
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SELECT: SEARCH-ENHANCED LANGUAGE MODELS
FOR ANALOG CIRCUIT TOPOLOGY GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Automating analog circuit topology design is essential to reduce the extensive
manual effort required to meet increasingly diverse and customized application
demands. Recent advances have applied sequence-to-sequence fine-tuning on
pretrained language models to directly generate circuit topologies from user speci-
fications in a single pass. However, these one-shot generation methods failed to
generate complex circuits due to their exponentially growing search spaces and
limited training datasets. In this paper, we present SELECT, a search-enhanced
language model framework that integrates simulator-guided Monte Carlo Tree
Search (MCTS) with transformer-based decoding to use test-time computation
for improved performance. SELECT introduces novel structural token pruning
and P-UCB-based node selection to leverage next-token probability distributions
to guide the search process. By combining pretrained priors with simulator feed-
back at inference time, SELECT converges faster than prior search methods and
achieves significantly higher generation success rates, improving by up to 435%
over RL-based search and 145% over LaMAGIC under a strict tolerance of 0.01.
These results establish SELECT as the first scalable framework for complex ana-
log topology generation and a practical step toward LLM-driven circuit design
automation. Code and data are available below 1.

1 INTRODUCTION

of Topology Search Space

1E+00
1E+01
1E+02
1E+03
1E+04
1E+05
1E+06
1E+07
1E+08
1E+09
1E+10

3 4 5 6 7

N
um

be
r o

f I
so

m
or

ph
ic

To

po
lo

gi
es

Number of Components in Circuit

of Collected Topologies

Figure 1: Exponential growth of topology
space for circuits with four component types.
As the number of components increases, the
possible isomorphic topologies expand com-
binatorially Fan et al. (2024), while the set of
practically collected topologies Chang et al.
(2024) remains limited, leading to an increas-
ingly sparse coverage of the design space.

Analog circuit topology design sits at the heart of
modern electronic systems, enabling everything from
efficient power conversion to high-speed signal pro-
cessing. As device requirements proliferate, varying
voltage-conversion ratios, efficiency targets, and per-
formance specifications, the burden on designers to
craft bespoke topologies grows heavier. Traditional
workflows remain largely manual, demanding exten-
sive domain expertise and hundreds of simulation
iterations per new requirement, which in turn pro-
longs development cycles and delays time-to-market.
To meet these challenges, automating the topology
design process has become essential: by embedding
search and learning methods directly into the design
flow, engineers can rapidly explore vast design spaces,
reduce iteration counts, and accelerate the creation of
optimized analog circuits.

Early works (Fan et al. (2021); Zhao and Zhang
(2022); Lu et al. (2023)) leverage reinforcement learn-
ing (RL) or Bayesian optimization to discover valid
topologies using simulation feedback. These methods reduce evaluation costs and produce functional
designs, but suffer from two key limitations: (1) they must restart search or retrain policies for every

1anonymous code release.

1

https://anonymous.4open.science/r/SELECT_ICLR-B769/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

new specification, and (2) they have only demonstrated success on small, relaxed 3–5 component cir-
cuits. Without access to prior knowledge across tasks, such methods remain inefficient and unscalable
for practical usage.

LaMAGIC (Chang et al. (2024)) reframed topology generation as a sequence-to-sequence problem
for autoregressive language models, introducing several text-based circuit formulations. Trained on
a corpus of 132k 345 component converter topologies, LaMAGIC achieved strong results within
this regime. However, as Figure 1 illustrates, the topology search space grows exponentially with
component count. At six components, a good dataset coverage becomes impractical: with an average
simulation time of 9 seconds per topology, enumerating the full design space would require over 2000
CPU-days. Consequently, LaMAGIC Chang et al. (2024) struggles to transfer knowledge from 345
components to six, and scaling further to complex circuits with 8–10 components becomes infeasible.
This gap underscores the need for a new paradigm: one that integrates search as a core component of
generation and enables efficient dataset collection for higher-complexity circuits. Building on this
insight, our work aims to answer the research question: how can analog topology generation scale
beyond small 3–5 component classroom-level circuits to complex designs with 8–10 components?

In this work, we introduce SELECT, a search-enhanced framework for automated analog topol-
ogy generation that integrates simulator-guided Monte Carlo Tree Search (MCTS) with pretrained
language-model decoding. To the best of our knowledge, SELECT is the first to incorporate search-
based decoding into analog circuit generation. We develop a novel MCTS algorithm based on a
text-based circuit representation. Our method integrates MCTS to text-based circuit representations
by leveraging the LM’s beam search and next-token probabilities to guide expansion, rather than
exploring the design space uniformly. At each step, we restrict expansion to the top-k most probable
tokens, shrink redundant structural tokens, and employ a lookahead planner with simulator feedback
whose rewards are backpropagated through the tree. By using the transformer’s learned priors and
the simulator feedback, SELECT converges faster than the prior search-based methods and leads
to higher generation success rates than standard decoding methods. Experimental results show that
SELECT achieves a 435%, 145% higher success rate under a low tolerance of 0.01 compared to an
RL-search method Fan et al. (2021) and LaMAGIC Chang et al. (2024) with sampling and filtering at
the same search budget. Our work also, for the first time, shows the scalability challenge on 7,8,9,10
component circuits by enhancing the existing dataset to higher complex components.

Beyond performance gains, SELECT also addresses the problem of scalability and demonstrates a path
to generate complex analog circuit topologies. For the first time, we extend analog topology generation
to 7–10 component circuits, enhancing the existing corpus with a large, high-quality collection of
six-component topologies obtained through our MCTS-based framework. This unprecedented dataset
substantially broadens coverage of realistic analog circuits, establishing the largest and most complex
benchmark to date. By enabling generation on circuits well beyond the 3–5 component range of prior
datasets Chang et al. (2024), SELECT demonstrates clear scalability trends toward higher-complexity,
real-world analog topologies, setting a new standard for practical analog design automation.

2 PRELIMINARIES

2.1 ANALOG TOPOLOGY DESIGN

VIN

VOUT

Inductor

Capacitor
GND

Phase-IIPhase-I

Switches
VIN

L

Sa Sb

GND

VOUT C

(a) (b)

Figure 2: (a) An example power converter cir-
cuit and (b) its corresponding graph representation.
(Chang et al. (2024)).

In this work, we address the same problem as
LaMAGIC Chang et al. (2024): generating cus-
tomized power converters that meet specific volt-
age conversion ratios and efficiency targets.

The voltage conversion ratio is the output-to-
input voltage ratio, while power conversion ef-
ficiency is the output-to-input power ratio. The
duty cycle (a number between 0-1) is a de-
sign parameter, which controls the ON time of
switches, affecting performance. We use five
discrete duty cycles: 0.1, 0.3, 0.5, 0.7, 0.9.

We represent circuits as hypergraphs G with vertices V and hyperedges E. Vertices include three
terminals (input VIN, output VOUT, and ground GND) and four component types (capacitors C,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

inductors L, and switches Sa, Sb). Hyperedges define connections between components and terminals.
Figure 2 shows an example converter with its hypergraph representation.

Problem Statement: Given vertices V , target conversion ratio r, and efficiency η, our model
generates connections E and selects duty cycle s to create a circuit meeting both performance
requirements.

2.2 SEARCH-BASED METHODS

Previous search-based methods primarily rely on reinforcement learning (RL) and Monte Carlo
Tree Search (MCTS) tailored to specific circuit tasks. For example, Fan et al. (2021) models power
converter design as a sequential decision process using a UCT-based RL tree with physics-guided
pruning, achieving up to 67% fewer SPICE calls than genetic or random search. Zhao and Zhang
(2022) applies deep RL to op-amp synthesis, combining symbolic analysis and memorization to
converge to feasible designs within hours, significantly faster than graph-grammar engines, but
requiring retraining for each circuit class. Lu et al. (2023) integrates variational autoencoders with
Bayesian optimization, where BO serves as a principled search strategy to identify spec-compliant
topologies more efficiently than traditional methods. Despite these advances, existing approaches
still require a fresh search or policy retraining for every new specification, underscoring the need for
a more reusable and generalizable generative solution.

2.3 LANGUAGE MODEL-BASED METHODS

AnalogCoder (Lai et al. (2024)) leverages prompt engineering in task-agnostic LLMs to iteratively
optimize circuit designs through simulation feedback. However, it lacks the ability to tailor formula-
tions for direct specification-to-topology mapping. To address this limitation, LaMAGIC (Chang et al.
(2024)) employs SFT with custom circuit formulations to achieve precise specification-to-topology
generation. LaMAGIC represents circuit topologies as hypergraphs where components form nodes
and their connections form edges. Similarly, CktGNN (Dong et al. (2023)) employs adjacency
matrices together with a graph variational autoencoder (VAE) to generate analog topologies like
operational amplifiers. AnalogGenie (Gao et al. (2025)) uses Eulerian circuits representation and
focuses on optimizing analog circuit performance by combining with a genetic sizing algorithm.
However, these approaches remain confined to one-shot generation, relying on limited training data
and handcrafted knowledge distillation. As circuit complexity increases, the design space grows
combinatorially, making one-shot strategies insufficient. In this work, our SELECT method advances
analog topology generation along a disentangled direction: it leverages text-based formulations from
prior works but uses the learned model knowledge to guide an inference-time search process, enabling
scalable exploration of complex design spaces and achieving higher success rates and performance.

3 COMPLEX POWER CONVERTER TOPOLOGY DATASET CONSTRUCTION

The lack of sufficiently large analog circuit datasets continues to hinder the development of AI-based
generative methods that aim to automate the design of analog ICs. Some datasets have been presented
in previous works, such as AnalogGenie Gao et al. (2025), Align Kunal et al. (2019), CktGNN Dong
et al. (2023), and AMSNet Tao et al. (2024). However, they focus on covering diverse circuits
with only thousands of examples per circuit type. This limited sample size prevents models from
learning internal dynamics of complex circuits. Instead, we focus specifically on power converters,
emphasizing complex circuit topologies to help models acquire deeper analog knowledge. However,
scaling to higher-component circuits presents several challenges: (1) more components require larger
training datasets due to increased task complexity, (2) more components increase the likelihood of
generating invalid or useless topologies(e.g. low efficiency circuit), and (3) random arrangements
become increasingly unlikely to produce efficient converters as complexity grows.

To address this gap, we make two contributions. First, to demonstrate scalability, we extend the
data collection pipeline to build 7–10 component datasets, establishing the largest and most complex
corpus of analog power converter topologies to date. This unprecedented dataset substantially
broadens coverage of realistic analog circuits, setting a new benchmark for generative analog design
research. Second, we construct a dataset of 350k six-component power converter topologies, in
addition to the 120k 3–5 component circuits from LaMAGIC Chang et al. (2024), by leveraging the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(a) Text-based Circuit Formulation – (LAMAGIC-FM)

LM input:
Duty cycle options 0.1 0.3 0.5 0.7 0.9, voltage conversion ratio 0.85973, efficiency 0.93273, vertex order: <VIN> <VOUT> <GND> <Sa0> <Sa1> <C0> <L0>

LM Output:
Duty cycle: <unselect> <unselect> <select> <unselect> <unselect> <sep> Connections: <VIN> <no_edge> <no_edge> <no_edge> <edge_1> <no_edge>

<no_edge> <no_edge> <VOUT> <no_edge> <no_edge> <no_edge> <no_edge> <no_edge> <edge1> <edge_1> <GND> <no_edge> <no_edge> <no_edge>

<no_edge> <edge_1> <edge_1> <no_edge> <Sa> <edge_1> <no_edge> <no_edge> <no_edge> <edge_2> <edge_2> <no_edge> <Sa> <no_edge> <no_edge>

<edge_1> <edge_2> <no_edge> <edge_1> <edge_2> <C> <no_edge> <edge_1> <edge_2> <no_edge> <edge_2> <no_edge> <edge_1> <L> <no_edge>

<edge_1> <no_edge> <no_edge> <edge_2> <edge_1> <sep>

Selection Expansion Evaluation

Provide next action

candidate, and its

token probability (p)

Backpropagation

<structural_token>

(b) SELECT Framework

s0

a1

<select>

a2

<unselect>

p=0.71 p=0.22

<select>

p=0.0001

p-filtering

s0

a1

<select>

a2

<unselect>

<unselect>

p=0.999

<VIN> s1

<no_edge> <edge_1>

p=0.34 p=0.11

s0

a1

<select>

a2

<unselect>

<unselect>

<VIN> s1

<no_edge> <edge_1>

p=0.34 p=0.11

Simulator

Duty cycle: … <VIN>

<no_edge> …<VOUT>

… <GND> … <sep>

Query
Topology

Dataset
New

Topology!

Generate

complete

topology

Language

Model

s0

a1

<select>

a2

<unselect>

<unselect>

<VIN> s1

Tree-search algorithm

Reward = 0.98

P-UCB node selection

Figure 3: (a) A circuit example of float-input adjacency-based matrix formulation for edge generation
task, highlighting its inefficiency due to structural tokens. (b) Illustration of the SELECT framework
pipeline through a step-by-step example of leveraging an MCTS algorithm to guide the Transformer
generation for analog circuit topology.

trained LaMAGIC model together with our SELECT framework to collect a high-quality dataset.
The advantages of this search-based data collection pipeline are detailed in Section 6.4.

4 ANALYSIS OF EXISTING TEXT-BASED CIRCUIT FORMULATION

LaMAGIC Chang et al. (2024), a language model-based topology generation framework for automated
analog circuit design, introduced three text-based formulations for circuit generation. Among these,
the float-input adjacency-matrix formulation (FM) achieved the best MSE results on 6-component
circuits. This section examines the use of FM in our search-based methods and analyzes its corre-
sponding challenges.

Float-input adjacency-matrix formulation (FM). As shown in Figure 3 (a), FM represents circuit
connections as an adjacency matrix for hypergraph, where rows and columns are indexed based on
the vertex order given in the input. Distinct tokens <no edge>, <edge 1>, <edge 2>, and <both edges>
represent the presence or absence of connections between vertices. While this formulation helps the
model to learns better and generalize well in complex circuits, it brings challenges to integrate this
method in a search-based framework.

Limitations. (1) Incompatibility with traditional search methods: Conventional search algorithms
traverse circuit topologies by incrementally connecting components with edges. In contrast, FM
and other adjacency-matrix formulations operate differently. At each decoding step, they provide
probabilities for only four edge connection types between component pairs. This fundamental
mismatch means traditional search heuristics cannot be directly applied, necessitating a new search
algorithm for search-enhanced language model generation.

(2) Redundant structural tokens. Structural tokens are the tokens that are used to maintain the
circuit formulation legality without introducing any changes to the target circuit topology. As
highlighted in Figure 3 (a), more than half of the tokens in FM formulations are structural tokens.
While this formulation generalizes well in complex circuits, it introduces significant inefficiencies in
search-based methods.

5 SEARCH-ENHANCED LANGUAGE MODEL FRAMEWORK

As illustrated in Figure 3 (b), our SELECT framework integrates MCTS with transformer-based LMs
to enhance circuit generation. This approach leverages simulator feedback to guide the search process
while employing a Probability-guided Upper Confidence Bound (P-UCB) algorithm that incorporates

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

LLM token probabilities to balance exploration and exploitation during node selection. To address
the inefficiency caused by structural tokens in the circuit formulation, we introduce p-filtering, a
novel technique that prevents structural tokens from consuming additional search budget. In the
following sections, we detail each component of our framework and explain how they work together
to produce an efficient search-guided language generation system for circuit design.

5.1 MCTS-BASED TOKEN GENERATION

Algorithm 1 MCTS-based token generation

Require: root: initial state; c: UCB exploration parameter;
1: k: max children per node; b: beam search width;
2: p: threshold for structural token filtering

Ensure: Best sequence from MCTS
3: Initialize tree with root node
4: for i = 1 to max_rollouts do
5: node← root ▷ Selection
6: while node has children do
7: node← Select child using UCB
8: end while
9: while len(node.top-p tokens)==1 do ▷ p-filtering

10: node← CONCAT(node,next_tokens)
11: end while
12: next_tokens← top-k tokens ▷ Expansion
13: for all token ∈ next_tokens do
14: Add new child node for token to tree
15: end for
16: sequence← Perform beam search ▷ Evaluation
17: r ← Obtain reward via simulation
18: Backpropagate(node,r) ▷ Backpropagation
19: end for
20: return sequence with highest reward

We propose a transformer generation
algorithm that integrates with Monte
Carlo Tree Search (MCTS) to perform
lookahead planning over partial cir-
cuit topologies. While the tree-search
structure alone is not efficient enough
to tackle the high search space that
exists in analog topology, so the tra-
ditional beam search algorithm and
the token probability suggested by the
pre-trained language model served as
a good guide for the next exploration
data point to guide the search process.

The overall procedure is summarized
in Algorithm 1 and visualized in Fig-
ure 3. In the following sections, we
detail how transformer-learned token
probabilities are integrated into each
phase of the MCTS process to enable
efficient and informed structural ex-
ploration in analog topology genera-
tion.

Selection. We use an Upper Con-
fidence Bound (UCB) strategy to
choose which node to explore next,
balancing exploitation and exploration via a tunable parameter c. A higher c encourages broader
search. Our variant incorporates token probabilities from the language model to guide selection
toward likely and underexplored continuations.

Expansion. After selecting a node, we first apply p-filtering to check whether the top-p distribution
is dominated by structural tokens, which often exhibit high top-1 probabilities. If so, we concatenate
them directly to avoid consuming rollout budget on uninformative branches. Once non-structural
tokens are available, we apply top-k sampling to generate multiple child nodes, each representing an
extended partial topology.

Evaluation. Since partial topologies cannot be directly simulated, we use beam search to complete
the sequence from the current node, using a predefined prefix and beam width b. The completed
topology is then evaluated with NGSPICE to obtain circuit-level performance metrics such as output
voltage and efficiency. These are used to compute a reward, which is assigned to the node and
backpropagated to update the values of all its ancestors in the tree.

6 EXPERIMENTAL RESULTS

6.1 EXPERIMENT SETUP

Baseline algorithms. We compare SELECT with four decoding baselines. Greedy denotes the one-
shot generation method applying in LaMAGIC. Beam Search uses Transformer beam search (beam
size 20) without any simulator feedback. Sampling and filtering (S+F) generates a set of topologies
using the Transformer sampling algorithm (temperature 1.2). Then, it simulates each topology to
measure vout and efficiency, and the candidate closest to the target is returned. To avoid selecting

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

invalid tokens to break the circuit formulations, we use the top-k sampling with k=3, meaning at
each decoding step the transformer only samples from the three most likely tokens. This mirrors
AlphaCode(Li et al. (2022)) implementation as well as a baseline in Zhang et al. (2023). MCTS-Base
is our MCTS variant that uses UCB for node selection but ignores LLM token probabilities, i.e. it
treats all equal-count children uniformly. This isolates the benefit of LLM-guided priors. In addition
to different decoding algorithms, we compare with RL-Search, a prior work (Fan et al. (2021)) that
uses an RL search algorithm for power converter generation. They need to run a simulator for each
query to give feedback to the RL engine. We set the query budget to 100 per input specification.

Models and datasets. Large amount of data for circuits with a higher number of components can
be difficult to obtain. To reuse existing knowledge, similar to the LaMAGIC’s setting, we extend
models trained with 3,4,5-components to be finetuned with 1k and 32k 6-component circuits and
leverage our decoding algorithm to evaluate. We follow LaMAGIC (Chang et al. (2024)) to use an
encoder-decoder transformer structure with Flan-T5-base pretrained weights. We add a shared linear
layer to replace the word embedding layer for numeric inputs. We train the model via conditional
generation to learn the mapping between input-output pairs. Model trained with n samples using FM
formulation is denoted as FM-n.

Evaluating the full 7k LaMAGIC validation set is computationally expensive and inefficient, as it
includes numerous low-performing circuits (with low conversion ratios and efficiencies). Instead,
we construct two subsets from the original validation set: 6-comp-easy, consists of 100 randomly
selected samples, and 6-comp-hard, consists of 100 high-performance samples chosen with highest
efficiency across various conversion ratios. A detailed selection decision and visualization of the
validation dataset is provided in Section D.2.

Evaluation metrics. Our primary evaluation metric is success rate, which is the percentage of
generated circuits that satisfy the preset performance target (v∗, e∗). For each target pair (v∗, e∗) and
a search budget n, the method generates up to n candidate circuits and retains the best-performing
sample. A circuit is considered successful if its simulated voltage conversion ratio and efficiency
(v, e), obtained using NGSPICE Nenzi and Vogt (2011), both fall within a tolerance t of the target
outputs (v∗, e∗):

|v − v∗| ≤ t and |e− e∗| ≤ t.

We report two variants: (1) tolerance-based success rate, with t ∈ {0.01, 0.02, . . . , 0.10}, and (2)
iteration-wise success rate, which tracks success under strict tolerance (t = 0.01) as the number
of generated candidates increases. Candidate circuits that fail to compile or simulate are counted
as failures. In addition, we report mean squared errors (MSEs) for voltage conversion ratio and
efficiency to quantify deviation magnitudes among valid circuits.

0.02 0.04 0.06 0.08 0.10
Tolerance

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Su
cc

es
s r

at
e

Dataset: 6-comp-easy

RL
S+F-FM-32k
LAMAGIC-FM-1k
LAMAGIC-FM-32k
Ours-FM-1k
Ours-FM-32k

(a) Tolerance sweep on 6-comp-
easy.

0 20 40 60 80 100
Iterations

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

Su
cc

es
s r

at
e

t=
0.

01

Dataset: 6-comp-easy

RL
S+F-FM-32k
Ours-FM-1k
Ours-FM-32k

(b) Iteration progression at t =
0.01.

Figure 4: Comparison of success rates on voltage conversion tasks. We evaluate (i) an RL-search
baseline Fan et al. (2021), (ii) one-shot LAMAGIC Chang et al. (2024), and (iii) our MCTS-guided
search approach. Experiments are run on the 6-component-easy benchmark, averaging over 100
independent trials. (a) shows how tolerant thresholds affect final success, while (b) tracks convergence
speed at a stringent tolerance of t = 0.01.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Method # Train Data
Success Rate (t = 0.01) MSE (Voltage)

6-comp-easy 6-comp-hard 6-comp-easy 6-comp-hard

RL-Search – 0.37 0.17 0.04384 0.01331
LAMAGIC 1 000 0.22 0.06 0.33058 0.21891
Sampling + Filter 1 000 0.70 0.33 0.02162 0.00702
MCTS-Base 1 000 0.62 0.17 0.00441 0.01538
Ours (c=4) 1 000 0.89 0.52 0.00097 0.00150

LAMAGIC 32 000 0.41 0.18 0.19547 0.26231
Sampling + Filter 32 000 0.96 0.51 0.02069 0.00388
MCTS-Base 32 000 0.67 0.31 0.02902 0.00824
Ours (c=4) 32 000 0.89 0.74 0.00005 0.00037

Table 1: Success rates and MSEs measured on voltage for RL-Search Fan et al. (2021), one-shot
LaMAGIC Chang et al. (2024), sampling+filter, MCTS-Base, and our method, at two training-data
budgets.

Method # Train Data
Success Rate (t = 0.01) MSE (Voltage) MSE (Efficiency)

6-comp-easy 6-comp-hard 6-comp-easy 6-comp-hard 6-comp-easy 6-comp-hard

Greedy 1 000 0.21 0.05 0.33 0.22 0.16 0.28
Beam Search 1 000 0.41 0.13 0.033 0.043 0.022 0.029
Sampling + Filter 1 000 0.70 0.20 0.0216 0.0070 0.0053 0.0081
MCTS-Base 1 000 0.62 0.17 0.0044 0.0154 0.0016 0.0093
Ours (c=4) 1 000 0.83 0.52 0.00016 0.00150 0.00057 0.00135

Greedy 32 000 0.37 0.12 0.195 0.262 0.165 0.174
Beam Search 32 000 0.51 0.32 0.025 0.027 0.013 0.023
Sampling + Filter 32 000 0.70 0.33 0.022 0.007 0.005 0.008
MCTS-Base 32 000 0.67 0.31 0.029 0.008 0.005 0.010
Ours (c=4) 32 000 0.84 0.65 0.00006 0.00029 0.00003 0.00019

Table 2: Performance at threshold t = 0.01 for both 1 k and 32 k training–data budgets. All methods
use up to 100 Transformer generations.

6.2 GENERATION RESULTS ON 6-COMPONENT CIRCUIT

Comparison with RL-Search method. We run the RL-search method (Fan et al. (2021)) for two
days to obtain all specifications from our testing set for 6-comp-easy, 6-comp-hard. Since this work
only constrains the voltage conversion ratio in topology generation, we evaluate the performance on
success rates and the MSE only with voltage conversion ratios. As shown in Figure 4a and Table 1,
our search-enhanced methods largely outperform RL-search baselines and the one-shot generation
methods, with a success rate of 0.37 (RL) and 0.91 (Ours) when using the FM-32k model on a tight
tolerance of 0.01 on dataset: 6-comp-easy.

Comparison with other decoding algorithms. For a fair comparison, we evaluate the best topology
found by the different decoding algorithms when they use the same number of Transformer gen-
erations. The experiments are run on both 6-comp-easy and 6-comp-hard, and the success rate is
evaluated on both voltage and efficiency.

Results are shown in Table 2. Our method consistently outperforms all the other baselines on
both validation datasets for various tolerance thresholds. The advantages of our methods are more
evident on 6-comp-hard dataset where a greater performance gain is observed. Overall, these results
confirm that our algorithm indeed generates better topologies for the target voltage and efficiency.
Specifically, S+F uses the same number of transformer generations. while their performance is overall
outperformed by SELECT. Comparing with MCTS-Base, this confirms that the LLM probability
guidance is crucial in the node selection stage. A runtime breakdown for our framework is also
provided in Table 5c.

To illustrate the exploration efficiency of various decoding methods, Figure 5b plots the strict-
tolerance success rate (t=0.01) as a function of iteration count. For SELECT, we fix the top-k
sampling budget at k=3 with a single beam (b=1) and sweep the P-UCB exploration constant c.
We observe that c =1 yields faster gains in the very early iterations, while a larger c (c=4) drives

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0.02 0.04 0.06 0.08 0.10
Tolerance

0.20

0.40

0.60

0.80
Su

cc
es

s r
at

e

Dataset: 6-comp-hard
Greedy-FM-1k
Beam-FM-1k
S+F-FM-1k
MCTS-Base-FM-1k
Ours-FM-1k

(a) 6-component tolerance sweep.

0 20 40 60 80 100
Iteration

0.0

0.1

0.2

0.3

0.4

Su
cc

es
s R

at
e

Dataset: 6-comp-hard

MCTS-Base
S+F-FM-1k
Ours-FM-1k (c=0.5)
Ours-FM-1k (c=1)
Ours-FM-1k (c=4)

(b) Iteration progression at t =
0.01.

Metric Avg Time
GPU gen. 0.19s
Sim (no cache) 10.18s
Sim (cached) 4.10s

Total time (n = 100) 9.22h

(c) Runtime illustration.

Figure 5: Comparison of success rates and runtime analysis. (a) Varying error tolerance shows
how lenient thresholds impact success rate. (b) Sweeping exploration constant c ∈ {0.5, 1, 4} with
pruning probability p = 0.99 shows its effect on convergence. (c) Average runtime breakdown and
total evaluation time on the 6-comp-hard benchmark for our SELECT framework. For the measured
total runtime under a search budget of n = 100, early stopping is applied: once a successful target is
found at iteration t, the search terminates without proceeding to t+ 1.

0.02 0.04 0.06 0.08 0.10
Tolerance

0.00

0.20

0.40

0.60

0.80

1.00

Su
cc

es
s r

at
e

Dataset: 7-comp-hard
SELECT
MCTS-Base
S+F
LAMAGIC(Greedy)

(a) 7-component tolerance sweep.

0.02 0.04 0.06 0.08 0.10
Tolerance

0.00

0.20

0.40

0.60

0.80

1.00

Su
cc

es
s r

at
e

Dataset: 8-comp-hard
SELECT
MCTS-Base
S+F
LAMAGIC(Greedy)

(b) 8-component tolerance sweep.

0.02 0.04 0.06 0.08 0.10
Tolerance

0.00

0.20

0.40

0.60

0.80

1.00

Su
cc

es
s r

at
e

Dataset: 9-comp-hard
SELECT
MCTS-Base
S+F
LAMAGIC(Greedy)

(c) 9-component tolerance sweep.

Figure 6: Comparison of generation results on validation sets with varying number of components (7
→ 9), for Greedy, Sampling + Filtering (S+F), MCTS-Base, and our SELECT methods.

more exploration and ultimately achieves the highest success. In contrast, without the LLM token
probability guidance, MCTS Baselines explores less effectively and converges to sub-optimal results
with other baseline sampling and filtering.

6.3 GENERATION RESULTS ON 7-9 COMPONENT CIRCUIT

To evaluate scalability on complex higher-component circuits, we retrain the baseline with 4K samples
(1K each from 6–9 components) and construct 7/8/9-comp-hard validation datasets. Detailed training
and validation setup is provided in Appendix C.1 and D.2.

From Figure 6, we observe that as the number of components increases from 7 to 9, all methods
experience some performance degradation to generate higher complexity circuits. Nevertheless,
our approach consistently outperforms all baselines across the 7/8/9 benchmarks, maintaining high
success rates. In particular, structured search methods (SELECT and MCTS-Base) clearly surpass
the S+F approaches, underscoring the importance of structured search in graph-generation tasks
such as circuit topology design. Table 3 provides the quantitative comparison: our method achieves
10×/13×/4× improvements over the greedy baseline on the 7/8/9 validation sets, and up to 100× lower
MSE in voltage targets and 43× lower MSE in efficiency targets.

Overall, the generation results on 7–9 component circuits support our claim that leveraging test-time
search enables our method to scale more effectively than baseline strategies as circuit complexity
increases, making it particularly suitable for higher-component designs and future large-scale circuits.
Results on 10-component circuits are further reported in Section C.2.1, demonstrating the feasibility of
generating valid 10-component topologies without any fine-tuning on 10-component data, highlighting
the robustness and generalization capability of our approach.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Method
Success Rate (t = 0.01) MSE (Voltage) MSE (Efficiency)

7-comp-easy 8-comp-hard 9-comp-hard 7-comp-easy 8-comp-hard 9-comp-hard 7-comp-easy 8-comp-hard 9-comp-hard

Greedy 0.02 0.02 0.04 0.763 0.904 0.906 0.338 0.348 0.377
Sampling + Filter 0.03 0.09 0.09 0.269 0.372 0.188 0.231 0.190 0.094
MCTS-Base 0.09 0.09 0.11 0.115 0.154 0.481 0.045 0.044 0.124
Ours (c=4) 0.21 0.26 0.16 0.125 0.009 0.046 0.024 0.008 0.027

Table 3: Performance at threshold t = 0.01 with varying number of components(7 → 9). All methods
use up to 100 Transformer generations.

6.4 MCTS AS AN EFFECTIVE DATA COLLECTION METHOD

0.25 0.00 0.25 0.50 0.75 1.00
Vout

0.0

0.2

0.4

0.6

0.8

1.0

Ef
f

Random Data

0.25 0.00 0.25 0.50 0.75 1.00
Vout

MCTS Data

100

101

102

103

Co
un

ts
 (l

og
 sc

al
e)

Figure 7: The Vout vs efficiency distribution of
our model collected dataset vs. random connection
generated dataset.

MCTS combined with generative models repre-
sents a powerful yet often overlooked approach
for high-quality data collection in complex de-
sign spaces. Traditional random generation
methods become exponentially ineffective as
design complexity grows, with the vast topol-
ogy search space severely diminishing the prob-
ability of discovering valid, high-performance
configurations. Our empirical analysis quanti-
fies this limitation: in a random generation of
10,000 6-component circuits, 66.13% exhibited
efficiency below 2%, rendering them practically
unusable for both application and training pur-
poses. In contrast, our MCTS-based approach
significantly mitigates this inefficiency problem,
reducing the proportion of low-performing circuits to just 18.2%. More importantly, our method
substantially enhances the discovery of high-quality designs, generating 23.27% of circuits with
efficiency exceeding 90%-nearly three times higher than the 8.3% achieved through random genera-
tion. The complete efficiency distribution illustrated in Figure 7 demonstrates this substantial quality
difference. This shows that beyond immediate circuit applications, our approach can facilitate an
efficient mechanism for collecting a high-quality dataset for automatic discovery of unconventional
topology and enable further training for the language models.

7 CONCLUSION

In this work, we propose SELECT, a search-enhanced language model framework for analog circuit
topology generation. SELECT addresses key limitations of prior methods by tightly integrating
simulator-guided Monte Carlo Tree Search (MCTS) with transformer-based decoding. Unlike
traditional search or language model approaches, SELECT capitalizes on both the learned priors
of pretrained models and the dynamic feedback of circuit simulators to navigate vast and complex
design spaces. Through a novel adaptation of the MCTS algorithm, we introduce techniques such
as P-UCB node selection, top-p expansion, and structural token filtering to better align with the
adjacency-matrix-based circuit formulations.

Extensive experiments across varying data regimes and difficulty settings confirm that SELECT
achieves significantly higher success rates and lower error metrics compared to prior RL-based
search methods and language model decoding strategies like sampling and filtering. Beyond topology
generation, we also demonstrate the utility of SELECT as a high-quality data collection engine for
scaling analog datasets in low-coverage regimes.

Future work includes extending SELECT to discover more efficient circuits, generalizing to more
complex analog designs, and developing search-friendly formulations to reduce structural token
overhead for more efficient search.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Chen-Chia Chang, Yikang Shen, Shaoze Fan, Jing Li, Shun Zhang, Ningyuan Cao, Yiran Chen, and
Xin Zhang. Lamagic: language-model-based topology generation for analog integrated circuits.
In Proceedings of the 41st International Conference on Machine Learning, ICML’24. JMLR.org,
2024.

Zehao Dong, Weidong Cao, Muhan Zhang, Dacheng Tao, Yixin Chen, and Xuan Zhang. Cktgnn:
Circuit graph neural network for electronic design automation. arXiv preprint arXiv:2308.16406,
2023.

Shaoze Fan, Ningyuan Cao, Shun Zhang, Jing Li, Xiaoxiao Guo, and Xin Zhang. From specification
to topology: Automatic power converter design via reinforcement learning. In 2021 IEEE/ACM
International Conference On Computer Aided Design (ICCAD), pages 1–9, 2021. doi: 10.1109/
ICCAD51958.2021.9643552.

Shaoze Fan, Haoshu Lu, Shun Zhang, Ningyuan Cao, Xin Zhang, and Jing Li. Graph-transformer-
based surrogate model for accelerated converter circuit topology design. In Proceedings of the 61st
ACM/IEEE Design Automation Conference, DAC ’24, New York, NY, USA, 2024. Association
for Computing Machinery. ISBN 9798400706011. doi: 10.1145/3649329.3656258. URL
https://doi.org/10.1145/3649329.3656258.

Jian Gao, Weidong Cao, Junyi Yang, and Xuan Zhang. Analoggenie: A generative engine for auto-
matic discovery of analog circuit topologies. In The Thirteenth International Conference on Learn-
ing Representations, 2025. URL https://openreview.net/forum?id=jCPak79Kev.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In Johannes Fürnkranz,
Tobias Scheffer, and Myra Spiliopoulou, editors, Machine Learning: ECML 2006, pages 282–293,
Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. ISBN 978-3-540-46056-5.

Kishor Kunal, Meghna Madhusudan, Arvind K Sharma, Wenbin Xu, Steven M Burns, Ramesh
Harjani, Jiang Hu, Desmond A Kirkpatrick, and Sachin S Sapatnekar. Align: Open-source analog
layout automation from the ground up. In Proceedings of the 56th Annual Design Automation
Conference 2019, pages 1–4, 2019.

Yao Lai, Sungyoung Lee, Guojin Chen, Souradip Poddar, Mengkang Hu, David Z. Pan, and Ping Luo.
Analogcoder: Analog circuit design via training-free code generation. CoRR, abs/2405.14918,
2024. URL https://doi.org/10.48550/arXiv.2405.14918.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code
generation with alphacode. Science, 378(6624):1092–1097, December 2022. ISSN 1095-9203. doi:
10.1126/science.abq1158. URL http://dx.doi.org/10.1126/science.abq1158.

Jialin Lu, Liangbo Lei, Jiangli Huang, Fan Yang, Li Shang, and Xuan Zeng. Automatic op-amp gen-
eration from specification to layout. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 42(12):4378–4390, 2023. doi: 10.1109/TCAD.2023.3296374.

Paolo Nenzi and Holger Vogt. Ngspice Users Manual Version 23, 2011. URL https:
//pkgs.fedoraproject.org/repo/extras/ngspice/ngspice23-manual.
pdf/eb0d68eb463a41a0571757a00a5b9f9d/ngspice23-manual.pdf. Accessed:
2023.

Zhuofu Tao, Yichen Shi, Yiru Huo, Rui Ye, Zonghang Li, Li Huang, Chen Wu, Na Bai, Zhiping Yu,
Ting-Jung Lin, et al. Amsnet: Netlist dataset for ams circuits. In 2024 IEEE LLM Aided Design
Workshop (LAD), pages 1–5. IEEE, 2024.

Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu Ding, Joshua B. Tenenbaum, and Chuang
Gan. Planning with large language models for code generation. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=Lr8cOOtYbfL.

10

https://doi.org/10.1145/3649329.3656258
https://openreview.net/forum?id=jCPak79Kev
https://doi.org/10.48550/arXiv.2405.14918
http://dx.doi.org/10.1126/science.abq1158
https://pkgs.fedoraproject.org/repo/extras/ngspice/ngspice23-manual.pdf/eb0d68eb463a41a0571757a00a5b9f9d/ngspice23-manual.pdf
https://pkgs.fedoraproject.org/repo/extras/ngspice/ngspice23-manual.pdf/eb0d68eb463a41a0571757a00a5b9f9d/ngspice23-manual.pdf
https://pkgs.fedoraproject.org/repo/extras/ngspice/ngspice23-manual.pdf/eb0d68eb463a41a0571757a00a5b9f9d/ngspice23-manual.pdf
https://openreview.net/forum?id=Lr8cOOtYbfL
https://openreview.net/forum?id=Lr8cOOtYbfL

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zhenxin Zhao and Lihong Zhang. Analog integrated circuit topology synthesis with deep reinforce-
ment learning. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
41(12):5138–5151, 2022. doi: 10.1109/TCAD.2022.3153437.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

APPENDIX INDEX

Appendix Index 12

A ICLR Statements 13
A.1 LLM Usage Statement . 13
A.2 Ethics Statement . 13
A.3 Reproducibility Statement . 13

B Further Explanation of methodologies 13
B.1 P-UCB node selection . 13

C Further Explanation of methodologies 15
C.1 Model training details and compute resources . 15
C.2 Ablation Studies . 15

D Existing Dataset Distribution 17
D.1 Overall Dataset . 17
D.2 Validation Dataset . 18

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A ICLR STATEMENTS

A.1 LLM USAGE STATEMENT

We used Large Language Models (LLMs) solely to polish the writing of this paper, such as improving
grammar, clarity, and readability. All technical content, experiments, analyses, and conclusions were
conceived, implemented, and validated entirely by the authors without reliance on LLMs.

A.2 ETHICS STATEMENT

This work focuses on automating analog circuit topology generation through language models and
Monte Carlo Tree Search. The research does not involve human subjects, sensitive personal data,
or security-critical systems. Our datasets consist entirely of synthetically generated circuits and
simulator outputs (NGSPICE), ensuring that no proprietary or private information is used. We adhere
to the ICLR Code of Ethics by maintaining transparency in data curation, simulation protocols, and
evaluation methodology. We believe this work poses minimal risk of harm and contributes positively
to the broader EDA and machine learning communities by advancing open, reproducible research for
sustainable semiconductor design automation.

A.3 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure reproducibility. All datasets, simulation settings, and evaluation
subsets (e.g., 6-comp-easy and 6-comp-hard) are fully described in Section 6.1 and Appendix D.2.
Implementation details for SELECT, including MCTS integration, node selection strategy, and
structural token pruning, are provided in Section 5. Experimental configurations, hyperparameters,
and ablation protocols are reported in Section 5. We also provide anonymous supplementary material
with source code and scripts for model training and SELECT and evaluation, enabling full replication
of our results.

B FURTHER EXPLANATION OF METHODOLOGIES

B.1 P-UCB NODE SELECTION

To guide exploration during tree traversal, we extend the standard Upper Confidence Bound
(UCB) Kocsis and Szepesvári (2006) strategy by incorporating the token probability predicted
by the language model. The P-UCB score for each child node is computed as:

exploration =

√
log(node.visit_count)
child.visit_count

, exploitation = child.value

score = exploitation+ c× exploration ∗ node.token_probability

where node.visit_count is the record of the number of times a node has been visited. node. to-
ken_probability is the token probability of transforming from the decoding of the last token in
the existing node. c is the hyperparameter for the exploration term to balance exploration and
exploitation in the existing tree search structure. In the selection phase, we always select the
child with best value. Intuitively, UCB Node Selection function would visit a child more of-
ten, if 1) the child has a better node.value, 2) the child has a higher token probability suggested
by the transformer, or 3) parent.visit_count is large while child.visit_count is low, meaning
the child is under-explored. In our experiment settings, we set c as 0.5, 1, 4. In the follow-
ing steps of Algorithm 1, the algorithm keep calling UCB_SELECT until we reach a root
node. it then expands the selected node and evaluates the node via simulator feedback. Fi-
nally, the reward r is backpropagated to its parent recursively until it reaches the root. The

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

value mechanism is node.value← max((node.value),r) for the current node and all of its ancestors.

Algorithm 2 P-UCB node selection

Require: node: the current node in the MCTS tree
1: c: exploration parameter

Ensure: Selected child node with the highest UCB score
2: function UCB_SELECT(node, c)
3: best_score← −∞
4: best_child← None
5: for child in node.children do
6: exploitation← child.value

7: exploration←
√

log(node.visit_count)
child.visit_count

8: score← exploitation+ c · exploration · node.token_probability
9: if score > best_score then ▷ Selection

10: best_score← score
11: best_child← child
12: end if
13: end for
14: return best_child
15: end function

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C FURTHER EXPLANATION OF METHODOLOGIES

C.1 MODEL TRAINING DETAILS AND COMPUTE RESOURCES

The Flan-T5-base model consists of 12 transformer layers in both the encoder and decoder. Each
layer includes key and value projections with a dimensionality of 64, a feed-forward network with a
hidden size of 2048, and employs 12 attention heads. Overall, the model contains approximately 248
million parameters.

To adapt the tokenizer for our specific application, we add custom tokens to its vocabulary. For the
SFM task, the following tokens are introduced: <sep>, <duty 0.1>, <duty 0.3>, <duty
0.5>, <duty 0.7>, <duty 0.9>, VIN, VOUT, GND, Sa, Sb, C, L, <no edge>, <edge 1>,
<edge 2>, and <both edges>.

Training is conducted on a machine equipped with eight NVIDIA A5000 GPUs. The language model
is trained over 30 epochs using the AdamW optimizer with an initial learning rate of 3× 10−4. A
cosine learning rate schedule is applied with 300 warmup steps. The batch size is set to 128, L2
regularization is applied with a strength of 10−5, and the dropout rate is set to 0.1.

C.2 ABLATION STUDIES

C.2.1 GENERATION RESULTS ON UNSEEN(UNTRAINED) 10-COMP CIRCUIT

0.02 0.04 0.06 0.08 0.10
Tolerance

0.00

0.02

0.04

0.06

Su
cc

es
s r

at
e

Dataset: 10-comp-hard
SELECT
MCTS-Base
S+F
LAMAGIC(Greedy)

(a) 10-component tolerance sweep.

Figure 8: Generation results on 10-comp circuit validation set, for Greedy, Sampling + Filtering
(S+F), MCTS-Base, and our SELECT methods.

To further assess the robustness of our search-based approach, we evaluate it on an unseen, untrained
10-component dataset. As expected, performance degrades and only a few valid circuits are generated.
Nevertheless, the results highlight two important observations: (1) even without pre-training, our
method is still able to generate higher-complexity circuits, suggesting a clear trend toward scalability
across different component counts and circuit types, even when such configurations are absent from
the training set; and (2) the relative performance advantage persists in this untrained regime, with
SELECT consistently remaining the top-performing method.

C.2.2 UCB SELECTION WITHOUT LLM PROBABILITY GUIDANCE

Within our tree structure framework, we incorporate probability guidance during node selection to
leverage the LLM’s capabilities in directing tree-based sampling. To validate the effectiveness of this
LLM-provided probability guidance, we conducted a comparative analysis by modifying the MCTS
baseline from standard UCB node selection to our version of P-UCB node selection. Figure 9 confirms
that the probability guidance from P-UCB is useful. However, our method still outperforms MCTS(P-
UCB) through the implementation of node shrinking, which effectively addresses the challenges

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100
Iterations

0.10

0.20

0.30

0.40

Su
cc

es
s r

at
e

t=
0.

01

Dataset: 6-comp-hard
MCTS-Base-FM-1k
MCTS(P-UCB)-FM-1k
Ours-FM-1k

Figure 9: Success rate of our method with MCTS (Baseline) and its MCTS(P-UCB) variants.

posed by structural tokens in circuit formulation. This advantage is particularly pronounced during
the early exploration iterations.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D EXISTING DATASET DISTRIBUTION

D.1 OVERALL DATASET

(a) 3–5 component dataset (LaMAGIC). (b) 6-component dataset (SELECT).

(c) 7-component dataset (SELECT). (d) 8-component dataset (SELECT).

(e) 9-component dataset (SELECT). (f) 10-component dataset (SELECT).

Figure 10: Conversion ratio (Vout) versus efficiency distributions for datasets with 3–9 components.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D.2 VALIDATION DATASET

6 component validation: The 6-comp dataset (Figure 11a) is the original LAMAGIC 7k validation
set. Evaluating the entire set is infeasible: with a search budget of 100, it would require ∼63 days on
our A5000 GPUs. And it is also inefficient as it contains numerous low-performing circuits(circuits
with extremely low v and low

To address this bottleneck, we construct two 100-sample subsets: 1.) 6-comp-easy, consisting of 100
randomly selected samples (uniform baseline). 2.) 6-comp-hard, consisting of 100 high-efficiency
samples. Specifically, for v ∈ [0.1, 1.1] at 0.1 intervals, we select the top-10 most efficient designs,
ensuring broad coverage of the majority region.

7-10 component validation: For higher-component datasets (7/8/9/10-comp-hard), we extend the
evaluation to unconventional regions following recommendations from domain experts in analog
circuit design. samples with v ∈ [−3, 0] ∪ [1, 3] and high efficiency is more valueable. Specifically,
we allocate 20 samples to v ∈ [−3, 0] ∪ [1, 3] (selecting the top-2 most efficient designs per 0.5
interval), and 80 samples to the typical region v ∈ [0, 1] (selecting the top-8 per 0.1 interval).

(a) 6-comp validation dataset (LAMAGIC). (b) 6-comp-easy validation dataset (SELECT).

(c) 6-comp-hard validation dataset (SELECT). (d) 7-comp-hard validation dataset (SELECT).

(e) 8-comp-hard validation dataset (SELECT). (f) 9-comp-hard validation dataset (SELECT).

(g) 10-comp-hard validation dataset (SELECT).

Figure 11: Conversion ratio (Vout) versus efficiency distributions across validation datasets with 6–10
components.

18

	Introduction
	Preliminaries
	Analog topology design
	Search-based methods
	Language model-based methods

	Complex power converter topology dataset construction
	Analysis of existing text-based circuit formulation
	Search-enhanced language model framework
	MCTS-based token generation

	Experimental results
	Experiment setup
	Generation results on 6-component circuit
	Generation Results on 7-9 Component Circuit
	MCTS as an effective data collection method

	Conclusion
	Appendix Index
	ICLR Statements
	LLM Usage Statement
	Ethics Statement
	Reproducibility Statement

	Further Explanation of methodologies
	P-UCB node selection

	Further Explanation of methodologies
	Model training details and compute resources
	Ablation Studies

	Existing Dataset Distribution
	Overall Dataset
	Validation Dataset

