as a binary mask, whereas the outputs

are the 3D poses of the left and right hands represented by the

MANO [Romero et al. 2022] hand model. With a light source and

screen plane, we aim to inversely find the 3D poses of the hands

positioned between them, such that the projected hand shadow on

the screen can closely match the given target shadow.

We further clarify the setup. Creating hand shadows with clear

and sharp boundaries requires a small, intense light source and a

flat projection screen, as outlined in classical references [Almoznino

1970; Nikola 1913]. The light source and screen remain fixed, while

the hands are adjusted in between. The hands, light source, and

screen are horizontally and vertically aligned to minimize distortion.

For simplicity, we focus on scenarios with only two hands, without

considering other body parts and additional object items.

Challenges. To achieve our goal, one straightforward approach

is to directly optimize the hand poses by minimizing the visual

difference between the cast shadow and the target shadow [Gan-

gopadhyay et al. 2023; Won and Lee 2016]. However, there exist

several key challenges outlined below:

(i) Initialization sensitivity: Optimization-based methods are sen-

sitive to initialization and prone to converge to local optima.

Providing a good initial condition is a crucial step towards a

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.
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successful result and fast optimization [Finn et al. 2017], yet it

remains challenging due to the huge search space.

(ii) Feature preservation: It is infeasible to match every pixel of the

projected and the input shadows due to limited hand anatomy.

Instead, the most distinctive features of the input mask should

be retained, whereas manually specifying hints [Won and Lee

2016] is impractical.

Another straightforward approach is to train a neural network

model to predict the interacting hand poses from the target shadow

in a feed-forward manner, utilizing prior distributions learned from

training datasets. Yet, this process is also nontrivial due to the fol-

lowing challenges:

(iii) Dataset scarcity: Given the scarcity of annotated hand shadow

art datasets, the model must be robust and generalizable, with-

out relying on prior knowledge from a specific data domain,

to avoid labor-intensive data preparation.

(iv) Results diversity and robustness: The same given shadow could

be produced by multiple different hand poses. Especially when

two (left and right) hands are considered, there can be many

different choices. Identifying diverse yet reasonable results

introduces another challenge to the network design.

Overview of our Hand-Shadow Poser. Figure 4 gives an overview

of our approach, which has the following three stages: (i) the gen-
erative hand assignment stage assigns diverse reasonable left-right
2D hand shapes (masks) to cover different parts of the shadow in

the input binary mask (Section 4); (ii) the generalized hand-shadow
alignment stage recovers a coarse 3D hand pose of each single-hand

binary mask and automatically selects the high-quality ones for the

subsequent stage (Section 5); and (iii) the shadow-feature-aware re-
finement stage iteratively refines the coarse 3D hand poses to make

their shadows resemble the input, considering physical plausibility

(Section 6). In the end, we take our approach to work on diverse

hand shadow examples from our benchmark, and conduct a series

of evaluations to demonstrate the quality of our results and the

effectiveness of the proposed designs.

4 GENERATIVE HAND ASSIGNMENT

The first stage aims to find rough 2D hand shapes (masks) with

reasonable anatomy to match the input shadow. We name this task

hand assignment, i.e., to assign each hand to cover different parts

of the target shadow. In particular, we do not require the 3D hand

poses for shadow matching in this stage. Here, the main challenges

are due to the lack of information in the input, which is just a binary

mask, and also to the many different possible hand shapes that may

eventually match and form the target shadow.

An initial attempt. At the beginning of this research, we tried an

image segmentation approach, i.e., to classify each pixel in the input

shadow mask as the left hand, right hand, or both (overlapping).

Specifically, we adopted the network architecture in [Liu et al. 2023]

and trained it on a mixture of datasets with rendered segmentation

labels. Then, we observed several drawbacks. First, due to the deter-

ministic nature, using a segmentation model discourages capturing

the uncertainty in shadow-to-hand mapping. Second, segmentation

emphasizes pixel-level accuracy, so the trained model tends to focus

Input shadow mask

U-Net

x N

Swap 

left & right

x N

...

Multiple hand-assignment hypotheses

Fig. 5. Our generative approach for hand assignment introduces diversity

for exploring more different 2D hand shapes. Likewise, we additionally swap

the left and right hands to model mirror symmetry in hand assignment.

excessively on the hand shapes rather than exploring their global

cues. Last, the absence of color and texture in the input largely raises

the complexity of network learning compared to conventional seg-

mentation tasks. Hence, this approach leads to inferior performance,

as shown later in Section 7.

Our generative approach. To overcome the above issues, we pro-

pose to formulate a generative approach for hand assignment. By

doing so, we aim to introduce diversity in the results to address the

ambiguity in shadow-to-hand mapping; see Figure 5. Also, we aim

to make the network learning easy, so that the network model can

better attend to the overall hand shapes than pixel-level recovery.

Method-wise, we design the generative hand assignment model

based on the conditional denoising diffusion probabilistic model [Ho

et al. 2020]. To learn the reverse diffusion process, we adopt the

classifier-free guidance [Ho and Salimans 2022] for shadow-controlled

multi-hypothesis generation. By concatenating the input binary

mask M̂ with the intermediate noisy output x𝑡 at timestamp 𝑡 (rang-

ing from 0 to𝑇 ), our networkmodel can progressively reach the final

assignment x0 ∈R𝐻×𝑊 ×2
(i.e., a two-channel image with height 𝐻

and width𝑊 ) using the denoising model 𝑓assign (·):

x0 = 𝑓assign (M̂, PE(𝑡)) (1)

where 𝑡 is encoded through positional embedding (PE) [Vaswani

et al. 2017]. The assigned left- and right-hand masksM𝑙 andM𝑟 are

then obtained from x0 using

M𝑙 ,M𝑟 = Split(x0), (2)

where Split(·) denotes the channel split operation.
In addition, to speed up the inference, we employ DDIM [Song

et al. 2020] to sample x𝑡 at arbitrary timestamps. At inference, 𝑁

initial noise vectors {x𝑖
𝑇
|𝑖 ∈ 1, ..., 𝑁 } are randomly sampled from

the Gaussian distribution N(0, I) to produce diverse hand assign-

ment results. Also, we swap the left and right hands (Figure 5) to

further enrich the diversity. Specifically, a U-Net is adopted as the

denoising model 𝑓assign (·), in which we employ an encoder with

four downsample blocks, each with two residual blocks; an atten-

tion mechanism; a downsampling layer; and a decoder with four

upsample blocks in a structure similar to the encoder. Further, a

residual block is employed to yield the two-channel map x0.

Furthermore, following [Karras et al. 2022], we employ the L2 dis-

tance between the predicted and ground-truth values as the training

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.
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Two-hand data

Splice

Full mask

Separated masks

=Render

Different viewing anglesSingle-hand data

Our 
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Fig. 6. To prepare training data for generative hand assignment, we augment

existing two-hand and single-hand datasets by (i) randomly splicing left-

and right-hand samples in single-hand datasets to synthesize more two-

hand samples, and (ii) rendering two-hand samples in different views.

loss, in which we separately calculate the left and right masks:

Lassign =
𝛼𝑡

1 − 𝛼𝑡

∑︁
∗∈{𝑙,𝑟 }

| |M∗ − M̂∗ | |22, (3)

where 𝛼𝑡 denotes the total noise variance at step 𝑡 , as defined

in [Song et al. 2020].

Training data. Benefiting from our decoupled pipeline design, the

hand assignment model mainly needs to learn the knowledge of

2D hand shapes instead of shadow semantics. Hence, to prepare

for the training data, we propose to leverage the rich 2D and 3D

ground-truth labels in existing public hand datasets [Moon et al.

2020; Zhang et al. 2017b; Zimmermann et al. 2019; Zuo et al. 2023]

that were built for various other purposes e.g., hand pose estimation

and tracking. By doing so, we can train our model using generic

hand datasets, including also synthetic ones [Li et al. 2023].

To do so, we augment existing hand datasets to provide the su-

pervision for network model training in two aspects, as illustrated

in Figure 6. First, since two-hand datasets are scarce, compared

with single-hand ones, we randomly splice (combine) left- and right-

hand samples from single-hand datasets, following [Zuo et al. 2023],

thereby synthesizing more diverse interacting poses of varying lev-

els of hand overlap, which could occur in real hand shadow art

scenarios. Second, we render the 3D interacting hand meshes from

multiple perspectives to enrich the diversity of viewing angles. By

these means, we can substantially increase both the quantity and

diversity of two-hand samples for network training.

5 GENERALIZED HAND-SHADOW ALIGNMENT

Given the estimated left- and right-hand masks M𝑙 and M𝑟 , the

second stage aims to construct the 3D poses (i.e., the 61 MANO

coefficients that represent the hand orientation, axis-angle 3D poses

of 15 hand joints, hand shape, and 3D coordinate of the wrist joint)

of the left and right hands (𝜃𝑙 , 𝛽𝑙 , 𝑡𝑙 ) and (𝜃𝑟 , 𝛽𝑟 , 𝑡𝑟 ), such that the

resulting hand poses provide a coarse 3D hand alignment with the

target shadow. Importantly, we do not require capturing the fine-

grained shadow features at this stage. Rather, we need coarse 3D

predictions from rough 2D hand shapes of diverse poses.

Considering that single-hand poses are relatively easier to infer

than collectively estimating interacting hand poses, we propose to

narrow down the search space by predicting the pose of each hand

separately. Here, we train the pose recovery network 𝑓
align

(·) to

RGB-Image


 Pre-trained 


 Network

Fine-tune

Our 

training data

Generic

hand datasets

Labeled

Unlabeled

Pseudo label

Split

Render

1st step

2nd step

Single-hand

Synthetic

Real-world

Two-hand

Fig. 7. To prepare training data for generalized hand-shadow alignment,

we propose to use a semi-supervised learning strategy as illustrated above,

considering the use of both labeled and unlabeled hand samples from both

real and synthetic datasets. With this strategy, we can produce a dataset

with paired 2D masks and 3D poses for fine-tuning our network.

predict the MANO representation of each hand from its mask:

𝜃∗, 𝛽∗, 𝑡∗ = 𝑓align (M∗), (4)

where subscript ∗ denotes l (left) or r (right). Yet, to make a good

prediction is still nontrivial for two reasons. First, it is hard to re-

cover 3D hand poses from the colorless masks, providing only sparse

information. Second, the input hand mask is simply a rough approx-

imation of the actual hand shape; due to shadow ambiguity, we need

a robust network model to overcome the uncertainty.

A generalized approach. To meet these challenges, we aim for a

generalizable and robust performance from two perspectives: (i)

generalizing well-learned knowledge from the RGB-image domain

to the shadow mask domain; and (ii) leveraging large data priors in

existing data to generalize and handle rough 2D hand shapes.

The above considerations motivate us to adopt a large-scale fully

transformer-based design [Dosovitskiy 2020]. First, to fully gen-

eralize knowledge from the RGB image domain, we initialize the

network model 𝑓
align

with the pre-trained weights from [Pavlakos

et al. 2024] to leverage vast data prior learned from extensive RGB

image data. To effectively handle the uncertainty in the inputs, we

further fine-tune the network using a comparable magnitude of

binary mask images from a large collection of generic hand datasets,

including both real and synthetic data with single and interacting

hands. Specifically, we adopt the Vision Transformer (ViT) [Doso-

vitskiy 2020] as the network backbone, which takes embeddings of

image patches as input. The output tokens are then fed into a trans-

former decoder to regress the MANO parameters by cross-attending

to a single query token. Last, the hand mesh and its relative transla-

tion to the camera can be converted through a MANO layer.

Model training. We adopt loss functions similar to [Dosovitskiy

2020] to supervise the network training:

L3D

align
= ∥𝜃 − ˆ𝜃 ∥2

2
+ ∥𝛽 − ˆ𝛽 ∥2

2
+ ∥J3D − Ĵ3D∥1

and L2D

align
= ∥J2D − Ĵ2D∥1,

(5)

where J3D denotes the 3D joint coordinates converted from the

predicted MANO parameters; J2D denotes their projections onto

the image space by using the camera intrinsics; and the quantities

with the hat superscriptˆare the ground-truth labels. Here, L2D

align
is

utilized to promote consistency in the output image space, follow-

ing [Dosovitskiy 2020].
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Fig. 8. Our similarity-driven hypothesis selection strategy, taking a render-

and-compare approach to favor pose hypotheses of the highest quality.

In the training process, we first split the left and right hands from

the existing two-hand data to obtain more single-hand training sam-

ples. Since not all data samples are paired with MANO-represented

ground truths, we take a semi-supervised learning strategy as il-

lustrated in Figure 7, i.e., employing the RGB-image pre-trained

network on unlabeled images to estimate the MANO coefficients as

pseudo labels, then rendering the results to produce paired binary

hand masks. With this approach, we can avoid the need for highly

accurate pseudo labels associated with the original images, as our

focus is on ensuring the anatomical correctness of the hand poses.

Second, we take these samples, together with the labeled samples,

to form our dataset for network training.

Similarity-driven hypothesis selection. The 2D hand shape hy-

potheses from the previous stage are fed into the pose recovery

network to obtain 3D hand poses, i.e., pose hypotheses. However,
this process does not take into account the quality of the hypotheses,

which may largely degrade the performance of the next stage. Since

ground truths are not available at inference, we thus formulate a

similarity-driven strategy to evaluate and select pose hypotheses.

Overall, our idea is to maximize the similarity between the target

shadow and the reproduced shadow, by a render-and-compare ap-

proach. That is, we first project and render each pose hypothesis

(i.e., its 3D hand mesh) into a binary mask, and then calculate its per-

ceptual similarity to the input mask using LPIPS [Zhang et al. 2018]

and DINOv2 [Oquab et al. 2023] semantic-based scores. By sorting

all 𝑁 hypotheses based on their similarity scores, we can then select

the top 𝐾 hypotheses for refinement in the next stage; see Figure 8.

Details about similarity scores are introduced in Section 7.1.

6 SHADOW-FEATURE-AWARE REFINEMENT

To successfully reproduce the target shadow, the final 3D hand poses

need to attend to the global shape of the shadow, as well as to the de-

tails or shadow features; see e.g., the beak of the parrot and the eyes
of the eagle and wolf in Figures 9 and 10. Hence, the final stage aims

to refine the coarse 3D hand poses to make their projections percep-

tually more similar to the target shadow, considering particularly

the shadow features together with the anatomical constraints.

Method-wise, the overall approach is based on differentiable ren-

dering. That is, we first create a binary mask of the hands by pro-

jecting the coarse 3D hand meshes from the previous stage. Then,

we iteratively optimize the joint angles and wrist positions of the

two hands with their shape parameters fixed, mimicking real-world

hand pose adjustments; see Figure 10. Importantly, beyond the dif-

ferentiable rendering in [Gangopadhyay et al. 2023], where pose

Fig. 9. Top row: target shadows. Bottom row: extracted saliency maps, in

which characteristic shadow features are highlighted in red.

Ouput mask

DINOv2

Differentiable 


Renderer
MANO

Input maskSaliency maps

3D hand meshes

Abnormality

Penetration

Far apart

Fig. 10. Our shadow-feature-aware refinement iteratively optimizes the

3D hand poses to align with features in the input using the DINOv2-

based saliency guidance, while considering physical constraints in terms of

anatomy, penetration, and hand-to-hand distance.

initialization is rarely considered and often leads to suboptimal re-

sults, the coarse outputs from our first two stages provide a good

initial condition for the optimization process to achieve a faster and

better convergence [Finn et al. 2017; Lee et al. 2020; Rajeswaran

et al. 2019]. This can be attributed to the prior knowledge of hands

brought about by our decoupling design.

Below, we introduce four carefully-crafted constraints for the

optimization. The first constraint aims to maximize the similarity

between the input and rendered masks, with saliency guidance

for preserving the shadow features. To favor physically-plausible

hand poses, we further incorporate the other three constraints,

considering anatomy, penetration, and hand-to-hand distance.

(i) Similarity constraint with saliency guidance. In the optimiza-

tion, our main goal is to minimize the misalignment between the

rendered maskM and the input mask M̂. Directly constraining their

image discrepancy with L1 or L2 loss can lead to suboptimal results,

due to the significant gap in flexibility between the limited range

of hand joint movement and the expressive capacity of shadows.

Rather than aligning every pixel equally, we prioritize preserving

the shadow features. Also, this process is desired to be automated,

eliminating the need tomanually specify the hint points in [Won and

Lee 2016]. To this end, we propose to leverage DINOv2 [Oquab et al.

2023], a powerful pre-trained vision model, to first locate prominent

features in the input shadow shape; see again Figure 9). Given the

input mask M̂, we assign varying levels of importance to different

shadow regions based on the extracted saliency map:

Lsim =
∑︁(

1 + DINO(M̂)
)
⊙
��M − M̂

�� , (6)
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Fig. 11. A gallery of “Hand Shadow Poser” created by our Hand-Shadow Poser on various uppercase and lowercase letters.

where DINO(·) represents DINOv2’s attention heatmap extraction

and ⊙ is the Hadamard product.

(ii) Anatomy constraint. To mitigate a pose’s abnormality, we

adopt the twist-splay-bend frame in [Yang et al. 2021b] by projecting

the rotation axis to three independent axes, then computing the

penalization of the abnormal axial components on each joint as

Latm. Please refer to [Yang et al. 2021b] for the details.

(iii) Penetration constraint. Inspired by [Jiang et al. 2021], we

identify vertices of one hand that are inside the other hand (the

set is denoted as Pin) and define the inter-penetration loss as their

distances to the closest vertices on the other hand:

Linter-pen =
1

|Pin |
∑︁
𝑝∈Pin

𝑚𝑖𝑛𝑖 ∥𝑝 − V𝑖 ∥2

2
, (7)

where {V𝑖 } represents mesh vertices of the hand being penetrated.

For self-penetration, we adopt the conic distance fields approxi-

mation of meshes in [Tzionas et al. 2016] to penalize the depth of

intrusion, denoted as L
self-pen

. The final penetration loss Lpen is

a sum of Linter-pen and L
self-pen

. For the detailed calculation of

L
self-pen

, please refer to [Ballan et al. 2012; Tzionas et al. 2016].

(iv) Hand-to-hand distance constraint. With the above constraints,

we optimize the validity of two hand poses and achieve the desired

shape in the projection space. However, since the optimization is not

sensitive to movements along the depth axis after the projection, the

resulting hand meshes can become too far apart along the depth axis

relative to the light source. Moreover, even a relatively moderate

distance, e.g., one meter, can significantly complicate the process of

creating the hand shadows.

Concerning this, we propose a new loss term to constrain the

distance between the wrist joints of the two hands. Empirically, we

penalize this distance when it exceeds a certain threshold 𝜏
dist

.

L
dist

=

{
∥𝑡𝑙 − 𝑡𝑟 ∥2

2
if ∥𝑡𝑙 − 𝑡𝑟 ∥2

2
≥ 𝜏

dist

0 otherwise,
(8)

where 𝑡𝑙 and 𝑡𝑟 are the 3D joint coordinates of the left-hand and

right-hand wrists, respectively.

Optimization. The final objective is a weighted sum of the terms:

min𝜃𝑙 ,𝑡𝑙 ,𝜃𝑟 ,𝑡𝑟 [𝑤simLsim +𝑤atmLatm +𝑤penLpen +𝑤dist
L
dist

] .
(9)

where 𝑤sim, 𝑤atm, 𝑤pen, and 𝑤dist
are hyperparameters. Further,

we adopt Adam [Kingma and Ba 2015] for gradient-descent-based

optimization, which ends after 𝐿 iterations.

7 RESULTS AND EXPERIMENTS

7.1 Experimental Setup

Baselines. We compare our Hand-Shadow Poser with three base-

lines:

• Baseline 1 optimizes the 3D hand poses with differentiable

rendering as in [Gangopadhyay et al. 2023], with random

initialization three times, and then picks the best one based

on the similarity metrics.

• Baseline 2 uses a single neural network to directly regress the
coarse pose of the interacting hands from the input shadow

mask, followed by the same optimization as Baseline 1.
• Baseline 3 replaces the generative model in Stage 1 with a

segmentation model, as described in Section 4.

Training datasets. We prepare the training data for the feed-

forward models frommultiple public hand datasets, including single-

and two-hand datasets. Specifically, to train the generative hand

assignment model in Stage 1 (Section 4), we prepare pairs of two-

hand masks and left-right hand masks from InterHand2.6M [Moon

et al. 2020], RenderIH [Li et al. 2023], and Two-hand 500K [Zuo

et al. 2023]. We also follow [Zuo et al. 2023] to randomly combine

single-hand data in [Gomez-Donoso et al. 2019; Moon et al. 2020;

Zhang et al. 2017b; Zimmermann and Brox 2017; Zimmermann et al.

2019]. Leveraging the multi-perspective augmentation strategy, we

obtain 7.7M data samples in total for generative model training.

To train the large-scale transformer network in Stage 2 (Section 5),

we use a large collection of public datasets, following [Pavlakos et al.

2024], FreiHAND [Zimmermann et al. 2019], HO3D [Hampali et al.

2020], MTC [Xiang et al. 2019], RHD [Zimmermann and Brox 2017],

InterHand2.6M [Moon et al. 2020], H2O3D [Hampali et al. 2020],

DexYCB [Chao et al. 2021], COCO WholeBody [Jin et al. 2020],

Halpe [Fang et al. 2022], and MPII NZSL [Simon et al. 2017]. We

additionally incorporate RenderIH [Li et al. 2023] and Two-hand

500k [Zuo et al. 2023] by splitting them into left- and right-hand

data. The final training set consists of 2.7M samples.

Evaluation benchmark. We constructed a benchmark of 210 binary

mask images, covering a wide variety of hand shadow shapes, for

quantitative and qualitative evaluation. The dataset includes 62

alphanumeric characters (C1), 87 real hand-shadow-art shapes (C2)

from [Almoznino 1970; Jacobs 1996; Nikola 1913], and 61 shapes

of diverse everyday objects (C3) from [Sikora 2001] and Internet.

For more examples, please refer to our supplementary material. To

the best of our knowledge, this is the first work that collects such a

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.
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Fig. 12. A gallery showcasing the results of our Hand-Shadow Poser on real hand-shadow-art shapes (C2), which are obtained from the following books [Al-

moznino 1970; Jacobs 1996; Nikola 1913], covering a wide range of shapes encompassing animals, human portraits, buildings, and plants. For each case: the

top left shows the target shadow, the bottom left shows our reproduced shadow, whereas the right shows our produced 3D hand poses.

diverse and challenging set of hand shadow shapes for a systematic

analysis of computing hand-shadow arts.

Metrics. On the other hand, we propose to use the following

five metrics to evaluate the visual similarity between the generated

shadow and the input shadow: (i) LPIPS:We adopt LPIPS [Zhang et al.

2018] to measure the perceptual similarity based on the deep fea-

tures from AlexNet [Krizhevsky et al. 2012]. Building on CLIP [Rad-

ford et al. 2021], we employ two other similarity metrics, including

(ii) CLIP-Global, which evaluates the image-level semantic similarity

by employing the CLIP image encoder to map the shadow mask im-

age to the CLIP space and then calculating the cosine distance; and

(iii) CLIP-Semantic, which computes the cosine similarity between

the CLIP text embedding of the input shadow’s class description

(e.g., “rabbit”) and the image embedding of the generated shadow,

to assess its level of alignment with the text semantics. Consider-

ing the model’s sensitivity to text, we adopt the officially-released

CLIP code by scaling the original similarities by a factor of 100,

followed by a softmax operation to obtain the logit scores for the

reproduced hand shadow mask of each baseline and our method,

respectively. (iv) DINO-Global: Similar to CLIP-Global, we leverage
DINOv2 [Oquab et al. 2023] for feature extraction to evaluate the

visual similarity at a global scale. (v) DINO-Semantic: Additionally,
to remedy the ignorance of the above metrics to local characteristics,

we design this metric to measure the preservation of local shadow

features between the output maskM and input mask M̂:

DINO-Semantic =
∑(M − M̂) ⊙ 1(DINO(M̂) > 𝜏semantic)∑

1(DINO(M̂) > 𝜏
semantic)

, (10)

where 𝜏semantic is set to 0.1 by default and 1(·) is the indicator func-
tion. These metrics together provide a comprehensive evaluation of

the quality of the reproduced shadows.

Implementation details. We adopt Blender [Blender 2019] to create

all the hand-shadow-art scenes. For shadow projection, we set up

a spotlight with a beam radius of 0.001 and an angle of 15°, with

1000 W power. The distance from the light source to the projection

plane is set to 2.5 m. The focal length of the perspective camera in

differentiable rendering is set to 1 m, aligning with the one used

in [Pavlakos et al. 2024]. To avoid projection deviation, the camera is

positioned at the same world coordinates as the light source, facing

the same direction towards the projective surface. We implemented

our method using PyTorch [Paszke et al. 2019] and adopted the

Adam optimizer for both training the feed-forward models (Stages 1

and 2) and optimizing the hand orientations, poses, and translations

(Stage 3). All experiments were conducted on eight NVIDIA Tesla

V100 GPUs.
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Fig. 13. A gallery of hand shadow arts created by our Hand-Shadow Poser for shapes of diverse everyday objects (C3) from [Sikora 2001] and the Internet. For

each case, the top left shows the target shadow, the bottom left shows our reproduced shadow, whereas the right shows our produced 3D hand poses.

Fig. 14. Left: our physical setup. Right: real shadows created for Kangaroo,

Crab, Deer, Camel, and Fox chases rabbit.

Specifically, for Stage 1, we use a batch size of 48 with a learning

rate of 1e-4 and train the network model for 20 epochs. The input

images are resized to 256×256, with a random rotation in [0, 360°]
and scaling in [0.75, 1.25] for online data augmentation. During the

inference, the number of reverse steps for DDIM is 1,000.

In Stage 2, the model is fine-tuned for 10 epochs using a batch

size of 8 and a learning rate of 1e-5. The input images are resized

to 256×256 with the online augmentation strategies in [Pavlakos

et al. 2024]. For similarity-driven hypotheses selection, we set the

default number of candidate hypotheses 𝑁 to 20 and the number of

Fig. 15. 3D-printing seven of our 3D hand pose results, which are recon-

structed for reproducing the following shadow shapes: Tortoise, Dinosaur,

Farmer, Deer, Dolphin, Elephant, and Cat (left to right).

selected poses 𝐾 to 3. The training processes for the first two stages

take 3 days and 1 day, respectively.

For Stage 3,𝑤sim,𝑤atm,𝑤pen, and𝑤dist
are empirically set to 10.0,

1.0, 1.0, and 1.0, respectively, whereas 𝜏
dist

is set to 0.5 by default. A

Gaussian blur with a kernel size of 15×15 is applied to the extracted

saliency map. We optimize the hand parameters with a learning

rate of 1e-3 and decay it by 0.5 at the 3,000th iteration, with the

maximum number of iterations 𝐿 set to 6,000.
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Table 1. Quantitative comparison between baselines and our Hand-Shadow Poser. C1: Alphanumeric characters; C2: Real hand-shadow-art shapes; and C3:

Shapes of everyday objects. The first five columns present metrics (LPIPs, CLIP-Global, CLIP-Semantic, DINO-Global, and DINO-Semantic) used to evaluate the

visual similarity, while the last two columns (Human-Global and Human-Semantic) are human-related metrics from the user study.

Methods

LPIPS ↓ CLIP-Global ↑ CLIP-Semantic ↑ DINO-Global ↑ DINO-Semantic ↓ Human-Global ↑ Human-Semantic ↑
C1 / C2 / C3 Avg. C1 / C2 / C3 Avg. C1 / C2 / C3 Avg. C1 / C2 / C3 Avg. C1 / C2 / C3 Avg. C1 / C2 / C3 Avg. C1 / C2 / C3 Avg.

Baseline 1 0.19 / 0.20 / 0.17 0.19 0.84 / 0.91 / 0.88 0.88 0.11 / 0.29 / 0.15 0.20 0.51 / 0.61 / 0.51 0.55 0.66 / 0.81 / 0.64 0.72 2.27 / 2.11 / 2.42 2.27 2.35 / 2.34 / 2.55 2.41

Baseline 2 0.20 / 0.19 / 0.17 0.19 0.83 / 0.91 / 0.88 0.88 0.10 / 0.18 / 0.22 0.17 0.47 / 0.63 / 0.51 0.55 0.70 / 0.84 / 0.66 0.74 2.03 / 2.49 / 2.36 2.29 2.15 / 2.42 / 2.42 2.33

Baseline 3 0.18 / 0.17 / 0.15 0.16 0.89 / 0.93 / 0.91 0.91 0.36 / 0.20 / 0.27 0.27 0.65 / 0.74 / 0.65 0.69 0.61 / 0.75 / 0.59 0.66 3.66 / 3.07 / 3.53 3.42 3.49 / 3.07 / 3.45 3.33

Ours 0.15 / 0.15 / 0.13 0.14 0.91 / 0.95 / 0.93 0.93 0.42 / 0.33 / 0.35 0.36 0.71 / 0.80 / 0.75 0.78 0.47 / 0.67 / 0.49 0.56 4.66 / 4.45 / 4.47 4.53 4.55 / 4.21 / 4.29 4.35

Baseline 1Input Baseline 2 Baseline 3 Ours

Fig. 16. Comparing hand-shadow-art results produced by the three base-

lines and by our Hand-Shadow Poser.

7.2 Evaluation

Gallery. We present our visual results for three classes of shapes:

alphanumeric characters (C1) in Figure 11, real hand-shadow-art

shapes (C2) in Figure 12, and shapes of diverse everyday objects

(C3) in Figure 13, which exhibit varying levels of complexity. Details

about the three classes of shapes are presented in Section 7.1. These

results showcase the remarkable versatility of our method in re-

producing many different kinds of object shapes, covering animals,

plants, human portraits, logos, daily-used tools, numbers, letters, etc.
More results are provided in the supplementary material.

Human demonstration. Next, we present some real shadow results.

Figure 14 shows our physical setup and some example real shadows

produced by human hands using a spotlight, demonstrating the

feasibility of our method in practical scenarios.

3D fabrication. Further, we 3D-printed several 3D hand-poses

results at a scale of 1:4 relative to the size of normal human hands.

In detail, we printed a horizontal tube invisible from the front view

to join the two disconnected hands and another vertical/L-shaped

tube from the bottom to the middle of the horizontal tube to support

the two-hand sculpture. Figure 15 shows the results. Interestingly,

these 3D-printed hands look like simple hands in the real world,

but if we look at them from a specific angle or shine a light in this

direction, we can observe the shapes hidden by the hand sculptures.

Qualitative comparison. In Figure 16, we visually compare our

method with the baselines on three target shadows: F, Flower, and

Elephant. Our method can create high-fidelity results that adhere

to the input shadow details, highlighted by successfully preserving

Baseline 3Input Our hypothesis 1 Our hypothesis 2

Fig. 17. Qualitative comparison between Hand-Shadow Poser and Baseline
3. Hand assignment results (left), coarse 3D hand poses (middle), and refined

3D hand poses (right) are shown for each case.

the key characteristics of shape, including all the petals in Flower

and the bending nose of the Elephant. Though Baseline 3 can

provide a relatively better initialization than the other baselines

(based on the relative hand positions in Flower), it still struggles to

produce a well-aligned shadow, primarily due to the segmentation

model’s ignorance of learning hand shapes from a global view.

Generative vs. segmentation. To further evaluate our generative

approach against the segmentation-based approach, we compare the

hand assignment results and recovered 3D hand poses before/after

refinement from ourmethodwith those in Baseline 3. From Figure 17,

we can see that our method is capable of producing diverse hand

shapes of higher quality, in terms of smoothness and completeness in

the hand masks, whereas the segmentation model in Baseline 3 fails
for complex input shapes like the Stanford bunny ( see the over-

segmentation artifacts). Consequently, under the same alignment

and optimization process, our method yields multiple 3D hand poses

with superior alignment to the target shadows, demonstrating the

benefits of our generative formulation.

Quantitative comparison. We compare the three baselines with

our method on all three classes of shapes in the benchmark. Table 1

reports the full results on seven metrics, including the five metrics

presented in Section 7.1 and two human-related metrics to be pre-

sented later in the user study. Our method achieves the best results

for all metrics and classes, showing its superiority in preserving the
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Table 2. Mean iteration number and runtime for optimization convergence.

Methods

# Iterations ↓ Time (in seconds) ↓
C1 / C2 / C3 Avg. C1 / C2 / C3 Avg.

Baseline 1 5809 / 5328 / 4792 5314 348 / 319 / 287 318

Baseline 2 5532 / 4883 / 3691 4728 331 / 293 / 221 283

Baseline 3 1845 / 1933 / 1705 1841 110 / 116 / 102 110

Ours 1216 / 548 / 1234 945 73 / 32 / 74 56

Table 3. Ablation study on the shadow-feature-aware refinement module.

Methods LPIPS ↓ CLIP-Global ↑ CLIP-Semantic ↑ DINO-Global ↑ DINO-Semantic ↓
w/o refinement 0.19 0.92 0.30 0.69 0.76

w/o saliency 0.15 0.93 0.36 0.74 0.59

Full (ours) 0.14 0.94 0.40 0.78 0.56

shape and features in the target shadows for both perceptual and

semantic similarity.

Runtime comparison. OurHand-ShadowPoser includes two stages

of feed-forward models and a test-time optimization; therefore, we

report their running efficiency separately. For fairness, all runtime

measurements were taken on a single NVIDIA RTX 2080Ti GPU.

First, the models in the previous two stages have an average

processing time of 3 minutes and 30 milliseconds per shape.

For Stage 3, as discussed in [Hospedales et al. 2021], initialization

plays a crucial role in preventing being stuck at local minima dur-

ing the optimization. To show the advantages of our initialization

from feed-forward models, we report the number of iterations and

runtime for the optimization to converge in each baseline and our

method. Specifically, the terminating condition is empirically set as

(i) when the result’s quality exceeds a certain LPIPS score calculated
as the mean LPIPS of all four methods reported in Table 1, or (ii)

when the optimization reaches a maximum of 6,000 iterations.

In Table 2, we can observe a significantly reduced running time

of our method, particularly around 1/6 compared to random ini-

tialization in Baseline 1. Also, our method requires only half the

optimization time of Baseline 3, demonstrating the superiority of

taking a generative approach to produce more effective initial con-

figurations. Combined with the results in Section 7.2, it indicates

that the coarse hand poses from our first two stages not only yield

better-optimized hand shadows but also accelerate the convergence.

The efficacy of initialization from our method lies in the generaliz-

ability and robustness offered by the generative hand assignment

and the generalized hand-shadow alignment module.

7.3 User Studies

We conducted two user studies to assess human preferences of the

results produced by our approach versus the baselines, and also how

our approach assists humans in creating hand shadow art.

Participants. We invited 13 volunteers aged 22 to 30 with no

professional experience in hand shadow art. The participants are

divided into two groups. The first group has 10 participants (5 males

and 5 females) who helped to assess the visual quality of the rendered

Hypothesis 1Input Hypothesis 2 Hypothesis 3 Hypothesis 4

Fig. 18. Result diversity brought by our Hand-Shadow Poser. Note that the

uniqueness is not limited to mirror symmetry, see results in the last row.

shadows and to perform human demonstrations. The other group

(2 males and 1 female) served as judges in the second study to score

the quality of human demonstrations after a brief tutorial session.

Metrics. For quality comparison with the baselines, the rendered

shadows are evaluated in two aspects: (i) global shape similarity,

which measures how similar the reproduced shadows are compared

with the target shadows (Human-Global); and (ii) local details simi-

larity, which measures the details preservation (Human-Semantic).
The metrics are evaluated in a Likert scale from 1 (worst) to 5 (best).

For the human demonstrations, we employ Human-Semantic to mea-

sure the quality of the reproduced real shadows. Also, we record

the time taken by the participants in reproducing each shadow.

User study on quality comparison. Procedure-wise, we showed
each participant 60 sets (20 shapes, for each shape class) of results

from the three baselines and our method. The order of the results

from different methods is randomly shuffled, with the associated tar-

get shape fixed on the left. For each result, we asked the participant

to rate it on Human-Global and Human-Semantic by comparing it

with the target shape. Table 1 (right) reports the average scores for

each class. For all three classes, our method consistently achieves

better scores in Human-Global and Human-Semantic than the base-

lines, confirming the satisfying perceptual quality of our results.

User study on human demonstration. In this study, the participants
had to employ the physical setup described in Section 7.2 to recreate

six shadows using their hands: Wolf, Sheep, Panther, Kangaroo,

Dinosaur, and Stalin. In detail, we randomly and evenly split the

ten participants in the first group into two sub-groups: the first sub-

group aimed to reproduce the target shadows simply by taking the

target shadow images as references, whereas the second sub-group

performed the same task but additionally took our method’s gener-

ated 3D hand models as references. Then, the three judges in the

second group scored the quality of the reproduced shadows, follow-

ing theHuman-Semanticmetric. Besides, we recorded the time taken

to reach the best hand shadow by watching the video recordings of

the reproducing procedures. Specifically, we recorded the timestamp

of the best frame during the entire shadow-reproducing procedure

for each shape within 3 minutes. Overall, our Hand-Shadow Poser

helps reduce the average time taken by the participants, from 121.4
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Input shadow mask Oursw/o 
(b) Ablation study of the anatomy constraint (left: front-view; right: another view)

Input shadow mask Oursw/o 
(c) Ablation study of the penetration constraint (left: front-view; right: another view) (d) Ablation study of the hand-to-hand distance constraint (left: front-view; right: another view)

Oursw/oInput shadow mask

Input shadow mask Saliency map w/o saliency Ours
(a) Ablation study of the saliency guidance

Fig. 19. Ablation study of the key components in our shadow-feature-aware refinement module.

to 65.8 seconds, and improves the quality of the reproduced shadows,

from 2.4 to 4.0 (on average).

7.4 Model Analysis

Ablation studies. Beyond comparisons with baselines, we addi-

tionally conduct ablation on the shadow-feature-aware refinement

module in our pipeline, including removing (i) the whole refine-

ment module, (ii) the saliency guidance in similarity constraint, (iii)

the anatomy constraint, (iv) the penetration constraint, and (v) the

hand-to-hand distance constraint, from our full design.

For cases (i) and (ii), we first provide a quantitative analysis in

Table 3. TheDINO-Semantic score drops significantly after removing

the refinement module, showing the importance of shadow-specific

optimization in achieving fine-grained shadow alignment. Though

the effect of the saliency guidance is not obvious in LPIPS, for which
we speculate is insensitive to local characteristics, the DINO-Global
and CLIP-Semantic both show a moderate performance degradation

without the saliency map. Besides, given the same initial pose for

refinement, the visual ablation in Figure 19 (a) clearly shows the im-

pact of the saliency guidance in preserving prominent and intricate

details, such as the eyes of Camel and Donkey.

As the remaining three constraints in cases (iii-v) are directly im-

posed on the 3D hand poses to aim for physical plausibility, we show

their visual ablation results, i.e., 3D hand poses in Figure 19 (b-d).

Comparing the areas highlighted with the red arrows, we can ob-

serve severe physical artifacts of the hands, including poor anatomy

(Figure 19 (b)), penetration (Figure 19 (c)), and excessive distance

((Figure 19 (d))), after removing each constraint, manifesting the

effectiveness of each of the associated constraint.

Diversity analysis. Further, we showcase multiple diverse results

obtained by our method in Figure 18. For each case, we show four

unique solutions, with the projected shadows closely resembling the

input, while also remaining physically feasible. This manifests the

diversity with reasonable hand shapes introduced by our carefully-

designed generative hand assignment module.

Robustness analysis. Lastly, we study the robustness of our gener-

alized hand-shadow alignment module. Figure 17 shows the coarse

3D hand poses of each hand without refinement (middle column in

each case). For all assignment results, the coarse hand poses exhibit

contours, positions, and orientations that are approximately consis-

tent with the input hand shapes, revealing our method’s robustness

to handle input masks of varying levels of uncertainty, particularly

evident in the Stanford bunny case of Baseline 3.

Failure case analysis. Hand-Shadow Poser may not be able to

produce reasonable results for arbitrary inputs, as not all shapes can

be effectively reproduced by hands, particularly those with intricate
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Stage 1 outputInput Stage 2 output Stage 3 output

Fig. 20. Failure cases (Maple and Chopper). Our method may not be able

to work on arbitrary inputs with intricate details or thin structures.

details or thin structures; see Figure 20. In such instances, our gen-

erative hand assignment may struggle to produce plausible hand

shapes in Stage 1, thus leading to suboptimal hand reconstructions

in Stage 2. Further, due to poor initialization, the inherent limita-

tions of hand anatomy make it challenging for Stage 3 to refine

poses to adequately fit the inputs.

8 CONCLUSION, LIMITATIONS, AND FUTURE WORKS

We presented the first comprehensive framework, namely Hand-

Shadow Poser, to inversely create hand shadow arts from 2D shape

inputs. We showcase the application of our approach to a wide

variety of shapes, ranging from numbers and letters to classical

hand shadows, and more challenging shapes of everyday objects.

We contribute three notable advances: (i) first attempt to learn and

reproduce hand shadow arts in a data-driven manner; (ii) a three-

stage pipeline to decouple the anatomical constraints imposed by

hand and semantic constraints imposed by shadow shape, with

three novel components: generative hand assignment, generalized

hand-shadow alignment, and shadow-feature-aware refinement.

This decoupling design also frees us from building extensive domain-

specific training data; and (iii) an evaluation benchmark with a rich

variety of shadow art samples of varying complexity, along with

a family of metrics for quantitative assessment. Also, we demon-

strate the superior performance of our approach through extensive

quantitative and qualitative comparisons with several alternative

baselines and through user studies to evaluate human perception.

In the end, we performed a series of analyses, including ablation on

key components, result diversity, and model robustness, to study

the effectiveness of our proposed designs.

Overall, the evaluation results highlight the generalizability and

robustness of Hand-Shadow Poser in creating hand shadow arts

with prominent features preserved for various types of input shapes,

which can be further reproduced by human hands and 3D printing.

Limitations. The inverse hand-shadow-art problem is intriguing

yet challenging. Our work still has some limitations. First, given

an overly complicated shadow, such as shapes with small and thin

structures, our approach may not be able to reproduce the shape

due to the limited feasibility of human hands (see Section 7.4). Sec-

ond, our approach cannot be directly applied to human hands of

an arbitrary individual, due to variations in finger length and hand

size, requiring customization by first specifying the hand-shape

parameters of the individual. Third, we assume a fixed light source,

which might not be feasible for some target shapes that are formed

by distorted shadows. Fourth, a critical challenge is to ensure the

feasibility of humans, since not all two-hand poses are achievable

due to the anatomical limits of the human body, which cannot be

resolved merely through physical constraints on hands. Last, our

approach does not consider the forearm, which cannot be neglected

in practice, as it may obscure the contour of the hand shadows. To

incorporate the forearm into our pipeline, a potential solution is to

extend the MANO hand model with forearm parameters (e.g., via
SMPL-X [Pavlakos et al. 2019]) for pose optimization, with a penalty

term in Stage 3 to deviate the forearm shadows from obstructing

critical hand features. Additionally, the feasibility issue can be par-

tially addressed by restricting the left/right hand swapping based

on the arm position constraints.

Future Works. Currently, our approach focuses on two hands

to create hand shadow art from a single target shadow. First, we

are interested in extending our approach to designing animated

hand shadow arts for storytelling. Second, it would be interesting

to incorporate hand-held object(s) in our approach, so that we may

producemore intricate and visually appealing shadow results. Lastly,

given that some shadow plays involve more than two hands from

multiple artists, it would be intriguing to adapt Hand-Shadow Poser

to coordinate the hands ofmultiple humans, enablingmore elaborate

and captivating hand shadow art creation.
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