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Abstract

Noise plagues many numerical datasets, where the recorded values in the data may fail
to match the true underlying values due to reasons including: erroneous sensors, data en-
try/processing mistakes, or imperfect human estimates. We consider general regression
settings with covariates and a potentially corrupted response whose observed values may
contain errors. By accounting for various uncertainties, we introduced veracity scores that
distinguish between genuine errors and natural data fluctuations, conditioned on the avail-
able covariate information in the dataset. We propose a simple yet efficient filtering proce-
dure for eliminating potential errors, and establish theoretical guarantees for our method.
We also contribute a new error detection benchmark involving 5 regression datasets with
real-world numerical errors (for which the true values are also known). In this bench-
mark and additional simulation studies, our method identifies incorrect values with better
precision/recall than other approaches.
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1 Introduction

Modern supervised machine learning has grown quite effective for most datasets thanks
to development of highly-accurate models like random forests, gradient-boosting machines,
and neural networks. Although it is generally assumed that the numeric responses (target
values to predict) in the training data are accurate, this is often not the case in real-world
datasets (Müller and Markert, 2019; Northcutt et al., 2021; Kang et al., 2022; Kuan and
Mueller, 2022a). For classification data, many techniques have been proposed to address
this issue by modifying training objectives or directly estimating which data is erroneous
(Jiang et al., 2018; Zhang and Sabuncu, 2018; Song et al., 2022; Northcutt et al., 2021).

In this paper, we consider methods to identify similar erroneous values in regression
datasets where the response is continuous1. Incorrect numeric values lurk in real-world
data for many reasons including: measurement error (e.g. imperfect sensors), processing
error (e.g. incorrect transformation of some values), recording error (e.g. data entry mis-
takes), or bad annotators (e.g. poorly trained data labelers) (Wang and Mueller, 2022; Kuan
and Mueller, 2022a; Nettle, 2018; Agarwal et al., 2022). We are particularly interested in
straightforward model-agnostic approaches that can utilize any type of regression model
to identify the errors. These desiderata ensure our approach is applicable across diverse
datasets in practice and can take advantage of state-of-the-art regressors (including future
regression models not yet invented). Given a regression model, like Random Forest, Neural
Network or Gradient Boosting Machine, we can use such model-agnostic approaches to esti-
mate all erroneous responses in the dataset. Once identified, the datapoints with erroneous
response may be filtered out from a dataset or fixed via external confirmation of the correct
value to replace the incorrect one.

To help prioritize review of the most suspicious values, we consider a veracity score for
each datapoint that reflects how likely a specific value is correct or not. Many prediction-
based scores have been explored, such as residuals, likelihood values, and entropies (North-
cutt et al., 2021; Kuan and Mueller, 2022a; Wang and Mueller, 2022; Wang and Jia, 2023;
Thyagarajan et al., 2022; Ghorbani and Zou, 2019). While these methods are easy to im-
plement and widely applicable, the uncertainties present in the observed data can impact
prediction accuracy, consequently affecting both veracity scores and error detection. Two
common types of uncertainties, epistemic and aleatoric, arise from a lack of observed data
and intrinsic stochasticity in underlying relationships. Both types of uncertainties play a
critical role in establishing the reliability of predictions.

In this paper, the introduced veracity scores incorporate both epistemic and aleatoric
uncertainties. By accounting for these two types of uncertainties, an error detection proce-
dure can more effectively distinguish between genuine anomalies and natural data fluctua-
tions, ultimately resulting in more reliable identification of errors. Furthermore, we propose
a simple yet efficient filtering procedure for eliminating potential errors. This algorithm
automatically determines the number of errors to be removed and is compatible with any
machine learning or statistical model. We introduce a comprehensive benchmark of datasets
with naturally-occuring errors for which we also have corresponding ground truth values
that can be used for evaluation. Results on this benchmark and extensive simulations illus-

1. Code to run our method: https://github.com/cleanlab/cleanlab
Code to reproduce paper: https://github.com/cleanlab/regression-label-error-benchmark
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trate the empirical effectiveness of our proposed approach to identify incorrect numerical
responses in a dataset.

1.1 Related Work

A significant body of research has focused on identifying numerical outliers or anomalies
that depend on contextual or conditional information. Song et al. (2007) introduced the
concept of conditional outliers, which model outliers as influenced by a set of behavioral
attributes (e.g., temperature) that are conditionally dependent on contextual factors (e.g.,
longitude and latitude). Valko et al. (2011) detected conditional anomalies using a training
set of labeled examples, accounting for potential label noise. Tang et al. (2013) proposed an
algorithm for detecting contextual outliers in categorical data based on attribute-value sets.
Hong and Hauskrecht (2016) employed conditional probability to detect anomalies in clinical
applications. Abedjan et al. (2016) conducted a comprehensive examination of multiple
data cleaning tools, revealing that no single tool is universally dominant across all types of
errors. Mahdavi et al. (2019) introduced Raha, a configuration-free error detection system
that operates without the need for user-provided data constraints or parameters. Li et al.
(2021) explored how data cleaning affects downstream machine learning models. Dasu and
Loh (2012) proposed a statistical distortion measure and developed a versatile framework for
analyzing and evaluating various cleaning strategies. For a comprehensive understanding on
data cleaning problem, we recommend the monograph by Ilyas and Chu (2019). However,
the methods proposed in these papers are model-specific and not universally applicable to
all regression models, thereby limiting their utility in real-world data analysis involving
complex data structures.

The random sample consensus (RANSAC) method proposed by Fischler and Bolles
(1981) is a model-agnostic approach to error detection that iteratively identifies subsets of
datapoints that are not well-fitted by a trained regression model. In contrast to RANSAC,
our method effectively accounts for uncertainty in predictions from the regressor, which
is crucial for differentiating confidently incorrect values from those that are merely inac-
curately predicted. Conformal inference (Vovk et al., 2005; Lei et al., 2018; Bates et al.,
2023) provides a framework to estimate the confidence in predictions from an arbitrary
regressor, but we show here its direct application fares poorly when some data values are
contaminated by noise.

2 Methods

2.1 Veracity scores

We consider a standard regression setting with covariates X and a numerical response Y .
We assume that the covariates X are clean, but there might be errors in Y . Our goal is to
utilize any fitted regression model to help detect observations Yi where the recorded value
in the dataset is actually incorrect (i.e., corrupted).

Our approach constructs a numeric veracity score for each datapoint Xi, which re-
flects how likely Yi is correctly measured (based on how typical its value is given all of the
other available information). For response variables Y that are categorical, the predictive
likelihood/entropy-based scores proposed by Kuan and Mueller (2022a) have demonstrated
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Figure 1: Left panel: Synthetic data with non-uniform epistemic and aleatoric uncertain-
ties. 10% of the data points are set to be erroneous with a mean shift of 2,
indicated in red.
Right pane: Estimated û(x) and σ̂(x), representing the quantification of epistemic
and aleatoric uncertainties.

effective performance for identifying erroneous class labels via arbitrary classification mod-
els. Unlike standard classifiers, a typical regression model does not directly estimate the
full conditional distribution of continuous response Y (most models simply output point
estimates). Thus a model-agnostic method (that can use any regression model) to detect
errors in numerical data cannot employ analogous likelihood/entropy measures.

Throughout, all references to residuals and other prediction-based estimates (e.g. uncer-
tainties) are assumed to be out-of-sample, i.e. produced for Xi from a copy of the regression
model that was never fit to this datapoint. Out-of-sample predictions can be obtained for
an entire dataset through K-fold cross-validation, and are important to ensure less biased
estimates for our veracity scores that are subject to less overfitting.

Motivation: For continuous response, the residual Ŝr(Xi, Yi) = |Yi − f̂(Xi)| is a straight-
forward choice of score, where f̂ represents the estimated regression function. Ideally, when
the underlying relationship f is relatively simple and f̂(x) is a well-fitted regressor, data-
points with abnormally large Ŝr(Xi, Yi) values are likely to be anomalous values that warrant
suspicion, provided the uncertainty (noise level in the model) is homoscedastic. However,
this is no longer the case when the uncertainty is not homoscedastic.

Complexities of real-world data analysis make error detection more challenging, for
instance non-uniform epistemic or aleatoric uncertainty due to lack of observations or het-
eroscedasticity. In the context of prediction, epistemic uncertainty results from a scarcity
of observed data that is similar to a particular X, whose associated Y value is thus hard
to guess. On the other hand, aleatoric uncertainty results from inherent randomness in the
underlying relationship between X and Y that cannot be reduced with additional data of
the same covariates (but could by enriching the dataset with additional covariates). Figure
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1 illustrates these two types of uncertainties: the epistemic uncertainty is large at a data-
point x with few nearby datapoints, while the aleatoric uncertainty is large at x when the
true underlying Y |X = x is dispersed (e.g. a bimodal distribution).

After fitting a regression model in an expert manner, there are generally three reasons
a residual Ŝr(Xi, Yi) might be large:

• Yi was incorrectly measured (i.e. a data error).

• The estimation quality of f̂(x) is poor around x = Xi, e.g. due to large epistemic
uncertainty (lack of sufficiently many observations similar to Xi).

• There is high aleatoric uncertainty, i.e. the underlying conditional distribution over
target values, Y |x = Xi, is not concentrated around a single value.

Therefore, the residual score might be suboptimal for precise error detection due to false
positive scores arising simply due to large uncertainty. We instead propose two veracity
scores that rescale the residual in order to account for both epistemic and aleatoric uncer-
tainties:

Ŝa(x, y) =
Ŝr(x, y)

û(x) + σ̂(x)
Ŝg(x, y) =

Ŝr(x, y)󰁳
û(x)σ̂(x)

. (1)

Here, epistemic uncertainty estimate û(x) :=

󰁴
󰁧Var(f̂(x)) is the standard deviation of f̃(x)

over many regressors f̃ fit on bootstrap-resampled versions of the original data. Aleatoric
uncertainty estimate σ̂(x) := E(|f̂(X) − Y | | X = x, f̂) is an estimate of the size of the
regression error, produced by fitting a separate regressor to predict the residuals’ size based
on covariates X.

Our construction of Ŝa(x, y) and Ŝg(x, y) is a straightforward way to account for both
epistemic and aleatoric uncertainties via their arithmetic or geometric mean. For datapoints
where either uncertainty is abnormally large, the residuals are no longer reliable indicators.
Thus presented with two datapoints whose Y values deviate greatly from the predicted
values (high residuals of say equal magnitude), we should be more suspicious of the datapoint
whose corresponding prediction uncertainty is lower. In the synthetic data illustrated in
Figure 1, the application of Ŝa successfully identified 19 out of 27 errors, demonstrating a
markedly higher detection capability compared to the residual score, which identified only
6 errors.

2.2 Filtering procedure

A challenge arises in estimating regression model uncertainties from noisy data. Uncertainty
estimates are based on the spread of f̂ estimates, which are affected by the corrupted values
in the dataset. Subsequent experiments in Section 4 show this same issue plagues the
probabilistic estimates required for conformal inference. Here we propose a straightforward
approach to mitigate this issue: simply filter some of the top most-confident errors from
the dataset, and refit the regression model and its uncertainty estimates on the remaining
less noisy data. For the best results, we can iterate this process until the noise has been
sufficiently reduced. We use the following algorithm to iteratively filter potential errors in
a dataset, D. An overview flowchart is provided in Figure 2.
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Algorithm 1 Filtering procedure to reduce the amount of erroneous data

Input: Dataset D; a regression model A; the maximum proportion of corrupted data Kerr.

1: Fit model A via K-fold cross-validation over the whole dataset, and compute veracity
scores for each datapoint via out-of-sample predictions.

2: for k = 1, 2, . . . ,Kerr do
a. Remove k% of the datapoints with the worst veracity scores. Denote the indices of
removed datapoints as INDk.
b. Re-fit the model A with the remaining data (again via K-fold cross-validation) and
denote the estimated regression function f̂ . Calculate the out-of-sample R2 performance

of the resulting predictions: 1−
󰁛

i∈D
(yi − f̂(xi))

2/
󰁛

i∈D
(yi − ȳ)2 over the entire dataset,

where ȳ =
1

|D|
󰁛

i∈D
yi.

3: end for
4: Select the k∗ that produces the largest R2 among k = 1, . . . ,Kerr.

Output: Estimated corruption proportion k∗, indices of filtered data INDk∗ .

In Algorithm 1, the dataset D = (xi, yi)
n
i=1 imposes no restrictions on the covariates,

allowing for numeric, text, images, or multimodal random variables in xi. The model
A can be any parametric or non-parametric statistical regression model, or a machine
learning model such as gradient boosting, random forest, or neural network. Kerr represents
the maximum proportion of erroneous values that the user believes may be present in D,
generally not expected to exceed 20%. To reduce computation time, the grid search over
k ≤ Kerr can be replaced by a binary search or a coarse-then-fine grid.

In this algorithm, we use the (out-of-sample) R2 metric as the criterion to assess the
performance of the current removal process. It is crucial to evaluate the R2 metric on
the entire dataset D, rather than only on the remaining data. Evaluating it solely on the
remaining data would cause the R2 value to increase continuously as more data points are
removed. Although the complete dataset D contains errors, its corresponding R2 value
should improve if f̂ is trained on a dataset with fewer errors. Conversely, a smaller sample
size may lead to poorer performance of model A and a decrease in the corresponding R2

value evaluated on D, especially if we have started removing data that has no errors. Like
RANSAC (Fischler and Bolles, 1981), this approach iteratively discards data and re-fits f̂ ,
but each iteration in our approach utilizes the veracity scores.

For the computational complexity of the proposed method, if we use T to denote the
amount of computation time needed to fit the baseline regression model once, the proposed
method requires multiple fittings depending on the number of bootstrap B and the number
of filtering steps F . For each filtering step, we need T time to train the model, an additional
T time to obtain the aleatoric uncertainty and B∗T time to obtain the epistemic uncertainty.
In total, the computation complexity of our proposed algorithm is F ∗ (2 + B) ∗ T . In our
numerical experiments, the resulted F usually takes values 4 or 5. Although the Bootstrap
method may be computationally intensive in some scenarios, its primary function is to assess
data uncertainty and leverage this understanding to improve the estimation of residuals.
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Figure 2: Flowchart of our proposed algorithm.

The cost for high-dimensional regressors is reflected in T . It is advisable to employ regressors
that are effective in such settings. This adaptability is a key advantage of our proposed
model-agnostic approach, as it allows for the selection of the most appropriate regressor
tailored to the specific data characteristics.

3 Theoretical Analysis

This section analyzes when our algorithms can provably detect corrupted values in the
dataset. We first provide a sufficient condition under which with probability exceeding 50%:
the residual for a data point with a corrupted target value is greater than the residual at an
uncorrupted target value. We then prove that with uncertainties in the data, our proposed
scores are more likely to correctly detect erroneous data compared to basic residual scores.

We use (Xi, Yi) to denote a benign datapoint (whose Y -value is correct), where its dis-
tribution is given by Yi = f(Xi) + 󰂃i(Xi), with f(·) denoting the true regression function
and 󰂃i(Xi) denoting the traditional regression noise. On the other hand, an erroneous
datapoint is represented as (X ′

i, Y
′
i ), with distribution Y ′

i = f(X ′
i) + 󰂃i(X

′
i) + 󰂃∗i (X

′
i), in-

corporating an additional corruption error: 󰂃∗(X ′
i). In the scenario where the regression

function is known, the Ŝr becomes: Sr(Xi, Yi) = |󰂃i(Xi)| for benign data (Xi, Yi), and
Sr(X

′
i, Y

′
i ) = |󰂃i(X ′

i)+ 󰂃i(X
′
i)
∗| for erroneous data (X ′

i, Y
′
i ). Let Fx and Gx represent the cu-

mulative distribution functions (CDF) of |󰂃(X)| and |󰂃(X) + 󰂃∗(X)| at X = x, respectively,
where 󰂃(x) and 󰂃∗(x) are prototypes error functions of 󰂃i(x) and 󰂃∗i (x), and 󰂃i(x) and 󰂃∗i (x)
are independent and identically distributed (i.i.d.) samples from 󰂃(x) and 󰂃∗(x).

Theorem 1 Assume E(󰂃(X)|X) = 0 and is unimodal at 0, 󰂃(X) and 󰂃∗(X) are indepen-
dent. If |󰂃(X ′

i) + 󰂃∗(X ′
i)| stochastically dominates |󰂃(Xi)| in the third order, that is,

•
󰁕 x
−∞

󰁫󰁕 z
−∞{FXi(t)−GX′

i
(t)}dt

󰁬
dz ≥ 0 for all x and

•
󰁕
R xdGX′

i
(x) ≥

󰁕
R xdFXi(x).
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Then, P(Sr(Xi, Yi) < Sr(X
′
i, Y

′
i )) ≥ 1/2.

Theorem 1 provides a sufficient condition ensuring that the probability of Sr(Xi, Yi) <
Sr(X

′
i, Y

′
i ) exceeds 1/2. This implies that when the disparity between corrupted and clean

target values is relatively large, the residual score can be effective for error detection. Third-
order stochastic dominance is relatively weak and can be derived from first and second-order
stochastic dominance. The subsequent corollary examines the case where the standard
regression noise follows a Gaussian distribution, and the additional error corruption is a
point mass at a. In that case, we have FXi(t)−GX′

i
(t) ≥ 0, which implies that |󰂃(x′)+󰂃∗(x′)|

stochastically dominates |󰂃(x)| in the first order.

Corollary 2 If 󰂃(x) ∼ N(0, 1), 󰂃∗(x) = a for all x. Then P(Sr(Xi, Yi) < Sr(X
′
i, Y

′
i )) > 1/2

for all a ∕= 0 and P(Sr(Xi, Yi) < Sr(X
′
i, Y

′
i )) → 1 exponentially as a → ∞.

When the estimated regression function f̂ is consistent, Ŝr is asymptotically equivalent to
the oracle case. The subsequent corollary directly follows from Theorem 1.

Corollary 3 Denote f̂ the estimator of f and Ŝr(Xi, Yi) := |f̂(Xi)−Yi| the estimated resid-

ual scores. If 󰀂f̂ − f󰀂∞
p→ 0, and GX′

i
or FXi is absolutely continuous, then P(Ŝr(Xi, Yi) <

Ŝr(X
′
i, Y

′
i )) = P(Sr(Xi, Yi) < Sr(X

′
i, Y

′
i )) + o(1).

The following theorem illustrates the conditions under which our proposed scores out-
perform the residual-based approach.

Theorem 4 Let Ŝa(Xi, Yi) and Ŝg(Xi, Yi) be the proposed veracity scores defined in 1,

• If û(Xi) + σ̂(Xi) ≥ û(X ′
i) + σ̂(X ′

i), P(Ŝa(Xi, Yi) < Ŝa(X
′
i, Y

′
i )) ≥ P(Ŝr(Xi, Yi) <

Ŝr(X
′
i, Y

′
i )).

• If û(Xi)σ̂(Xi) ≥ û(X ′
i)σ̂(X

′
i), P(Ŝg(Xi, Yi) < Ŝg(X

′
i, Y

′
i )) ≥ P(Ŝr(Xi, Yi) < Ŝr(X

′
i, Y

′
i )).

If û(Xi) > û(X ′
i), that is, the bootstrap variance at f̂(Xi) is larger than that at f̂(X ′

i), it
indicates greater epistemic uncertainty for (Xi, Yi). Similarly, if the variance of the regres-
sion error at f̂(Xi) exceeds that at f̂(X

′
i), there is higher aleatoric uncertainty for (Xi, Yi).

In both instances, the residual might offer misleading information when assessing whether
Yi is corrupted or not. Theorem 4 suggests that, in the presence of both epistemic and
aleatoric uncertainties in the data, our proposed scores demonstrate superior performance
compared to the residual.

4 Simulation Study

Here we present two experiments using diverse simulated datasets to evaluate the empir-
ical performance of our proposed veracity scores as well as the filtering procedure. Two
underlying settings are considered:

• Setting 1: Non-parametric Regression with Epistemic/Aleatoric Uncer-
tainty: The covariates are i.i.d. from xi = (xi1, . . . , xi5) ∈ R5 with

xij ∼ 0.1Unif(−1.5,−0.5) + 0.9Unif(−0.5, 1.5)
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for j = 1, . . . , 5. The true responses are generated by

yi ∼ 0.5N {f(xi1)− g(xi1), 0.5}+ 0.5N {f(xi1) + g(xi1), 0.5} ,

where f(x) = (x− 1)2(x+ 1), g(x) = 2
√
x− 0.51(x ≥ 0.5).

• Setting 2: 5-D Linear Regression: The true responses are generated by yi =
βTxi+ 󰂃i, where xi ∈ R5 and each coordinate of xi is generated from Unif(−1.5, 1.5).
The regression coefficients in β is set to −1 and 1 with random signs and the regression
error are i.i.d. N(0, 0.5).

For both settings, the corrupted data is set to be y∗i = yi + a, that is, a point mass
at a with different corruption strength a = −3,−2,−1, 1, 2, 3. In the simulation study, the
fraction of corrupted data is set to be 10% for all contaminated datasets.

Inspired by Lei and Wasserman (2014), Setting 1 involves a dataset that introduces both
epistemic and aleatoric uncertainty. For each coordinate of xi, 90% of the xij values are from
Unif[−0.5, 1.5], while only 10% of the xij values are from Unif[−1.5,−0.5]. Consequently,
the epistemic uncertainty for xij ∈ [−1.5,−0.5] is larger due to insufficient observations for
these xij . It is important to note that the response yi depends only on the first coordinate of
xi, and the aleatoric uncertainty for those xi1 ∈ [0.5, 1.5] is larger since P(yi|xi) is bimodal.
Figure 1 illustrates the observed yi with respect to the first coordinate of xi. Setting 2 is a
simpler linear regression setting adapted from Hu and Lei (2020), where the residual should
perform best as the model is simple and no additional uncertainty is involved. We consider
settings in which we have clean training data and evaluate the error detection performance
of methods in additional test data (no filtering needed), as well as settings where the entire
dataset contains errors.

Our simulation study focuses on comparing our proposed veracity scores (Ŝa and Ŝg)
against the residual score Ŝr, in order to investigate the empirical effect of additionally
taking the regression uncertainties into account. In the Appendix C, we compare many
alternative veracity scores against the residual score Ŝr over a diverse set of real datasets,
and find that none of these alternatives is able to consistently outperform the residual
score (making Ŝr a worthy baseline). Even though we know the underlying relationship
in these simulations, we nonetheless fit a variety of popular regressors that are often used
in practice: Random Forest (RF) (Breiman, 2001) and Gradient Boosting with LightGBM
(LGBM) (Ke et al., 2017). All regression models fit in this paper (including the weighted
ensemble) were implemented via the autogluon AutoML package (Erickson et al., 2020),
which automatically provides good hyperparameter settings and manages the training of
each model.

4.1 Conformal inference using the proposed scores

The conformal method has emerged as a leading tool for statistical inference, offering a
generic approach to creating distribution-free prediction sets. Offering a p-value to test
the conformity of data in the testing set, conformal inference is a natural procedure for
outlier detection, as described by (Bates et al., 2023). However, the efficacy of the con-
formal method hinges on the exchangeability of the data; clean training and calibration
sets are required (Bates et al., 2023). Such ideal conditions often elude real-world scenarios
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where erroneous data is prevalent. Here we study the performance of conformal outlier
detection against our proposed score for detecting corrupted values (particularly in settings
where corrupted values are present in the training and calibration sets). We also consider
alternative scores inspired by the conformal inference literature.

We first examine the performance of our proposed veracity scores in conformal inference.
To reduce the computational burden associated with grid search, we utilize the splitting
conformal method, which is widely adopted due to its efficiency (Chernozhukov et al., 2021;
Bates et al., 2023). The splitting conformal method requires a training set to fit the model,
a calibration set to evaluate the rank of the scores, and a testing set to assess performance.
For each setting, the training and calibration sets are generated based on the aforementioned
settings without errors. For the testing set, 10% of the data are designated as errors with a
corruption strength a = −3,−2,−1, 1, 2, 3, while the remaining 90% are benign datapoints,
having the same distributions as those in the training and calibration sets. For each (Xi, Yi)
in the testing set, the conformal inference methodology enables us to obtain a p-value for the
null hypothesis test H0,i : Xi ∼ P0 (Bates et al., 2023), where P0 represents the distribution
of the benign data. The error detection problem is then transformed into a multiple testing
problem, and we can apply the Benjamini-Hochberg (BH) procedure to control the false
discovery rate (FDR). This entire procedure is demonstrated in Algorithm 2 and Figure .

For each setting, we conduct 50 Monte-Carlo runs to mitigate the randomness that
may occur in a single simulation. We use Ŝr, Ŝa and Ŝg as the conformal scores ŝ(x, y) in
Algorithm 2 and the sample size n = 200 is the same for Dtrain, Dcal, and Dtest. For each
run, we calculate the corresponding False Discovery Rate (FDR), the proportion of benign
data among the test points incorrectly reported as errors, and the Power, the proportion
of errors in the testing set correctly identified as errors. For each setting, two scenarios
are considered, the first scenario is the typical conformal scenario where the training and
calibration sets have no errors; while for the second scenario, the training and calibration
sets are also contaminated and the errors proportion is the same to the testing set.

Table 1 presents the average FDR and Power for each setting where the training and
calibration sets are clean. For Setting 1, which contains epistemic and aleatoric uncertainty,
our proposed scores outperform the residual scores in both FDR and Power. For Setting 2,
where the residual scores are expected to perform well, our proposed scores perform very
closely to the residual scores and even surpass them in some cases. Table 2 shows that the
conformal method fails when the training and calibration sets are contaminated. This is

Algorithm 2 Conformal Outlier Detection

Input: Training set Dtrain, calibration set Dcal, and testing set Dtest; a model A; a conformal
score s(x, y); a target FDR level α.

1: Based on Dtrain, obtain the estimated score ŝ(X,Y ).

2: Evaluate the scores {ŝi = ŝ(Xi, Yi)}D
cal

i=1 for all datapoint in the calibration set, and
denote the empirical CDF of {ŝi}ni=1 by F̂ŝ.

3: For each data point (Xi, Yi) ∈ Dtest, get the conformal p-value ûi = (F̂ŝ ◦ ŝ)(Xi, Yi).
4: Based on {ûi}i∈Dtest , apply BH procedure to determine which datapoint should be re-

moved.

Output: Indices of outliers, i.e. datapoints expected to be erroneous.
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Table 1: Average FDR and Power (with standard deviations in parentheses) for detecting
corrupted values via conformal inference in different settings. In each setting,
detection is based on a Random Forest regressor trained on uncorrupted target
values (clean data available during training). The target FDR is 10% in all cases.

Setting 1

corruption strength -3 -2 -1 1 2 3

FDR

Ŝr 0.16(0.16) 0.30(0.33) 0.44(0.43) 0.37(0.44) 0.19(0.30) 0.16(0.16)

Ŝa 0.13(0.09) 0.16(0.13) 0.35(0.39) 0.24(0.34) 0.14(0.14) 0.13(0.11)

Ŝg 0.12(0.09) 0.18(0.15) 0.36(0.39) 0.34(0.40) 0.14(0.15) 0.13(0.09)

Power

Ŝr 0.31(0.18) 0.09(0.07) 0.04(0.06) 0.02(0.04) 0.08(0.07) 0.30(0.18)

Ŝa 0.71(0.13) 0.41(0.22) 0.06(0.07) 0.06(0.06) 0.38(0.17) 0.72(0.11)

Ŝg 0.71(0.14) 0.38(0.20) 0.06(0.07) 0.05(0.05) 0.36(0.17) 0.73(0.11)

Setting 2

FDR

Ŝr 0.13(0.09) 0.15(0.16) 0.31(0.41) 0.41(0.42) 0.20(0.16) 0.11(0.08)

Ŝa 0.13(0.09) 0.15(0.16) 0.34(0.38) 0.27(0.33) 0.20(0.17) 0.13(0.09)

Ŝg 0.13(0.08) 0.13(0.15) 0.36(0.39) 0.29(0.33) 0.20(0.18) 0.13(0.09)

Power

Ŝr 0.77(0.14) 0.24(0.15) 0.03(0.05) 0.04(0.05) 0.29(0.16) 0.81(0.15)

Ŝa 0.77(0.15) 0.33(0.15) 0.06(0.06) 0.05(0.05) 0.37(0.16) 0.79(0.15)

Ŝg 0.77(0.15) 0.32(0.15) 0.05(0.06) 0.04(0.04) 0.37(0.16) 0.80(0.15)

because the validity of conformal inference crucially relies on the exchangeability (or some
variant of exchangeability) between the calibration set and the future observation, thus if
the calibration set is contaminated, the conformal prediction set will have biased coverage.
Note that in the scenario where training, calibration and testing set are all equally noisy,
this can be equivalently viewed as the performance for identifying errors in a given dataset.

Conformal inference often relies on scores based on conditional density or distribution
functions. Chernozhukov et al. (2021) utilize an adjusted conditional distribution function
as the conformity score to achieve optimal prediction intervals. Izbicki et al. (2020) use the
distribution of the conditional density as the conformity score, demonstrating that its corre-
sponding HPD-split conformal prediction sets have the smallest Lebesgue measure asymp-
totically. Figure 3 evaluates how well these alternative scores are able to detect corrupted
values, revealing that our proposed scores remain more effective. Estimating conditional
density or distribution functions also becomes challenging in settings with high-dimensional
predictors, whereas our proposed scores can easily adapt to any high-dimensional regression
model.

4.2 Filtering procedure

In this subsection, we examine the numerical performance of our proposed filtering pro-
cedure. For each setting in each Monte-Carlo run, we have n = 200 data points with
10% errors and corruption strength a. Given error detection can be viewed as an infor-
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Table 2: Average FDR and Power (with standard deviations in parentheses) for detecting
corrupted values via conformal inference in different settings. In each setting,
detection is based on a Random Forest regressor trained on 10% contaminated
data. The target FDR is 10% in all cases.

Setting 1

corruption strength -3 -2 -1 1 2 3

FDR

Ŝr 0.03(0.14) 0.13(0.28) 0.38(0.44) 0.48(0.48) 0.14(0.31) 0.08(0.22)

Ŝa 0.01(0.07) 0.03(0.15) 0.18(0.33) 0.29(0.40) 0.04(0.13) 0.00(0.00)

Ŝg 0.01(0.04) 0.03(0.15) 0.23(0.38) 0.29(0.41) 0.03(0.09) 0.00(0.00)

Power

Ŝr 0.05(0.06) 0.04(0.06) 0.01(0.03) 0.00(0.01) 0.03(0.05) 0.05(0.07)

Ŝa 0.05(0.07) 0.05(0.07) 0.03(0.04) 0.02(0.03) 0.03(0.05) 0.05(0.06)

Ŝg 0.05(0.06) 0.05(0.06) 0.02(0.03) 0.02(0.04) 0.04(0.06) 0.06(0.06)

mation retrieval problem, we follow Kuan and Mueller (2022a) and use the Area Under
the Precision-Recall Curve (AUPRC) metric to evaluate various veracity scores. AUPRC
quantifies how well these scores are able to rank erroneous datapoints above those with
correct values, which is essential to effectively handle errors in practice.

Table 4 presents the average AUPRC based on the original dataset, proportion of cor-
ruptions removed, proportion of corruptions in the remaining data, and AUPRC based on
the remaining data for 50 Monte-Carlo runs. We observe that in both Setting 1 and Setting
2, the corruption proportions in the remaining data decrease as the corruption strength in-
creases, and the AUPRC improves after running our removal algorithm. Furthermore, the
removed proportion is very close to the true corruption proportion in the original dataset.
In Setting 1, which includes epistemic and aleatoric uncertainty, our proposed scores Ŝa and
Ŝg outperform the residual score in AUPRC across all scenarios. In Setting 2, where the
underlying uncertainty should be relatively uniform, our proposed scores perform similarly
to the residual score.

5 Benchmark with Real Data and Real Errors

Here, we evaluate the performance of our proposed methods using five publicly available
datasets. For each dataset, we have an observed target value that we use for fitting regression
models and computing veracity scores and other estimates. For evaluation, we also have
a true target value available in each dataset (not made available to any of our estimation
procedures). For instance, in the Air CO air quality dataset, the observed target values
stem from an inferior sensor device, whereas the true target values stem from a much high-
quality sensor placed in the same locations. Detailed information regarding these datasets
can be found in Section B of the Supplement.

The proportion of actual errors lurking in each dataset varies. We first evaluate the error-
detection performance of our proposed scores compared to the residuals in settings where
the regression model is trained on clean data with uncorrupted target values. We consider

12
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Table 3: AUROC/AUPRC for detecting corrupted values in Setting 1 via different scor-
ing methods. Each reported value is an average over 50 Monte Carlo replicate
runs with different data. CZK and HPD are conformal-based scores proposed by
Chernozhukov et al. (2021) and Izbicki et al. (2020), applied with two methods
for estimating conditional density/distribution functions: random forest (Pospisil
and Lee, 2018, RF) and FlexCode (Izbicki and Lee, 2017, FLEX). Our proposed
scores are computed using the same Random Forest regressor as before.

corruption strength -3 -2 -1 1 2 3

AUROC

Ŝr 0.97 0.87 0.67 0.71 0.87 0.97

Ŝa 0.95 0.90 0.72 0.76 0.88 0.94

Ŝg 0.95 0.90 0.72 0.76 0.88 0.94

CZK-RF 0.93 0.84 0.51 0.70 0.79 0.94

CZK-FLEX 0.96 0.86 0.54 0.73 0.83 0.99

HPD-RF 0.92 0.86 0.75 0.71 0.88 0.89

HPD-FLEX 0.94 0.85 0.75 0.66 0.84 0.90

AUPRC

Ŝr 0.83 0.49 0.20 0.22 0.53 0.84

Ŝa 0.88 0.80 0.38 0.45 0.78 0.89

Ŝg 0.88 0.79 0.38 0.44 0.78 0.89

CZK-RF 0.63 0.31 0.11 0.21 0.36 0.58

CZK-FLEX 0.80 0.40 0.15 0.21 0.36 0.94

HPD-RF 0.45 0.31 0.30 0.18 0.37 0.34

HPD-FLEX 0.73 0.38 0.24 0.14 0.52 0.42

four types of regression models: Gradient Boosting with LightGBM (Ke et al., 2017),
Feedforward Neural Network (NN) (Gurney, 1997), Random Forest (Breiman, 2001), and a
Weighted Ensemble of these models fit via Ensemble Selection (WE) (Caruana et al., 2004).
Estimates are evaluated using four metrics popular in information retrieval applications:
area under the receiver operating characteristic curve (AUROC), AUPRC, lift at k (where
k is the true underlying number of errors in dataset), and lift at 100. Each metric evaluates
how well a method is able to retrieve or rank the corrupted datapoints ahead of the benign
data.

Table 5 shows the average improvement of our proposed scores compared to the resid-
ual scores. For example, the first four numbers in the first row represent (AUROC(Ŝa) −
AUROC(Ŝr))/AUROC(Ŝr) corresponding to the LightGBM, Neural Network, Random For-
est, and Weighted Ensemble models. A larger positive percentage indicates better perfor-
mance of our proposed scores. Table 5 contains few negative values, implying our proposed
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Table 4: Error-detection performance (AUPRC) under various data filtering methods. All
scores are calculated via cross-validation with a LightGBM regression model.
AUPRC before is achieved from scores based on the original dataset (no fil-
tering); AUPRC after is achieved from scores based on the filtered dataset;
removed prop is the proportion of data removed by our filter algorithm; error
prop is the proportion of corrupted values remaining in the filtered dataset.

corruption Setting 1 Setting 2

strength AUPRC before removed prop error prop AUPRC after AUPRC before removed prop error prop AUPRC after

a=-3

Ŝr 0.60 11.74% 5.13% 0.66 0.84 14.64% 2.62% 0.94

Ŝa 0.64 11.22% 4.98% 0.72 0.78 14.88% 2.58% 0.93

Ŝg 0.62 9.60% 5.62% 0.71 0.78 15.36% 2.50% 0.93

a=-2

Ŝr 0.33 12.34% 7.55% 0.34 0.63 12.92% 4.43% 0.70

Ŝa 0.40 11.64% 6.89% 0.44 0.60 13.14% 4.52% 0.68

Ŝr 0.37 11.74% 7.01% 0.43 0.60 13.18% 4.54% 0.66

a=-1

Ŝr 0.15 11.26% 9.37% 0.16 0.25 11.38% 8.01% 0.28

Ŝa 0.16 11.98% 8.82% 0.19 0.24 12.08% 8.09% 0.27

Ŝg 0.16 10.66% 9.14% 0.18 0.24 12.00% 8.08% 0.27

a=1

Ŝr 0.16 11.04% 9.39% 0.15 0.25 11.66% 7.86% 0.28

Ŝa 0.21 12.72% 8.29% 0.20 0.24 10.92% 8.15% 0.27

Ŝg 0.20 13.88% 8.24% 0.19 0.24 11.72% 8.01% 0.27

a=2

Ŝr 0.33 11.18% 7.01% 0.31 0.59 12.48% 4.71% 0.71

Ŝa 0.40 11.36% 6.11% 0.43 0.57 13.50% 4.79% 0.69

Ŝg 0.38 11.76% 6.19% 0.40 0.55 12.56% 5.07% 0.66

a=3

Ŝr 0.59 10.56% 5.29% 0.67 0.84 11.66% 7.86% 0.95

Ŝa 0.62 10.04% 5.24% 0.70 0.79 10.92% 8.15% 0.92

Ŝg 0.61 11.34% 5.20% 0.68 0.79 11.72% 8.01% 0.91

scores outperform residuals in the overwhelming majority of cases. These empirical results
agree with our prior theoretical analysis – our scores consistently deliver better performance
than the residuals for datasets with higher aleatoric or epistemic uncertainty. For simple
datasets where the residual approach already performs effectively, our method does not
noticeably improve error detection compared to this baseline. For datasets where the level
of corruption is severe, our method greatly outperforms the baseline residuals approach (in
part because our filtering procedure significantly enhances the robustness of the regression
estimates in such settings).

One may find that improvements in Table 5 varies for different regression models. Since
our method is designed to be model-agnostic, which means that it does not require a specific
choice of regression model or training procedure. Of course the predictive accuracy of
the model will influence the subsequent results. Thus, to use the method effectively, we
recommend no change to the existing machine learning workflow – use whatever tricks and
training procedures that will get you the most accurate model on your data. And then
directly employ our method afterwards. This generality ensures our method will remain
applicable in the future as novel regression algorithms are invented. We believe this is a
critical property – methods that only work for say random forests would become obsolete
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in the age of deep learning, and methods that only work for today’s neural networks would
also become obsolete when a better regression model is invented in the future.

Next, we compare our proposed filtering procedure with the RANSAC algorithm (Fis-
chler and Bolles, 1981). When applying RANSAC, we used its default hyperparameter
settings in the scikit-learn package. Here we separately run each of these data filtering
procedures, and then compute three veracity scores Ŝa, Ŝg, Ŝr from the same type of model
fit to the filtered data. Some values in the table are left blank because the RANSAC algo-
rithm from the scikit-learn package can only handle numeric covariates, which excludes
the “Stanford Politeness Wiki” dataset. Table 6 shows that, when the entire dataset may
contain corrupted values, our proposed filtering procedure generally performs better than
RANSAC, which tends to overestimate or underestimate the corruption proportions. Fur-
thermore, our veracity score combined with our filtering procedure leads to the best overall
error detection performance across these datasets.

The effectiveness of our proposed filtering procedure is further evaluated using the pre-
diction error metric Ep, defined as:

Ep :=
n󰁛

i=1

(ŷ−i − yi)
2,

where ŷ−i represents the leave-one-out prediction for yi. As demonstrated in Table 7, there
is a significant reduction in the prediction error Ep across all veracity scores (Ŝr, Ŝa, and
Ŝg) after the application of our filtering procedure. Furthermore, our proposed scores, Ŝa

and Ŝg, outperform the baseline residual in most datasets.

6 Discussion

For detecting erroneous numerical values in real-world data, this paper introduces novel
veracity scores to quantify how likely each datapoint’s Y -value has been corrupted. When
we have a clean training dataset that is used to detect errors in subsequent test data, these
veracity scores significantly outperform residuals alone, by properly accounting for epistemic
and aleatoric uncertainties. When the entire dataset may contain corruptions, the uncer-
tainty estimates degrade. For this setting, we introduce a filtering procedure that reduces
the amount of corruption in the dataset. Such filtering helps us obtain better uncertainty
estimates that result in more effective veracity scores for detecting erroneous values. We
present a comprehensive benchmark of real-world regression datasets with naturally oc-
curring erroneous values, over which our proposed approaches outperform other methods.
All of our proposed approaches work with any regression model, which makes them widely
applicable. Armed with our methods to detect corrupted data, data scientists will be able
to produce more reliable models/insights out of noisy datasets.

As outlined in the theory section, when faced with higher aleatoric or epistemic uncer-
tainty in the data, our scores consistently deliver better performance than the residuals.
For datasets possessing a simple structure (without much aleatoric/epsitemic uncertainty)
wherein the residuals already perform effectively, our method does not noticeably improve
error detection. Furthermore, for datasets where the level of corruption is severe, our
method greatly outperforms the baseline residuals approach, because our filtering proce-
dure significantly enhances the robustness of the regression estimates in such settings.
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In some real data, corruptions may be systematically biased, which no statistical procedure
can detect, and thus our method will fail to outperform the baseline residuals approach
in such cases. Outlier detection for datasets with systematically biased corruptions is an
interesting problem and the framework in this paper is useful for further research.

Table 5: Percentage improvement of arithmetic or geometric scores vs. residual for detecting
errors in each dataset (according to various evaluation metrics listed in the second
column). Regression models are trained on clean data (uncorrupted target values),
and then various scores are computed over the whole dataset using these models.

data set metric
Ŝa Ŝg

LGBM NN RF WE LGBM NN RF WE

Air CO

auroc -0.37% -0.40% 2.57% 1.48% -1.17% -3.25% 2.92% 0.64%

auprc 38.47% 13.33% 41.58% 138.76% 44.42% -1.39% 43.21% 117.49%

lift at num errors 23.48% 10.53% 15.76% 64.20% 24.35% -3.51% 18.79% 55.56%

lift at 100 44.00% 70.00% 39.71% 156.76% 50.00% 35.00% 41.18% 127.03%

metaphor

auroc 3.10% 1.20% 5.05% 4.62% 3.21% 3.04% 6.56% 7.72%

auprc 64.76% 62.95% 92.87% 64.73% 70.80% 99.15% 114.37% 73.55%

lift at num errors 21.95% 39.13% 39.76% 49.47% 25.61% 43.48% 55.42% 56.84%

lift at 100 55.00% 53.85% 74.42% 66.10% 67.50% 96.15% 104.65% 66.10%

stanford stack

auroc 1.20% 0.96% 0.99% 0.48% 1.24% 0.59% 1.08% 0.66%

auprc 11.53% 13.30% 10.77% 1.76% 11.72% 10.26% 11.31% 2.21%

lift at num errors 11.92% 11.88% 10.00% 6.70% 13.25% 5.00% 11.88% 6.70%

lift at 100 6.38% 9.89% 6.38% 0.00% 6.38% 8.79% 6.38% 0.00%

stanford wiki

auroc 0.85% -0.91% 1.01% 1.01% 1.14% -1.02% 1.10% 1.44%

auprc 13.54% 5.29% 8.65% 8.76% 14.99% 5.16% 8.61% 10.12%

lift at num errors 6.07% 2.66% 4.22% 6.01% 6.54% 3.19% 4.22% 9.44%

lift at 100 14.94% 6.98% 6.38% 5.26% 14.94% 5.81% 6.38% 5.26%

telomere

auroc -0.34% -0.08% 0.15% 0.00% -1.39% -1.33% 0.15% -0.28%

auprc 0.77% -1.18% 4.38% 0.14% -10.15% -15.50% 4.29% -2.81%

lift at num errors -3.41% -3.89% 8.37% 0.22% -15.61% -20.14% 7.14% -6.87%

lift at 100 3.09% 0.00% 1.01% 0.00% 3.09% -3.00% 1.01% 1.01%
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Table 6: Our proposed data filtering procedure compared with the RANSAC algorithm.
Both approaches are applied with a LightGBM regressor. Our veracity score
is computed after data filtering to assess final error-detection performance (AU-
ROC/AUPRC).

Our proposed filtering procedure RANSAC in sklearn

original error% removed% error% after AUROC AUPRC removed% error% after AUROC AUPRC

Air CO

Ŝr

5.13%

2.00% 5.03% 0.58 0.08

2.11% 4.90%

0.56 0.08

Ŝa 7.01% 4.89% 0.58 0.07 0.55 0.08

Ŝg 6.00% 4.98% 0.54 0.06 0.54 0.07

metaphor

Ŝr

6.55%

5.03% 6.33% 0.93 0.09

43.58% 4.88%

0.64 0.10

Ŝa 17.99% 5.98% 0.94 0.09 0.64 0.10

Ŝg 19.01% 6.01% 0.94 0.09 0.62 0.09

Stanford stack

Ŝr

11.86%

3.06% 10.09% 0.93 0.65

72.37% 0.44%

0.95 0.69

Ŝa 5.01% 8.17% 0.94 0.68 0.93 0.65

Ŝg 4.03% 8.79% 0.94 0.73 0.94 0.67

Stanford wiki

Ŝr

22.96%

22.04% 13.31% 0.82 0.60

Ŝa 24.03% 12.55% 0.82 0.64

Ŝg 10.07% 17.22% 0.82 0.64

telomere

Ŝr

4.66%

16.00% 0.04% 0.99 0.78

0.62% 4.18%

0.99 0.77

Ŝa 18.00% 0.07% 0.99 0.83 0.99 0.80

Ŝg 22.00% 0.10% 0.97 0.73 0.97 0.72

Table 7: Comparison of Leave-One-Out prediction errors: original data vs. data processed
with proposed filtering procedure with veracity scores (Ŝr, Ŝa, Ŝg). Both ap-
proaches are applied with a LightGBM regressor. The values in columns marked
with an asterisk (*) have been multiplied by 100 for visualization.

Air CO* Metaphor* Stanford stack Stanford wiki Telomere*

original prediction error 4.37 28.40 10.02 8.26 0.273

prediction error
after filtering

Ŝr 2.40 12.26 3.52 5.57 0.139

Ŝa 2.16 13.28 3.20 2.79 0.126

Ŝg 2.76 12.88 2.52 3.19 0.143
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Appendix A. Proofs of theorems in Section 3

Proof [of Theorem 1] Note that

P(Sr(Xi, Yi) < Sr(X
′
i, Y

′
i )) =

󰁝󰁝

x>y
dGX′

i
(x)dFXi(y) =

󰁝 ∞

−∞

󰁝 x

−∞
dFXi(y)dGX′

i
(x)

=

󰁝 ∞

−∞
FXi(x)dGX′

i
(x).

If G stochastically dominates F in the third order, then EGU(x) ≥ EFU(x), for all nonde-
creasing, concave utility functions U that are positively skewed. Since FXi(x) is the CDF of
absolute value of the regression error, it is obviously nondecreasing and positively skewed.
To see FXi(x) is concave, note that

d2FXi(x)

dx2
=

dfXi(x)

dx
+

dfXi(−x)

dx
= 2

dfXi(x)

dx
≤ 0, for x > 0,

where fXi(x) is the density function of FXi(x) and the last inequality is from E(󰂃(x)) = 0
and is unimodal at 0. Thus, FXi(x) is a concave utility function and

󰁝 ∞

−∞
FXi(x)dGX′

i
(x) ≥

󰁝 ∞

−∞
FXi(x)dFXi(x) =

󰁝 1

0
xdx =

1

2
,

which complete the proof.

Proof [of Corollary 2] Under the assumption of Corollary 2, 󰂃i(Xi) ∼ N(0, 1), 󰂃(X ′
i) +

󰂃∗(X ′
i) ∼ N(a, 1). Thus

dGX′
i
(x) =

󰀝
1√
2π

e−
(x−a)2

2 +
1√
2π

e−
(x+a)2

2

󰀞
dx, dFXi(y) =

2√
2π

e−
y2

2 dy.

Denote

f(a) := P(Sr(Xi, Yi) < Sr(X
′
i, Y

′
i ))

=

󰁝 ∞

0

󰁝 x

0

󰀝
1√
2π

e−
(x−a)2

2 +
1√
2π

e−
(x+a)2

2

󰀞
2√
2π

e−
y2

2 dxdy

=
1

2

󰁵
2

π

󰁝 ∞

0

󰀝
e−

(x−a)2

2 + e−
(x+a)2

2

󰀞
Erf

󰀕
x√
2

󰀖
dx,

where Erf(z) = 2π−1/2
󰁕 z
0 e−t2dt is the error function. Note that f(0) = 1/2, we hope to

show

f(a)− f(0) =
1

2

󰁵
2

π

󰁝 ∞

0

󰀝
e−

(x−a)2

2 + e−
(x+a)2

2 − 2e−
x2

2

󰀞
Erf

󰀕
x√
2

󰀖
dx ≥ 0.
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A change of variable leads to
󰁝 ∞

0

󰀝
e−

(x−a)2

2 + e−
(x+a)2

2 − 2e−
x2

2

󰀞
Erf

󰀕
x√
2

󰀖
dx

=

󰁝 ∞

0

󰀝
e−

(x−a)2

2 + e−
(x+a)2

2 − 2e−
x2

2

󰀞󰁝 x√
2

0
e−t2dtdx

=
2√
π

󰁝 ∞

0
e−t2

󰁝 ∞

√
2t

󰀝
e−

(x−a)2

2 + e−
(x+a)2

2 − 2e−
x2

2

󰀞
dxdt

=
√
2

󰁝 ∞

0
e−t2

󰀝
2Erf(t)− Erf

󰀕
t− a√

2

󰀖
− Erf

󰀕
t+

a√
2

󰀖󰀞
dt

=
√
2

󰁝 ∞

0
e−t2

󰀫󰁝 t

t− a√
2

e−u2
du−

󰁝 t+ a√
2

t
e−u2

du

󰀬
dt.

Since
󰁕 t
t− a√

2

e−u2
du−

󰁕 t+ a√
2

t e−u2
du is always positive due to the monotonicity of e−u2

, which

implies f(a) − f(0) > 0. Thus P(Sr(Xi, Yi) < Sr(X
′
i, Y

′
i )) > 1/2. Furthermore, note that

lima→∞ 2Erf(t)− Erf
󰀃
t− a/

√
2
󰀄
− Erf

󰀃
t+ a/

√
2
󰀄
→ 2Erf(t) exponentially. Thus

√
2

󰁝 ∞

0
e−t2

󰀝
2Erf(t)− Erf

󰀕
t− a√

2

󰀖
− Erf

󰀕
t+

a√
2

󰀖󰀞
dt

→
√
2

󰁝 ∞

0
e−t22Erf(t)dt =

󰁵
π

2
,

which complete the proof.

Proof [of Corollary 3] For all δ > 0, note that

P(Ŝr(Xi, Yi) < Ŝr(X
′
i, Y

′
i ))

≥P(Ŝr(Xi, Yi) < Ŝr(X
′
i, Y

′
i ), 󰀂f̂ − f󰀂∞ ≤ δ)

=P(|f(Xi)− Yi + f̂(Xi)− f(Xi)| < |f(X ′
i)− Y ′

i + f̂(X ′
i)− f(X ′

i)|, 󰀂f̂ − f󰀂∞ ≤ δ)

≥P(|f(Xi)− Yi| < |f(X ′
i)− Y ′

i |− 2δ, 󰀂f̂ − f󰀂∞ ≤ δ)

≥P(|f(Xi)− Yi| < |f(X ′
i)− Y ′

i |− 2δ)− P(󰀂f̂ − f󰀂∞ > δ).

For the first term in the right hand side of last equation,

P(|f(Xi)− Yi| < |f(X ′
i)− Y ′

i |− 2δ) =

󰁝󰁝

x>y+2δ
dGX′

i
(x)dFXi(y)

=

󰁝 󰀥󰁝

x>y
−
󰁝

x∈(y,y+2δ)

󰀦
dGX′

i
(x)dFXi(y).

If GX′
i
or FXi is absolutely continuous, then

󰁝 󰀥󰁝

x>y
−
󰁝

x∈(y,y+2δ)

󰀦
dGX′

i
(x)dFXi(y) = o(1) as δ → 0.
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Under the assumption 󰀂f̂−f󰀂∞
p→ 0, P(󰀂f̂−f󰀂∞ > δ) = o(1) for all δ > 0, which complete

the proof.

Proof [of Theorem 4] The proof is straight forward since

P(Ŝa(Xi, Yi) < Ŝa(X
′
i, Y

′
i ))

=P

󰀣
Ŝr(X

′
i, Y

′
i )

û(X ′
i) + σ̂(X ′

i)
≤ Ŝr(Xi, Yi)

û(Xi) + σ̂(Xi)

󰀤
= P

󰀕
Ŝr(X

′
i, Y

′
i ) ≤

û(X ′
i) + σ̂(X ′

i)

û(Xi) + σ̂(Xi)
Ŝr(Xi, Yi)

󰀖

≥P
󰀓
Ŝr(X

′
i, Y

′
i ) ≤ Ŝr(Xi, Yi)

󰀔
= P(Ŝr(Xi, Yi) < Ŝr(X

′
i, Y

′
i )).

Appendix B. Benchmark Details

For each dataset, we have a given label representing the noisily-measured response variable
typically available in real-world datasets, and a true label representing a higher fidelity
approximation of the true Y value one wishes to measure. The true label would be unavail-
able for most datasets in practice and is here solely used for evaluation of different error
detection methods. To determine which datapoints should be considered truly erroneous
in a particular dataset, we conducted a histogram and Gaussian kernel density analysis
of true label - given label in each dataset, and identified where these deviations became
atypically large. Below we list some additional details about each dataset.

Air Quality dataset: This benchmark dataset is a subset of data provided by the UCI
repository at https://archive.ics.uci.edu/ml/datasets/air+quality. The covariates
include information collected from sensors and environmental parameters, such as temper-
ature and humidity, and we aim to predict the CO gas sensor measurement. The true label
is collected using a certified reference analyzer. While the given label is collected through
an Air Quality Chemical Multisensor Device, which is susceptible to sensor drift that can
affect the sensors’ concentration estimation capabilities.

Metaphor Novelty dataset: This dataset is derived from data provided by http:

//hilt.cse.unt.edu/resources.html. The regression task is to predict metaphor novelty
scores given two syntactically related words. We have used FastText word embeddings to
calculate vectors for both words available in the dataset. The true label is collected using
expert annotators, and the given label is the average of all five annotations collected through
Amazon Mechanical Turk.

Stanford Politeness Dataset (Stack edition): This dataset is derived from data
provided by https://convokit.cornell.edu/documentation/stack_politeness.html.
The regression task is to predict the level of politeness conveyed by some text, in this case
requests from the Stack Exchange website. The given label is randomly selected from one
of five human annotators that rated the politeness of each example, while the median of
all five annotators’ politeness ratings is considered as the true label. As covariates for our
regression models, we use numerical covariates obtained by embedding each text example
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via a pretrained Transformer network from the Sentence Transformers package Reimers and
Gurevych (2019).

Stanford Politeness Dataset (Wikipedia edition): This dataset is derived from
data provided by https://convokit.cornell.edu/documentation/wiki_politeness.html.
The regression task, feature embeddings, given label, and true label are the same as those in
the Stanford Politeness Dataset (Stack edition), but here the text is a collection of requests
from Wikipedia Talk pages.

qPCR Telomere: This dataset is a subset of the dataset generated through an R
script provided by https://zenodo.org/record/2615735#.ZBpLES-B30p. It is a simple
regression task where independent covariates are taken from a normal distribution, and the
true label is generated by f(xi). The given label is defined as true label + error. While this
is technically a simulated dataset, the simulation was specifically aimed to closely mimic
data noise encountered in actual qPCR experiments.

Appendix C. Additional Benchmark Comparisons

For more comprehensive evaluation, we additionally compare against a number of other
model-agnostic baseline approaches to detect errors in numeric data. Each baseline here
produces a veracity score which can be used to rank data by their likelihood of error, as
done for our proposed methodology.

We evaluated these alternative scores following the same procedure (same metrics and
datasets) from our real dataset benchmark. No data filtering procedure was applied for
any of these methods, models were simply fit via K-fold cross-validation to produce out-
of-sample predictions for the entire dataset, which were then used to compute veracity
scores under each approach. Table 8 below shows that none of these alternative methods
are consistently superior to the straightforward residual veracity score studied in our other
evaluations.

Here are descriptions of the baseline methods we considered as alternative veracity
scores:

Relative Residual. This baseline veracity score is defined as:

exp

󰀣
− |y − ŷ|

|y|+ 󰂃

󰀤
(2)

where 󰂃 = 1e − 6 is a small constant for numeric stability. The relative residual rescales
the basic residual by the magnitude of the target variable Y , since values of Y with greater
magnitude are often expected to have larger residuals.

Marginal Density. This baseline veracity score is defined as: p̂(y), the (estimated) den-
sity of the observed y value under the marginal distribution over Y . Here we use kernel
density estimates, and this approach does not consider the feature values X at all. The
marginal density score is thus just effective to detect Y values that are atypical in the overall
dataset (i.e. overall outliers rather than contextual outliers).

Local Outlier Factor. This baseline veracity score attempts to better capture datapoints
which have either high residual or low marginal density, since either case may be indicative
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of an erroneous value. First we form a 2D scatter plot representation of the data in which
one axis is the residual: |ŷ−y| and the other axis is the original y-value. Intuitively, outliers
in this 2D space correspond to the datapoints with abnormal residual or y-value. Thus we
employ the local outlier factor (LOF) score to quantify outliers in this 2D space, employing
this as an alternative veracity score (Breunig et al., 2000).

Outlying Residual Response (OUTRE). This baseline veracity score is similar to the
Local Outlier Factor approach above, and identifies outliers in the same 2D space in which
each datapoint is represented in terms of its residual and y-value. Instead of the LOF score,
here we score outliers via their average distance to the k-nearest neighbors of each datapoint
Kuan and Mueller (2022b), and use the inverse of these distances as an alternative veracity
score.

Discretized. This baseline veracity score is defined by reformulating the regression task
as a classification setting, and then applying methods that are effective to detect label
errors in classification. More specifically, we discretize the y values in the dataset into 10
bins (defined by partioning the overall range of the target variable). For each bin k, we
construct a model-predicted ”class” probability for that bin proportionally to: exp(−|ŷ−ck|)
where ck is the center of bin k. After renormalizing these probabilities to sum to 1 over
k, this offers a straightforward conversion of regression model outputs to predicted class
probabilities if the bins are treated as the possible values in a classification task. Finally,
we apply Confident Learning with the self-confidence veracity score to produce a veracity
score for each datapoint Northcutt et al. (2021); Kuan and Mueller (2022a). This approach
uses the given class label (identity of the bin containing each yi) and model-predicted class
probabilities to identify which datapoints are most likely mislabeled.

Table 8: Evaluation of alternate scoring methods across various metrics. The results are
reported as the average across all datasets and across all models, as discussed in
Section B.

scoring method AUPRC AUROC lift at 100 lift at num errors

residual 0.42 0.71 5.78 4.96

relative residual 0.36 0.66 4.61 4.32

marginal density 0.19 0.57 0.58 1.47

local outlier factor 0.20 0.64 1.99 2.03

OUTRE 0.42 0.73 5.76 4.97

discretised 0.31 0.66 4.85 3.01
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